TECHNOLOGICAL BACKGROUND OF THE INVENTION
Field of application
[0001] The present invention relates in general to electronic systems for detecting fires
which include a plurality of sensors. In particular, the invention relates to an electronic
unit for monitoring and controlling the fire sensors of a fire detection system.
Description of the prior art
[0002] In fire detection systems of known type, a plurality of fire sensors are connected
to one another by means of a communication network and are monitored by a central
control unit. In particular, the monitoring of such sensors envisages transmitting
cyclical querying signals of each sensor on the network and receiving corresponding
reply signals indicative of the operative state of the queried sensors.
[0003] Each fire sensor currently on the market is configured to receive the cyclical querying
signals and to transmit the corresponding reply signals to the central control unit
according to one of three different communication protocols.
[0004] A first type of fire sensor, which can be queried according to a first communication
protocol or NOTIFIRE protocol developed by the company Honeywell International Inc.,
is configured to receive and interpret cyclical querying signals which may assume
two voltage levels, 24V and 5V, respectively. The NOTIFIRE protocol also envisages
a voltage level of 0V, which can be used as reference voltage level. Such digital
signals are generated by a respective first central control unit, which is configured
to communicate only with such a first type of sensor according to the NOTIFIRE protocol.
[0005] A second type of fire sensor, which can be queried according to a communication protocol
developed by the company APOLLO Fire Detectors Ltd. (hereinafter APOLLO protocol)
is configured to receive and interpret the digital cyclical querying signals which
may assume two voltage levels: 24V and 32V. Such digital signals are generated by
a respective second central control unit, which is configured, in turn, to communicate
only with such a second type of sensor according to the APOLLO protocol.
[0006] A third type of fire sensor, which can be queried according to a third communication
protocol developed by the company HOCHIKI Corporation (hereinafter HOCHIKI protocol),
is configured to receive and interpret digital cyclical querying signals which may
assume two voltage levels: 24V and 32V. In particular, the transmission of such signals
is of serial type and occurs at a predetermined baud rate. Such digital signals are
generated by a respective third central control unit, which is configured to communicate
only with such a third type of sensor according to the HOCHIKI protocol.
[0007] From the above, it is apparent that in the currently known fire detection systems,
the choice of one of the communication protocols indicated above determines in substantially
univocal manner both the choice of the type of all fire sensors which can be used
in the system and of the corresponding type of central control unit configured to
monitor the sensors themselves.
[0008] This represents a limit of the known fire detection systems which, with the aforesaid
constraints, are rigid systems which substantially cannot be modified. Indeed, such
systems poorly adapt to possible updating/improvement needs during the operating life
of the system which may envisage the use of sensors of different type at the same
time or even the need to replace the central control unit of one type with one of
different type. Indeed, such replacement of the central control unit would not be
cost-effective because it would require the replacement of the sensors in the system
at the same time.
[0009] The document
XP055398394 discloses different communication protocols implemented on different module cards
that can be inserted into a fire alarm control panel.
SUMMARY OF THE INVENTION
[0010] It is the object of the present invention to provide and make available an electronic
control unit for monitoring and controlling a fire detection system which ensures
more flexibility in the configuration of the fire detection system and allows to overcome,
at least partially, the drawbacks and the limits mentioned above, relative to the
known fire detection methods.
[0011] In particular, it is the object of the invention to make available an electronic
monitoring and controlling unit of a fire detection system which allows to manage
and control fire sensors of different type at the same time.
[0012] Such object is achieved by means of an electronic unit for monitoring and controlling
fire sensors in a fire detection system according to claim 1.
[0013] Preferred embodiments of such electronic unit are described in dependent claims 2-9.
[0014] It is also the object of the present invention a fire detection system using the
aforesaid electronic monitoring and controlling unit of the fire sensors according
to claim 10 and a respective method for monitoring and controlling fire sensors according
to claim 11.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Further features and advantages of the electronic unit for monitoring and controlling
fire sensors of a fire detection system according to the invention will be apparent
from the following description which illustrates preferred embodiments, given by way
of indicative, non-limiting examples, with reference to the accompanying figures,
in which:
- figure 1 illustrates by means of a block chart an electronic unit for monitoring and controlling
fire sensors in a fire detection system according to the invention;
- figure 2 diagrammatically illustrates an example of an electrical power supplying stage and
of a fire sensor managing stage included in the monitoring and controlling electronic
unit of figure 1;
- figure 3 diagrammatically illustrates a flow chart of a monitoring and controlling method
of one or more fire sensors of a fire detection system of the present invention.
Similar or equivalent elements in the aforesaid figures are indicated with the same
reference numerals.
DETAILED DESCRIPTION
[0016] With reference to figures 1-2, an electronic system for detecting fires in an environment
is indicated by reference numeral 100 as a whole. Such electronic system 100 comprises
a plurality of fire sensors SEN distributed in such environment and an electronic
monitoring and controlling unit 10 according to the present invention electrically
connected to such plurality of sensors SEN.
[0017] The electronic unit 10 for monitoring and controlling fire sensors SEN is indicated
hereinafter as electronic monitoring unit or electronic unit for the sake of simplicity.
[0018] Again which reference to figure 1, such electronic unit 10 comprises a processing
stage 1, e.g. consisting of a microprocessor or microcontroller (Central Processing
Unit or CPU).
[0019] Furthermore, the electronic unit 10 comprises a managing stage 2 of the aforesaid
one or more sensors SEN. In particular, such managing stage 2 is activated by the
processing stage 1 to generate digital cyclical querying signals S1, S2 to be sent
to the sensors SEN to verify the operative stage thereof.
