TECHNICAL FIELD
[0001] The present invention relates to a double-row cylindrical roller bearing according
to the preamble of claim 1 that has high rigidity and is easy to process and assemble.
BACKGROUND ART
[0002] The double-row angular cylindrical roller bearings disclosed in patent documents
1 and 2 are known as cylindrical roller bearings having high rigidity. In a double-row
angular cylindrical roller bearing, two roller raceways are formed between inner and
outer races, and a cylindrical roller disposed at an incline at an angle of 45° in
one direction is rollably inserted into each of the roller raceways. Between the cylindrical
roller inserted into one roller raceway and the cylindrical roller inserted into the
other roller raceway, the directions of inclination are opposite, and the roller center
axis lines are orthogonal to each other.
[0003] A double-row angular cylindrical roller bearing is capable of receiving both an axial
load acting along a direction parallel to the bearing center axis line and a radial
load acting along a bearing radial direction. In addition, a double-row angular cylindrical
roller bearing has greater rigidity and a greater load capacity than does a cross-roller
bearing having the same outside diameter.
A generic double-row cylindrical roller bearing according to the preamble of claim
1 is disclosed by patent document 3.
PRIOR ART DOCUMENT
PATENT DOCUMENT
SUMMARY OF THE INVENTION
PROBLEMS TO BE SOLVED BY THE INVENTION
[0005] In a double-row angular cylindrical roller bearing, an outer-race-side raceway surface
and an inner-race-side raceway surface, which define the roller raceways formed between
the inner and outer races, are inclined by 45° relative to the bearing center axis
line. Therefore, in a state where cylindrical rollers are inserted into the two roller
raceways, the cylindrical rollers inserted into the left and right roller raceways
are sandwiched from the direction of the bearing center axis line by the outer-race-side
raceway surface and the inner-race-side raceway surface. Specifically, the relative
positions of the two rows of cylindrical rollers in the direction of the bearing center
axis line are restricted.
[0006] Therefore, in a state where the inner and outer races are put together so that the
cylindrical rollers are inserted therebetween, it is necessary for each of a pair
of inner-race-side raceway surfaces and a pair of outer-race-side raceway surfaces
to face each other with high precision in the direction of the bearing center axis
line. For this purpose, deviation of the inner- and outer-race raceway surfaces in
the direction of the bearing center axis line must be kept to no greater than several
microns, which is the level of variation in the roller diameter of the cylindrical
rollers. Accordingly, processing and putting together of the inner and outer races
must be performed with high precision, and the manufacturing costs also increase.
[0007] When the deviation of the inner-race raceway surfaces and outer-race raceway surfaces
in the direction of the bearing center axis line is large due to,
inter alia, error in processing the inner and outer races, problems are presented in that it
is difficult to assemble the bearings, excessive force is applied to the raceway surfaces
or cylindrical rollers, friction torque at sliding portions of the raceway surfaces
and cylindrical rollers increases, and variation in bearing performance also increases.
[0008] In the prior art, cylindrical rollers having a smaller diameter than in the case
of a cross roller bearing of the same size are employed in order to avoid such problems.
Therefore, the rated load of the bearings is low.
[0009] In view of such issues, an object of the present invention is to provide a double-row
cylindrical roller bearing that has high rigidity and is easy to process and assemble.
MEANS OF SOLVING THE PROBLEMS
[0010] The object is achieved by a double-row cylindrical roller bearing having the features
of claim 1. Further advantageous developments of the present invention are set out
in the dependent claim.
[0011] In order to solve the above problems, in a double-row cylindrical roller bearing
of the present invention, a cross roller bearing is employed for one cylindrical roller
bearing and a parallel cylindrical roller bearing is employed for the other cylindrical
roller bearing. The relative positions of the cylindrical rollers on the cross roller
bearing side and the cylindrical rollers on the parallel cylindrical roller bearing
side are not restricted in the direction of the bearing center axis line.
