TECHNICAL FIELD
[0001] The present disclosure relates to systems and methods for liquefying natural gas.
More specifically, the present disclosure relates to a system for liquefying natural
gas with an integrally-geared turbo-compressor as well as to a compressor arrangement
including an integrally-geared turbo-compressor. Further, the present disclosure relates
to a method of liquefying natural gas with an integrally-geared turbo-compressor.
BACKGROUND
[0002] US 2011/209496 A1 discloses producing liquefied and sub-cooled natural gas by means of a refrigerant
assembly using a single phase gaseous refrigerant comprising at least two expanders,
a compressor assembly, a heat exchanger assembly and a heat rejection assembly. The
expanders and compressor assembly are assembled in two mechanically connected packages
of which one is driven by a gas turbine and the other is driven by a steam turbine.
[0003] Natural gas is becoming an increasingly important source of energy. In order to allow
a cost-efficient transportation of the natural gas from the source of supply to the
place of use, it is beneficial to reduce the volume of the gas. Cryogenic liquefaction
has become a routinely practiced process for converting the natural gas into a liquid,
which is more convenient, less expensive and safer to store and transport. Transportation
by pipeline or ship vessels of liquefied natural gas (LNG) becomes possible at ambient
pressure, by keeping the chilled and liquefied gas at a temperature lower than liquefaction
temperature at ambient pressure.
[0004] In order to store and transport natural gas in the liquid state, the natural gas
is preferably cooled down to around -150 to -170°C, where the gas possesses a nearly
atmospheric vapor pressure.
[0005] Several processes and systems are known for the liquefaction of natural gas, which
provide for sequentially passing the natural gas at an elevated pressure through a
plurality of cooling stages where the gas is cooled to successively lower temperatures
by sequential refrigeration cycles until the liquefaction temperature is achieved.
[0006] Prior to passing the natural gas through the cooling stages, the natural gas is typically
pretreated to remove impurities that can interfere the processing, damage the machinery
or are undesired in the final product. Impurities include acid gases, sulfur compounds,
carbon dioxide, mercaptans, water and mercury. The pre-treated gas from which impurities
have been removed is then typically cooled by refrigerant streams to separate heavier
hydrocarbons. The remaining gas mainly consists of methane and usually contains less
than 0.1% hydrocarbons of higher molecular weight, such as propane or heavier hydrocarbons.
The cleaned and purified natural gas is cooled down to the final temperature in a
cryogenic section. The resulting LNG can be stored and transported at nearly atmospheric
pressure.
[0007] Cryogenic liquefaction is usually performed by means of a multi-cycle process, i.e.
a process using two or more refrigeration cycles. Depending upon the kind of process,
each cycle can use a different refrigerant, or alternatively the same refrigerant
can be used in two or more cycles. In a typical cryogenic liquefaction system, e.g.
in the so-called APCI process, the natural gas is first cooled by a first refrigerant
which circulates in a pre-cooling loop and is subsequently cooled by a second refrigerant
which circulates in a cooling loop.
US2009/314030A1 discloses such a liquefaction system with a first refrigerant used in a pre-cooling
loop with several refrigerant side streams and a second refrigerant. The respective
first and second refrigerant compressors are driven by one driver and optionally an
external gearing mechanism is used to distribute the driver power between the two
compressors.
[0008] In the pre-cooling loop, the circulating first refrigerant may be compressed, condensed,
and expanded, in order to subsequently remove heat from the natural gas. In the cooling
loop, the circulating second refrigerant may be compressed and cooled, in order to
subsequently remove heat from the natural gas. However, driving two cooling loops
(pre-cooling loop and cooling loop) is energy-intensive, cost-intensive and space-consuming.
[0009] Accordingly, it would be beneficial to design and provide methods and systems for
liquefying natural gas that provide a better energy efficiency and consume less space.
SUMMARY
[0010] The present invention is defined in the accompanying claims.
[0011] In light of the above, a natural gas liquefaction system, a compressor arrangement
as well as a method of liquefying natural gas are provided.
[0012] According to one aspect of the present invention a natural gas liquefaction system
according to claim 1 is provided. The system includes: an integrally-geared turbo-compressor
with a plurality of compressor stages; a prime mover for driving the compressor; a
pre-cooling loop, through which a first refrigerant is adapted to circulate, wherein
one or more first compressor stages of the plurality of compressor stages are adapted
to pressurize the first refrigerant; a cooling loop, through which a second refrigerant
is adapted to circulate, wherein one or more second compressor stages of the plurality
of compressor stages are adapted to pressurize the second refrigerant; a first heat
exchanger device for transferring heat from natural gas and/or from the second refrigerant
to the first refrigerant; and a second heat exchanger device for transferring heat
from the natural gas to the second refrigerant.
[0013] An integrally-geared turbo-compressor according to embodiments described herein includes
at least one force transmission mechanism, particularly a gear, connected between
two or more compressor stages of the plurality of compressor stages.
[0014] According to another aspect, a compressor arrangement for compressing a plurality
of refrigerants is provided. The compressor arrangement includes: an integrally-geared
turbo-compressor with a plurality of compressor stages; a first cooling loop, through
which a first refrigerant is adapted to circulate, wherein one or more first compressor
stages of the plurality of compressor stages are adapted to pressurize the first refrigerant;
and a second cooling loop, through which a second refrigerant is adapted to circulate,
wherein one or more second compressor stages of the plurality of compressor stages
are adapted to pressurize the second refrigerant.
[0015] According to another aspect of the invention, a method of liquefying natural gas
according to claim 13 is provided. The method includes: providing an integrally-geared
turbo compressor having a plurality of compressor stages; driving the compressor with
a prime mover; circulating a first refrigerant through one or more first compressor
stages of the plurality of compressor stages; circulating a second refrigerant through
one or more second compressor stages of the plurality of compressor stages; cooling
at least one of natural gas and the second refrigerant by heat exchange against the
first refrigerant; and cooling the natural gas by heat exchange against the second
refrigerant.
[0016] Further aspects, advantages, and features of the present disclosure are apparent
from the dependent claims, the description, and the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] So that the manner in which the above recited features of the present invention can
be understood in detail, a more particular description of the disclosure, briefly
summarized above, may be had by reference to embodiments. The accompanying drawings
relate to embodiments of the disclosure and are described in the following. Some embodiments
are depicted in the drawings and are detailed in the description which follows.
FIG. 1 is a schematic diagram of a typical APCI process for liquefying natural gas;
FIG. 2 is a schematic diagram of a natural gas liquefaction system according to an
example not according to the current invention described herein;
FIG. 3 is a schematic diagram of a natural gas liquefaction system according to further
embodiments of the current invention described herein;
FIG. 4 is an enlarged schematic view of a compressor arrangement for a natural gas
liquefaction system according to embodiments of the current invention described herein;
FIG. 5 is a schematic diagram of a natural gas liquefaction system according to further
embodiments of the current invention described herein; and
FIG. 6 is a flow diagram illustrating a method of liquefying a natural gas according
to embodiments of the current invention described herein.
DETAILED DESCRIPTION
[0018] Reference will now be made in detail to the various embodiments of the disclosure,
one or more examples of which are illustrated in the figures. Each example is provided
by way of explanation and is not meant as a limitation.
[0019] Within the following description of the drawings, the same reference numbers refer
to corresponding or to similar components. Generally, only the differences with respect
to the individual embodiments are described. Unless specified otherwise, the description
of a part or aspect in one embodiment applies to a corresponding part or aspect in
another embodiment as well.
[0020] FIG.1 shows a schematic diagram of a typical natural gas liquefaction system using
the so-called APCI process. The shown process uses two refrigeration cycles. A pre-cooling
cycle 12 uses a first refrigerant and a cooling cycle 2 uses a second refrigerant.
[0021] The system, labeled 1 as a whole, includes the cooling cycle 2 including a line formed
by a gas turbine 3, which drives a compressor train. The compressor train includes
a first compressor 5 and a second compressor 7 in series for compressing the second
refrigerant. An inter-stage cooler 9 may be provided to cool the second refrigerant
delivered by the first compressor 5 to reduce the temperature and the volume of the
second refrigerant before entering the second compressor 7. The compressed second
refrigerant delivered by the second compressor 7 may be condensed against air or water
in a second condenser 11. The second refrigerant is cooled and partly liquefied by
a heat exchange against a first refrigerant which circulates in the pre-cooling cycle
12.
[0022] The pre-cooling cycle 12 includes a line including a gas turbine 13, which drives
a compressor 15. The compressed first refrigerant delivered by the compressor 15 is
condensed in a first condenser 17 against water or air. The condensed first refrigerant
is used to pre-cool the natural gas down to -40°C and to cool and partially liquefy
the second refrigerant. The pre-cooling of the natural gas and the partial liquefaction
of the second refrigerant are performed in a multi-pressure process, e.g. a four pressure
process in the example shown in FIG. 1.
[0023] The stream of the condensed first refrigerant from the first condenser 17 is delivered
to a first set of four, serially arranged auxiliary heat exchangers to cool and partly
liquefy the second refrigerant, and to a second set of four, serially arranged, pre-cooling
heat exchangers to pro-cool the natural gas. A first portion of the compressed first
refrigerant streaming from the first condenser 17 is delivered through a pipe 19 to
the first set of heat exchangers and is sequentially expanded in the serially arranged
expanders 21, 23, 25 and 27 to four different, gradually decreasing pressure levels.
Downstream from each expander, a portion of the expanded first refrigerant is diverted
to a respective heat exchanger 29, 31, 33, and 35.
[0024] The compressed second refrigerant delivered from the second condenser 11 may flow
in a pipe 37 toward a main cryogenic heat exchanger 38. The pipe 37 sequentially passes
through the heat exchangers 29, 31, 33 and 35, such that the second refrigerant is
gradually cooled and partly liquefied against the expanded first refrigerant.