[0020] In an example of embodiment, the electronic monitoring unit 10 comprises a communication
stage 4, operating, e.g. according to an Ethernet TCP/IP or MODBUS TCP/IP protocol,
to connect the processing stage 1 to a main processing unit (CPU HOST or PLC) arranged
in distal position from the electronic unit 10, e.g. at some tens/hundreds of meters
from the electronic control unit 10 up to even several kilometers.
[0021] In another example of embodiment, the electronic monitoring unit 10 may also comprise
a further communication stage 5, e.g. operating according to a Controller Area Network
or CAN protocol, to connect the processing stage 1 of the monitoring electronic unit
10 to at least another similar unit configured to monitor a same group of sensors
in redundant mode.
[0022] Additionally, the electronic unit 10 comprises an electrical power supplying stage
3 configured to generate direct current electrical potentials to be supplied to the
managing stage 2 of the sensors starting from a predetermined reference power supply
potential Vcc referred to a ground potential GND.
[0023] For example, such reference power potential Vcc is generated by an acid-lead battery
configured to provide a nominal voltage Vcc=24V.
[0024] Advantageously, the electrical power supplying stage 3 comprises a first electronic
circuit 30, 40, 50 to generate:
- a first potential V1 higher than the reference potential Vcc to be supplied to the
managing stage 2 of the sensors;
- a second potential V2 equal to the reference potential Vcc to be supplied to the managing
stage 2 of the sensors;
- a third potential V3 lower than the reference potential Vcc to be supplied to the
managing stage 2 of the sensors.
[0025] Furthermore, the managing stage 2 of the sensors comprises a second electronic circuit
60, 61, 65, 66 to generate:
- a first digital cyclical querying signal S1 adapted to assume a high level equal to
the second potential V2 and a low level equal to the third potential V3,
- a second digital cyclical querying signal S2 adapted to assume a high level equal
to the first potential V1 and a low level equal to the second potential V2.
[0026] Such first S1 and second S2 digital cyclical querying signals being associated with
different communication protocols to be made available to fire sensors SEN of different
type of the fire detection system 100 by the managing stage 2.
[0027] In a preferred example of embodiment of the invention:
- the electrical reference potential Vcc is equal to 24V;
- the first potential V1 is equal to 32V;
- the second potential V2 is equal to 24V;
- the third potential V3 is equal to 5V.
Consequently, the first digital signal S1 has a high level equal to 24V and a low
level equal to 5V. In such a manner, the electronic unit 10 is adapted to query one
or more sensors SEN according to a first communication protocol, or NOTIFIRE protocol.
The second digital cyclical querying signal S2 is adapted to assume a high level equal
to 32V and a low level equal to 24V. In such a manner, the electronic unit 10 is adapted
to query one or more sensors SEN according to a second or to a third communication
protocol, i.e. according to the APOLLO and HOCHIKI protocol, respectively.
[0028] With reference to the example in figure 2, the first electronic circuit of the electrical
power supplying stage 3 comprises a first DC-DC voltage converter circuit 30 configured
to receive in input the reference electrical potential Vcc and to generate the first
potential V1 higher than such reference potential Vcc. In a particular example, such
first DC-DC voltage converter circuit 30 is an electronic converter of the switching
boost converter type.
[0029] The first electronic circuit of the electrical power supplying stage 3 further comprises
a second DC-DC voltage converter circuit 40 configured to receive in input the first
potential V1 generated by said first DC-DC voltage converter circuit 30 and to generate
the second potential V2 equal to the reference potential Vcc.
[0030] The first electronic circuit of the power supplying stage 3 further comprises a third
DC-DC voltage converter circuit 50 configured to receive in input the first potential
V1 and to generate the third potential V3 lower than such reference potential Vcc.
[0031] In a particular example, such second 40 and third 50 DC-DC voltage converter circuit
are electronic converters of the switching buck converter type.
[0032] It is worth noting that the aforesaid first 30, second 40 and third 50 converter
circuits are standard circuits known to a person skilled in the art and thus will
not be described in further detail hereinafter.
[0033] With reference to figure 1, the aforesaid sensor managing stage 2 of the electronic
monitoring and controlling unit 10 comprises a first managing block 21 connected to
a first group of sensors SEN1 of the aforesaid one or more groups of sensors SEN and
a second managing block 22 connected to a second group of sensors SEN2. In other words,
the electronic control unit 10 makes available two mutually similar sensor management
channels, which may execute the same operations separately in parallel.
Each of such first 21 and second 22 managing blocks comprises the aforesaid second
electronic block, which includes a selector circuit 60 configured to receive in input
the first V1, the second V2 and the third V3 electrical potential. In particular,
such selector circuit 60 is configured to receive the first electrical potential V1
at a first input IN1, the second electrical potential V2 at a second input IN2 and
a third input IN3, the third electrical potential V3 at a fourth input IN4.
[0034] In an example of embodiment, such selector circuit 60 is of the standard type and
comprises a relay controlled by a bipolar transistor NPN which can be activated to
select one of the three available protocols by selecting the voltage levels (5V-24V
or 24V-32V) which can be used for the selected communication. It is worth noting that
the bipolar transistor of the selector circuit 60 is controlled by the processing
stage 1 by means of a first control signal C1 to generate the high level and the low
level of the aforesaid first S1 and second S2 digital cyclical querying signals selected
on a first O1 and on a second O2 output of the selector circuit itself, respectively.
[0035] Furthermore, with reference to figure 2, each of such first 21 and second 22 managing
blocks of the electronic monitoring and controlling unit 10 comprises a transmitter
circuit TX 61 configured to receive in input the high level and the low level of the
first S1 and of the second S2 digital cyclical querying signals to be generated. Such
transmitter circuit 61 is controlled by the processing stage 1 by means of a control
signal C2 to generate an output enabling signal SA.