[0012] Accordingly, the need to raise the precision of processing and assembly of the inner
and outer races to the tolerance level of the cylindrical rollers is obviated, processing
and assembly are facilitated, and cost can be reduced. In addition, increases in the
friction torque, variation in bearing performance, etc., which are caused by error
in the processing or assembly of the inner and outer races, can be suppressed. Furthermore,
because the size of cylindrical rollers does not need to reduce, the strength of the
bearing can be kept from decreasing.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] FIG. 1 is a half cross-sectional view of a double-row cylindrical roller bearing
to which the present invention is applied.
MODE FOR CARRYING OUT THE INVENTION
[0014] An embodiment of a double-row cylindrical roller bearing to which the present invention
is applied is described below with reference to FIG. 1. The double-row cylindrical
roller bearing 1 is provided with an outer race 2, an inner race 3, a cross roller
bearing section 10 formed on one side in the direction of a bearing center axis line
1a between the outer race 2 and the inner race 3, and a parallel cylindrical roller
bearing section 20 formed on the other side in the direction of the bearing center
axis line 1a between the outer race 2 and the inner race 3. In the description below,
cylindrical rollers arranged in the cross roller bearing section 10 are referred to
as first cylindrical rollers 11, and those arranged in the parallel cylindrical roller
bearing section 20 as second cylindrical rollers 21.
[0015] The cross roller bearing section 10 is provided with a V-shaped raceway groove 12
on the circular inner peripheral surface of the outer race 2. The V-shaped raceway
groove 12 is defined by inclined raceway surfaces 13 and 14 which are inclined in
opposite directions by 45° relative to the bearing center axis line 1a so as to be
orthogonal with each other. Similarly, a V-shaped raceway groove 15 is formed on the
circular outer peripheral surface of the inner race 3. The V-shaped raceway groove
15 is defined by inclined raceway surfaces 16 and 17 which are inclined in opposite
directions by 45° relative to the bearing center axis line 1a so as to be orthogonal
with each other.
[0016] The first cylindrical rollers 11 are arranged along the inclined raceway surfaces
13, 14, 16 and 17 in a state in which the roller center axis lines thereof are alternately
crossed orthogonally. Among the first cylindrical rollers 11, those inclined to one
side (the roller center axis lines of which extend in the direction of dotted lines
11a) roll along the inclined raceway surfaces 14 and 16, whereas those inclined to
the other side (the roller center axis lines of which extend in the direction of dotted
lines 11b) roll along the inclined raceway surfaces 13 and 17.
[0017] The parallel cylindrical roller bearing section 20 is provided with a rectangular
raceway groove 22 having a fixed depth and formed on the circular inner peripheral
surface of the outer race 2. A parallel raceway surface 23, which is parallel to the
bearing center axis line 1a, is formed on the groove bottom surface of the rectangular
raceway groove 22. Similarly, a rectangular raceway groove 24 having a fixed depth
is formed on the circular outer peripheral surface of the inner race 3, and a parallel
raceway surface 25 parallel to the bearing center axis line 1a is formed on the groove
bottom surface of the rectangular raceway groove 24. The second cylindrical rollers
21 are arranged along a pair of the parallel raceway surfaces 23 and 25 in a state
in which the roller center axis line 21a thereof is in parallel with the bearing center
axis line 1a.
[0018] The cross roller bearing section 10 may be a full complement cross roller bearing,
or a cross roller bearing provided with a retainer (not shown in the drawing) for
retaining the respective first cylindrical rollers 11 at a fixed interval. Similarly,
the parallel cylindrical roller bearing section 20 may be a full complement cylindrical
roller bearing, or a cylindrical roller bearing provided with a retainer (not shown
in the drawing) for retaining the respective second cylindrical rollers 21 at a fixed
interval.
[0019] In the parallel cylindrical roller bearing section 20 of this example, the rectangular
raceway grooves 22 and 24 formed in the outer race 2 and the inner race 3 are open
to the end surfaces 2a and 3a of the outer and inner races 2 and 3. An annular roller
presser 4 (retainer presser) having a fixed thickness is attached to the annular end
surface 3a of the inner race 3. The roller presser 4 has an outer peripheral edge
portion 4a for covering a radially-inner-peripheral-side portion of the groove opening
24a that exposes on the end surface 3a. The roller presser 4 prevents the second cylindrical
rollers 21 (or a retainer) from falling out of the rectangular raceway grooves 22
and 24 in the bearing center axis line 1a.