[0025] A second fraction of the condensed first refrigerant from the first condenser 17
is delivered to a second pipe 39 and expanded sequentially in four serially arranged
expanders 41, 43, 45, and 47. A portion of the first refrigerant expanded in each
expander is diverted towards a corresponding pre-cooling heat exchanger 49, 51, 53
and 55, respectively. A main natural gas line 61 flows sequentially through said pre-cooling
heat exchangers 49, 51, 53 and 55, such that the natural gas is pre-cooled before
entering the main cryogenic heat exchanger 38. The heated first refrigerant exiting
the pre-cooling heat exchangers 49, 51, 53 and 55 is collected with the first refrigerant
exiting the heat exchangers 29, 31, 33 and 35, and is fed again to the compressor
15, which recovers the four evaporated streams of first refrigerant and recompresses
the vapor.
[0026] The system shown in FIG. 1 includes at least one compressor driven by a gas turbine
13 for compressing the first refrigerant, and at least one further compressor driven
by a gas turbine 3 for compressing the second refrigerant. Accordingly, the energy-efficiency
of the system shown in FIG. 1 is limited, and the two gas turbines 3, 13 consume a
considerable amount of space.
[0027] A natural gas liquefaction system 100 in accordance with embodiments described herein
is schematically shown in FIG. 2.
[0028] The natural gas liquefaction system 100 includes an integrally-geared turbo-compressor
150 (also simply referred to as compressor 150) with a plurality of compressor stages
which is configured to be driven by a prime mover 160, particularly by a single prime
mover such as an internal combustion engine or an electric motor. In other words,
each compressor stage of the plurality of compressor stages of the compressor 150
may be driven directly or indirectly by the prime mover 160. A transmission mechanism
301, particularly a gear of the compressor including one or more gear wheels, and/or
other transmission units such as pinions, pulleys, toothed wheels etc. may be connected
between the plurality of compressor stages of the compressor 150, in order to drive
the plurality of compressor stages into rotation. The driving force may be provided
by the prime mover 160, e.g. via a main driving shaft connected to the integrally-geared
turbo compressor.
[0029] By providing a compressor with an integral gear, the speed, the torque, and/or the
direction of the rotational force provided by the prime mover can be changed as appropriate.
For example, the rotational speed and/or the torque of the impellers of the plurality
of compressor stages can be individually adjusted as appropriate. In some embodiments,
the transmission mechanism can include a gear train or a transmission. The impellers
of the compressor stages may be mounted on respective shafts which may be driven into
rotation by one of the transmission elements of the gear. For example, the gear may
include at least one gear wheel which may drive one or more shafts into rotation.
A pinion may be mounted on each of the shafts which may mesh with at least one gear
wheel. Further, one or two impellers of the plurality of compressor stages may be
mounted on each of the shafts.
[0030] In an integrally-geared compressor, at least one or more transmission units such
as one or more gearwheels are connected between at least some of the plurality of
compressor stages, so that the respective impellers of the compressor stages can be
rotated at different rotational speeds. When a gear or another force transmission
mechanism is connected between at least some compressor stages, the compressor stages
can be provided on different shafts, which may be adapted to rotate with different
rotational speeds. For example, the impellers of the one or more first compressor
stages may be rotated at different rotational speeds as the impellers of the one or
more second compressor stages.
[0031] For example, in some embodiments, one or more force transmission elements such as
one or more central gearwheels may be provided for driving the one or more first compressor
stages and the one or more second compressor stages at different rotational speeds.
The one or more first compressor stages may be provided on different shafts as the
one or more second compressor stages.
[0032] In some embodiments, which may be combined with other embodiments described herein,
a force transmission element such as one or more central gearwheels may be configured
for driving two or more first compressor stages at different rotational speeds. In
some embodiments, which may be combined with other embodiments described herein, a
force transmission element such as one or more central gearwheels may be configured
for driving two or more second compressor stages at different rotational speeds. In
some embodiments, the integrally-geared compressor may include a plurality of force
transmission elements such as a plurality of central gearwheels, in order to drive
each stage of the plurality of compressor stages at a desired rotational speed.
[0033] As is further depicted in FIG. 2, the natural gas liquefaction system 100 includes
a pre-cooling loop 110, through which a first refrigerant is adapted to circulate,
wherein one or more first compressor stages 151 of the plurality of compressor stages
are adapted to pressurize the first refrigerant, and a cooling loop 130, through which
a second refrigerant is adapted to circulate, wherein one or more second compressor
stages 155 of the plurality of compressor stages are adapted to pressurize the second
refrigerant.
[0034] Each compressor stage of the plurality of first and second compressor stages may
include a gas inlet, a gas outlet, and at least one impeller rotating on a respective
shaft. The compressor stages may be axial or radial compressor stages.
[0035] The one or more first compressor stages 151 for pressurizing the first refrigerant
may be directly or indirectly driven by the prime mover 160, e.g. via the transmission
mechanism or gear of the compressor. The one or more second compressor stages 155
for pressurizing the second refrigerant may also be directly or indirectly driven
by the prime mover 160, e.g. via the transmission mechanism or gear of the compressor
150.
[0036] According to embodiments described herein, a single integrally-geared multi-stage
compressor driven by the prime mover 160 may be provided for pressurizing two or more
refrigerants circulating in two or more cooling loops, e.g. in the pre-cooling loop
110 and in the cooling loop 130. In some embodiments, the whole LNG liquefaction system
may include a single integrally-geared compressor configured for pressurizing the
two or more refrigerants which are used for liquefying the natural gas.
[0037] The first compressor stages and the second compressor stages of the compressor may
be housed in a single compressor casing, e.g. in a compact and space-saving way. For
example, a wall of a compressor housing may enclose the first plurality of compressor
stages, the second plurality of compressor stages, as well as the transmission elements
of the gear of the compressor which connect the driving shafts of the compressor stages
with each other.
[0038] By using an integrally-geared multi-stage compressor for pressurizing two, three
or more refrigerants of the LNG liquefaction system, energy and space can be saved
as compared to previously used systems which included one or more separate compressors.
An adjustment of the rotational speeds of the compressor stages may still be possible,
because the plurality of compressor stages are drivingly connected by the integral
gear of the compressor.
[0039] As is further shown in FIG. 2, the natural gas liquefaction system 100 may further
include a first heat exchanger device 170 configured for transferring heat from natural
gas to the first refrigerant and/or from the second refrigerant to the first refrigerant,
and a second heat exchanger device 180 for transferring heat from the natural gas
to the second refrigerant.
[0040] In some embodiments, the natural gas is adapted to be sequentially cooled by the
first refrigerant and by the second refrigerant. The natural gas may be guided through
one or more first heat exchangers of the first heat exchanger device 170, where the
natural gas may be pre-cooled by the first refrigerant, e.g. to a temperature below
0°C, particularly -40°C or less. The natural gas may subsequently be guided through
the second heat exchanger device 180, where the natural gas is cooled by the second
refrigerant. The second heat exchanger device 180 may be the main cryogenic heat exchanger
of the system which is configured to cool the natural gas down to the liquefaction
temperature.
[0041] In the schematic diagram of FIG. 2, the second heat exchanger device 180 is depicted
in a simplified way as a device which removes heat from the natural gas flowing through
a main natural gas line 61 and transfers the heat to the second refrigerant flowing
through the cooling loop 130.
[0042] The first refrigerant circulating in the pre-cooling loop 110 may be used for pre-cooling
the natural gas at a position of the main natural gas line 61 upstream from the second
heat exchanger device 180. Alternatively or additionally, the first refrigerant may
be used for cooling the second refrigerant at a position of the cooling loop 130 upstream
from the second heat exchanger device 180.
[0043] In the embodiment depicted in FIG. 2, the first heat exchanger device 170 includes
a heat exchanger configured for pre-cooling the natural gas and a further heat exchanger
configured for cooling the second refrigerant. The first refrigerant which leaves
the first heat exchanger device 170 may be guided back to the compressor 150 to be
re-compressed in the one or more first compressor stages 151 of the compressor.
[0044] In some embodiments, the second refrigerant which leaves the second heat exchanger
device 180 may be guided back to the compressor 150 to be re-compressed in the one
or more second compressor stages 155 of the compressor.
[0045] In some embodiments, which may be combined with other embodiments described herein,
the pre-cooling loop 110 includes a first condenser 17 for removing heat from the
first refrigerant after compression. The pre-cooling loop may further include at least
one expansion element (not shown in FIG. 2) for expanding the first refrigerant upstream
from the first heat exchanger device 170.
[0046] The cooling loop 130 may include a second condenser 11 for removing heat from the
second refrigerant after compression.
[0047] In some embodiments, which may be combined with other embodiments described herein,
the first refrigerant includes a gas with a molecular weight of 35 or more, particularly
40 or more, more particularly propane.
[0048] In some embodiments, which may be combined with other embodiments described herein,
the second refrigerant is a mixed refrigerant, which may include a mixture including
at least one or more of nitrogen, methane, ethane and propane.
[0049] In some embodiments, which may be combined with other embodiments described herein,
at least one compressor stage of the plurality of compressor stages is provided with
a movable inlet guide vane for autonomously regulating a flow entering in the at least
one compressor stage. For example, each of the one or more first compressor stages
151 may be provided with a respective movable inlet guide vane.
[0050] As is schematically depicted in FIG. 2, a single prime mover may be provided for
driving each of the one or more first and second compressor stages. In some embodiments,
the prime mover 160 may be or include a gas turbine and/or a motor, e.g. an electric
motor or an internal combustion engine. One or more gearbox elements of the integrally-geared
turbo compressor may be connected between the prime mover, the one or more first compressor
stages and/or the one or more second compressor stages. For example, at least some
of the impellers of the one or more first compressor stages may rotate at a different
rotational speed and be provided on different rotary shafts than at least some of
the impellers of the one or more second compressor stages.
