CROSS-REFERENCE TO RELATED APPLICATIONS
BACKGROUND OF THE INVENTION
[0001] This invention relates in general to gear driven, power transfer assemblies. In particular,
this invention relates to a control system for meshing gear elements that attenuates
vibrational disturbances transmitted by contacting gear elements.
[0002] Gear trains are devices which transfer power from an input source to an output target
by way of toothed elements. Power transfer relies on the intermeshing of a plurality
of teeth disposed around the outer surface of mating gears. The intermeshing of gear
teeth includes an amount of looseness to accommodate the tolerances associated with
the plurality of teeth to prevent the teeth from binding or excessive wear. It is
known that meshing teeth transfer vibrational disturbances generated by mating powertrain
components during operation. These disturbances generally result in objectionable
acoustical issues and can also generate structural excitations that cause damage by
sympathetic vibration excitations.
[0003] It would be advantageous to provide a gear train that could compensate for vibrational
issues that are transferred by gear mesh contact. It would further be advantageous
to provide an adjustment mechanism that would be tunable to reduce or eliminate gear
mesh vibrations.
[0004] US 2918826 discloses a fluid control device having the pre-characterising features of claim
1 below.
SUMMARY OF THE INVENTION
[0005] This invention relates to a control system for attenuating gear vibrations as set
out in claim 1 below.
[0006] This invention further relates to a power take off (PTO) unit as set out in claim
5 below.
[0007] Various aspects of this invention will become apparent to those skilled in the art
from the following detailed description of the preferred embodiment, when read in
light of the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008]
Fig. 1 is a cross sectional view of a meshing gear train system, embodied in a power
take-off (PTO) unit, having a control module.
Fig. 2 is another cross-sectional view of the PTO unit of Fig. 1, taken along line
2-2.
Fig. 3 is a schematic illustration of the meshing gears of Fig. 2 showing the application
of a control module biasing force and the resulting deflection of the gears.
Fig. 4 is an enlarged schematic view of the embodiment of the control module of Fig.
2.
Fig. 5A is an enlarged exploded view of a second embodiment of a control module and
a support shaft for a meshing gear train system.
Fig. 5B is an assembled view of the control module and the support shaft of Fig. 5A.
Fig. 6 is an enlarged schematic view of a control module and a support shaft for a
meshing gear train system.
Fig. 7 is an enlarged schematic view of an embodiment of a control module and a support
shaft for a meshing gear train system according to the invention.
Fig. 8 is an enlarged exploded, perspective view of a meshing gear train system and
housing having a control module and mounting arrangement.
Fig. 9 is an enlarged exploded, perspective view of a meshing gear train system and
housing having a control module and mounting arrangement.
Fig. 10 is a cross sectional schematic view of the control module and mounting arrangement
of Fig. 9.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0009] Referring now to the drawings, there is illustrated in Fig. 1 a meshing gear train
system, embodied as a power take-off (PTO) unit, shown generally at 10. Though shown
and described in the context of a PTO unit, the embodiment of the invention described
below are suitable for any rotating gear train system. The PTO unit 10 is configured
to accept power input from a primary drive component, such as an engine or a transmission,
and produce an output sufficient to drive an auxiliary device, such as a hydraulic
pump or electric generator. The PTO unit 10 includes an input gear 12, an output gear
14, and an intermediary gear 16. The gears 12, 14, and 16 are arranged such that the
teeth are in a meshing engagement to transfer rotary motion and power from the input
gear 12 to the output gear 16. It should be understood that the gears may be provided
in any number and in any mounting arrangement other than depicted and remain within
the scope of the invention. The input gear 12 is mounted on an input support shaft
18 for relative rotation thereto. A friction reducing element 20, such as a bearing
assembly, may be interposed between the input gear and the input support shaft 18.