[0036] It is worth noting that such transmitter circuit TX 61 is of standard type and therefore
will not be described in further detail hereinafter.
[0037] Additionally, with reference to figure 2, each of such first 21 and second 22 managing
blocks of the electronic monitoring and controlling unit 10 comprises a switching
circuit 65 controlled by the processing stage 1 by means of a third control signal
C3. In particular, such a switching circuit 65 is configured to generate up/down edges
of the first S1 and second S2 digital cyclical querying signals starting from said
enabling signal SA.
[0038] It is worth noting that such switching circuit 65 is of standard type and therefore
will not be described in further detail hereinafter.
[0039] Again with reference to figure 2, each of such first 21 and second 22 managing blocks
of the electronic monitoring and controlling unit 10 comprises a receiver circuit
RX 66 which includes means for discriminating signals sent by the sensors SEN in reply
to the first S1 or the second S2 generated digital cyclical querying signal. In particular,
such receiver circuit 66 is controlled by the processing stage 1 by means of a fourth
control signal C4 to adapt internal levels of discrimination of the reply signals
on the basis of the selected communication protocol.
It is worth noting that such receiver circuit RX 66 is of standard type and therefore
will not be described in further detail hereinafter.
[0040] In an example of embodiment, the electrical power supplying stage 3 of the electronic
monitoring and controlling unit 10 comprises a protection and filtering circuit 70
configured to receive in input the reference power supply potential Vcc. Such protection
and filtering circuit 70 includes electronic protection devices of the aforesaid first,
second and third DC-DC voltage converter circuits from overvoltages and overcurrents
associated with the reference power supply potential Vcc. For example, such protection
and filtering circuit 70 may comprise a fuse for protecting from overcurrents in input,
a transil used to limit input overvoltage peaks, an LC filter for filtering interferences
coming from the input or generated towards the input by the electronic monitoring
unit 10.
[0041] With reference to figure 3, the steps of a method 300 for monitoring and controlling
one or more fire sensors SEN of a fire detection system 100 of the present invention
are described in a flow chart. The method 300 comprises a symbolic step of starting
STR.
[0042] The method comprises step 301 of making available an electronic control unit 10 which
can be electrically connected to such sensors SEN which includes:
- a processing stage 1;
- a managing stage 2 of the aforesaid one or more fire sensors SEN which can be electrically
connected to such sensors;
- an electrical power supplying stage 3 configured to generate direct power supply potentials
to be supplied to the managing stage 2 of the sensors starting from a predetermined
reference power supply potential Vcc referred to a ground potential GND.
[0043] Furthermore, the method 300 comprises the steps, executed by the electrical power
supplying stage 3, of:
generating 302 a first potential V1 higher than the reference potential Vcc to be
supplied to the managing stage 2 of the sensors;
generating 303 a second potential V2 equal to the reference potential Vcc to be supplied
to the managing stage 2 of the sensors;
generating 304 a third potential V3 lower than such reference potential Vcc to be
supplied to the managing stage 2 of the sensors.
[0044] Hereinafter, the method comprises the steps of:
- generating 305 by said managing stage 2, a first digital cyclical querying signal
S1 adapted to assume a high level equal to the second potential V2 and a low level
equal to the third potential V3,
- generating 306 by said managing stage 2, a second digital cyclical querying signal
S2 adapted to assume a high level equal to the first potential V1 and a low level
equal to the second potential V2.
[0045] Furthermore, the method 300 comprises a step of sending 307 such first S1 and second
S2 digital cyclical querying signals, each of which is associated with different communication
protocols to the fire sensors SEN of different type of the fire detection system 100.
[0046] The method 300 comprises a symbolic step of ending ED.
[0047] The electronic unit 10 for monitoring and controlling the fire sensors SEN and the
respective fire detection system 100 which employs such unit have advantages.
[0048] In particular, the electronic monitoring and controlling unit 10 allows to make a
fire detection system which may use fire sensors of different type, each operating
according to one of the known communication protocols: NOTIFIRE, APOLLO and HOCHIKI.
In other words, the same electronic monitoring unit 10 may be used in a system 100
for monitoring sensors of different type.
[0049] Such flexibility/adaptability of the electronic unit 10 confers advantages to the
electronic fire detection system 100 which uses such unit 10. Indeed, any change made
during the working life of the system to deal with possible needs for updating/improving
the fire detection system, which are, for example, the addition of one or more new
sensors which communicate with the electronic monitoring unit 10 by means of different
protocols, is performed simply and effectively by connecting such new sensors to the
electronic monitoring system 10 of the invention.
[0050] In equally simple manner, the electronic monitoring unit 10 of the invention may
also be used to replace obsolete electronic units in fire detection systems already
on the field and operating independently from the communication protocol with the
fire sensors used in the aforesaid systems on the field.
[0051] A person skilled in art may make changes and adaptations to the embodiments of the
electronic unit for monitoring and controlling one or more fire sensors in a fire
detection system according to the invention or can replace elements with others which
are functionally equivalent to satisfy contingent needs without departing from the
scope of protection of the appended claims. Each of the features described above as
belonging to one possible embodiment may be implemented independently from the other
described embodiments.