[0051] A natural gas liquefaction system 200 in accordance with embodiments described herein
is schematically shown in FIG. 3. The basic setup of the natural gas liquefaction
system 200 is similar to the system shown in FIG. 2 so that reference can be made
to the above explanations which are not repeated here.
[0052] The natural gas liquefaction system 200 includes an integrally-geared turbo-compressor
150 with a plurality of compressor stages which is configured to be driven by a prime
mover 160, particularly by a single prime mover such as a gas turbine or another internal
combustion engine. In other words, each compressor stage of the plurality of compressor
stages of the compressor 150 may be driven directly or indirectly by the prime mover
160. For example, a transmission mechanism, particularly a gear of the compressor,
with a plurality of gear wheels and/or other transmission units such as pinions and/or
pulleys may be connected between the prime mover 160 and the plurality of compressor
stages of the compressor 150, in order to drive the plurality of compressor stages
at appropriate rotational speeds.
[0053] In some embodiments, the compressor 150 includes a plurality of first compressor
stages 151 configured for pressurizing the first refrigerant circulating in the pre-cooling
loop 110. For example, four first compressor stages may be provided. In other embodiments,
a different number of first compressor stages may be provided, e.g. two, three, or
more than four first compressor stages.
[0054] The plurality of first compressor stages 151 may be sequentially arranged in the
pre-cooling loop. For example, the first refrigerant which enters the compressor 150
at an initial first compressor stage, may be subsequently pressurized by said initial
first compressor stage and by other first compressor stage(s) arranged downstream
from the initial first compressor stage. The pressure of the first refrigerant may
be increased in each of the sequentially arranged first compressor stages 151.
[0055] In some embodiments, which may be combined with other embodiments described herein,
the compressor 150 may include a plurality of second compressor stages 155 configured
for pressurizing the second refrigerant circulating in the cooling loop 130. For example,
two, three, four or more second compressor stages 155 may be provided. The second
compressor stages 155 may be sequentially arranged in the cooling loop. In other words,
the second refrigerant which enters the compressor 150 at an initial second compressor
stage may be subsequently pressurized by said initial second compressor stage and
by further second compressor stage(s) arranged downstream from the initial second
compressor stage. The pressure of the second refrigerant may be increased by each
of the sequentially arranged second compressor stages 155. The impellers of two or
more second compressor stages may be mounted on different shafts and may be rotated
at different rotational speeds in some embodiments.
[0056] For example, the compressor 150 may include four first compressor stages for pressurizing
the first refrigerant and three (or alternatively four) second compressor stages for
pressurizing the second refrigerant.
[0057] In some embodiments, the pre-cooling loop 110 may be configured to divide the first
refrigerant into a plurality of precooling streams, which are guided to a respective
one of said plurality of first compressor stages 151. The number of precooling streams
may correspond to the number of first compressor stages. Each of the precooling streams
may enter the compressor at an associated first compressor stage to be re-compressed
by the associated first compressor stage and potentially by further first compressor
stage(s) arranged downstream thereof, if any.
[0058] In some embodiments, a plurality of first expansion elements 241, 243, 245, 247 may
be sequentially arranged in the pre-cooling loop 110 and configured for expanding
the first refrigerant at a plurality of decreasing pressure levels. A plurality of
first heat exchangers 249, 251, 253, 255 of the first heat exchanger device 270 may
be provided for receiving respective precooling streams of said first refrigerant
expanded through at least one of said plurality of first expansion elements 241, 243,
245, 247 and for transferring heat from the natural gas to the first refrigerant.
[0059] A plurality of return paths 261, 263, 265, 267 configured for returning said precooling
streams of the first refrigerant from the plurality of first heat exchangers 249,
251, 253, 255 to a respective one of said plurality of first compressor stages 151
may be provided.
[0060] According to some embodiments, which may be combined with other embodiments described
herein, at least one first auxiliary expansion element may be arranged in the precooling
loop. Further, at least one first auxiliary heat exchanger may be provided for receiving
at least a portion of said first refrigerant expanded through the at least one first
auxiliary expansion element and for transferring heat from the second refrigerant
to the first refrigerant.
[0061] According to some embodiments, which may be combined with other embodiments described
herein, the system may include a plurality of first auxiliary expansion elements 221,
223, 225, 227 sequentially arranged in the pre-cooling loop 110 and configured for
expanding the first refrigerant at a plurality of decreasing pressure levels. A plurality
of first auxiliary heat exchangers 229, 231, 233, 235 of the first heat exchanger
device 270 may be provided for receiving respective portions of said first refrigerant
expanded through at least one of said plurality of first auxiliary expansion elements
221, 223, 225, 227 and for transferring heat from the second refrigerant to the first
refrigerant.
[0062] The plurality of return paths 261, 263, 265, 267 may be configured for returning
said portions of the first refrigerant from the plurality of first auxiliary heat
exchangers 229, 231, 233, 235 and/or from the first heat exchangers 249, 251, 253,
255 to a respective one of said plurality of first compressor stages 151.
[0063] During operation of the natural gas liquefaction system 200, a flow of compressed
first refrigerant may be delivered from a most downstream first compressor stage of
the plurality of first compressor stages 151 to a first condenser 17. The flow of
the first refrigerant delivered through the first condenser 17 may be cooled, e.g.
against water or air, and condensed.
[0064] In some embodiments, the condensed first refrigerant is circulated in the pre-cooling
loop 110 to pre-cool the natural gas in the plurality of first heat exchangers 249,
251, 253, 255, and/or to cool and optionally partially liquefy the second refrigerant
circulating in the cooling loop 130 in the plurality of first auxiliary heat exchangers
229, 231, 233, 235.
[0065] In some embodiments, the pre-cooling loop 110 may be divided into a plurality of
n pressure levels, e.g. four pressure levels. The number n of pressure levels may
correspond to the number n of first compressor stages of the compressor 150 configured
for compressing the first refrigerant. The flow of first refrigerant delivered through
the first condenser 17 may be sequentially expanded at n progressively reducing pressure
levels and be divided into n partial flows. Each partial flow of first refrigerant
may be returned as a side flow to the compressor 150 at an inlet of a corresponding
one of the plurality of first compressor stages 151.
[0066] A first delivery line 217 may deliver a first part of the condensed first refrigerant
flow to the plurality of first expansion elements 241, 243, 245, 247. A second delivery
line 218 branched off the first delivery line 217 may deliver a second part of the
condensed first refrigerant flow to the plurality of first auxiliary expansion elements
221,223,225,227.
[0067] The first part of the condensed first refrigerant from the first condenser 17 may
be sequentially expanded in the plurality of first expansion elements 241, 243, 245,
247 at n different, gradually decreasing pressure levels. Downstream from each first
expansion element, a portion of the flow of partly expanded first refrigerant may
be diverted to a respective one of the plurality of first heat exchangers 249, 251,
253, 255. The remaining part of the partly expanded first refrigerant may be caused
to flow through the next first expansion element and so on. The residual first refrigerant
flowing through the most downstream one (247) of the plurality of first expansion
elements 241, 243, 245, 247 may be delivered to a most downstream one (255) of the
plurality of first heat exchangers 249, 251, 253, 255.
[0068] In each one of the plurality of first heat exchangers 249, 251, 253, 255, the first
refrigerant may exchange heat against the natural gas flowing in the main natural
gas line 61, thus pre-cooling and optionally partly liquefying the natural gas.
[0069] The second part of the condensed first refrigerant expanded in at least one of the
plurality of first auxiliary expansion elements 221, 223, 225, 227 may be diverted
towards a corresponding one of the plurality of first auxiliary heat exchangers 229,
231, 233, 235. The portion of first refrigerant delivered by each one of the plurality
of first auxiliary expansion elements 221, 223, 225, 227 and which is not caused to
flow through the respective first auxiliary heat exchanger is delivered through the
subsequent one of the plurality of first auxiliary expansion elements 221, 223, 225,
227. The most downstream one (235) of said plurality of first auxiliary heat exchangers
229, 231, 233, 235 receives the residual fraction of first refrigerant expanded in
the most downstream one (227) of the plurality of first auxiliary expansion elements
221, 223, 225, 227. In each first auxiliary heat exchanger, the first refrigerant
exchanges heat against the second refrigerant which circulates in the cooling loop
130, so that at the delivery side of the most downstream one (235) of the plurality
of first auxiliary heat exchangers 229, 231, 233, 235, the second refrigerant is cooled
and optionally at least partly liquefied.
[0070] Heated first refrigerant exiting the plurality of first heat exchangers 249, 251,
253, 255 may be collected with the heated first refrigerant exiting the first auxiliary
heat exchangers 229, 231, 233, 235 and may be fed again to the integrally-geared turbo-compressor
150 at the inlet of the respective first compressor stage.
[0071] In some embodiments, the heated first refrigerant exiting one of the plurality of
first auxiliary heat exchangers 229, 231, 233, 235 is at around the same pressure
as the heated first refrigerant exiting a corresponding one of the plurality of first
heat exchangers 249, 251, 253, 255. The first refrigerant collected at corresponding
pressure levels may be delivered at the inlet of a corresponding stage of the plurality
of first compressor stages of the compressor 150. A plurality of side streams of the
first refrigerant is thus returned at gradually decreasing pressure levels at the
inlets of the sequentially arranged first compressor stages 151.
[0072] In some embodiments, the plurality of return paths 261, 263, 265, 267 may be configured
for delivering the side streams of expanded and exhausted first refrigerant from the
plurality of first heat exchangers 249, 251, 253, 255 and/or from the plurality of
first auxiliary heat exchangers 229, 231, 233, 235 to a corresponding stage of the
plurality of first compressor stages 151.
