(19)
(11) EP 2 856 244 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
27.01.2021 Bulletin 2021/04

(21) Application number: 12877808.1

(22) Date of filing: 31.05.2012
(51) International Patent Classification (IPC): 
F21V 8/00(2006.01)
G02B 30/50(2020.01)
(86) International application number:
PCT/US2012/040305
(87) International publication number:
WO 2013/180725 (05.12.2013 Gazette 2013/49)

(54)

DIRECTIONAL BACKLIGHT

DIREKTIONALE RÜCKBELEUCHTUNG

RÉTROÉCLAIRAGE DIRECTIONNEL


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
08.04.2015 Bulletin 2015/15

(73) Proprietor: LEIA Inc.
Menlo Park, CA 94025 (US)

(72) Inventors:
  • SANTORI, Charles M.
    Palo Alto, CA 94304-1100 (US)
  • FATTAL, David A.
    Menlo Park, CA 94025 (US)
  • FIORENTINO, Marco
    Palo Alto, CA 94304-1100 (US)
  • BRUG, James A.
    Palo Alto, CA 946304-1100 (US)
  • PENG, Zhen
    Menlo Park, CA 94025 (US)

(74) Representative: Carpmaels & Ransford LLP 
One Southampton Row
London WC1B 5HA
London WC1B 5HA (GB)


(56) References cited: : 
JP-A- 2004 077 897
US-A1- 2004 156 182
US-A1- 2008 204 663
US-A1- 2011 182 570
US-A1- 2011 304 784
US-A1- 2012 120 213
JP-A- 2011 029 161
US-A1- 2006 083 476
US-A1- 2008 225 393
US-A1- 2011 241 573
US-A1- 2012 075 698
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The ability to reproduce a light field in a display screen has been a key quest in imaging and display technology. A light field is the set of all light rays traveling in every direction through every point in space. Any natural, real-world scene can be fully characterized by its light field, providing information on the intensity, color, and direction of all light rays passing through the scene. The goal is to enable viewers of a display screen to experience a scene as one would experience it in person.

    [0002] Currently available display screens in televisions, personal computers, laptops, and mobile devices remain largely two-dimensional and are thus not capable of accurately reproducing a light field. Three-dimensional ("3D") displays have recently emerged but suffer from inefficiencies in angular and spatial resolution in addition to providing a limited number of views. Examples include 3D displays based on holograms, parallax barriers, or lenticular lenses. US2006083476 discloses an apparatus having a display zone, such as a liquid crystal screen, and including an optical device for forming a decorative pattern in the form of a figurative image. The optical device for forming a figurative image includes an optical guide, at least partially superposed onto the display zone and having two large faces and one lateral face. Optical extractors each having at least one surface for reflecting light are arranged in a first group in at least one of the large faces. A light source is arranged so as to emit light in the direction of the reflective surfaces via the lateral face of the optical guide. Thus, each of the reflective surfaces causes a reflected light beam to be formed in a well defined direction, the set of the light beams forming a figurative image in that direction, which can typically be chosen to be the normal in relation to the mid-plane of the optical guide. The disclosed optical guide is further provided with a second group of optical extractors having a predefined position in relation to the display zone, for illuminating the latter, possibly in relation to the same light source as the first group of optical extractors. According to an embodiment, the angle between the two directions of reflection from two optical extractor networks could be such that the two images formed make a stereogram when the observer's eyes are at a given distance above the optical guide.

    [0003] A common theme among these displays is the difficulty to fabricate displays for light fields that are controlled with precision at the pixel level in order to achieve good image quality for a wide range of viewing angles and spatial resolutions.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0004] The present application may be more fully appreciated in connection with the following detailed description taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:

    FIG. 1 illustrates a schematic diagram of a directional backlight;

    FIGS. 2A-B illustrate top views of a directional backlight according to FIG. 1;

    FIG. 3 illustrates a schematic diagram of a directional backlight having an optical baffle;

    FIG. 4 illustrates a schematic diagram of a directional backlight with multiple single-color light sources;

    FIG. 5 illustrates a directional backlight having a triangular shape and using color light sources in accordance with various embodiments;

    FIG. 6 illustrates a schematic diagram showing the direction of light scattered by a subset of directional pixels in a directional backlight in accordance with various embodiments;

    FIG. 7 illustrates a directional backlight having an hexagonal shape and using color light sources;

    FIG. 8 illustrates a directional backlight having an hexagonal shape and using color LED strips;

    FIG. 9 illustrates a directional backlight having a circular shape and using color LED strips;

    FIG. 10 illustrates a side view of the directional backlight of FIG. 8;

    100161 FIG. 11 illustrates a 3D image formed by a directional backlight in accordance with various embodiments; and

    FIG. 12 is a flowchart for generating a 3D image with a directional backlight in accordance with various embodiments.