The input support shaft 18 may be fixed relative to a first housing 22, as shown in
Fig. 2, or may be permitted to rotate relative to the first housing 22. The first
housing 22 may be attached to or be a part of the primary drive component, such as
an engine, transmission, or other vehicle powertrain component. The output gear 16
is coupled to an output shaft 24 such that rotation of the output gear 16 causes rotation
of the output shaft 24. The output shaft 24 includes a coupling interface 26, illustrated
as a female splined bore, that is configured to accept a mating component or driveshaft
arrangement. The coupling interface 26 may be any structure, such as a flange, universal
joint yoke, secondary gear train, and the like that transfers the motion of the output
shaft to an input of the driven auxiliary device.
[0010] The intermediary gear 16 transfers motion from the input gear 12 to the output gear
14. The intermediary gear 16 is mounted on a gear support shaft, such as an idler
shaft 28, and may include a friction reducing element 30, such as a bearing assembly,
disposed between intermediary gear 16 and the idler shaft 28. The idler shaft 28 is
mounted in a fixed orientation to a second housing 32. The second housing 32 is connected
to the first housing 22. The output shaft 24 is mounted for concurrent rotation with
the output gear 14 and rotates relative to the second housing 32. As shown in Fig.
1, bearing elements 34 may be disposed between the output shaft 24 and the second
housing 32. A clutch assembly, shown generally at 36, may be provided to selectively
engage and disengage the connection between the output gear 14 and the output shaft
24.
[0011] Referring now to Fig. 3, the gear train of Fig. 2 is illustrated schematically to
show the general movement of the intermediary gear 16 relative to the input and output
gears 12 and 14, respectively. The rotational centerlines of input gear 12 and output
gear 14 are generally considered to be fixed relative to the first and second housings
22 and 32. The centerline of intermediary gear 16, and thus the entire gear 16, is
permitted to move to a secondary or biased position 16a in response to a biasing force,
F, exerted by a control module, shown generally at 38 in Fig. 2. The control module
36 is illustrated as being mounted to the idler shaft 28, though other mounting arrangements
are considered within the scope of the invention, as will be described below. Furthermore,
more than one control module 38, or any of the control modules described herein, may
be used to attenuate vibrational disturbances, such as gear rattle. In Fig. 3, the
intermediary gear 16 is illustrated in a generally unloaded or lightly loaded operating
condition. In this condition, the input, output, and intermediary gears 12, 14, and
16 are driven by the primary drive component which can input a vibrational disturbance,
such as a harmonic torsional oscillation, that manifests itself as objectionable gear
rattle or other audible or tactile vibration excitation. A gear rattle noise may be
transmitted and/or amplified by the gear teeth moving through the looseness associated
with manufacturing and mounting tolerances. This movement may be caused by engine
firing pulses, for example, that are transmitted through the gear train and cause
movement of the meshed teeth within the spaces therebetween. In addition, other ancillary
sources of noise may be caused by gear tooth profiles, surface finish conditions,
and other mounting tolerances, for example.
[0012] The control module 38 applies a controlled biasing force F to move the intermediary
gear 16 into a more engaged mesh condition with the input and output gears 12 and
14 during the unloaded or lightly loaded operating conditions. The more engaged condition
is illustrated in Fig. 3 where the intermediary gear 16 will be moved to a deflected
position 16a (shown in dashed lines) by the biasing force F generated by the control
module 38. When subjected to operating loads, gear separation forces S tend to oppose
the biasing force F and move the intermediary gear 16 back toward the undeflected
position (shown in solid lines). The biasing force F tends to oppose the resultant
force of the gear separation forces acting at the intermediary gear centerline such
that the gear mesh of the input gear 12, output gear 14, and intermediary gear 16
is improved and gear rattle is reduced or eliminated.