1. An electronic unit (10) for monitoring and controlling one or more fire sensors (SEN)
arranged in loops of a fire detection system (100), comprising:
- a processing stage (1);
- a managing stage (2) of said one or more sensors (SEN) which can be connected to
said one or more sensors, said managing stage being activated by the processing stage
(1) to generate digital cyclical querying signals (S1, S2) to be sent to said one
or more sensors to verify their operative state;
- an electrical power supplying stage (3) configured to generate direct current electrical
potentials to be supplied to the managing stage (2) of the sensors starting from a
predetermined reference power supply potential (Vcc) referred to a ground potential
(GND),
characterized in that
said electrical power supplying stage (3) comprises a first electronic circuit (30,
40, 50) to generate:
- a first potential (V1) higher than the reference potential (Vcc) to be supplied
to the managing stage (2) of the sensors;
- a second potential (V2) equal to the reference potential (Vcc) to be supplied to
the managing stage (2) of the sensors;
- a third potential (V3) lower than said reference potential (Vcc) to be supplied
to the managing stage (2) of the sensors, and
said managing stage (2) of the sensors comprises a second electronic circuit (60,
61, 65, 66) to generate:
- a first digital cyclical querying signal (S1) adapted to assume a high level equal
to the second potential (V2) and a low level equal to the third potential (V3),
- a second digital cyclical querying signal (S2) adapted to assume a high level equal
to the first potential (V1) and a low level equal to the second potential (V2),
said first (S1) and second (S2) digital cyclical querying signals being associated
with different communication protocols to be made available to the fire sensors (SEN)
of different type of the fire detection system (100).
2. An electronic monitoring and controlling unit (10) according to claim 1, wherein said
first electronic circuit of the electrical power supplying stage (3) comprises:
- a first DC-DC voltage converter circuit (30) configured to receive in input the
reference electrical potential (Vcc) and to generate the first potential (V1) higher
than said reference potential (Vcc);
- a second DC-DC voltage converter circuit (40) configured to receive in input the
first potential (V1) generated by said first DC-DC voltage converter circuit (30)
and to generate the second potential (V2) equal to the reference potential (Vcc);
- a third DC-DC voltage converter circuit (50) configured to receive in input said
first potential (V1) and to generate the third potential (V3) lower than said reference
potential (Vcc).
3. An electronic monitoring and controlling unit (10) according to claim 2, wherein said
first DC-DC voltage converter circuit (30) is an electronic converter of the switching
boost converter type.
4. An electronic monitoring and controlling unit (10) according to claim 2, wherein said
second (40) and third (50) DC-DC voltage converter circuits are electronic converters
of the switching buck converter type.
5. An electronic monitoring and controlling unit (10) according to claim 2, wherein said
sensor managing stage (2) comprises a first managing block (21) which can be connected
to a first group of sensors (SEN1) of said one or more sensors (SEN) and a second
managing block (22) which can be connected to a second group of sensors (SEN2) of
said one or more sensors (SEN), each of said first and second managing block comprises
said second electronic circuit which includes a selector circuit (60) configured to
receive in input said first (V1), second (V2) and third (V3) electrical potential,
said selector circuit being controlled by the processing stage (1) by means of a first
control signal (C1) to generate in output the high level and the low level of the
aforesaid first (S1) and second (S2) digital cyclical querying signals.
6. An electronic monitoring and controlling unit (10) according to the preceding claim,
wherein each of said first (21) and second (22) managing blocks comprises:
- a transmitter circuit (TX) configured to receive in input the high level and the
low level of the first (S1) and second (S2) digital cyclical querying signals to be
generated, said transmitter circuit (61) being controlled by the processing stage
(1) by means of a control signal (C2) to generate an enabling signal (SA);
- a switching circuit (65) controlled by the processing stage (1) by means of a third
control signal (C3) to generate up/down edges of the first (S1) and second (S2) digital
cyclical querying signals starting from said enabling signal (SA).
7. An electronic monitoring and controlling unit (10) according to the preceding claim,
wherein each of said first (21) and second (22) managing blocks further comprises
a receiver circuit (66) comprising means for discriminating sensor signals (SEN) in
reply to the generated first (S1) or second (S2) digital cyclical querying signal,
said receiver circuit being controlled by the processing stage (1) by means of a fourth
control signal (C4) to adapt the internal discrimination levels on the basis of the
selected communication protocol.
8. An electronic monitoring and controlling unit (10) according to claim 2, wherein said
electrical power supplying stage (3) further comprises a protection and filtering
circuit (70) configured to receive in input said reference power supply potential
(Vcc), said protection and filtering circuit (70) including electronic protection
devices of the aforesaid first, second and third DC-DC voltage converter circuit from
overvoltages and overcurrents associated with the reference power supply potential
(Vcc).
9. An electronic monitoring and controlling unit (10) according to claim 1, wherein:
- the reference potential (Vcc) is equal to 24V;
- the first potential (V1) is equal to 32V;
- the second potential (V2) is equal to 24V;
- the third potential (V3) is equal to 5V,
said first digital signal (S1) has a high level equal to 24V and a low level equal
to 5V for querying said one or more sensors (SEN) according to a first communication
protocol,
said second digital cyclical querying signal (S2) has a high level equal to 32V and
a low level equal to 24V for querying said one or more sensors (SEN) according to
a second and to a third communication protocol.
10. An electronic system (100) for detecting fires in an environment, comprising:
- a plurality of fire sensors (SEN) distributed in said environment;
- an electronic monitoring and controlling unit (10) according to at least one of
the claims 1-9, electrically connected to said plurality of sensors (SEN) .