[0020] In an assembled state of the cross roller bearing section 10, a state is established
in which slight pressure in the direction of the bearing center axis 1a is being applied
between the outer race 2 and the inner race 3. Whereas, in the parallel cylindrical
roller bearing section 20, a small gap in the radial direction (radial gap) is formed
between the outer peripheral surface of the second cylindrical roller 21 and the parallel
raceway surface 23 or between the outer peripheral surface of the second cylindrical
roller 21 and the parallel raceway surface 25. Specifically, the interval, which is
formed between the outer-race-side parallel raceway surface 23 and the inner-race-side
parallel raceway surface 25 in an assembled state, is set slightly larger than the
outside diameter of the second cylindrical roller 21.
[0021] The cross roller bearing section 10 is capable of bearing radial load, axial load
and momentum, while the parallel cylindrical roller bearing section 20 is capable
of bearing radial load and momentum. The radial gap is formed between the second cylindrical
roller 21 and the parallel raceway surface 23 or between the second cylindrical roller
21 and the parallel raceway surface 25 in the parallel cylindrical roller bearing
section 20 in this example as mentioned above. Therefore, the cross roller bearing
10 mainly bears load. Specifically, in a case of light load, the cross roller bearing
section 10 mainly receives the applied load. In a case of heavy load in which radial
load and momentum are large, the cross roller bearing section 10 is deformed and the
parallel cylindrical roller bearing section 20 shares the radial load and momentum.
[0022] According to the double-row cylindrical roller bearing 1 with this configuration,
in the cross roller bearing section 10, the position of the first cylindrical roller
11 in the bearing center axis line 1a is restricted by the inclined raceway surfaces
13, 14, 16 and 17 that define the V-shaped raceway grooves 12 and 15 formed between
the outer and inner races. In contrast, the second cylindrical roller 21 of the parallel
cylindrical roller bearing section 20 is movable in the direction of the bearing center
axis line 1a along the parallel raceway surfaces 23 and 25 formed in the outer and
inner races, and therefore is not restricted in movement in the bearing center axis
line 1a. This means that the relative positional relationship of the first and second
cylindrical rollers 11 and 21 in the direction of the bearing center axis line 1a
is not fixed (the roller inter-center distance D of FIG. 1 is not fixed). The dimension
tolerance in the direction of the bearing center axis line 1a of the V-shaped raceway
grooves 12 and 15 and the rectangular raceway grooves 22 and 24, which are formed
in the outer and inner races, is not needed to be the same level as that of the dimension
tolerance required for the first and second cylindrical rollers 11 and 21, but is
suffice to be the general tolerance.
[0023] Accordingly, it is possible to achieve a bearing that has high rigidity and is easy
to process and assemble at low cost. In addition, in an assembled state, the first
and second cylindrical rollers 11 and 21 are prevented or suppressed from being applied
with unnecessary force, whereby reducing friction torque in the sliding sections and
stabilizing bearing performance. Furthermore, there is no need to lower the size of
the first and second cylindrical rollers in order to facilitate processing and assembly,
decrease in friction torque, etc.
1. A double-row cylindrical roller bearing (1) comprising:
an outer race (2) consisting of a single member and an inner race (3);
a cross roller bearing section (10) formed on one side in a direction of a bearing
center axis line (1a) between the outer race (2) and the inner race (3), and a parallel
cylindrical roller bearing section (20) formed on the other side;
a plurality of first cylindrical rollers (11) arranged in the cross roller bearing
section (10); and
a plurality of second cylindrical rollers (21) arranged in the parallel cylindrical
bearing section (20),
wherein, in the cross roller bearing section (10), the outer race (2) and the inner
race (3) are respectively formed with V-shaped raceway grooves (12, 15); each of the
V-shaped raceway grooves (12, 15) is defined by inclined raceway surfaces (13, 14,
16, 17) that are inclined in opposite directions at 45° relative to the bearing center
axis line (1a) and that are orthogonal with each other; and the first cylindrical
rollers (11) are arranged along the inclined raceway surfaces (13, 14, 16, 17) in
a state in which roller center axis lines (11a, 11b) of the first cylindrical rollers
(11) are alternately orthogonal with each other,
wherein, in the parallel cylindrical roller bearing section (20), the outer race (2)
and the inner race (3) are respectively formed with rectangular raceway groove (22,
24); parallel raceway surfaces (23, 25) parallel to the bearing center axis line (1a)
are formed on groove bottom surfaces of the respective rectangular raceway grooves
(22, 24); and the second cylindrical rollers (21) are arranged along the parallel
raceway surfaces (23, 25) in a state in which roller center axis lines (21a) of the
second cylindrical rollers (21) are parallel to the bearing center axis line (1a),
and
wherein, in an assembled state of the cross roller bearing section (10), a state is
established in which pressure in the direction of the bearing center axis (1a) is
being applied between the outer race (2) and the inner race (3),
characterized in that
the inner race (3) consists of a single member, and
in that
a radial gap is formed between an outer peripheral surface of the second cylindrical
rollers (21) and the parallel raceway surfaces (23, 25) in the parallel cylindrical
roller bearing section (20).