    DETAILED DESCRIPTION



    [0005] A directional backlight is disclosed. The directional backlight uses a plurality of light sources to generate a plurality of input planar lightbeams for a directional backplane. The directional backplane is composed of a plurality of directional pixels that guide the input planar lightbeams and scatter a fraction of them into output directional lightbeams. The input planar lightbeams propagate in substantially the same plane as the directional backplane, which is designed to be substantially planar.

    [0006] In various embodiments, the directional pixels in the directional backplane have patterned gratings of substantially parallel and slanted grooves arranged in or on top of the directional backplane. The directional backplane comprises a slab of transparent material that guides the input planar lightbeams into the directional pixels, such as, for example, Silicon Nitride ("SiN"), glass or quartz, plastic, Indium Tin Oxide ("ITO"), among others. The patterned gratings can consist of grooves etched in the directional backplane or grooves made of material deposited on top of the directional backplane (e.g., any material that can be deposited and etched or lift-off, including any dielectrics or metal).

    [0007] In various embodiments, the plurality of light sources comprises a plurality of narrow-bandwidth light sources with a spectral bandwidth of approximately 30 nm or less. For example, the narrow-bandwidth light sources may include Light Emitting Diodes ("LEDs"), lasers, and so on. The light sources may include a single-color light source, multiple single-color light sources, three color light sources (e.g., a red LED, green LED, and a blue LED), or three color LED strips, each containing an array of color LEDs (e.g., a strip of red LEDs, a strip of green LEDs, and a strip of blue LEDs).

    [0008] The plurality of light sources may be arranged in different configurations with respect to the directional backplane to avoid contamination of one light color (e.g., red) into another light color (e.g., blue). In addition, the plurality of light sources may be used with a lens component (e.g., a cylindrical lens, an aspheric condenser lens combined with a cylindrical lens, a microlens, etc.) to collimate and focus the input planar lightbeams into the directional backplane. The plurality of light sources may also be used with a light baffle or absorber to improve efficiency and further focus the input planar lightbeams into the directional backplane.

    [0009] As described in more detail herein below, each directional pixel in the directional backplane may be specified by a grating length (i.e., dimension along the propagation axis of the input planar lightbeams), a grating width (i.e., dimension across the propagation axis of the input planar lightbeams), a groove orientation, a pitch, and a duty cycle. Each directional pixel may emit a directional lightbeam with a direction that is determined by the groove orientation and the grating pitch and with an angular spread that is determined by the grating length and width. By using a duty cycle of or around 50%, the second Fourier coefficient of the patterned gratings vanishes thereby preventing the scattering of light in additional unwanted directions. This insures that only one directional lightbeam emerges from each directional pixel regardless of the output angle.

    [0010] As further described in more detail herein below, a directional backplane can be designed with directional pixels that have a certain grating length, a grating width, a groove orientation, a pitch and a duty cycle that are selected to produce a given 3D image. The 3D image can be a red, blue, and green 3D image generated from the directional lightbeams emitted by the directional pixels in the backplane.

    [0011] It is appreciated that, in the following description, numerous specific details are set forth to provide a thorough understanding of the embodiments. However, it is appreciated that the embodiments may be practiced without limitation to these specific details. In other instances, well known methods and structures may not be described in detail to avoid unnecessarily obscuring the description of the embodiments. Also, the embodiments may be used in combination with each other.

    [0012] Referring now to FIG. 1, a schematic diagram of a directional backlight in accordance with various embodiments is described. Directional backlight 100 includes a single-color light source 105 disposed behind a lens component 110 to generate a collimated input planar lightbeam 115 for the directional backplane 120. The lens component 110 may include a cylindrical lens, an aspheric condenser lens combined with a cylindrical lens, a microlens, or any other optical combination for collimating and focusing the input planar lightbeam 115 into the directional backplane 120. The directional backplane 120 consists of a slab of a transparent material (e.g., SiN, glass or quartz, plastic, ITO, etc.) having a plurality of directional pixels 125a-d arranged in or on top of the directional backplane 120. The directional pixels 125a-d scatter a fraction of the input planar lightbeam 115 into output directional lightbeams 130a-d.

    [0013] In various embodiments, each directional pixel 125a-d has patterned gratings of substantially parallel and slanted grooves, e.g., grooves 135a for directional pixel 125a. The thickness of the grating grooves can be substantially the same for all grooves resulting in a substantially planar design. The grooves can be etched in the directional backplane or be made of material deposited on top of the directional backplane 120 (e.g., any material that can be deposited and etched or lift-off, including any dielectrics or metal).