[0073] In some embodiments, which may be combined with other embodiments described herein,
the second refrigerant circulating in the cooling loop 130 may be compressed by the
plurality of second compressor stages 155 which may be sequentially arranged in the
cooling loop 130. The plurality of second compressor stages 155 are part of the same
integrally-geared compressor as the plurality of first compressor stages 151.
[0074] In some embodiments, the integrally-geared compressor may include at least one multi-stage
compressor unit with two or more compressor stages sequentially arranged on a single
shaft, e.g. a multi-stage centrifugal compressor unit.
[0075] The prime mover 160 which drives the compressor may include an internal combustion
engine or an electric motor. The prime mover 160 can be a gas turbine, e.g. an aeroderivative
gas turbine.
[0076] In some embodiments, at least one first intercooler may be arranged between at least
two sequentially arranged first compressor stages of the plurality of first compressor
stages 151. In some embodiments, at least one second intercooler may be arranged between
at least two sequentially arranged second compressor stages of the plurality of second
compressor stages 155. The intercoolers may be configured to reduce the temperature
and the volume of the respective refrigerant delivered by the respective compressor
stage before entering the subsequent compressor stage or before leaving the compressor.
[0077] The second refrigerant delivered by the most downstream one of the plurality of second
compressor stages 155 may be condensed by a second condenser 11. The second condenser
11 may be an air condenser of a water condenser, where the second refrigerant may
be condensed by exchanging heat against air or water. The condensed second refrigerant
may be subsequently delivered by a delivery line through the plurality of first auxiliary
heat exchangers 229, 231, 233, 235, where the second refrigerant may be cooled and
optionally liquefied by exchanging heat against the first refrigerant circulating
in the pre-cooling loop 110, as described above.
[0078] The cooled second refrigerant delivered from the plurality of first auxiliary heat
exchangers may be guided toward the second heat exchanger device 180, which may be
a main cryogenic heat exchanger, where the second refrigerant may remove further heat
from the pre-cooled natural gas, completing the liquefaction process. The heated second
refrigerant may be returned through a return line 269 to an initial one of the plurality
of second compressor stages 155 of the compressor 150.
[0079] In FIG. 3, the plurality of compressor stages of the integrally-geared turbo-compressor
150 is depicted in a schematic way only. The compressor 150 of an exemplary embodiment
is illustrated in more detail in FIG. 4.
[0080] FIG. 4 is an enlarged schematic view of a compressor arrangement with an integrally-geared
turbo-compressor 150 according to embodiments described herein. The compressor 150
may be driven by a prime mover 160 and may include a plurality of compressor stages
which are directly or indirectly driven by the prime mover 160. The plurality of compressor
stages includes one or more first compressor stages 151 for pressurizing the first
refrigerant circulating in the pre-cooling loop 110, and one or more second compressor
stages 155 for pressurizing the second refrigerant circulating in the cooling loop
130. More details of the pre-cooling loop 110 and of the cooling loop 130 are described
above with reference to FIG. 2 and FIG. 3 and are not repeated here.
[0081] The compressor 150 may include a transmission mechanism 301, e.g. an integral gear,
which may be arranged in a compressor housing 330 and configured to be driven by said
prime mover 160. The compressor 150 may further include at least one first shaft 303
configured to be driven into rotation by said transmission mechanism 301 and configured
for driving at least one of the plurality of first compressor stages 151. In other
words, an impeller of at least one first compressor stage may be mounted on the at
least one first shaft 303 such as to rotate together with the first shaft. Further,
the compressor 150 may include at least one second shaft 305 configured to be driven
into rotation by said transmission mechanism 301 and configured for driving at least
one of the plurality of second compressor stages 155. Therein, an impeller of at least
one second compressor stage may be mounted on the at least one second shaft 305 such
as to rotate together with the second shaft.
[0082] In some embodiments, at least one first shaft 303 may drive two first compressor
stages of the plurality of first compressor stages, e.g. two subsequent first compressor
stages. Alternatively or additionally, at least one second shaft 305 may drive two
second compressor stages of the plurality of second compressor stages, for example
two subsequent second compressor stages.
[0083] In some embodiments, the at least one first shaft 303 may be provided with a pinion
meshing with a gear wheel of the transmission mechanism 301, and/or the at least one
second shaft 305 may be provided with a further pinion meshing with a gear wheel of
the transmission mechanism 301. For example, in some embodiments, the transmission
mechanism 301 may include a first gear wheel 307 configured for driving the at least
one first shaft 303 and a second gear wheel 308 configured for driving the at least
one second shaft 305.
[0084] Alternatively, e.g. in the embodiment schematically depicted in FIG. 5, the transmission
mechanism 301 may include one center gear wheel 307 configured for driving the at
least one first shaft 303 and for driving the at least one second shaft 305. For example,
a single bull gear can be provided that is configured for (e.g., directly) driving
each of the first and second compressor stages.
[0085] In other words, a first pinion with a first diameter may be connected to the at least
one first shaft 303 and/or a second pinion with a second diameter may be connected
to the at least one second shaft 305. The central gear wheel 307 of the gear may directly
mesh with the first pinion and with the second pinion for driving the at least one
first shaft and the at least one second shaft into rotation. In the embodiment depicted
in FIG. 5, the central gear wheel 307 directly meshes with respective pinions connected
to two or more first shafts 303 and to two or more second shafts 305. For example,
the (single) central gear wheel may directly drive the shafts of three, four or more
first compressor stages and of three, four or more second compressor stages.
[0086] The first diameter of the first pinion may correspond to the second diameter of the
second pinion. Accordingly, the first shaft and the second shaft may rotate at corresponding
rotational speeds. Alternatively, the first diameter and the second diameter may be
different. Accordingly, the rotational speed of the first shaft and of the second
shaft may be adjusted to differ as appropriate. For example, the rotational speeds
of the first and second compressor stages may be adapted to the properties of the
respective refrigerant guided therethrough.
[0087] In an alternative embodiment, two or more bull gears may be provided for driving
the plurality of compressor stages. For example, a first bull gear may drive the one
or more first compressor stages, and a second bull gear may drive the one or more
second compressor stages.
[0088] It is noted that, in some embodiments, the at least one first shaft and/or the at
least one second shaft may drive two compressor stages which may be arranged on opposite
ends of the respective shaft. In FIG. 3 and in FIG. 5, two compressor stages provided
on a single shaft are schematically illustrated by two arrowheads directed in opposite
directions which are connected by a connection line illustrating the common shaft.
For example, a first impeller of one compressor stage may be mounted in a first portion
of a common shaft, and a second impeller of a further compressor stage may be mounted
in a second portion of the common shaft.
[0089] Referring back to FIG. 3 and to FIG. 4, in some embodiments, which may be combined
with other embodiments described herein, the first gear wheel 307 may drive the plurality
of first compressor stages 151, and the second gear wheel 308 may drive the plurality
of second compressor stages 155. The gear wheels may be toothed wheels which are driven
in rotation directly or indirectly by the prime mover 160, respectively. The first
and second shafts may each comprise a pinion mounted thereon and meshing with a respective
toothed wheel. The first and second shafts and the impeller(s) mounted on the shafts
can therefore rotate at different rotational speeds.
[0090] The diameter of the second gear wheel 308 may be smaller than the diameter of the
first gear wheel 307. When the first gear wheel 307 directly meshes with the second
gear wheel 308, the second gear wheel 308 may rotate at a higher rotational speed
than the first gear wheel 307. Accordingly, the at least one second shaft 305 driven
by the second gear wheel 308 may be rotated at a higher rotational speed than the
at least one first shaft 303 driven by the first gear wheel 307. Thus, the impeller(s)
of the first compressor stage(s) which are mounted on the at least one first shaft
303 may be rotated at a higher rotational speed than the impeller(s) of the second
compressor stage(s) which are mounted on the at least one second shaft 305.
[0091] In some embodiments, which may be combined with other embodiments described herein,
the compressor may include two or more first shafts which drive the plurality of first
compressor stages 151, wherein the two or more first shafts may be driven by the first
gear wheel 307. At least one first shaft may be configured to drive two sequentially
arranged first compressor stages. Alternatively or additionally, at least one first
shaft may be configured to drive a single first compressor stage. In the latter case,
the impeller of a single first compressor stage may be mounted on the first shaft.
[0092] In some embodiments, which may be combined with other embodiments described herein,
the compressor may include two or more second shafts for driving the plurality of
second compressor stages 155, wherein the two or more second shafts may be driven
by the second gear wheel 308. At least one second shaft may be configured to drive
two sequentially arranged second compressor stages. Alternatively or additionally,
at least one second shaft may be configured to drive a single one of the plurality
of second compressor stages.
[0093] Each compressor stage of the plurality of compressor stages may include a gas inlet,
a gas outlet, and at least one impeller mounted on a respective shaft. Each impeller
can be a radial impeller, with an axial inlet and a radial outlet. The fluid processed
through the impeller may be collected in a respective volute of the compressor stage.
The impellers can be paired, wherein a pair of impellers (e.g. belonging to two subsequent
compressor stages) may be mounted on a common rotary shaft.
[0094] In some embodiments, the plurality of first compressor stages 151 may be configured
to compress the first refrigerant so that the pressurized first refrigerant is delivered
from the most downstream first compressor stage 312 of the plurality of first compressor
stages 151 at a pressure ranging from 10 bar to 40 bar absolute, particularly from
20 bar to 30 bar absolute, more particularly from 22 bar to 24 bar absolute. The pressure
of the first refrigerant at the inlet of the most upstream first compressor stage
315 may be between 1 bar absolute and 2 bar absolute in some embodiments.