11. A method (300) for monitoring and controlling one or more fire sensors (SEN) arranged
in loops of a fire detection system (100), comprising the steps of:
- making available (301) an electronic control unit (10), comprising:
- a processing stage (1);
- a managing stage (2) of said one or more fire sensors (SEN), which can be connected
electrically to said one or more sensors;
- an electrical power supplying stage (3) configured to generate direct power supply
potentials to be supplied to the managing stage (2) of the sensors starting from a
predetermined reference power supply potential (Vcc) referred to a ground potential
(GND),
- generating, by said electrical power supplying stage (3):
a first potential (V1) higher than the reference potential (Vcc) to be supplied to
the managing stage (2) of the sensors (302);
a second potential (V2) equal to the reference potential (Vcc) to be supplied to the
managing stage (2) of the sensors (303);
a third potential (V3) lower than said reference potential (Vcc) to be supplied to
the managing stage (2) of the sensors (304), said method further comprising the steps
of:
- generating (305) by said managing stage (2), a first digital cyclical querying signal
(S1) adapted to assume a high level equal to the second potential (V2) and a low level
equal to the third potential (V3),
- generating (306) by said managing stage (2), a second digital cyclical querying
signal (S2) adapted to assume a high level equal to the first potential (V1) and a
low level equal to the second potential (V2),
- sending (307) the first (S1) and second (S2) digital cyclical querying signals,
which are associated with different communication protocols to the fire sensors (SEN)
of different type of the fire detection system (100).
1. Elektronische Einheit (10) zum Überwachen und Steuern eines oder mehrerer Feuer-Sensoren
(SEN), welche in Schleifen eines Feuer-Detektion-Systems (100) angeordnet sind, umfassend:
- eine Verarbeitung-Stufe (1);
- eine Verwaltung-Stufe (2) des einen oder der mehreren Sensoren (SEN), welche mit
dem einen oder den mehreren Sensoren verbunden werden kann, wobei die Verwaltung-Stufe
durch die Verarbeitung-Stufe (1) aktiviert wird, um digitale zyklische Abfrage-Signale
(S1, S2) zu erzeugen, welche an den einen oder die mehreren Sensoren zu senden sind,
um ihren Betriebszustand zu verifizieren;
- eine elektrische Leistung-Versorgung-Stufe (3), welche dazu eingerichtet ist, elektrische
Gleichstrom-Potenziale zu erzeugen, welche an die Verwaltung-Stufe (2) der Sensoren
zu liefern sind, beginnend mit einem vorbestimmten Referenz-Leistung-Versorgung-Potenzial
(Vcc), bezogen auf ein Erdung-Potenzial (GND),
dadurch gekennzeichnet, dass
die elektrische Leistung-Versorgung-Stufe (3) eine erste elektronische Schaltung (30,
40, 50) umfasst, um zu erzeugen:
- ein erstes Potenzial (V1), welches höher ist als das Referenz-Potenzial (Vcc), welches
an die Verwaltung-Stufe (2) der Sensoren zu liefern ist;
- ein zweites Potenzial (V2), welches zu dem Referenz-Potenzial (Vcc) gleich ist,
welches an die Verwaltung-Stufe (2) der Sensoren zu liefern ist;
- ein drittes Potenzial (V3), welches geringer ist als das Referenz-Potenzial (Vcc),
welches an die Verwaltung-Stufe (2) der Sensoren zu liefern ist, und
wobei die Verwaltung-Stufe (2) der Sensoren eine zweite elektronische Schaltung (60,
61, 65, 66) umfasst, um zu erzeugen:
- ein erstes digitales zyklisches Abfrage-Signal (S1), welches dazu eingerichtet ist,
ein hohes Niveau, welches zu dem zweiten Potenzial (V2) gleich ist, und ein niedriges
Niveau anzunehmen, welches zu dem dritten Potenzial (V3) gleich ist,
- ein zweites digitales zyklisches Abfrage-Signal (S2), welches dazu eingerichtet
ist, ein hohes Niveau, welches zu dem ersten Potenzial (V1) gleich ist, und ein niedriges
Niveau anzunehmen, welches zu dem zweiten Potenzial (V2) gleich ist,
wobei die ersten (S1) und zweiten (S2) die digitalen zyklischen Abfrage-Signale verschiedenen
Kommunikationsprotokollen zugeordnet sind, welche für die Feuer-Sensoren (SEN) von
verschiedenen Typen des Feuer-Detektion-Systems (100) verfügbar zu machen sind.
2. Elektronische Überwachung- und Steuer-Einheit (10) nach Anspruch 1, wobei die erste
elektronische Schaltung der elektrischen Leistung-Versorgung-Stufe (3) umfasst:
- eine erste DC-DC-Spannung-Konverter-Einheit (30), welche dazu eingerichtet ist,
in Eingabe das elektrische Referenz-Potenzial (Vcc) zu empfangen und das erste Potenzial
(V1) zu erzeugen, welches höher ist als das Referenz-Potenzial (Vcc);
- eine zweite DC-DC-Spannung-Konverter-Schaltung (40), welche dazu eingerichtet ist,
in Eingabe das erste Potenzial (V1) zu empfangen, welches durch die erste DC-DC-Spannung-Konverter-Schaltung
(30) erzeugt worden ist, und das zweite Potenzial (V2) zu erzeugen, welches zu dem
Referenz-Potenzial (Vcc) gleich ist;
- eine dritte DC-DC-Spannung-Konverter-Schaltung (50), welche dazu eingerichtet ist,
in Eingabe das erste Potenzial (V1) zu empfangen und das dritte Potenzial (V3) zu
erzeugen, welches geringer ist als das Referenz-Potenzial (Vcc).
3. Elektronische Überwachung- und Steuer-Einheit (10) nach Anspruch 2, wobei die erste
DC-DC-Spannung-Konverter-Schaltung (30) ein elektronischer Konverter des Schaltung-Boost-Konverter-Typs
ist.
4. Elektronische Überwachung- und Steuer-Einheit (10) nach Anspruch 2, wobei die zweiten
(40) und dritten (50) DC-DC-Spannung-Konverter-Schaltungen elektronische Konverter
des Schaltung-Buck-Konverter-Typs sind.
