(19) |
 |
|
(11) |
EP 3 448 575 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
21.04.2021 Bulletin 2021/16 |
(22) |
Date of filing: 28.04.2016 |
|
(51) |
International Patent Classification (IPC):
|
(86) |
International application number: |
|
PCT/TR2016/050129 |
(87) |
International publication number: |
|
WO 2017/188901 (02.11.2017 Gazette 2017/44) |
|
(54) |
A GRINDING MILL AND MATERIAL WEIGHT DETERMINING METHOD FOR THE SAME
TROMMELMÜHLE UND VERFAHREN ZUM ERMITTELN DES MATERIALGEWICHTS DAFÜR
BROYEUR TUBULAIRE ET PROCÉDÉ ASSOCIÉ POUR DÉTERMINER LE POIDS DE MATÉRIAU
|
(84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
(43) |
Date of publication of application: |
|
06.03.2019 Bulletin 2019/10 |
(73) |
Proprietor: Dal Elektrik Ve Otomasyon Sistemleri
San. Tic. A.S. |
|
Bahcelievler/Istanbul (TR) |
|
(72) |
Inventors: |
|
- GULSEN, Salih
Beyoglu/Istanbul (TR)
- ERTUGRUL, Seniz
Beyoglu/Istanbul (TR)
- ULUER, Yasar Kaya
Tuzla/Istanbul (TR)
- CAN, Adnan
Gunesli/Istanbul (TR)
|
(56) |
References cited: :
CN-B- 102 935 398 US-B1- 6 619 574
|
US-A- 3 253 744 US-B1- 6 874 364
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
TECHNICAL FIELD
[0001] The present invention relates to a method and device for measurement of amount of
material inside a grinding mill.
PRIOR ART
[0002] Comminution operations for the mineral ores may require a series of subsequent operations
to be performed, e.g. pre-crushing, grinding to obtain a final product. Jaw crushers,
disc crushers, hammer mills or roller ball mills are used to gradually comminute ore.
Milling operations require great amount of energy for example 2.2 kwh/tonne for crushing
and 11.6 for grinding operations.
[0003] US5551639 explain a method and apparatus for crushing and fine grinding of solid particulate
materials used in cement utilizing a conventional ball mill to decrease energy consumption.
Particulate material is fed to a first chamber of the grinding mill where the crushing
takes place, then the material is fed to the second chamber for a secondary crushing
down to the required fineness appropriate for a jet mill (e.g. down to S=1.200-1.300
cm2/gr or 3.600cm2/gr for conventional ball mills). Then the material fed to the filter
system via pipe and delivered to the silos.
[0004] Defining the material amount inside a grinding mill is necessary to design a better
controller for the system which is required for energy efficiency. In order to obtain
material amount, microphone systems are widely used.
DE19933995 discloses a measurement system for observing a mass inside a ball mill using microphones
directly attached to the wall of the mill shell.
[0005] The system analyzes intensity and spectra of the noise and combines it with measurements
of the phase angle of the mill to gain additional information about the movement of
balls inside the mill. System does not provide accurate information due to the interferences
of other noises such as an additional grinding mill arranged next to the current one.
US-3253744-A and
US-6619574-B1 disclose drum mills comprising support structures with strain gauge weight sensors.
BRIEF DESCRIPTION OF THE INVENTION
[0006] The object of the present invention is providing instant and accurate weight information
from a grinding mill.
[0007] In order to realize the abovementioned object, a grinding mill according to claim
1 is provided. The grinding mill comprises a drum wherein a plurality of balls are
disposed in a freely movable manner having an inlet to feed particulate material inside
the drum and an outlet to transfer fine material after grinding. A strain sensor is
adapted to the drum so that providing a data to determine weight information of the
drum. Strain sensor will determine any weight changes on the drum by measuring deflection
of the drum due to the loads, e.g. balls or the material to be grinded. According
to the invention the strain sensor is mounted at an outer periphery of the drum. Outer
periphery show the more deflection than the inner periphery therefore strain sensor
can provide more accurate data based on higher deflection value. The strain sensor
may be attached on a mounting plate which is secured to the outer periphery of the
drum. Mounting plate provide modularity to easily secure the strain sensor to the
drum and also in some aspects protects strain sensor, e.g. strain gauge, as a heat
shield to reduce heat transfer from outer periphery to the strain sensor.