[0013] Referring now to Fig. 4, there is illustrated an enlarged view of the control module
38 mounted in the idler shaft 28. The control module 38 includes a plunger pin 40
that is biased in a radially outward direction by a spring 42. The plunger pin 40
and spring 42 may be contained in a module housing 44, if so desired. The spring 42
is illustrated as a coil spring that is disposed about the plunger pin 40. Alternatively,
the spring 42 may be any resilient member that is configured to apply a radial biasing
force, such as a Belleville washer, volute spring, or an elastomeric (rubber, polymer,
etc.) member. The spring 42 may be disposed anywhere relative to the plunger pin 40
(i.e., outside or inside of a stem portion of the plunger pin 40) such that the resultant
biasing force acts to radially shift the idler shaft 28 in the desired direction,
such as toward the input and output gear centerlines. The idler shaft 28 includes
a bore 46 that accepts the control module 38. The bore 46 and the control module 38
are shown in Fig. 4 in an orientation such that the idler shaft 28 and the intermediary
gear 16 are deflected toward a line that connects the centerlines of the input and
output gears 12 and 14. This orientation is an example of aligning the control module
38, and particularly the plunger pin 40, to generate a biasing force F that causes
deflection of the idler shaft 28 to improve gear mesh engagement in the unloaded or
lightly loaded PTO drive conditions. The biasing force F is preferably large enough
to create a greater contact of the gear teeth of the intermeshed gears, particularly
in the unloaded or lightly torsional loaded condition. The biasing force F should
also permit the gear separation forces to oppose the deflected position of the intermediary
gear 16, relative to the input and output gears 12, 14, so that the gear spacing is
returned toward the design or undeflected position under heavier or larger load conditions.
The resulting condition of the idler shaft 28 and intermediary gear 16 is that they
are permitted to float or move relative to the input and output gears 12 and 14.
[0014] Referring now to Figs. 5A and 5B, there is a control module, shown generally at 138,
that cooperates with an idler shaft 128. The control module 138 includes a spring
142 having a pair of contact points 140 that contact the second housing 32, similar
to contact of the plunger pin 40. Though shown as two contact points 140, one or more
contact points may be provided. The contact points 140 are oriented and positioned,
relative to the input and output gears 12 and 14, so that the tooth mesh of the input
and output gears 12 and 14 to the intermediary gear 16 is improved to reduce or eliminate
the gear rattle condition, particularly in the unloaded or lightly loaded conditions.
The idler shaft 128 includes a mounting groove 146 that is configured to accept the
control module 138. The groove 146 is illustrated as a turned diameter, having a generally
round diameter at the base of the groove 146. The orientation of the control module
138 and the contact points 140 may be rotated on the idler shaft 128 to adjust or
otherwise fine tune the magnitude and orientation of the resultant forces relative
to the gear rattle condition. Alternatively, the control module 138 and the mounting
groove 146 may also have cooperating positive orientation features, such as flat sections
(not shown), to provide a fixed orientation relative to the input and output gears
12 and 14. The spring rate of the control module 138 is sufficient to permit the intermediary
gear 16 to float relative to the input and output gears 12 and 14.
[0015] Referring now to Fig. 6, there is a control module, shown generally at 238. The control
module 238 includes a plunger pin 240 that is disposed in a module housing 244. The
control module 238 is disposed in a bore 246 formed in an idler shaft 228. The plunger
pin 240 seals against the inner surface of the module housing 244 so that a source
of pressurized fluid, such as automatic transmission fluid, can be supplied to generate
the biasing force F. The idler shaft 228 also includes a fluid port 248 that delivers
fluid to the control module 238 to radially load the plunger pin 240 against a second
housing 232. The fluid pressure may be held at a fixed pressure or modulated to vary
the pressure during operation of the PTO unit. Modulating the fluid pressure also
modulates the biasing force to adjust the force dampening influence of the control
module on attenuation of gear rattle. When the fluid pressure is modulated in response
to the torque loading of the gears, a feedback loop may be provided. The feedback
loop may include one or more sensors, such as a torque sensor, fluid pressure sensor,
accelerometer, microphone, or speed sensor, to measure the various influencing factors
relative to gear rattle. The torque sensor provides an indication of the load on the
gear train in order to adjust the biasing force in response to the gear separation
forces and gear rattle signal. The fluid pressure sensor determines the fluid pressure
state and an indication of a decrease or increase in fluid pressure. The accelerometer
(or microphone or speed sensor) measures a vibrational signal associated with and
proportional to the gear rattle phenomenon. A control algorithm may vary the fluid
pressure in response to torque loads and/or vibration levels to adjust the biasing
force and minimize the gear rattle vibration signature. A return spring (not shown)
may be disposed between the plunger pin 240 and the module housing 244 to retract
the plunger pin 240 away from the second housing 232, if desired.