2. The double-row cylindrical roller bearing (1) according to claim 1,
wherein the rectangular raceway grooves (22, 24) are open to end surfaces of the outer
race (2) and the inner race (3) on a side of the parallel cylindrical roller bearing
section (20); and
a roller presser (4) for preventing the second cylindrical rollers (21) from falling
out of the rectangular raceway grooves (22, 24) is attached to the end surface of
the inner race (3).
1. Doppelreihenzylinderrollenlager (1), mit:
einem Außenring (2), der aus einem einzigen Element besteht, und einem Innenring (3);
einer Kreuzrollenlagerpartie (10), die auf einer Seite in einer Richtung einer Lagermittelachsenlinie
(1a) zwischen dem Außenring (2) und dem Innenring (3) ausgebildet ist, und einer Parallelzylinderrollenlagerpartie
(20), die auf der anderen Seite ausgebildet ist;
einer Vielzahl von ersten Zylinderrollen (11), die in der Kreuzrollenlagerpartie (10)
angeordnet ist; und
einer Vielzahl von zweiten Zylinderrollen (21), die in der Parallelzylinderlagerpartie
(20) angeordnet ist,
wobei, in der Kreuzrollenlagerpartie (10) der Außenring (2) und der Innenring (3)
jeweils mit V-förmigen Laufbahnnuten (12, 15) ausgebildet sind; jede der V-förmigen
Laufbahnnuten (12, 15) durch geneigte Laufbahnflächen (13, 14, 16, 17) definiert ist,
die in entgegengesetzten Richtungen bei 45° bezüglich der Lagermittelachsenlinie (1a)
geneigt sind, und die senkrecht zueinander sind; und die ersten Zylinderrollen (11)
entlang der geneigten Laufbahnflächen (13, 14, 16, 17) in einem Zustand angeordnet
sind, in dem Rollenmittelachsenlinien (11a, 11b) der ersten Zylinderrollen (11) wechselweise
senkrecht zueinander sind,
wobei, in der Parallelzylinderrollenlagerpartie (20), der Außenring (2) und der Innenring
(3) jeweils mit rechteckigen Laufbahnnuten (22, 24) ausgebildet sind; parallele Laufbahnflächen
(23, 25), die parallel zu der Lagermittelachsenlinie (1a) sind, auf Nutbodenflächen
der jeweiligen rechteckigen Laufbahnnuten (22, 24) ausgebildet sind; und die zweiten
Zylinderrollen (21) entlang der parallelen Laufbahnflächen (23, 25) in einem Zustand
angeordnet sind, in dem Rollenmittelachsenlinien (21a) der zweiten Zylinderrollen
(21) parallel zu der Lagermittelachsenlinie (1a) sind, und
wobei, in einem zusammengebauten Zustand der Kreuzrollenlagerpartie (10), ein Zustand
eingerichtet ist, in dem ein Druck in der Richtung der Lagermittelachse (1a) zwischen
dem Außenring (2) und dem Innenring (3) aufgebracht ist,
dadurch gekennzeichnet, dass
der Innenring (3) aus einem einzigen Element besteht, und dass
ein radialer Spalt zwischen einer Außenumfangsfläche der zweiten Zylinderrollen (21)
und den parallelen Laufbahnflächen (23, 25) in der Parallelzylinderrollenlagerpartie
(20) ausgebildet ist.