[0008] The strain sensor is connected to a transmitter which is transmitting the data to
a receiver in data communication with a controller. The data provided by the strain
sensor to the transmitter is a voltage value which has a linear change while the drum
is rotating. After a calibration, e.g. comparing the known weight value of the balls
with the output signal of the strain sensor, material weight inside the drum during
the grinding process can be estimated by the voltage difference.
[0009] The transmitter has a wireless signal module which is in communication with the receiver
having a corresponding wireless module to transmit the data from drum to a remote
location. The remote location can be an operation room where various types of operations
value for optimization of the processes are collected.
[0010] A power module may be connected to the strain sensor energize the strain sensor upon
start of the grinding process. Power module prevents use of cable harness or any other
relevant installation and simplify construction to reduce maintenance requirement.
The power module may comprise a regenerative power source. This could be solar panels,
kinetic or thermal power generator. Considering the heat on the drum which can be
as high as 70°C thermal energy generator or combination of other types can recharge
power module which comprises batteries. The power module may be electrically connected
to the wireless signal module providing electricity to the wireless signal module
during data transmission.
[0011] The drum may be divided into a first chamber and at least one second chamber wherein
the strain sensor is having a first measurement element and a second measurement element
corresponding to each of the first chamber and the second chamber to provide the data
independent from each other. Alternatively, drum can be one chamber or can be divided
more than two chambers. For the latter, each one of the chambers has its own strain
sensor provided at the outer periphery of the corresponding chamber.
[0012] The distance between the transmitter and the first measurement element or the second
measurement element may be substantially equal. This provide any signal losses between
two chambers during the transmission of the signal are similar to each other so that
information obtained using the data from each one of the chambers is more reliable.
[0013] The strain sensor may be arranged on the drum at a vicinity of the center of gravity
of the drum or each one of center of gravity of the first chamber or the second chamber.
The center of gravity has the maximum deflection on the drum which will provide more
accurate measurement by the strain sensor. In a possible embodiment, strain sensor
is aligned at the middle of the length direction. In a possible embodiment, number
of the chambers can be more than two, for example three, and more than one strain
sensor can be adapted to the each one of the chambers. Distribution of the strain
sensors in each chamber can be equal. For example, if there are two strain sensors
available for each one of the chambers of the drum, the angle between strain sensors
will be 180°. On the other hand, one strain sensor can be utilized for more than one
chambers, e.g. two chambers.
[0014] The strain sensor may be mounted on a plate of the drum by means of a mounting plate
having a fastening device adapted to the corresponding holes on the plate. Plate can
be one of the plates forming the drum which is known as liners for the grinding mills
which is better understood by a reference to
US3804346.
[0015] In order to achieve above mentioned objective, invention provides also a method according
to claim 9. Hence the system is ready and the drum can be loaded with the material
to be grained. Strain sensor term in the description cover particularly, strain gauges
of any suitable type or piezosensors or similar other types of the sensors not listed
in here.
BRIEF DESCRIPTION OF THE FIGURES
[0016]
Figure 1 is the partial cross-sectional view of a drum with two chambers according
to a representative embodiment of a subject matter grinding device.
Figure 2a is a schematic view of a transmitter mounted on the drum of Fig. 1
Figure 2b is a schematic view of a receiver wirelessly communicating with the transmitter
of Fig. 2a.
Figure 2c is a partial cross-section of a mounting plate on the drum of a grinding
device where the strain sensor is mounted with a fastening element.
Figure 3 is a cross-sectional view of the drum from transverse direction where the
plates of the drum and the strain sensor mounted is shown.
THE DETAILED DESCRIPTION OF THE INVENTION
[0017] In this detailed description, the subject matter improvement is explained with references
to examples without forming any restrictive effect only in order to make the subject
more understandable.
[0018] In Figure 1, a drum (10) of a grinding device is shown from a side view. The drum
(10) is rotated by an electric motor (not shown) in the longitudinal axis. The drum
(10) is fed intermittently with clinkers, gypsum and other additives from a feeding
device via an inlet (12) providing access inside the drum (10). The drum (10) is in
a tube form defining an inner space which is separated to a first chamber (11) and
a subsequent second chamber (13) by means of a diaphragm (20) which is a vertical
wall allowing semi-grinded particles to move from the first chamber (11) to the second
chamber (13). A plurality of metal balls (30) are disposed inner volume of the drum
(10) in a freely movable manner. The first chamber (11) contain large balls (32) which
have outer diameters between 90 to 60 mm. Second chamber (13) contain small balls
(34) have outer diameters between 40 to 20 mm. Due to the weight of the balls (30),
they are accumulated at a bottom side (15) of the inner volume of the drum (10). Ground
fine product is removed from an outlet (14) of the drum (10). The inlet (12) and the
outlet (14) are arranged at the two opposite ends of the drum (10).