[0016] Referring now to Fig. 7, there is illustrated an embodiment of a control module according
to the invention, shown generally at 338. The control module 338 is similar to the
hydraulically actuated control module 238, but instead uses a varying magnetic field
to provide the biasing force F rather than fluid pressure. The control module 338
includes a plunger pin 340 disposed in a module housing 344, which is inserted in
a bore 346 formed in an idler shaft 328. The plunger pin 340 includes a first magnet
348 that may be a permanent magnet. The control module 338 also includes a second
magnet 350, disposed at the base of the module housing 344, that is an electromagnet.
When energized, the second magnet 350 is connected to be the same magnetic pole as
the first magnet 348. Thus, the first magnet 348 is repelled away from the second
magnet 350 and radially extends the plunger pin 340 to generate the biasing force,
F against a second housing 332. The power supplied to the electromagnet 350 can be
varied in order to vary the biasing force F. In addition, sensors similar or analogous
to those described above can be used to modulate the biasing force F to provide adjustability
to the control system to attenuate gear rattle at various load and operating conditions.
[0017] Referring now to Fig. 8, there is illustrated a gear train system, shown generally
at 400, which may also be embodied as a PTO unit, though such is not required. The
gear train system 400 includes a first gear or input gear 412, a second gear or output
gear 414, and an intermediary gear set, shown generally at 416. The intermediary gear
set 416 may include a first intermediary gear 416a and a second intermediary gear
416b, as illustrated. Alternatively, the intermediary gear set 416 may be a single
intermediary gear as described above. Alternatively, the intermediary gear set 416
may have more than two gears. The gears 412, 414, and 416 are supported for rotation
relative to a housing 432, which may be similar to the second housing 32 described
above. The intermediary gear set 416, or one or more intermediary gears 416a or 416b,
includes an idler shaft 428, having end supports 428a and 428b. The idler shaft 428
is configured to rotate relative to the housing 432. Friction reducing elements 420,
such as bearings or bushings, may be coupled to the end supports 428a, 428b and disposed
within support bores 422a and 422b in the housing 432. Support bore 422a is a generally
round bore configured to support one of the input and output gears 412, 414 for rotation
and maintain a fixed lateral position of the gear relative to the housing 432. The
support bore 422b is configured to support the idler shaft 428 for rotation and permit
lateral adjustment of the idler shaft end supports, for example end support 428b,
relative to the housing 432. A module bore 446 intersects the support bore 422b that
supports the idler shaft 428.
[0018] A control module, shown generally at 438, is disposed within the module bore 446.
The control module 438 may be configured as any of the control modules described above.
The control module 438 includes a plunger pin 440 that contacts the friction reducing
element 420 and may be fixed to the outer surface thereof. The control module 438
operates similarly to the control modules described above in order to attenuate gear
rattle, or other gear mesh vibrational disturbances, by positioning the biasing force
F to generally provide a load to the meshed gears, particularly during unloaded or
lightly loaded operation.
[0019] Referring now to Figs. 9 and 10, there ; is a gear train system, shown generally
at 500 which may also be embodied as a PTO unit, though such is not required. The
gear train system 500 includes a first gear or input gear 512, a second gear or output
gear 514, and an intermediary gear set, shown generally at 516. The intermediary gear
set 516 may include a first intermediary gear 516a and a second intermediary gear
516b, as illustrated. Alternatively, the intermediary gear set 516 may be a single
intermediary gear, as described above . Alternatively, the intermediary gear set 516
may have more than two gears. The input and output gears 512 and 514 are supported
for rotation relative to a housing 532, which may be similar to the second housing
32 described above. The input and output gears 512 and 514 may be supported for rotation
by the housing 532, such as through a bearing element 520a disposed in a support bore
522a. Alternatively, the input gear 512 may be supported for rotation on a shaft,
similar to Figs. 1 and 2, above.