    [0014] Each directional lightbeam 130a-d has a given direction and an angular spread that is determined by the patterned gratings in its corresponding directional pixel 125a-d. In particular, the direction of each directional lightbeam 130a-d is determined by the orientation and the grating pitch of the patterned gratings. The angular spread of each directional lightbeam is in turn determined by the grating length and width of the patterned gratings. For example, the direction of directional lightbeam 130a is determined by the orientation and the grating pitch of patterned gratings 135a.

    [0015] It is appreciated that this substantially planar design and the formation of directional lightbeams 130a-d upon an input planar lightbeam 115 requires a grating with a substantially smaller pitch than traditional diffraction gratings. For example, traditional diffraction gratings scatter light upon illumination with lightbeams that are propagating substantially across the plane of the grating. Here, the gratings in each directional pixel 125a-d are substantially on the same plane as the input planar lightbeam 115 when generating the directional lightbeams 130a-d. This planar design enables illumination with the light source 105.

    [0016] The directional lightbeams 130a-d are precisely controlled by characteristics of the gratings in directional pixels 125a-d including a grating length L, a grating width W, a groove orientation θ, and a grating pitch Λ. In particular, the grating length L of grating 135a controls the angular spread ΔΘ of the directional lightbeam 130a along the input light propagation axis and the grating width W controls the angular spread ΔΘ of the directional lightbeam 130a across the input light propagation axis, as follows:

    where λ is the wavelength of the directional lightbeam 130a. The groove orientation, specified by the grating orientation angle θ, and the grating pitch or period, specified by Λ, control the direction of the directional lightbeam 130a.

    [0017] The grating length L and the grating width W can vary in size in the range of 0.1 to 200 µm. The groove orientation angle θ and the grating pitch Λ may be set to satisfy a desired direction of the directional lightbeam 130a, with, for example, the groove orientation angle θ on the order of-40 to +40 degrees and the grating pitch Λ on the order of 200-700 nm.

    [0018] It is appreciated that directional backplane 120 is shown with four directional pixels 125a-d for illustration purposes only. A directional backplane in accordance with various embodiments can be designed with many directional pixels (e.g., higher than 100), depending on how the directional backplane 120 is used (e.g., in a 3D display screen, in a 3D watch, in a mobile device, etc.). It is also appreciated that the directional pixels may have any shape, including for example, a circle, an ellipse, a polygon, or other geometrical shape. Further, it is appreciated that any narrow-bandwidth light source may be used to generate the input planar lightbeam 115 (e.g., a laser or LED).

    [0019] Attention is now directed to FIGS. 2A-B, which illustrate top views of a directional backlight according to FIG. 1. In FIG. 2A, directional backlight 200 is shown with a single-color light source 205 (e.g., an LED), a lens component 210 and a directional backplane 215 consisting of a plurality of polygonal directional pixels (e.g., directional pixel 220) arranged in a transparent slab. Each directional pixel is able to scatter a portion of the input planar lightbeam 225 from the light source 205 into an output directional lightbeam (e.g., directional lightbeam 230). The directional lightbeams scattered by all the directional pixels in the directional backplane 215 can represent multiple image views that when combined form a 3D image, such as, for example, 3D image 235.

    [0020] Similarly, in FIG. 2B, directional backlight 240 is shown with a single-color light source 245 (e.g., an LED), a lens component 250 and a directional backplane 255 consisting of a plurality of circular directional pixels (e.g., directional pixel 260) arranged in a transparent slab. Each directional pixel is able to scatter a portion of the input planar lightbeam 265 from the light source 245 into an output directional lightbeam (e.g., directional lightbeam 270). The directional lightbeams scattered by all the directional pixels in the directional backplane 255 can represent multiple image views that when combined form a 3D image, such as, for example, 3D image 275.

    [0021] The input planar lightbeam 225 (265) from the light source 205 (245) can be further collimated into the directional backplane 215 (255) by using a baffle or absorber that regulates the angular divergence of light from the light source 205 (245). This is illustrated in FIG. 3, which shows an optical baffle 310 in between a light source 305 and a lens component 315 in a directional backlight 300. A light pipe 320, made of a metal or dielectric material, can be used to direct the light from light source 305 into the directional backplane 325 having a plurality of directional pixels, such as, for example, directional pixel 330.