2. Doppelreihenzylinderrollenlager (1) nach Anspruch 1,
wobei die rechteckigen Laufbahnnuten (22, 24) zu Stirnflächen des Außenrings (2) und
des Innenrings (3) auf einer Seite der Parallelzylinderrollenlagerpartie (20) hin
offen sind; und
ein Rollenpresselement (4) zum Verhindern, dass die zweiten Zylinderrollen (21) aus
den rechteckigen Laufbahnnuten (22, 24) herausfallen, an der Stirnfläche des Innenrings
(3) befestigt ist.
1. Roulement à rouleaux cylindriques à deux rangées (1) comprenant :
un chemin externe (2) se composant d'un seul élément et un chemin interne (3) ;
une section de roulement à rouleaux transversale (10) formée d'un côté dans une direction
d'une ligne axiale centrale de roulement (1a) entre le chemin externe (2) et le chemin
interne (3), et une section de roulement à rouleaux cylindriques parallèle (20) formée
de l'autre côté ;
une pluralité de premiers rouleaux cylindriques (11) agencés dans une section de roulement
à rouleaux transversale (10) ; et
une pluralité de seconds rouleaux cylindriques (21) agencés dans la section de roulement
à rouleaux cylindriques parallèle (20),
dans lequel, dans la section de roulement à rouleaux transversale (10), le chemin
externe (2) et le chemin interne (3) sont respectivement formés avec des rainures
de chemin de roulement en forme de V (12, 15) ; chacune des rainures de chemin de
roulement en forme de V (12, 15) est définie par des surfaces de chemin roulement
inclinées (13, 14, 16, 17) qui sont inclinées dans des directions opposées à 45° par
rapport à la ligne d'axe central de roulement (1a) et qui sont orthogonales entre
elles ; et les premiers rouleaux cylindriques (11) sont agencés le long des surfaces
de chemin de roulement inclinées (13, 14, 16, 17) dans un état dans lequel les lignes
d'axe central de rouleaux (11a, 11b) des premiers rouleaux cylindriques (11) sont
orthogonales entre elles, de manière alternée,
dans lequel, dans la section de roulement à rouleaux cylindriques parallèle (20),
le chemin externe (2) et le chemin interne (3) sont respectivement formés avec une
rainure de chemin de roulement rectangulaire (22, 24) ; des surfaces de chemin de
roulement parallèles (23, 25) parallèles à la ligne d'axe central de roulement (1a)
sont formées sur des surfaces inférieures de rainure des rainures de chemin de roulement
rectangulaires (22, 24) respectives ; et les seconds rouleaux cylindriques (21) sont
agencés le long des surfaces de chemin de roulement parallèles (23, 25) dans un état
dans lequel les lignes d'axe central de rouleaux (21a) des seconds rouleaux cylindriques
(21) sont parallèles à la ligne d'axe central de roulement (la), et
dans lequel, dans un état assemblé de la section de roulement à rouleaux transversale
(10), on établit un état dans lequel la pression dans la direction de l'axe central
de roulement (1a) est appliquée entre le chemin externe (2) et le chemin interne (3),
caractérisé en ce que :
le chemin interne (3) se compose d'un seul élément, et en ce que :
un espace radial est formé entre une surface périphérique externe des seconds rouleaux
cylindriques (21) et les surfaces de chemin de roulement parallèles (23, 25) dans
la section de roulement à rouleaux cylindriques parallèles (20).
2. Roulement à rouleaux cylindriques à deux rangées (1) selon la revendication 1,
dans lequel les rainures de chemin de roulement rectangulaires (22, 24) sont ouvertes
sur les surfaces d'extrémité du chemin externe (2) et du chemin interne (3) d'un côté
de la section de roulement à rouleaux cylindriques parallèle (20) ; et
un rouleau presseur (4) pour empêcher les seconds rouleaux cylindriques (21) de tomber
des rainures de chemin de roulement rectangulaires (22, 24), est fixé sur la surface
d'extrémité du chemin interne (3).