[0095] Alternatively or additionally, the plurality of first compressor stages 151 may be
configured to compress the first refrigerant so that the pressurized first refrigerant
is delivered from the most downstream first compressor stage 312 of the plurality
of first compressor stages 151 at a temperature ranging from 60°C to 100°C, particularly
from 75°C to 85°C. For example, no inter-cooling stage may be provided between the
two first compressor stages.
[0096] In some embodiments, the at least one first shaft 303 on which one or more impellers
of one or more first compressor stages 151 are mounted may be configured to rotate
at a rotational speed from 3.000rpm (rotations per minute) to 7.000rpm, particularly
from about 4.000rpm to about 5.500 rpm. In some embodiments, two or more first shafts
may be provided, on which the impellers of all of the first compressor stages are
mounted. Each first shaft may be configured to rotate at a rotational speed from 3000rpm
to about 7000rpm. The shaft of the most upstream first compressor stage may rotate
at a lower speed than the shaft of the most downstream first compressor stage.
[0097] The plurality of first compressor stages 151 may deliver the compressed first refrigerant
at a flow rate ranging from about 10,000 actual m
3/h to about 70,000 actual m
3/h.
[0098] The plurality of first compressor stages 151 may absorb a power ranging from about
10 MW to about 40 MW, particularly ranging from about 25 MW to about 35 MW. Alternatively
or additionally, the plurality of second compressor stages 155 may absorb a power
ranging from about 10 MW to about 40 MW, particularly ranging from about 25 MW to
about 35 MW. Accordingly, in some embodiments, the prime mover 160 may provide a power
ranging from 20 MW to 80 MW, particularly from 50 MW to 70 MW.
[0099] In some embodiments, the plurality of second compressor stages 155 may be configured
to compress the second refrigerant so that the pressurized second refrigerant is delivered
from the most downstream second compressor stage 316 of the plurality of second compressor
stages 155 at a pressure ranging from 50 bar to 100 bar absolute, particularly from
55 bar to 65 bar absolute. The pressure of the second refrigerant at the inlet of
the most upstream second compressor stage 319 may be below 10 bar absolute in some
embodiments.
[0100] In some embodiments, the plurality of second compressor stages 155 may be configured
to compress the second refrigerant so that the pressurized second refrigerant is delivered
from the most downstream second compressor stage 316 of the plurality of second compressor
stages 155 at a temperature ranging from 60°C to 120°C, particularly from 80°C to
100°C. For example, one, two or more inter-cooling stages 320 may be provided between
at least two subsequent second compressor stages. Thus, the exit temperature of the
second refrigerant can be reduced.
[0101] The at least one second shaft 305 on which the impeller(s) of one or more second
compressor stages is mounted may be configured to rotate at a rotational speed from
7.000rpm to 20.000rpm, particularly from 8.000rpm to about 15.000 rpm. In some embodiments,
two or more second shafts may be provided for driving the impellers of all second
compressor stages 155. The shaft of the most upstream second compressor stage 319
may rotate at a lower speed (e.g. between 9.000rpm and 11.000rpm) than the shaft of
the most downstream second compressor stage 316 (e.g. at a speed between 14.000rpm
and 16.000rpm).
[0102] FIG. 4 shows an exemplary embodiment, in which the plurality of first compressor
stages 151 includes a total of four subsequently arranged first compressor stages.
The upstream pair of first compressor stages is driven by a rotary shaft, and the
downstream pair of first compressor stages is driven by a further rotary shaft, wherein
both rotary shafts are driven by the first gear wheel 307. In other words, the impellers
of the upstream pair of first compressor stages are mounted on a common rotary shaft,
and the impellers of the downstream pair of first compressor stages are mounted on
a further common rotary shaft. Alternatively, only the upstream pair of first compressor
stages may be driven by a common rotary shaft, whereas the two downstream first compressor
stages may be driven by a separate rotary shaft, respectively, or vice versa.
[0103] In the exemplary embodiments of FIG. 4, the plurality of second compressor stages
155 includes a total of four subsequently arranged second compressor stages. The upstream
pair of second compressor stages is driven by a rotary shaft, and the downstream pair
of second compressor stages is driven by a further rotary shaft, wherein both rotary
shafts are driven by the second gear wheel 308. In other words, the impellers of the
upstream pair of second compressor stages are mounted on a common rotary shaft, and
the impellers of the downstream pair of second compressor stages are mounted on a
further common rotary shaft. Alternatively, only three subsequently arranged second
compressor stages may be provided, wherein the upstream pair of second compressor
stages may be driven by a common rotary shaft, and the downstream second compressor
stage may be driven by a separate rotary shaft, or vice versa.
[0104] Other possible arrangements and numbers of first and second compressor stages on
respective rotary shafts driven into rotation by the transmission mechanism or gear
of the compressor will be apparent to the skilled person.
[0105] According to a further aspect, a compressor arrangement for compressing a plurality
of refrigerants is provided. The compressor arrangement includes an integrally-geared
turbo-compressor 150 with a plurality of compressor stages which may have some or
all of the features of the above described compressors.
[0106] The compressor arrangement may include a first cooling line, e.g. being part of the
pre-cooling loop, through which a first refrigerant is adapted to flow, wherein one
or more first compressor stages of the plurality of compressor stages are adapted
to pressurize the first refrigerant streaming through the first cooling line. The
compressor arrangement may further include a second cooling line, e.g. being part
of the cooling loop, through which a second refrigerant is adapted to flow, wherein
one or more second compressor stages of the plurality of compressor stages are adapted
to pressurize the second refrigerant streaming through the second cooling line.
[0107] The compressor arrangement may be used in a natural gas liquefaction system according
to any of the embodiments described above.
[0108] The compressor arrangement may include a transmission mechanism or gear with some
or all of the features of the embodiments described above. Further, all compressor
stages may be included in a single housing in some embodiments.
[0109] According to a further aspect described herein, a method of liquefying a natural
gas is provided. A flow diagram of a method according to embodiments described herein
is schematically depicted in FIG. 6.
[0110] In box 710, an integrally-geared turbo compressor having a plurality of compressor
stages is provided. In box 720, the compressor is driven with a prime mover. In box
730, a first refrigerant is circulated through one or more first compressor stages
of the plurality of compressor stages, and a second refrigerant is circulated through
one or more second compressor stages of the plurality of compressor stages. In box
740, at least one of natural gas and the second refrigerant is cooled by heat exchange
against the first refrigerant. In box 750, the natural gas is cooled by heat exchange
against the second refrigerant.
[0111] In some embodiments, the compressed first refrigerant and/or the compressed second
refrigerant may be condensed. The condensed first refrigerant may be expanded, e.g.
in a plurality of sequentially arranged first expansion elements.
[0112] In some embodiments, the first refrigerant may be divided in a plurality of partial
flows.
[0113] In some embodiments, at least a part of the first refrigerant may be sequentially
compressed by a plurality of first compressor stages, e.g. three, four or more first
compressor stages, and/or the second refrigerant may be sequentially compressed by
a plurality of second compressor stages, e.g. three, four or more second compressor
stages.
[0114] Movable inlet guide vanes may be provided at inlets of at least one of the plurality
of first compressor stages. The movable inlet guide vanes may be individually controlled
to regulate partial flows at the suction side of the plurality of first compressor
stages, particularly as a function of flow conditions of the partial flows.
[0115] In some embodiments, the method may further include: expanding the first refrigerant
through a plurality of sequentially arranged first expansion elements at a plurality
of decreasing pressure levels; circulating portions of the expanded first refrigerant
from the first expansion elements through a plurality of first heat exchangers to
remove heat from the natural gas; and returning the portions of expanded first refrigerant
from the plurality of first heat exchangers to respective ones of the one or more
first compressor stages.
[0116] In some embodiments, the method may further include: expanding the first refrigerant
through a plurality of sequentially arranged first auxiliary expansion elements at
a plurality of decreasing pressure levels; circulating portions of the expanded first
refrigerant through a plurality of first auxiliary heat exchangers to remove heat
from the second refrigerant; and returning the portions of first refrigerant from
the plurality of first auxiliary heat exchangers to a respective one of the one or
more first compressor stages.
[0117] The prime mover may drive a transmission mechanism, e.g. an internal gear, of the
compressor, wherein the transmission mechanism may drive at least one first shaft
and at least one second shaft into rotation.
[0118] The at least one first shaft may be driven into rotation by said transmission mechanism
at a rotation speed of 3.000rpm or more and 7.000rpm or less. The impellers of one
or two first compressor stages may be mounted on the at least one first shaft and
may rotate at the rotational speed of the at least one shaft.
[0119] The at least one second shaft may be driven into rotation by said transmission mechanism
at a rotation speed of 8.000rpm or more and 15.000rpm or less and may drive at least
one of the second compressor stages. In other words, an impeller of at least one second
compressor stage may be mounted on the at least one second shaft.
[0120] In some embodiments, the first refrigerant may be sequentially circulated through
three, four or more first compressor stages of the compressor and compressed to an
exit pressure ranging from 10 bar to 40 bar absolute, particularly from 20 bar to
30 bar absolute.
[0121] In some embodiments, the second refrigerant may be sequentially circulated through
three, four or more second compressor stages of the compressor and compressed to an
exit pressure ranging from 40 bar to 100 bar absolute, particularly from 50 bar to
80 bar absolute.
[0122] The use of an integrally-geared turbo-compressor for pressurizing two or more different
refrigerants circulating in two or more cooling loops may result in an enhanced efficiency
of the natural gas liquefaction system and thus reduced power consumption, and may
further result in considerable cost savings when compared to systems with two or more
separate compressors and compressor driving units. Further, the gear of the compressor
may be adjusted such that each compressor stage may rotate at an appropriate rotation
speed. Using a single compressor unit in a natural gas liquefaction system is an advantage
in terms of cost, footprint and flexibility.