    [0022] In certain embodiments, multiple single-color light sources (e.g., lasers or LEDs) may be used to generate multiple input planar lightbeams to illuminate a directional backplane in a directional backlight. FIG. 4 illustrates the use of multiple single-color light sources in a directional backlight. Directional backlight 400 is designed with multiple single-color light sources, such as, for example, LEDs 405a-h. Optical baffles 410a-i may be used together with lens components 415a-h to focus the input planar lightbeams 420a-h into backplane 425 having a plurality of directional pixels to generate directional lightbeams (e.g., directional pixel 430 generating directional lightbeam 435).

    [0023] The directional backlights 100-400 illustrated in FIGS. 1-4 are designed to work with single-color LEDs or with other single-color narrow-bandwidth light sources (e.g., a laser). In various embodiments, light sources of different colors (e.g., color LEDs) may also be used. The challenge is to design a directional backlight for use with color light sources in such a way that a grating designed to scatter light of a given color (say red) in an intended view zone does not scatter light of another color (say green and blue) in that zone. In one embodiment, the color light sources are arranged in a substantially symmetrical fashion so as to form a triangle around the display and oriented towards the display center.

    [0024] The directional backlight may be designed with directional pixels having a set of characteristics such as a specific grating length, grating width, orientation, pitch, and duty cycle. Each directional pixel may be designed to scatter light from a single color into a directional lightbeam. The directional lightbeams generated by all the directional pixels in the directional backplane may be modulated to produce a given red, blue, and green 3D image. In the simplest embodiment, a static 3D image (i.e. a given collection of rays) can be formed simply by suppressing the gratings corresponding to unwanted rays. One can just omit to pattern those gratings during fabrication.

    [0025] Referring now to FIG. 5, a directional backlight for use with color light sources in accordance with various embodiments is described. Directional backlight 500 has a red light source 505, a green light source 510, and a blue light source 515 with corresponding lens components 520, 525, and 530 (e.g., cylindrical lens, aspheric condenser lens with a cylindrical lens, microlens, etc.) arranged in a directional backplane 535 that has a triangular shape. Each of the color light sources 505-515 is disposed on a side of the triangular directional backplane 535 to focus its light on a subset of directional pixels. For example, the red light source 505 shines light in the directional backplane 535 to be scattered into red directional lightbeams by a subset of directional pixels 540-550. This subset of directional pixels 540-550 may also receive light from the green light source 510 and the blue light source 515. However, by design this light is not scattered in the intended view zone of the directional backlight 400.

    [0026] For example, FIG. 6 illustrates a schematic diagram showing the direction of light scattered by a subset of directional pixels in a directional backlight in accordance with various embodiments. Light coming from an LED A (e.g., a red LED, not shown) is scattered by a subset GA of directional pixels 600 into an intended view zone, specified by a maximum ray angle θmax measured from a normal to the directional backlight. It is appreciated that the intended view zone is the same for all colors.

    [0027] It is also appreciated that light from LED A may also be scattered by a subset of directional pixels GB 605, however those unwanted rays are outside the intended view zone as long as:

    where λA is the wavelength of LED A, neffA is the effective index of horizontal propagation of light A in the directional backplane, λB is the wavelength of LED B (e.g., a green LED, not shown), and neffB is the effective index of horizontal propagation of light B in the directional backplane. In a case where the effective indices and wavelengths are substantially the same, Equation 2 reduces to:

    For a directional backplane of refractive index n above 2 with LED light propagating near the grazing angle, it is seen that the intended view zone of the display can be extended to the whole space (neff≥2 and sinθmax∼1). For a directional backplane of lower index such as glass (e.g., n = 1.46), the intended view zone is limited to about θmax < arcsin(n/2) (±45° for glass).

    [0028] One skilled in the art would appreciate that the red, blue, and green 3D image may have other colors present if a given color directional lightbeam scatters light into the same direction as a directional lightbeam from another color. Since precise directional and angular control can be achieved with each directional pixel, the directional backlight can be designed to generate many variations of 3D images.

    [0029] It is further appreciated that the directional backplane 535 shown in FIG. 5 may be shaped into a more compact design by realizing that the extremities of the triangular slab can be cut to form a hexagonal shape, as shown in FIG. 7. Directional backlight 700 has a red light source 705, a green light source 710, and a blue light source 715 with corresponding lens components 720, 725, and 730 (e.g., cylindrical lens, aspheric condenser lens with a cylindrical lens, microlens, etc.) arranged in a directional backplane 735 that has a hexagonal shape. Each of the color light sources 705-715 is disposed on alternating sides of the hexagonal directional backplane 735 to focus its light on a subset of directional pixels (e.g., directional pixel 740). In one embodiment, the hexagonal directional backplane 735 has a side length that may range in the order of 10-30 mm, with a directional pixel size in the order of 10-30 µm.