[0020] The intermediary gear set 516, or one or more intermediary gears 516a or 516b, includes
an idler shaft 528, having end supports 528a and 528b. The support ends 528a and 528b
may be supported within bushings, such as an optional bushing 520b, disposed in a
support bore 522b. Support bore 522b and bushing 520b may be larger in size than support
bore 522a and bushing 520a, though such is not required. The idler shaft 528 is configured
to be rotationally adjustable relative to the housing, but remain in a generally fixed
orientation during operation of the PTO unit 500. Thus, the intermediary gears 516a
and 516b are configured to rotate relative to the idler shaft 528 . The support ends
528a and 528b are configured as eccentric support ends and function as control modules,
similar to control module 538 which will be described below in detail, that are integrated
into the idler shaft 528 to provide the biasing force F to counteract gear rattle
or other gear mesh based vibrational conditions during various operating conditions.
The eccentricity of the support ends 528a and 528b are oriented toward the input and
output gears 512 and 514 in order to direct the biasing force F to increase the gear
mesh interfaces to attenuate gear rattle.
[0021] The idler shaft 528 may be rotated clockwise or counterclockwise within the support
bore 522b, relative to the housing 532, to move the idler shaft 528 and the intermediary
gears 516 toward or away from the input and output gears 512 and 514. This biasing
force adjustment may be made once before operation or may be done dynamically during
operation by way of a rotational positioning device, such as a stepper motor or other
actuation devices that can move to a desired position and fix the shaft in that desired
position. Additionally, any feedback loop, such as those described above may be used
to adjust the biasing force F to minimize gear vibration and compensate for gear separation
forces.
[0022] The idler shaft 528 may configured to rotate during operation relative to the housing
532. In this variation, the idler shaft 528 and the intermediary gears 516a and 516b
rotate together, and the idler shaft 528 includes end supports 528c and 528d. The
end supports 528c and 528d have diameters that are concentric with the centerline
of the idler shaft 528. The friction reducing elements 520a and 520b, such as bearings
or bushings, are coupled to the end supports 528c, 528d and disposed within a control
bore 538a of a control module 538, as shown in Fig. 10. The outer surface of the control
module 538 may be disposed directly into the support bores 522a and 522b of the housing
532 or may be disposed within bushings 538b to aid in rotational adjustment relative
to the housing 532. Adjustment of the biasing force F may be accomplished by rotation
of the control module 538 relative to the housing 532, similar to that described above.
[0023] The principle and mode of operation of this invention have been explained and illustrated
in its preferred embodiment in Fig.7.
1. A control system for attenuating gear vibrations, the control system comprising:
a control module (338) configured to displace a gear support shaft carrying a first
gear that is intermeshed to a second gear such that looseness between the first and
second gears (12, 14, 412, 414, 512, 514) is reduced, wherein:
the control module (338) includes a plunger (340) that contacts the gear support shaft
and generates a biasing force that displaces the first gear relative to the second
gear; characterized in that
the control module (338) includes a permanent magnet and an electromagnet that cooperate
to generate a magnetic field that displaces the plunger pin (340).
2. The control system of claim 1 wherein the plunger pin (340) generates a radial biasing
force that displaces the first gear relative to the second gear.
3. The control system of claim 2 wherein the control module (338) includes a module housing
(344) that contains the plunger, the module housing (344) disposed in a bore (346),
the bore (346) being oriented such that the radial biasing force is directed to move
the first gear toward a plane that includes a centerline of the second gear and a
centerline of a third gear.
4. The control system of claim 1 wherein the control module (338) generates a radial
biasing force that displaces the gear support shaft such that the first gear is displaced
toward the second gear.
5. A power take off (PTO) unit (10) comprising:
a housing adapted to be attached to a primary drive component;
an input gear (12) rotatably supported on the housing and including a portion that
extends from the housing and is adapted to be rotatably driven by the primary drive
component;
an output gear (14) connected to an output shaft (24) supported on the housing; and
an intermediary gear (16, 516a, 516b) supported for rotation on an idler shaft (328)
supported on the housing, the intermediary gear (16) connected to the input gear and
the output gear for rotational power transfer; characterized in that:
a control module (338) of claim 1 acts between the housing and the idler shaft (328),
the control module (338) configured to displace the intermediary gear (16) toward
at least one of the input gear (12) and the output gear (14) such that looseness between
the intermediary gear (16) and the at least one of the input gear and the output gear
is reduced.