[0019] A strain sensor (80) is mounted on the outer periphery (18) of the drum (10) by means
of a mounting plate (40). In an alternative embodiment strain sensor (80) can also
be directly mounted over the outer periphery (18) of the drum (10). Strain sensor
(80) is comprising two separate components, namely a first measurement element (82)
and a second measurement element (84). Each one of the components are known strain
sensor (80) devices suitable for harsh environmental conditions. A transmitter (90)
is also secured on the outer periphery (18) of the drum (10). A cable (86) connect
the first measurement element (82) and the second measurement element (84) to the
transmitter (90). The cable (86) is a signal transmission cable such as a copper wire
coaxial cable or an optical cable.
[0020] In Figure 2a, s schematic view the transmitter (90) is shown. The transmitter (90)
comprises a power module (94) which is a rechargeable battery such as Lithium ion
type and a power generator of regenerative type, transform kinetic, solar or heat
energy into the electricity to charge the battery. One of the convenient regenerative
methods of can be selected based on the installation location and availability of
the selected type of the energy. A wireless signal module (92) is connected to an
antenna (96) and the power module (94). In the representative embodiment, power module
(94) supply 24 V electricity to the first measurement element (82) and the second
measurement element (84). Strain sensor (80) respond with a voltage in millivolts
and amplified a voltage value up to 10 volts. Amplified voltage value of the strain
sensor (80) transmitted to the wireless signal module (92).
[0021] In Figure 2b, a receiver (70) suitable to collect information provided with the transmitter
(90) is shown. The receiver (70) has a data connection to a controller (72) having
a CPU. Voltage value output data of a corresponding strain sensor (80) is collected
by the receiver (70) by means of the wireless module (74). In order to ensure reliable
transfer of the voltage value data is amplified by a suitable electronic module, i.e.
amplifier, before transmitting the data to the receiver (70).
[0022] In Figure 2c, strain sensor (80) assembly to the outer periphery (18) of the drum
(10) by means of a metal mounting plate (40) is shown in cross-section. A mounting
bolt (85) engaged to a hole on a base (44) of the mounting plate (40) and secure strain
sensor (80) from two opposing ends. The cable (86) extend from one end of the strain
sensor (80) to the transmitter (90). The cable (86) both supply input voltage provided
by the power module (94) to the strain sensor (80) and transfer output voltage back
to the transmitter (90).
[0023] In Figure 3, a number of plates (17) next to each other form inner liner of the drum
(10) and fixed to the drum (10) by means of bolts (60). Each plate (17) having the
bolt (60) to mount the plate (17) to the drum (10) in a removable manner. In case
of damage on the plate (17) due to the friction, bolt (60) allow replacing the damaged
plate (17) with a new one and allow maintenance. Modular structure of the plates (17)
make easy installation of the strain sensor (80) on a plate (17) using the same bolts
(60) over the plate (17). A base (44) is arranged over a plate (17) and secured on
the plate (17) using the fastening elements (42) that are used to fix the plates (17).
The fastening elements (42) are in the form of bolts extending between the base (44)
and upper side of the plate (17) partially forming outer periphery (18). The base
(44) is made of a metal element, i.e. steel, where the strain sensor (80) is installed.
[0024] After mounting the strain sensor (80) at the center of gravity of each chamber (11,
13) and transmitter (90) in the middle of the chambers (11, 13) the weight measurement
system needs to be calibrated before first use. Input voltage is provided by power
module (94) to obtain an output voltage difference of the strain sensor (80) during
rotation of the drum (10). This will provide a first data set (d0) which is output
voltage value when the drum (10) is empty. In the preferred application, calibration
of the measurement system can be done by providing a second data set (d2) after charge
of the balls (30) inside the drum (10).
[0025] In an alternative calibration method, the balls (30) are charged inside the inner
volume of the drum (10) before grinding operation. Afterwards, the drum (10) is rotated
to obtain an output voltage difference for each rotation. This define a calibration
data as the first data set (d1) and difference between a preliminary data (d0) of
empty drum (10) and the first data set (d1) can be compared with known weight value
of the balls (30) so that correlation between voltage difference and weight can be
calculated to complete calibration. During the grinding operation, drum (10) is loaded
from inlet (12) and grinded fine product is exit through the outlet (14). Amount of
material inside the drum (10), i.e. in tonnes, can be calculated by instant output
voltage value of the strain sensor (80).