    [0030] In various embodiments, each color light source may be replaced by an LED strip. FIG. 8 illustrates a hexagonal directional backlight with color LED strips. Directional backlight 800 has a red LED strip 805, a green LED strip 810, and a blue LED strip 815 arranged in a directional backplane 835 that has a hexagonal shape. Each of the color LED strips 805-815 is disposed on a side of the hexagonal directional backplane 835 to focus its light on a subset of directional pixels (e.g., directional pixel 840). In one embodiment, the hexagonal directional backplane 835 may have a side length of 20 mm and each LED strip may have 20 LEDs of 1mm each, e.g., LED 845 in red LED strip 805. Each LED strip 805-815 may also be disposed behind an array of microlenses 820-830. The arrays of microlenses may also be integrated with the LED strips in a single component.

    [0031] It is appreciated that the directional backlight for use with color LEDs (e.g., directional backlight 500 in FIG. 5, directional backlight 700 in FIG. 7 and directional backlight 800 in FIG. 8) can have any geometrical shape besides a triangular or hexagonal shape as long as light from three primary colors is brought from three different directions. For example, the directional backlight may be a polygon, a circle, an ellipse, or another shape able to receive light from three different directions. FIG. 9 illustrates a circular directional backlight having light coming from three color LED strips 905-915 positioned in three different directions with respect to a circular directional backplane 935. The directional backplane 935 is shown with circular directional pixels (e.g., pixel 940), but as appreciated by one skilled in the art, the directional pixels can also take another geometrical shape, e.g., a polygon, an ellipse, and so on.

    [0032] FIG. 10 illustrates a side view of a directional backlight having color LED strips. Directional backlight 1000 is shown with one color LED 1005 from its color LED strip. A microlens 1010 is disposed in front of the LED 1005 to focus the light into a directional backplane made out of a thin transparent material. A planar input lightbeam 1015 incident into the directional backplane 1020 is internally reflected in the directional backplane 1020 and scattered into a directional lightbeam 1025 by directional pixels (not shown) disposed thereon.

    [0033] Depending on how each directional pixel in the directional backplane 1020 is configured, i.e., with a given grating length, grating width, orientation, pitch, and duty cycle, the directional lightbeams (e.g., directional lightbeam 1015) form a given 3D image. For example, FIG. 11 illustrates a directional backlight and the 3D image it produces in accordance with various embodiments. Directional backlight 1100 has a directional backplane 1105 with a hexagonal shape and with color LED strips 1110-1120 disposed on three of its sides. As described in more detail above, the color LED strips 1110-1120 are spaced apart (i.e., by a side of the hexagon) to prevent contamination from one color into the other when they are scattered by the directional pixels (not shown) disposed in the directional backplane 1105. Each directional pixel is configured to generate a directional lightbeam of a given color and having a given direction and angular spread. The directional lightbeams generated by the directional pixels in the directional backplane 1105 combine to form a 3D image 1125.

    [0034] A flowchart for generating a 3D image with a directional backlight in accordance with various embodiments is illustrated in FIG. 12. First, the characteristics of the directional pixels of the directional backlight are specified (1200). The characteristics may include characteristics of the patterned gratings in the directional pixels, such as, for example, a grating length, a grating width, an orientation, a pitch, and a duty cycle. As described above, each directional pixel in the directional backlight can be specified with a given set of characteristics to generate a directional lightbeam having a direction and an angular spread that is precisely controlled according to the characteristics. Next, a directional backplane with directional pixels is fabricated (1205). The directional backplane is made of a transparent material and may be fabricated with any suitable fabrication technique, such as, for example, optical lithography, nano-imprint lithography, roll-to-roll imprint lithography, direct embossing with an imprint mold, among others. The directional pixels may be etched in the directional backplane or be made of patterned gratings with material deposited on top of the directional backplane (e.g., any material that can be deposited and etched or lift-off, including any dielectrics or metal).

    [0035] Light from a plurality of light sources (e.g., a single-color light source as in FIG. 1-3, multiple single-color light sources as in FIG. 4, three color light sources as in FIGS. 5 and 7, three LED strips as in FIGS. 8-11, and so on) is input into the directional backplane in the form of input planar lightbeams (1210). Lastly, a 3D image is generated from the directional lightbeams that are scattered by the directional pixels in the directional backplane (1215).

    [0036] Advantageously, the precise control that is achieved with the directional pixels in the directional backlight enables a 3D image to be generated with an easy to fabricate substantially planar structure. Different configurations of directional pixels generate different 3D images. In addition, the color light sources can be controlled to produce any desired color effect in the generated images. The directional backlights described herein can be used to provide 3D images in display screens (e.g., in TVs, mobile devices, tablets, video game devices, and so on) as well as in other applications, such as, for example, 3D watches, 3D art devices, 3D medical devices, among others.