6. The PTO unit (10) of claim 5 wherein the control module (338) is mounted on the idler
shaft (328) and includes a plunger pin (340) having at least one contact point that
acts against the housing the control module (338) radially displacing the plunger
pin (340) against the housing to create a biasing force that displaces the idler shaft
(328) toward the at least one of the input gear and the output gear.
1. Steuersystem zum Dämpfen von Zahnradschwingungen, das Steuersystem umfassend:
ein Steuermodul (338), das konfiguriert ist, um eine Zahnradträgerwelle, die ein erstes
Zahnrad trägt, das mit einem zweiten Zahnrad in Eingriff ist, zu einem zweiten Zahnrad
zu verschieben, sodass eine Lockerheit zwischen dem ersten und dem zweiten Zahnrad
(12, 14, 412, 414, 512, 514) reduziert wird, wobei:
das Steuermodul (338) einen Stößel (340) beinhaltet, der die Zahnradträgerwelle berührt
und eine Vorspannkraft erzeugt, die das erste Zahnrad in Bezug auf das zweite Zahnrad
verschiebt; dadurch gekennzeichnet, dass das Steuermodul (338) einen Permanentmagneten und einen Elektromagneten beinhaltet,
die zusammenwirken, um ein Magnetfeld zu erzeugen, das den Stößelstift (340) verschiebt.
2. Steuersystem gemäß Anspruch 1, wobei der Stößelstift (340) eine radiale Vorspannkraft
erzeugt, die das erste Zahnrad in Bezug auf das zweite Zahnrad verschiebt.
3. Steuersystem gemäß Anspruch 2, wobei das Steuermodul (338) ein Modulgehäuse (344)
beinhaltet, das den Stößel enthält, wobei das Modulgehäuse (344) in einer Bohrung
(346) angeordnet ist, wobei die Bohrung (346) so ausgerichtet ist, dass die radiale
Vorspannkraft so gerichtet ist, um das erste Zahnrad in Richtung einer Ebene zu bewegen,
die eine Mittellinie des zweiten Zahnrads und eine Mittellinie eines dritten Zahnrads
beinhaltet.
4. Steuersystem gemäß Anspruch 1, wobei das Steuermodul (338) eine radiale Vorspannkraft
erzeugt, die die Zahnradträgerwelle verschiebt, sodass das erste Zahnrad zu dem zweiten
Zahnrad verschoben wird.
5. Eine Zapfwelleneinheit (power take off unit, PTO-Einheit) (10), umfassend:
ein Gehäuse, das angepasst ist, um an einer primären Antriebskomponente angebracht
zu werden;
ein Antriebszahnrad (12), das drehbar an dem Gehäuse gelagert ist und einen Abschnitt
beinhaltet, der sich von dem Gehäuse erstreckt und angepasst ist, um von der primären
Antriebskomponente drehbar angetrieben zu werden;
ein Ausgangszahnrad (14), das mit einer am Gehäuse gelagerten Abtriebswelle (24) verbunden
ist; und
ein Zwischenzahnrad (16, 516a, 516b), das zur Drehung auf einer Freilaufwelle (328)
gelagert ist, die an dem Gehäuse gelagert ist, wobei das Zwischenzahnrad (16) mit
dem Eingangszahnrad und dem Ausgangszahnrad zur Übertragung von Drehkraft verbunden
ist; dadurch gekennzeichnet, dass
ein Steuermodul (338) gemäß Anspruch 1 zwischen dem Gehäuse und der Freilaufwelle
(328) wirkt, wobei das Steuermodul (338) konfiguriert ist, um das Zwischenzahnrad
(16) zu dem Eingangszahnrad (12) und/oder dem Ausgangszahnrad (14) zu verschieben,
sodass eine Lockerheit zwischen dem Zwischenzahnrad (16) und dem mindestens einen
von dem Eingangszahnrad und/oder dem Ausgangszahnrad reduziert wird.