[0123] The number of first and second compressor stages as well as details of the internal
gear of the compressor (e.g. details of the transmission mechanism) may depend on
the properties of the refrigerants to be compressed. Further, a larger or a modified
transmission mechanism may be provided, if three, four or more refrigerants are to
be compressed by the integrally-geared compressor.
[0124] While the foregoing is directed to embodiments of the invention, other and further
embodiments of the invention may be devised without departing from the basic scope
thereof, and the scope thereof is determined by the claims that follow.
1. A natural gas liquefaction system (100), comprising:
an integrally-geared turbo-compressor (150) with a plurality of compressor stages;
a single prime mover (160) for driving the compressor (150);
a pre-cooling loop (110), through which a first refrigerant is adapted to circulate,
wherein one or more first compressor stages (151) of the plurality of compressor stages
are adapted to pressurize the first refrigerant;
a cooling loop (130), through which a second refrigerant is adapted to circulate,
wherein one or more second compressor stages (155) of the plurality of compressor
stages are adapted to pressurize the second refrigerant;
a first heat exchanger device (170) for transferring heat from a natural gas and/or
from the second refrigerant to the first refrigerant; and
a second heat exchanger device (180) for transferring heat from the natural gas to
the second refrigerant;
wherein said single prime mover (160) drives each of the one or more first compressor
stages (151) and second compressor stages (155);
wherein the compressor (150) comprises a plurality of first compressor stages (151),
and wherein the pre-cooling loop (110) is configured to divide the first refrigerant
into a plurality of precooling streams, which are guided to a respective one of said
plurality of first compressor stages (151).
2. The system of claim 1, wherein the compressor (150) comprises a plurality of first
compressor stages (151), particularly four sequentially arranged first compressor
stages, for pressurizing the first refrigerant, and/or a plurality of second compressor
stages (155), particularly three or four sequentially arranged second compressor stages,
for pressurizing the second refrigerant.
3. The system of claim 1 or 2, wherein the compressor (150) comprises:
a transmission mechanism (301), particularly including a gear, configured to be driven
into rotation by said prime mover;
at least one first shaft (303) configured to be driven into rotation by said transmission
mechanism (301) and configured for driving at least one of the first compressor stages;
and
at least one second shaft (305) configured to be driven into rotation by said transmission
mechanism (301) and configured for driving at least one of the second compressor stages.
4. The system of claim 3, wherein the transmission mechanism (301) comprises a first
gear wheel (307) meshing at least one first pinion connected to the at least one first
shaft (303) for driving the at least one first compressor stage.
5. The system of claim 3 or 4, wherein the first gear wheel (307) further meshes at least
one second pinion connected to the at least one second shaft (305) for driving the
at least one second compressor stage.
6. The system of claim 3, wherein the transmission mechanism (301) comprises a first
gear wheel (307) configured for driving the at least one first shaft (303), and a
second gear wheel (308) configured for driving the at least one second shaft (305),
particularly wherein the diameter of the second gear wheel (308) is smaller than the
diameter of the first gear wheel (307) and/or wherein the first gear wheel and the
second gear wheel are directly meshing gear wheels.
7. The system of any of claims 3 to 6, wherein at least one of the at least one first
shaft and the at least one second shaft drives two compressor stages arranged on opposite
ends of the respective shaft.
8. The system of any preceding claim, comprising:
a plurality of first expansion elements (241, 243, 245, 247) sequentially arranged
in the pre-cooling loop (110) and configured for expanding the first refrigerant at
a plurality of decreasing pressure levels;
a plurality of first heat exchangers (249, 251, 253, 255) of the first heat exchanger
device (170, 270) for receiving respective precooling streams of the first refrigerant
expanded through at least one of said plurality of first expansion elements (241,
243, 245, 247) and for transferring heat from the natural gas to the first refrigerant;
and
a plurality of return paths (261, 263, 265, 267) configured for returning said precooling
streams of the first refrigerant from the plurality of first heat exchangers (249,
251, 253, 255) to a respective one of the plurality of first compressor stages (151).
9. The system of any one of the preceding claims, comprising at least one first auxiliary
expansion element arranged in the pre-cooling loop (110) and at least one first auxiliary
heat exchanger of the first heat exchanger device (170, 270) configured for receiving
a portion of said first refrigerant expanded through the at least one first auxiliary
expansion element and for transferring heat from the second refrigerant to the first
refrigerant.
10. The system of claim 9, comprising:
a plurality of first auxiliary expansion elements (221, 223, 225, 227) sequentially
arranged in the pre-cooling loop (110) and configured for expanding the first refrigerant
at a plurality of decreasing pressure levels;
a plurality of first auxiliary heat exchangers (229, 231, 233, 235) of the first heat
exchanger device (170, 270) configured for receiving respective portions of said first
refrigerant expanded through at least one of said plurality of first auxiliary expansion
elements (221, 223, 225, 227) and for transferring heat from the second refrigerant
to the first refrigerant; and
a plurality of return paths (261, 263, 265, 267) configured for returning said portions
of the first refrigerant from the plurality of first auxiliary heat exchangers (229,
231, 233, 235) to a respective one of said plurality of first compressor stages (151).
11. The system of any one of the preceding claims, wherein the first refrigerant comprises
a gas with a molecular weight of 40 or more, particularly propane, and/or wherein
the second refrigerant is a mixed refrigerant, particularly a mixture comprising methane,
ethane, propane and/or nitrogen.
12. The system any of any of the preceding claims, wherein said prime mover (160) comprises
an electric motor or an internal combustion engine, particularly a gas turbine.
13. A method of liquefying natural gas, comprising:
providing an integrally-geared turbo-compressor (150) having a plurality of compressor
stages;
driving the compressor (150) with a single prime mover (160);
circulating a first refrigerant divided into a plurality of pre cooling streams, which
are guided through a respective one of the plurality of compressor stages (151), each
of the one or more first compressor stages (151) being driven by said single prime
mover (160);
circulating a second refrigerant through one or more second compressor stages (155)
of the plurality of compressor stages, each of the one or more second compressor stages
(155) being driven by said single prime mover (160);
cooling at least one of natural gas and the second refrigerant by heat exchange against
the first refrigerant; and
cooling the natural gas by heat exchange against the second refrigerant.
14. The method of claim 13, further comprising:
expanding the first refrigerant through a plurality of sequentially arranged first
expansion elements (241, 243, 245, 247) at a plurality of decreasing pressure levels;
circulating portions of the first refrigerant from the plurality of sequentially arranged
first expansion elements through a plurality of first heat exchangers (249, 251, 253,
255) to remove heat from the natural gas; and
returning the portions of the first refrigerant from the plurality of first heat exchangers
to respective ones of said one or more first compressor stages.
15. The method of any of claim 13 or 14, wherein a transmission mechanism (301) of the
compressor is driven by the prime mover (160),
at least one first shaft (303) is driven into rotation by said transmission mechanism
(301) at a rotation speed of 3.000 rpm or more and 7.000 rpm or less and drives at
least one of the first compressor stages; and
at least one second shaft (305) is driven into rotation by said transmission mechanism
(301) at a rotation speed of 8.000 rpm or more and 20.000 rpm or less and drives at
least one of the second compressor stages.
16. The method of any of claims 13 to 15, wherein the first refrigerant is sequentially
circulated through three, four or more first compressor stages and compressed to an
exit pressure ranging from 10 bar to 40 bar absolute, and/or wherein the second refrigerant
is sequentially circulated through three, four or more second compressor stages and
compressed to an exit pressure ranging from 50 bar to 100 bar absolute.
17. The method of any of claims 13 to 16, further comprising controlling independently
movable inlet guide vanes to regulate partial flows at a suction side of the one or
more first compressor stages, particularly as a function of flow conditions of respective
partial flows.
1. Erdgasverflüssigungssystem (100), umfassend:
einen Integralgetriebeturboverdichter (150) mit einer Vielzahl von Verdichterstufen;
eine einzelne Antriebsmaschine (160) zum Antreiben des Verdichters (150);
einen Vorkühlkreislauf (110), durch den ein erstes Kältemittel zirkulieren kann, wobei
eine oder mehrere erste Verdichterstufen (151) der Vielzahl von Verdichterstufen das
erste Kältemittel mit Druck beaufschlagen können;
einen Kühlkreislauf (130), durch den ein zweites Kältemittel zirkulieren kann, wobei
eine oder mehrere zweite Verdichterstufen (155) der Vielzahl von Verdichterstufen
das zweite Kältemittel mit Druck beaufschlagen können;
eine erste Wärmetauschervorrichtung (170) zum Übertragen von Wärme von einem Erdgas
und/oder von dem zweiten Kältemittel auf das erste Kältemittel; und
eine zweite Wärmetauschervorrichtung (180) zum Übertragen von Wärme von dem Erdgas
auf das zweite Kältemittel;
wobei die einzelne Antriebsmaschine (160) jede der einen oder mehreren ersten Verdichterstufen
(151) und zweiten Verdichterstufen (155) antreibt;
wobei der Verdichter (150) eine Vielzahl von ersten Verdichterstufen (151) umfasst
und wobei der Vorkühlkreislauf (110) konfiguriert ist, um das erste Kältemittel in
eine Vielzahl von Vorkühlströmen aufzuteilen, die zu einer jeweiligen der Vielzahl
von ersten Verdichterstufen (151) geleitet werden.
2. System nach Anspruch 1, wobei der Verdichter (150) eine Vielzahl von ersten Verdichterstufen
(151), insbesondere vier sequenziell angeordnete erste Verdichterstufen, zum Druckbeaufschlagen
des ersten Kältemittels und/oder eine Vielzahl von zweiten Verdichterstufen (155),
insbesondere drei oder vier sequenziell angeordnete zweite Verdichterstufen, zum Druckbeaufschlagen
des zweiten Kältemittels umfasst.