    [0037] It is appreciated that the previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the disclosure.


    Claims

    1. A directional backlight (400, 500, 700, 800, 900, 1100), comprising:

    a plurality of light sources (405a-h, 505-515, 705-715, 805-815, 905-915, 1110-1120) to generate a plurality of input planar lightbeams (420a-h); and

    a directional backplane (425,535, 735, 835, 935, 1105) comprising a slab of transparent material having a plurality of directional pixels (430, 540-550, 740, 840, 940), the plurality of directional pixels configured to scatter each of the plurality of input planar lightbeams into a plurality of directional lightbeams (435), wherein the plurality of directional lightbeams represents multiple image views that when combined form a 3D image, wherein only one directional lightbeam of the plurality of directional lightbeams emerges from each directional pixel,

    each directional pixel of the plurality of directional pixels comprising a patterned grating comprising a plurality of substantially parallel and slanted grooves, and configured to scatter an input planar lightbeam of the plurality of input planar lightbeams into said one directional lightbeam of the plurality of directional lightbeams, said directional lightbeam having a direction and an angular spread controlled by characteristics of the patterned grating.


     
    2. A method for generating a 3D image with the directional backlight of claim 1, comprising:

    illuminating the directional backplane with light from the plurality of light sources; and

    generating the 3D image with the directional lightbeams.


     
    3. The directional backlight of claim 1 or the method of claim 2, wherein the plurality of light sources comprises a plurality of light sources with a spectral bandwidth of 30 nm or less.
     
    4. The directional backlight of claim 3 or the method of claim 3, wherein the plurality of light sources comprises a plurality of color LEDs selected from the group consisting of: a single-color LED; multiple single-color LEDs; three color LEDs; and three color LED strips.
     
    5. The directional backlight or method of claim 4, wherein the color LEDs include one or more of a red LED, a green LED, and a blue LED.
     
    6. The directional backlight of claim 1, further comprising a plurality of lens components (415a-h, 520-530, 720-730, 820-830 920-930) disposed between the plurality of light sources and the directional backplane.
     
    7. The directional backlight of claim 6, further comprising a plurality of optical baffles (410a-i) between the light sources and the lens components.
     
    8. The directional backlight of claim 1 or the method of claim 2, wherein the directional backplane is substantially planar.
     
    9. The directional backlight of claim 1 or the method of claim 2, wherein the plurality of light sources comprises light sources of three different primary colors, and wherein the directional backplane is a polygonal directional backplane, light sources of the plurality of light sources being disposed on a plurality of sides of the polygonal directional backplane, such that light of the three primary colors is input into the directional backplane from three different directions.
     
    10. The directional backlight or the method of claim 9, wherein the polygonal directional backplane comprises one of a triangular directional backplane and a hexagonal directional backplane.
     
    11. The directional backlight or method of claim 10, wherein the different primary color light sources are disposed on alternating sides of the hexagonal directional backplane.
     
    12. The directional backlight of claim 1 or the method of claim 2, wherein the patterned grating characteristics comprise a grating length, a grating width, a grating orientation, a grating pitch, and a duty cycle.
     
    13. The directional backlight or the method of claim 12, wherein the grating pitch and the grating orientation control said direction of said directional lightbeam scattered by said directional pixel.
     
    14. The directional backlight or the method of claim 12, wherein the grating length and the grating width control said angular spread of said directional lightbeam scattered by said directional pixel.
     


    Ansprüche

    1. Direktionale Rückbeleuchtung (400, 500, 700, 800, 900, 1100), umfassend:

    eine Vielzahl von Lichtquellen (405a-h, 505-515, 705-715, 805-815, 905-915, 1110-1120) zum Generieren einer Vielzahl von planaren Eingangslichtstrahlen (420a-h); und

    eine direktionale Rückwand (425, 535, 735, 835, 935, 1105), die eine Platte aus transparentem Material mit einer Vielzahl direktionaler Pixel (430, 540-550, 740, 840, 940) umfasst, wobei die Vielzahl direktionaler Pixel konfiguriert ist, um jeden von der Vielzahl der planaren Eingangslichtstrahle zu einer Vielzahl direktionaler Lichtstrahle (435) zu streuen, wobei die Vielzahl der direktionalen Lichtstrahle mehrere Bildansichten repräsentiert, die, wenn sie kombiniert werden, ein 3D-Bild bilden, wobei nur ein direktionaler Lichtstrahl von der Vielzahl der direktionalen Lichtstrahle aus jedem direktionalen Pixel austritt,

    jedes direktionale Pixel von der Vielzahl der direktionalen Pixel ein strukturiertes Gitter umfasst, das eine Vielzahl von im Wesentlichen parallelen und schiefgestellten Rillen umfasst, und konfiguriert ist, um einen planaren Eingangslichtstrahl von der Vielzahl der planaren Eingangslichtstrahle zu dem einen direktionalen Lichtstrahl von der Vielzahl der direktionalen Lichtstrahle zu streuen, wobei der direktionale Lichtstrahl eine Richtung und eine Winkelausbreitung hat, die durch die Charakteristika des strukturierten Gitters gesteuert werden.