5. Elektronische Überwachung- und Steuer-Einheit (10) nach Anspruch 2, wobei die Sensor-Verwaltung-Stufe
(2) einen ersten Verwaltung-Block (21), welcher mit einer ersten Gruppe von Sensoren
(SEN1) des einen oder der mehreren Sensoren (SEN) verbunden werden kann, und einen
zweiten Verwaltung-Block (22) umfasst, welcher mit einer zweiten Gruppe von Sensoren
(SEN2) des einen oder der mehreren Sensoren (SEN) verbunden werden kann, wobei jeder
aus dem ersten und dem zweiten Verwaltung-Block die zweite elektronische Schaltung
umfasst, welche eine Selektor-Schaltung (60) umfasst, welche dazu eingerichtet ist,
in Eingabe das erste (V1), zweite (V2) und dritte (V3) elektrische Potenzial zu empfangen,
wobei die Selektor-Schaltung durch die Verarbeitung-Stufe (1) mittels eines ersten
Steuersignals (C1) gesteuert wird, um in Ausgabe das hohe Niveau und das niedrige
Niveau der voranstehend erwähnten ersten (S1) und zweiten (S2) digitalen zyklischen
Abfrage-Signale zu erzeugen.
6. Elektronische Überwachung- und Steuer-Einheit (10) nach dem vorhergehenden Anspruch,
wobei jeder aus dem ersten (21) und dem zweiten (22) Verwaltung-Block umfasst:
- eine Transmitter-Schaltung (TX), welche dazu eingerichtet ist, in Eingabe das hohe
Niveau und das niedrige Niveau der ersten (S1) und zweiten (S2) digitalen zyklischen
Abfrage-Signale zu empfangen, welche zu erzeugen sind, wobei die Transmitter-Schaltung
(61) durch die Verarbeitung-Stufe (1) mittels eines Steuersignals (C2) gesteuert wird,
um ein Ermöglichung-Signal (SA) zu erzeugen;
- eine Schalt-Schaltung (65), welche durch die Verarbeitung-Stufe (1) mittels eines
dritten Steuersignals (C3) gesteuert wird, um obere/untere Ränder der ersten (S1)
und zweiten (S2) digitalen zyklischen Abfrage-Signale zu erzeugen, beginnend mit dem
Ermöglichung-Signal (SA).
7. Elektronische Überwachung- und Steuer-Einheit (10) nach dem vorhergehenden Anspruch,
wobei jeder aus dem ersten (21) und dem zweiten (22) Verwaltung-Block ferner eine
Empfänger-Schaltung (66) umfasst, welche Mittel zum Unterscheiden von Sensor-Signalen
(SEN) in Reaktion auf das erzeugte erste (S1) oder zweite (S2) digitale zyklische
Abfrage-Signal umfasst, wobei die Empfänger-Schaltung durch die Verarbeitung-Stufe
(1) mittels eines vierten Steuersignals (C4) gesteuert wird, um die internen Unterscheidung-Niveaus
auf der Grundlage des ausgewählten Kommunikationsprotokolls anzupassen.
8. Elektronische Überwachung- und Steuer-Einheit (10) nach Anspruch 2, wobei die elektrische
Leistung-Versorgung-Stufe (3) ferner eine Schutz- und Filter-Schaltung (70) umfasst,
welche dazu eingerichtet ist, in Eingabe das Referenz-Leistung-Versorgung-Potenzial
(Vcc) zu empfangen, wobei die Schutz- und Filter-Schaltung (70) elektronische Schutz-Vorrichtungen
der voranstehend erwähnten ersten, zweiten und dritten DC-DC-Spannung-Konverter-Schaltung
von Überspannungen und Überströmen umfasst, dem Referenz-Leistung-Versorgung-Potenzial
(Vcc) zugeordnet.
9. Elektronische Überwachung- und Steuer-Einheit (10) nach Anspruch 1, wobei:
- das Referenz-Potenzial (Vcc) gleich 24 V ist;
- das erste Potenzial (V1) gleich 32 V ist;
- das zweite Potenzial (V2) gleich 24 V ist;
- das dritte Potenzial (V3) gleich 5 V ist,
das erste digitale Signal (S1) ein hohes Niveau gleich 24 V und ein niedriges Niveau
gleich 5 V für ein Abfragen des einen oder der mehreren Sensoren (SEN) gemäß einem
ersten Kommunikationsprotokoll aufweist,
das zweite digitale zyklische Abfrage-Signal (S2) ein hohes Niveau gleich 32 V und
ein niedriges Niveau gleich 24 V zum Abfragen des einen oder der mehreren Sensoren
(SEN) gemäß einem zweiten und einem dritten Kommunikationsprotokoll aufweist.
10. Elektronisches System (100) zum Detektieren von Feuer in einer Umgebung, umfassend:
- eine Mehrzahl von Feuer-Sensoren (SEN), welche in der Umgebung verteilt sind;
- eine elektronische Überwachung- und Steuer-Einheit (10) nach einem der Ansprüche
1 bis 9, welche elektrisch mit der Mehrzahl von Sensoren (SEN) verbunden ist.