3. System nach Anspruch 1 oder 2, wobei der Verdichter (150) umfasst:
einen Übertragungsmechanismus (301), insbesondere einschließlich eines Zahnrads, der
konfiguriert ist, um durch die Antriebsmaschine in Drehung versetzt zu werden;
mindestens eine erste Welle (303), die konfiguriert ist, um durch den Übertragungsmechanismus
(301) in Drehung versetzt zu werden, und konfiguriert ist, um mindestens eine der
ersten Verdichterstufen anzutreiben; und
mindestens eine zweite Welle (305), die konfiguriert ist, um durch den Übertragungsmechanismus
(301) in Drehung versetzt zu werden, und konfiguriert ist, um mindestens eine der
zweiten Verdichterstufen anzutreiben.
4. System nach Anspruch 3, wobei der Übertragungsmechanismus (301) ein erstes Zahnrad
(307) umfasst, das mit mindestens einem ersten Ritzel in Eingriff ist, das mit der
mindestens einen ersten Welle (303) verbunden ist, um die mindestens eine erste Verdichterstufe
anzutreiben.
5. System nach Anspruch 3 oder 4, wobei das erste Zahnrad (307) ferner mit mindestens
einem zweiten Ritzel in Eingriff steht, das mit der mindestens einen zweiten Welle
(305) verbunden ist, um die mindestens eine zweite Verdichterstufe anzutreiben.
6. System nach Anspruch 3, wobei der Übertragungsmechanismus (301) ein erstes Zahnrad
(307), das zum Antreiben der mindestens einen ersten Welle (303) konfiguriert ist,
und ein zweites Zahnrad (308), das zum Antreiben der mindestens einen zweiten Welle
(305) konfiguriert ist, umfasst, insbesondere wobei der Durchmesser des zweiten Zahnrads
(308) kleiner ist als der Durchmesser des ersten Zahnrads (307) und/oder wobei das
erste Zahnrad und das zweite Zahnrad direkt in Eingriff stehende Zahnräder sind.
7. System nach einem der Ansprüche 3 bis 6, wobei mindestens eine der mindestens einen
ersten Welle und der mindestens einen zweiten Welle zwei Verdichterstufen antreibt,
die an gegenüberliegenden Enden der jeweiligen Welle angeordnet sind.
8. System nach einem der vorstehenden Ansprüche, umfassend:
eine Vielzahl von ersten Expansionselementen (241, 243, 245, 247), die sequenziell
in dem Vorkühlkreislauf (110) angeordnet sind und zum Expandieren des ersten Kältemittels
bei einer Vielzahl von abnehmenden Druckniveaus konfiguriert sind;
eine Vielzahl von ersten Wärmetauschern (249, 251, 253, 255) der ersten Wärmetauschervorrichtung
(170, 270) zum Aufnehmen jeweiliger Vorkühlströme des ersten Kältemittels, das durch
mindestens eines der Vielzahl von ersten Expansionselementen (241, 243, 245, 247)
expandiert wird, und zum Übertragen von Wärme von dem Erdgas auf das erste Kältemittel;
und
eine Vielzahl von Rückführwegen (261, 263, 265, 267), die zum Zurückführen der Vorkühlströme
des ersten Kältemittels von der Vielzahl von ersten Wärmetauschern (249, 251, 253,
255) zu einer jeweiligen der Vielzahl von ersten Verdichterstufen (151) konfiguriert
sind.
9. System nach einem der vorstehenden Ansprüche, umfassend mindestens ein erstes Hilfsexpansionselement,
das in dem Vorkühlkreislauf (110) angeordnet ist, und mindestens einen ersten Hilfswärmetauscher
der ersten Wärmetauschervorrichtung (170, 270), die zum Aufnehmen eines Teils des
ersten Kältemittels, das durch das mindestens eine erste Hilfsexpansionselement expandiert
ist, und zum Übertragen von Wärme von dem zweiten Kältemittel auf das erste Kältemittel
konfiguriert ist.
10. System nach Anspruch 9, umfassend:
eine Vielzahl von ersten Hilfsexpansionselementen (221, 223, 225, 227), die sequenziell
in dem Vorkühlkreislauf (110) angeordnet sind und zum Expandieren des ersten Kältemittels
bei einer Vielzahl von abnehmenden Druckniveaus konfiguriert sind;
eine Vielzahl von ersten Hilfswärmetauschern (229, 231, 233, 235) der ersten Wärmetauschervorrichtung
(170, 270), die zum Aufnehmen jeweiliger Teile des ersten Kältemittels, die durch
mindestens eines der Vielzahl von ersten Hilfsexpansionselementen (221, 223, 225,
227) expandiert sind, und zum Übertragen von Wärme von dem zweiten Kältemittel auf
das erste Kältemittel konfiguriert sind; und
eine Vielzahl von Rückführwegen (261, 263, 265, 267), die zum Zurückführen der Teile
des ersten Kältemittels von der Vielzahl von ersten Hilfswärmetauschern (229, 231,
233, 235) zu einer jeweiligen der Vielzahl von ersten Verdichterstufen (151) konfiguriert
sind.
11. System nach einem der vorstehenden Ansprüche, wobei das erste Kältemittel ein Gas
mit einem Molekulargewicht von 40 oder mehr, insbesondere Propan, umfasst und/oder
wobei das zweite Kältemittel ein gemischtes Kältemittel ist, insbesondere eine Mischung,
die Methan, Ethan, Propan und/oder Stickstoff umfasst.
12. System nach einem der vorstehenden Ansprüche, wobei die Antriebsmaschine (160) einen
Elektromotor oder einen Verbrennungsmotor, insbesondere eine Gasturbine, umfasst.
13. Verfahren zum Verflüssigen von Erdgas, umfassend:
Bereitstellen eines Integralgetriebeturboverdichters (150) mit einer Vielzahl von
Verdichterstufen;
Antreiben des Verdichters (150) mit einer einzelnen Antriebsmaschine (160);
Zirkulieren eines ersten Kältemittels, das in eine Vielzahl von Vorkühlströmen aufgeteilt
ist, die durch eine jeweilige der Vielzahl von Verdichterstufen (151) geleitet werden,
wobei jede der einen oder mehreren ersten Verdichterstufen (151) durch die einzelne
Antriebsmaschine (160) angetrieben wird;
Zirkulieren eines zweiten Kältemittels durch eine oder mehrere zweite Verdichterstufen
(155) der Vielzahl von Verdichterstufen, wobei jede der einen oder mehreren zweiten
Verdichterstufen (155) durch die einzelne Antriebsmaschine (160) angetrieben wird;
Kühlen von mindestens einem von Erdgas und dem zweiten Kältemittel durch Wärmeaustausch
mit dem ersten Kältemittel; und
Kühlen des Erdgases durch Wärmeaustausch mit dem zweiten Kältemittel.
14. Verfahren nach Anspruch 13, ferner umfassend:
Expandieren des ersten Kältemittels durch eine Vielzahl von sequenziell angeordneten
ersten Expansionselementen (241, 243, 245, 247) bei einer Vielzahl von abnehmenden
Druckniveaus;
Zirkulieren von Teilen des ersten Kältemittels von der Vielzahl von sequenziell angeordneten
ersten Expansionselementen durch eine Vielzahl von ersten Wärmetauschern (249, 251,
253, 255), um Wärme aus dem Erdgas zu entfernen; und
Zurückführen der Teile des ersten Kältemittels von der Vielzahl von ersten Wärmetauschern
zu jeweiligen der einen oder mehreren ersten Verdichterstufen.
15. Verfahren nach einem der Ansprüche 13 oder 14, wobei ein Übertragungsmechanismus (301)
des Verdichters durch die Antriebsmaschine (160) angetrieben wird, mindestens eine
erste Welle (303) durch den Übertragungsmechanismus (301) mit einer Drehzahl von 3,000
U/min oder mehr und 7,000 U/min oder weniger in Drehung versetzt wird und mindestens
eine der ersten Verdichterstufen antreibt; und
mindestens eine zweite Welle (305) durch den Übertragungsmechanismus (301) mit einer
Drehzahl von 8,000 U/min oder mehr und 20,000 U/min oder weniger in Drehung versetzt
wird und mindestens eine der zweiten Verdichterstufen antreibt.
16. Verfahren nach einem der Ansprüche 13 bis 15, wobei das erste Kältemittel sequenziell
durch drei, vier oder mehr erste Verdichterstufen zirkuliert und auf einen Austrittsdruck
im Bereich von 10 bar bis 40 bar absolut verdichtet wird und/oder wobei das zweite
Kältemittel sequenziell durch drei, vier oder mehr zweite Verdichterstufen zirkuliert
und auf einen Austrittsdruck im Bereich von 50 bar bis 100 bar absolut verdichtet
wird.
17. Verfahren nach einem der Ansprüche 13 bis 16, ferner umfassend das Steuern unabhängig
beweglicher Einlassleitschaufeln, um Teilströme an einer Saugseite der einen oder
mehreren ersten Verdichterstufen zu regulieren, insbesondere in Abhängigkeit von Strömungsbedingungen
jeweiliger Teilströme.