     
    2. Verfahren zum Generieren eines 3D-Bildes mit der direktionalen Rückbeleuchtung nach Anspruch 1, umfassend:

    Beleuchten der direktionalen Rückwand mit Licht von der Vielzahl der Lichtquellen; und

    Generieren des 3D-Bildes mit den direktionalen Lichtstrahlen.


     
    3. Direktionale Rückbeleuchtung nach Anspruch 1 oder Verfahren nach Anspruch 2, wobei die Vielzahl der Lichtquellen eine Vielzahl von Lichtquellen mit einer spektralen Bandbreite von 30 nm oder weniger umfasst.
     
    4. Direktionale Rückbeleuchtung nach Anspruch 3, oder Verfahren nach Anspruch 3, wobei die Vielzahl der Lichtquellen eine Vielzahl von Farb-LEDs ausgewählt aus der Gruppe bestehend aus: einer einfarbigen LED; mehreren einfarbigen LEDs; Dreifarb-LEDs und Dreifarb-LED-Streifen umfasst.
     
    5. Direktionale Rückbeleuchtung oder Verfahren nach Anspruch 4, wobei die Farb-LEDs ein oder mehrere von einer roten LED, einer grünen LED und einer blauen LED einschließen.
     
    6. Direktionale Rückbeleuchtung nach Anspruch 1, des Weiteren umfassend eine Vielzahl von Linsenkomponenten (415a-h, 520-530, 720-730, 820-830, 920-930), die zwischen der Vielzahl von Lichtquellen und der direktionalen Rückwand angeordnet sind.
     
    7. Direktionale Rückbeleuchtung nach Anspruch 6, das des Weiteren eine Vielzahl optischer Ablenkplatten (410a-i) zwischen den Lichtquellen und den Linsenkomponenten umfasst.
     
    8. Direktionale Rückbeleuchtung nach Anspruch 1 oder Verfahren nach Anspruch 2, wobei die direktionale Rückwand im Wesentlichen planar ist.
     
    9. Direktionale Rückbeleuchtung nach Anspruch 1 oder Verfahren nach Anspruch 2, wobei die Vielzahl von Lichtquellen Lichtquellen mit drei unterschiedlichen Primärfarben umfasst, und wobei die direktionale Rückwand eine vieleckige direktionale Rückwand ist, Lichtquellen von der Vielzahl der Lichtquellen auf einer Vielzahl von Seiten der vieleckigen direktionalen Rückwand angeordnet sind, so dass Licht mit drei Primärfarben aus drei unterschiedlichen Richtungen in die direktionale Rückwand eingegeben wird.
     
    10. Direktionale Rückbeleuchtung oder Verfahren nach Anspruch 9, wobei die vieleckige direktionale Rückwand eine von einer dreieckigen direktionalen Rückwand und einer sechseckigen direktionalen Rückwand umfasst.
     
    11. Direktionale Rückbeleuchtung oder Verfahren nach Anspruch 10, wobei die unterschiedlichen Primärfarbenlichtquellen auf alternierenden Seiten der sechseckigen direktionalen Rückwand angeordnet sind.
     
    12. Direktionale Rückbeleuchtung nach Anspruch 1 oder Verfahren nach Anspruch 2, wobei die Charakteristika des strukturierten Gitters eine Gitterlänge, eine Gitterbreite, eine Gitterorientierung, eine Gitterteilung und ein Tastverhältnis umfassen.
     
    13. Direktionale Rückbeleuchtung oder Verfahren nach Anspruch 12, wobei die Gitterteilung und die Gitterorientierung die Richtung des direktionalen Lichtstrahls steuern, der durch das direktionale Pixel gestreut wird.
     
    14. Direktionale Rückbeleuchtung oder Verfahren nach Anspruch 12, wobei die Gitterlänge und die Gitterbreite die Winkelausbreitung des direktionalen Lichtstrahls steuern, der durch das direktionale Pixel gestreut wird.
     