11. Verfahren (300) zum Überwachen und Steuern eines oder mehrerer Feuer-Sensoren (SEN),
welche in Schleifen eines Feuer-Detektion-Systems (100) angeordnet sind, umfassend
die Schritte:
- Verfügbar-Machen (301) einer elektronischen Steuereinheit (10), umfassend:
- eine Verarbeitung-Stufe (1);
- eine Verwaltung-Stufe (2) des einen oder der mehreren Feuer-Sensoren (SEN), welche
mit dem einen oder den mehreren Sensoren elektrisch verbunden werden kann,
- eine elektrische Leistung-Versorgung-Stufe (3), welche dazu eingerichtet ist, elektrische
Gleichstrom-Potenziale zu erzeugen, welche an die Verwaltung-Stufe (2) der Sensoren
zu liefern sind, beginnend mit einem vorbestimmten Referenz-Leistung-Versorgung-Potenzial
(Vcc), bezogen auf ein Erdung-Potenzial (GND),
- Erzeugen durch die elektrische Leistung-Versorgung-Stufe (3):
- eines ersten Potenzials (V1), welches höher ist als das Referenz-Potenzial (Vcc),
welches an die Verwaltung-Stufe (2) der Sensoren (302) zu liefern ist;
- eines zweiten Potenzials (V2), welches zu dem Referenz-Potenzial (Vcc) gleich ist,
welches an die Verwaltung-Stufe (2) der Sensoren (303) zu liefern ist;
- eines dritten Potenzials (V3), welches geringer ist als das Referenz-Potenzial (Vcc),
welches an die Verwaltung-Stufe (2) der Sensoren (304) zu liefern ist, wobei das Verfahren
ferner die Schritte umfasst:
- Erzeugen (305) durch die Verwaltung-Stufe (2) eines ersten digitalen zyklischen
Abfrage-Signals (S1), welches dazu eingerichtet ist, ein hohes Niveau, welches zu
dem zweiten Potenzial (V2) gleich ist, und ein niedriges Niveau anzunehmen, welches
zu dem dritten Potenzial (V3) gleich ist,
- Erzeugen (306) durch die Verwaltung-Stufe (2) eines zweiten digitalen zyklischen
Abfrage-Signals (S2), welches dazu eingerichtet ist, ein hohes Niveau, welches zu
dem ersten Potenzial (V1) gleich ist, und ein niedriges Niveau anzunehmen, welches
zu dem zweiten Potenzial (V2) gleich ist,
- Senden (307) der ersten (S1) und zweiten (S2) digitalen zyklischen Abfrage-Signale,
welche verschiedenen Kommunikationsprotokollen zugeordnet sind, an die Feuer-Sensoren
(SEN) von verschiedenen Typen des Feuer-Detektion-Systems (100).
1. Unité électronique (10) pour surveiller et commander un ou davantage de détecteurs
d'incendie (SEN) agencés en boucles d'un système de détection d'incendie (100),
comprenant
- un étage de traitement (1),
- un étage de gestion (2) dudit un ou desdits davantage de détecteurs (SEN), qui peut
être connecté audit un ou auxdits davantage de détecteurs, l'étage de gestion étant
activé par l'étage de traitement (1) pour engendrer des signaux digitaux cycliques
d'interrogation (S1, S2) destinés à être envoyés audit un ou auxdits davantage de
détecteurs pour vérifier leur état de fonctionnement,
- un étage d'alimentation électrique (3) configuré pour générer des tensions électriques
continues destinées à être fournies à l'étage de gestion (2) des détecteurs à partir
d'une tension d'alimentation de référence (Vcc) prédéterminée par rapport à un potentiel
de masse (GND),
caractérisée en ce que
l'étage d'alimentation électrique (3) comprend un premier circuit électronique (30,
40, 50) pour engendrer :
- une première tension (V1) supérieure à la tension de référence (Vcc), destinée à
être fournie à l'étage de gestion (2) des détecteurs,
- une deuxième tension (V2) égale à la tension de référence (Vcc), destinée à être
fournie à l'étage de gestion (2) des détecteurs,
- une troisième tension (V3) inférieure à la tension de référence (Vcc), destinée
à être fournie à l'étage de gestion (2) des détecteurs, et
l'étage de gestion (2) des détecteurs comprend un deuxième circuit électronique (60,
61, 65, 66) pour engendrer :
- un premier signal digital cyclique d'interrogation (S1) adapté pour prendre un niveau
haut égal à la deuxième tension (V2) et un niveau bas égal à la troisième tension
(V3),
- un deuxième signal digital cyclique d'interrogation (S2) adapté pour prendre un
niveau haut égal à la première tension (V1) et un niveau bas égal à la deuxième tension
(V2),
les premier (S1) et deuxième (S2) signaux digitaux cycliques d'interrogation étant
associés à des protocoles de communication différents destinés à être mis à disposition
pour les détecteurs d'incendie (SEN) de types différents du système de détection d'incendie
(100).
2. Unité électronique de surveillance et de commande (10) selon la revendication 1,
caractérisée en ce que le premier circuit électronique de l'étage d'alimentation électrique (3) comprend
:
- un premier circuit convertisseur de tension continue (30) configuré pour recevoir
à l'entrée la tension de référence (Vcc) et pour engendrer la première tension (V1)
supérieure à la tension de référence (Vcc),
- un deuxième circuit convertisseur de tension continue (40) configuré pour recevoir
à l'entrée la première tension (V1) engendrée par le premier circuit convertisseur
de tension continue (30) et pour engendrer la deuxième tension (V2) égale à la tension
de référence (Vcc),
- un troisième circuit convertisseur de tension continue (50) configuré pour recevoir
à l'entrée la première tension (V1) et pour engendrer la troisième tension (V3) inférieure
à la tension de référence (Vcc).
3. Unité électronique de surveillance et de commande (10) selon la revendication 2, caractérisée en ce que le premier circuit convertisseur de tension continue (30) est un convertisseur électronique
de type convertisseur de puissance à découpage.
4. Unité électronique de surveillance et de commande (10) selon la revendication 2, caractérisée en ce que le deuxième (40) et le troisième (50) circuits convertisseurs de tension continue
sont des convertisseurs électroniques de type convertisseur buck à découpage.