1. Système de liquéfaction de gaz naturel (100) comprenant :
un turbo-compresseur monobloc (150) avec une pluralité d'étages de compresseur ;
un moteur principal unique (160) pour entraîner le compresseur (150) ;
une boucle de pré-refroidissement (110), à travers laquelle un premier réfrigérant
est apte à circuler, dans lequel un ou plusieurs premiers étages de compresseur (151)
de la pluralité d'étages de compresseur sont aptes à mettre sous pression le premier
réfrigérant ;
une boucle de refroidissement (130), à travers laquelle un deuxième réfrigérant est
apte à circuler, dans lequel un ou plusieurs deuxièmes étages de compresseur (155)
de la pluralité d'étages de compresseur sont aptes à mettre sous pression le deuxième
réfrigérant ;
un premier dispositif échangeur de chaleur (170) pour transférer de la chaleur d'un
gaz naturel et/ou du deuxième réfrigérant au premier réfrigérant ; et
un deuxième dispositif échangeur de chaleur (180) pour transférer de la chaleur du
gaz naturel au deuxième réfrigérant ;
dans lequel ledit moteur principal unique (160) entraîne chacun des un ou plusieurs
premiers étages de compresseur (151) et deuxièmes étages de compresseur (155) ;
dans lequel le compresseur (150) comprend une pluralité de premiers étages de compresseur
(151), et dans lequel la boucle de pré-refroidissement (110) est configurée pour diviser
le premier réfrigérant en une pluralité de courants de pré-refroidissement, qui sont
guidés vers l'un respectif de ladite pluralité de premiers étages de compresseur (151).
2. Système selon la revendication 1, dans lequel le compresseur (150) comprend une pluralité
de premiers étages de compresseur (151), en particulier quatre premiers étages de
compresseur agencés séquentiellement, pour mettre sous pression le premier réfrigérant
et/ou une pluralité de deuxièmes étages de compresseur (155), en particulier trois
ou quatre deuxièmes étages de compresseur agencés séquentiellement, pour mettre sous
pression le deuxième réfrigérant.
3. Système selon la revendication 1 ou la revendication 2, dans lequel le compresseur
(150) comprend :
un mécanisme de transmission (301), incluant notamment un engrenage, configuré pour
être entraîné en rotation par ledit moteur principal ;
au moins un premier arbre (303) configuré pour être entraîné en rotation par ledit
mécanisme de transmission (301) et configuré pour entraîner au moins un des premiers
étages de compresseur ; et
au moins un deuxième arbre (305) configuré pour être entraîné en rotation par ledit
mécanisme de transmission (301) et configuré pour entraîner au moins un des deuxièmes
étages de compresseur.
4. Système selon la revendication 3, dans lequel le mécanisme de transmission (301) comprend
une première roue dentée (307) engrenant au moins un premier pignon relié à l'au moins
un premier arbre (303) pour entraîner l'au moins un premier étage de compresseur.
5. Système selon la revendication 3 ou 4, dans lequel la première roue dentée (307) engrène
en outre au moins un deuxième pignon relié à l'au moins un deuxième arbre (305) pour
entraîner l'au moins un deuxième étage de compresseur.
6. Système selon la revendication 3, dans lequel le mécanisme de transmission (301) comprend
une première roue dentée (307) configurée pour entraîner l'au moins un premier arbre
(303), et une deuxième roue dentée (308) configurée pour entraîner l'au moins un deuxième
arbre (305), notamment dans lequel le diamètre de la deuxième roue dentée (308) est
inférieur au diamètre de la première roue dentée (307) et/ou dans lequel la première
roue dentée et la deuxième roue dentée sont des roues dentées directement engrenées.
7. Système selon l'une quelconque des revendications 3 à 6, dans lequel au moins l'un
du au moins un premier arbre et du au moins un deuxième arbre entraîne deux étages
de compresseur disposés sur des extrémités opposées de l'arbre respectif.
8. Système selon l'une quelconque des revendications précédentes, comprenant :
une pluralité de premiers éléments d'expansion (241, 243, 245, 247) agencés séquentiellement
dans la boucle de pré-refroidissement (110) et configurés pour dilater le premier
réfrigérant à une pluralité de niveaux de pression décroissants ;
une pluralité de premiers échangeurs de chaleur (249, 251, 253, 255) du premier dispositif
échangeur de chaleur (170, 270) pour recevoir des courants de pré-refroidissement
respectifs du premier réfrigérant expansé à travers au moins l'un de ladite pluralité
de premiers éléments d'expansion (241, 243, 245, 247) et pour transférer de la chaleur
du gaz naturel au premier réfrigérant ; et
une pluralité de chemins de retour (261, 263, 265, 267) configurés pour renvoyer lesdits
courants de pré-refroidissement du premier réfrigérant de la pluralité de premiers
échangeurs de chaleur (249, 251, 253, 255) à l'un respectif de la pluralité de premiers
étages de compresseur (151).
9. Système selon l'une quelconque des revendications précédentes, comprenant au moins
un premier élément d'expansion auxiliaire disposé dans la boucle de pré-refroidissement
(110) et au moins un premier échangeur de chaleur auxiliaire du premier dispositif
échangeur de chaleur (170, 270) configuré pour recevoir une partie dudit premier réfrigérant
expansé dans l'au moins un premier élément d'expansion auxiliaire et pour transférer
de la chaleur du deuxième réfrigérant au premier réfrigérant.
10. Système selon la revendication 9, comprenant :
une pluralité de premiers éléments d'expansion auxiliaires (221, 223, 225, 227) agencés
séquentiellement dans la boucle de pré-refroidissement (110) et configurés pour expanser
le premier réfrigérant à une pluralité de niveaux de pression décroissants ;
une pluralité de premiers échangeurs de chaleur auxiliaires (229, 231, 233, 235) du
premier dispositif échangeur de chaleur (170, 270) configurés pour recevoir des parties
respectives dudit premier réfrigérant expansé à travers au moins l'un de ladite pluralité
de premiers éléments auxiliaires d('expansion (221, 223, 225, 227) et pour transférer
de la chaleur du deuxième réfrigérant au premier réfrigérant ; et
une pluralité de chemins de retour (261, 263, 265, 267) configurés pour renvoyer lesdites
parties du premier réfrigérant de la pluralité de premiers échangeurs de chaleur auxiliaires
(229, 231, 233, 235) à l'un respectif de ladite pluralité de premiers étages de compresseur
(151).
11. Système selon l'une quelconque des revendications précédentes, dans lequel le premier
réfrigérant comprend un gaz présentant un poids moléculaire de 40 ou plus, particulièrement
du propane, et/ou dans lequel le deuxième réfrigérant est un réfrigérant mélangé,
en particulier un mélange comprenant du méthane, de l'éthane, du propane et/ou de
l'azote.
12. Système selon l'une quelconque des revendications précédentes, dans lequel ledit moteur
principal (160) comprend un moteur électrique ou un moteur à combustion interne, en
particulier une turbine à gaz.
13. Procédé de liquéfaction de gaz naturel, le procédé comprenant :
la fourniture d'un turbo-compresseur monobloc (150) doté d'une pluralité d'étages
de compresseur ;
l'entrainement du compresseur (150) avec un moteur principal unique (160) ;
la mise en circulation d'un premier réfrigérant divisé en une pluralité de courants
de pré-refroidissement, qui sont guidés à travers l'un respectif de la pluralité d'étages
de compresseur (151), chacun des un ou plusieurs premiers étages de compresseur (151)
étant entraîné par ledit moteur principal (160) ;
la mise en circulation d'un deuxième réfrigérant à travers un ou plusieurs deuxièmes
étages de compresseur (155) de la pluralité d'étages de compresseur, chacun des un
ou plusieurs deuxièmes étages de compresseur (155) étant entraîné par ledit moteur
principal unique (160) ;
le refroidissement d'au moins l'un du gaz naturel et du deuxième réfrigérant par échange
de chaleur avec le premier réfrigérant ; et
le refroidissement du gaz naturel par échange de chaleur avec le deuxième réfrigérant.
14. Procédé selon la revendication 13, comprenant en outre :
l'expansion du premier réfrigérant dans une pluralité de premiers éléments d'expansion
agencés séquentiellement (241, 243, 245, 247) à une pluralité de niveaux de pression
décroissante ;
la mise en circulation de parties du premier réfrigérant de la pluralité de premiers
éléments d'expansion agencés séquentiellement dans une pluralité de premiers échangeurs
de chaleur (249, 251, 253, 255) pour éliminer de la chaleur du gaz naturel ; et
le retour des parties du premier réfrigérant de la pluralité de premiers échangeurs
de chaleur vers des premiers étages respectifs desdits un ou plusieurs premiers étages
de compresseur.
15. Procédé selon l'une quelconque des revendications 13 ou 14, dans lequel un mécanisme
de transmission (301) du compresseur est entraîné par le moteur principal (160), au
moins un premier arbre (303) est entraîné en rotation par ledit mécanisme de transmission
(301) à une vitesse de rotation de 3 000 tr/mn ou plus et de 7 000 tr/mn ou moins
et entraîne au moins un des premiers étages de compresseur ; et
au moins un deuxième arbre (305) est entraîné en rotation par ledit mécanisme de transmission
(301) à une vitesse de rotation de 8 000 tr/mn ou plus et de 20 000 tr/mn ou moins
et entraîne au moins un des deuxièmes étages de compresseur.
16. Procédé selon l'une quelconque des revendications 13 à 15, dans lequel le premier
réfrigérant est mis en circulation de manière séquentielle dans trois, quatre premiers
étages de compresseur ou plus et est comprimé à une pression de sortie comprise entre
10 bars et 40 bars absolus, et/ou dans lequel le deuxième réfrigérant circule séquentiellement
dans trois, quatre deuxièmes étages de compresseur ou plus et est comprimé à une pression
de sortie comprise entre 50 bars et 100 bars absolus.
17. Procédé selon l'une quelconque des revendications 13 à 16, comprenant en outre la
commande d'aubes de guidage d'entrée indépendamment mobiles pour réguler les écoulements
partiels au niveau d'un côté d'aspiration des un ou plusieurs premiers étages de compresseur,
en particulier en fonction des conditions d'écoulement des écoulements partiels respectifs.