6. PTO-Einheit (10) gemäß Anspruch 5, wobei das Steuermodul (338) auf der Freilaufwelle
(328) montiert ist und einen Stößelstift (340) beinhaltet, der mindestens einem Kontaktpunkt
aufweist, der gegen das Gehäuse wirkt, wobei das Steuermodul (338) den Stößelstift
(340) radial gegen das Gehäuse verschiebt, um eine Vorspannkraft zu erzeugen, die
die Freilaufwelle (328) zu dem mindestens einen von dem Eingangszahnrad und/oder dem
Ausgangszahnrad zu verschieben.
1. Un système de contrôle pour atténuer les vibrations d'engrenage, le système de contrôle
comprenant :
un module de contrôle (338) configuré pour déplacer un arbre de support d'engrenage
portant un premier engrenage qui s'engrène avec un deuxième engrenage de sorte que
le desserrement entre les premier et deuxième engrenages (12, 14, 412, 414, 512, 514)
est réduit, dans lequel :
le module de contrôle (338) comprend un piston (340) qui entre en contact avec l'arbre
de support d'engrenage et génère une force de sollicitation qui déplace le premier
engrenage par rapport au deuxième engrenage ;
caractérisé en ce que le module de contrôle (338) comprend un aimant permanent et un électroaimant qui
coopèrent pour générer un champ magnétique qui déplace la tige de piston (340).
2. Le système de contrôle selon la revendication 1 dans lequel la tige de piston (340)
génère une force de sollicitation radiale qui déplace le premier engrenage par rapport
au deuxième engrenage.
3. Le système de contrôle selon la revendication 2 dans lequel le module de contrôle
(338) comprend un boîtier de module (344) qui contient le piston, le boîtier de module
(344) disposé dans un alésage (346), l'alésage (346) étant orienté de sorte que la
force de sollicitation radiale est dirigée pour déplacer le premier engrenage vers
un plan qui comprend une ligne centrale du deuxième engrenage et une ligne centrale
d'un troisième engrenage.
4. Le système de contrôle selon la revendication 1 dans lequel le module de contrôle
(338) génère une force de sollicitation radiale qui déplace l'arbre de support d'engrenage
de sorte que le premier engrenage est déplacé vers le deuxième engrenage.
5. Une unité de prise de force (PTO) (10) comprenant :
un boîtier adapté pour être fixé à un composant d'entraînement primaire ;
un engrenage d'entrée supporté de manière rotative sur le boîtier et comprenant une
partie qui s'étend à partir du boîtier et qui est adaptée pour être entraînée de manière
rotative par le composant d'entraînement primaire ;
un engrenage de sortie (14) connecté à un arbre de sortie (24) supporté sur le boîtier;
et
un engrenage intermédiaire (16, 516a, 516b) supporté pour la rotation sur un arbre
de renvoi (328) supporté sur le boîtier, l'engrenage intermédiaire (16) connecté à
l'engrenage d'entrée et l'engrenage de sortie pour le transfert de puissance de rotation
; caractérisé en ce que :
un module de contrôle (338) selon la revendication 1 agit entre le boîtier et l'arbre
de renvoi (328), le module de contrôle (338) configuré pour déplacer l'engrenage intermédiaire
(16) vers l'au moins un parmi l'engrenage d'entrée (12) et l'engrenage de sortie (14)
de sorte que le desserrement entre l'engrenage intermédiaire (16) et l'au moins un
parmi l'engrenage d'entrée et l'engrenage de sortie est réduit.
6. L'unité de prise de force (10) selon la revendication 5 dans laquelle le module de
contrôle (338) est monté sur l'arbre de renvoi (328) et comprend une tige de piston
(340) ayant au moins un point de contact qui agit contre le boîtier, le module de
contrôle (338) déplaçant radialement la tige de piston (340) contre le boîtier pour
créer une force de sollicitation qui déplace l'arbre de renvoi (328) vers l'au moins
un parmi l'engrenage d'entrée et l'engrenage de sortie.