5. Unité électronique de surveillance et de commande (10) selon la revendication 2, caractérisée en ce que l'étage de gestion (2) de détecteurs comprend un premier bloc de gestion (21) qui
peut être connecté à un premier groupe de détecteurs (SEN1) dudit un ou desdits davantage
de détecteurs (SEN) et un deuxième bloc de gestion (22) qui peut être connecté à un
deuxième groupe de détecteurs (SEN2) dudit un ou desdits davantage de détecteurs (SEN),
chacun des premier et deuxième blocs de gestion comprend le deuxième circuit électronique
qui inclut un circuit sélecteur (60) configuré pour recevoir à l'entrée la première
(V1), la deuxième (V2) et la troisième (V3) tension, le circuit sélecteur étant commandé
par l'étage de traitement (1) au moyen d'un premier signal de commande (C1) pour engendrer
à l'entrée le niveau haut et le niveau bas des premier (S1) et deuxième (S2) signaux
digitaux cycliques d'interrogation mentionnés plus haut.
6. Unité électronique de surveillance et de commande (10) selon la revendication précédente,
caractérisée en ce que chacun des premier (21) et deuxième (22) blocs de gestion comprend :
- un circuit émetteur (TX) configuré pour recevoir à l'entrée le niveau haut et le
niveau bas des premier (S1) et deuxième (S2) signaux digitaux cycliques d'interrogation
à être engendrés, le circuit émetteur (61) étant commandé par l'étage de traitement
(1) au moyen d'un signal de commande (C2) pour engendrer un signal d'activation (SA),
- un circuit de commutation (65) commandé par l'étage de traitement (1) au moyen d'un
troisième signal de commande (C3) pour engendrer des flancs montants/descendants des
premier (S1) et deuxième (S2) signaux digitaux cycliques d'interrogation à partir
du signal d'activation (SA).
7. Unité électronique de surveillance et de commande (10) selon la revendication précédente,
caractérisée en ce que chacun des premier (21) et deuxième (22) blocs de gestion comprend en outre un circuit
récepteur (66) comportant des moyens pour distinguer des signaux de détecteurs (SEN)
en réponse au premier (S1) ou deuxième (S2) signal digital cyclique d'interrogation
engendré, le circuit récepteur étant commandé par l'étage de traitement (1) au moyen
d'un quatrième signal de commande (C4) pour adapter les niveaux internes de distinction
sur la base du protocole de communication sélectionné.
8. Unité électronique de surveillance et de commande (10) selon la revendication 2, caractérisée en ce que l'étage d'alimentation électrique (3) comprend en outre un circuit de protection
et de filtrage (70) configuré pour recevoir à l'entrée la tension d'alimentation de
référence (Vcc), le circuit de protection et de filtrage (70) comprenant des dispositifs
électroniques de protection des premier, deuxième et troisième circuits convertisseurs
de tension continue contre des surtensions et des surintensités associées à la tension
d'alimentation de référence (Vcc).
9. Unité électronique de surveillance et de commande (10) selon la revendication 1,
caractérisée en ce que :
- la tension de référence (Vcc) est égale à 24 V,
- la première tension (V1) est égale à 32 V,
- la deuxième tension (V2) est égale à 24 V,
- la troisième tension (V3) est égale à 5 V,
le premier signal digital (S1) a un niveau haut égal à 24 V et un niveau bas égal
à 5 V pour interroger ledit un ou lesdits davantage de détecteurs (SEN) selon un premier
protocole de communication,
le deuxième signal digital cyclique d'interrogation (S2) a un niveau haut égal à 32
V et un niveau bas égal à 24 V pour interroger ledit un ou lesdits davantage de détecteurs
(SEN) selon un deuxième et un troisième protocole de communication.
10. Système électronique (100) pour détecter des incendies dans un environnement, comprenant
:
- une pluralité de détecteurs d'incendie (SEN) répartis sur cet environnement,
- une unité électronique de surveillance et de commande (10) selon au moins une des
revendications 1 à 9, électriquement connectée à la pluralité de détecteurs (SEN).
11. Procédé (300) pour surveiller et commander un ou davantage de détecteurs d'incendie
(SEN) agencés en boucles d'un système de détection d'incendie (100), comprenant les
étapes de :
- mettre à disposition (301) une unité électronique de commande (10) comportant :
- un étage de traitement (1),
- un étage de gestion (2) dudit un ou desdits davantage de détecteurs (SEN), qui peut
être relié électriquement audit un ou auxdits davantage de détecteurs,
- un étage d'alimentation électrique (3) configuré pour engendrer des tensions d'alimentation
continues destinées à être fournies à l'étage de gestion (2) des détecteurs à partir
d'une tension d'alimentation de référence (Vcc) prédéterminée par rapport à un potentiel
de masse (GND),
- engendrer par l'étage d'alimentation électrique (3) :
une première tension (V1) supérieure à la tension de référence (Vcc), destinée à être
fournie à l'étage de gestion (2) des détecteurs (302),
une deuxième tension (V2) égale à la tension de référence (Vcc), destinée à être fournie
à l'étage de gestion (2) des détecteurs (303),
une troisième tension (V3) inférieure à la tension de référence (Vcc), destinée à
être fournie à l'étage de gestion (2) des détecteurs (304),
le procédé comprenant en outre les étapes de :
- engendrer (305) par l'étage de gestion (2) un premier signal digital cyclique d'interrogation
(S1) adapté pour prendre un niveau haut égal à la deuxième tension (V2) et un niveau
bas égal à la troisième tension (V3),
- engendrer (306) par l'étage de gestion (2) un deuxième signal digital cyclique d'interrogation
(S2) adapté pour prendre un niveau haut égal à la première tension (V1) et un niveau
bas égal à la deuxième tension (V2),
- envoyer (307) les premier (S1) et deuxième (S2) signaux digitaux cycliques d'interrogation
qui sont associés à des protocoles de communication différents, aux détecteurs d'incendie
(SEN) de types différents du système de détection d'incendie (100).