    Revendications

    1. Rétroéclairage directionnel (400, 500, 700, 800, 900, 1100), comprenant :

    une pluralité de sources de lumière(405a-h, 505-515, 705-715, 805-815, 905-915, 1110-1120) pour générer une pluralité de faisceaux lumineux plans d'entrée (420a-h) ; et

    un fond de panier directionnel (425, 535, 735, 835, 935, 1105) comprenant une plaque de matériau transparent ayant une pluralité de pixels directionnels (430, 540-550, 740, 840, 940), la pluralité de pixels directionnels étant configurée pour diffuser chacun de la pluralité de faisceaux lumineux plans d'entrée en une pluralité de faisceaux lumineux directionnels (435), la pluralité de faisceaux lumineux directionnels représentant des vues d'images multiples qui, lorsqu'elles sont combinées, forment une image 3D, un seul faisceau lumineux directionnel de la pluralité de faisceaux lumineux directionnels émergeant de chaque pixel directionnel, chaque pixel directionnel de la pluralité de pixels directionnels comprenant un réseau à motifs comprenant une pluralité de rainures sensiblement parallèles et inclinées, et configuré pour diffuser un faisceau lumineux plan d'entrée de la pluralité de faisceaux lumineux plans d'entrée dans ledit un faisceau lumineux directionnel de la pluralité de faisceaux lumineux directionnels, ledit faisceau lumineux directionnel ayant une direction et une dispersion angulaire commandées par des caractéristiques du réseau à motifs.


     
    2. Procédé de génération d'une image 3D avec le rétroéclairage directionnel selon la revendication 1, comprenant :

    l'éclairage du fond de panier directionnel avec de la lumière provenant de la pluralité de sources de lumière; et

    la génération de l'image 3D avec les faisceaux lumineux directionnels.


     
    3. Rétroéclairage directionnel selon la revendication 1 ou procédé selon la revendication 2, la pluralité de sources de lumière comprenant une pluralité de sources de lumière avec une largeur de bande spectrale de 30 nm ou moins.
     
    4. Rétroéclairage directionnel selon la revendication 3 ou procédé selon la revendication 3, la pluralité de sources de lumière comprenant une pluralité de DEL de couleur choisies dans le groupe constitué par : une DEL monochrome ; de multiples DEL monochromes ; trois DEL de couleur ; et trois bandes de DEL de couleur.
     
    5. Rétroéclairage directionnel ou procédé selon la revendication 4, les DEL de couleur comprenant une ou plusieurs parmi une DEL rouge, une DEL verte et une DEL bleue.
     
    6. Rétroéclairage directionnel selon la revendication 1, comprenant en outre une pluralité de composants de lentilles (415a-h, 520-530, 720-730, 820-830, 920-930) disposés entre la pluralité de sources de lumière et le fond de panier directionnel.
     
    7. Rétroéclairage directionnel selon la revendication 6, comprenant en outre une pluralité de déflecteurs optiques (410a-i) entre les sources de lumière et les composants de lentilles.
     
    8. Rétroéclairage directionnel selon la revendication 1 ou procédé selon la revendication 2, le fond de panier directionnel étant sensiblement plan.
     
    9. Rétroéclairage directionnel selon la revendication 1 ou procédé selon la revendication 2, la pluralité de sources de lumière comprenant des sources de lumière de trois couleurs primaires différentes, et le fond de panier directionnel étant un fond de panier directionnel polygonal, des sources de lumière de la pluralité de sources de lumière étant disposées sur une pluralité de côtés du fond de panier directionnel polygonal, de telle sorte que la lumière des trois couleurs primaires est entrée dans le fond de panier directionnel à partir de trois directions différentes.
     
    10. Rétroéclairage directionnel ou procédé selon la revendication 9, le fond de panier directionnel polygonal comprenant un fond de panier directionnel triangulaire et un fond de panier directionnel hexagonal.
     
    11. Rétroéclairage directionnel ou procédé selon la revendication 10, les différentes sources de lumière de couleur primaire étant disposées sur des côtés alternés du fond de panier directionnel hexagonal.
     
    12. Rétroéclairage directionnel selon la revendication 1 ou procédé selon la revendication 2, les caractéristiques de réseau à motifs comprenant une longueur de réseau, une largeur de réseau, une orientation de réseau, un pas de réseau et un rapport cyclique.
     
    13. Rétroéclairage directionnel ou procédé selon la revendication 12, le pas de réseau et l'orientation de réseau commandant ladite direction dudit faisceau lumineux directionnel diffusé par ledit pixel directionnel.
     
    14. Rétroéclairage directionnel ou procédé selon la revendication 12, la longueur de réseau et la largeur de réseau commandant ladite dispersion angulaire dudit faisceau lumineux directionnel diffusé par ledit pixel directionnel.
     




    Drawing












































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description