[0026] System can be designed to continuous data flow from transmitter (90) to the receiver
(70) so that a controller (72), e.g. a remote computer can calculate material weight
amount inside the drum (10) while the grinding operation takes place. Otherwise, two
way data flow between the transmitter (90) and receiver (70) can be provided to send
request from the receiver (70) to transmitter (90) to obtain instant output voltage
value of the strain sensor (80). In another alternative, transmitter (90) send intermittent
signals, e.g. 1 per minute to the receiver (70) which is preliminary defined before
the operation.
[0027] In the current embodiment, the first measurement element (82) and the second measurement
element (84) will provide output voltage information independent from each other to
the transmitter (90). Therefore, it will be possible to understand first chamber (11)
and second chamber (13) material weight by calculating output voltage with corresponding
calibration data obtained by comparison of each output voltage value and weight of
the large balls (32) inside the first chamber (11) and small balls (34) inside the
second chamber (13).
[0028] Based on the weight information calculated by controller (72) based on the data provided
by the receiver (70), empty volume inside the drum (10) can also be estimated using
additional information such as inner volume of the drum (10) and average density of
the material and weight information.
REFERENCE NUMBERS
10 Drum |
60 Bolt |
11 First chamber |
70 Receiver |
12 Inlet |
72 Controller |
13 Second chamber |
74 Wireless module |
14 Outlet |
80 Strain sensor |
15 Bottom side |
82 First measurement element |
17 Plate |
84 Second measurement element |
18 Outer periphery |
85 Mounting bolt |
20 Diaphragm |
86 Cable |
30 Balls |
90 Transmitter |
32 Large balls |
92 Wireless signal module |
34 Small balls |
94 Power module |
40 Mounting plate |
96 Antenna |
42 Fastening element |
|
44 Base |
|
1. A grinding mill comprising a drum (10) wherein a plurality of balls (30) are disposed
in a freely movable manner having an inlet (12) to feed particulate material inside
the drum (10) and an outlet (14) to transfer fine material after grinding characterised in that it comprises a strain sensor (80) mounted at an outer periphery (18) of the drum
(10) so that providing a data to determine weight information of the drum (10) wherein
the strain sensor (80) is connected to a transmitter (90) which is transmitting the
data to a receiver (70) in data communication with a controller (72) and the transmitter
(90) has a wireless signal module (92) which is in communication with the receiver
(70) having a corresponding wireless module (74) to transmit the data from the drum
(10) to a remote location.
2. A grinding mill according to claim 2, wherein the strain sensor (80) is attached on
a mounting plate (40) which is secured to the outer periphery of the drum (10).
3. A grinding mill according to any one of the preceding claims, wherein a power module
(94) is connected to the strain sensor (80) to energize the strain sensor (80) upon
start of the grinding process.
4. A grinding mill according to claim 4, wherein the power module (94) comprises a regenerative
power source.
5. A grinding mill according to claim 3 or 4, wherein the power module (94) is electrically
connected to the wireless signal module (92) providing electricity to the wireless
signal module (92) during data transmission.
6. A grinding mill according to any one of the preceding claims, wherein the drum (10)
is divided into a first chamber (11) and at least one second chamber (13) wherein
the strain sensor (80) has a first measurement element (82) and a second measurement
element (84) corresponding to each of the first chamber (11) and the second chamber
(13) to provide the data independent from each other.
7. A grinding mill according to claim 6, wherein the distance between the transmitter
(90) and the first measurement element (82) or the second measurement element (84)
is substantially equal.
8. A grinding mill according to any one of the preceding claims, wherein the strain sensor
(80) is arranged at a vicinity of the center of gravity of the drum (10) or each one
of center of gravity the first chamber (11) and the second chamber (13).
9. A weight measuring method for a grinding mill according to any one of the preceding
claims, comprising the steps of obtaining a first data set (d1) from the strain sensor
(80) when the drum (10) is empty; then obtaining a second data set (d2) while the
drum (10) is being charged with the balls (30) calibrating the measurement system
based on the first and second data sets (d1, d2).
1. Mahlmühle mit einer Trommel (10), in der mehrere Kugeln (30) frei beweglich angeordnet
sind, mit einem Einlass (12) zum Zuführen von partikelförmigem Material in das Innere
der Trommel (10) und einem Auslass (14) zum Übertragen von feinem Material nach dem
Mahlen, dadurch gekennzeichnet, dass sie einen Dehnungssensor (80), der an einem Außenumfang (18) der Trommel (10) so
angebracht ist, dass er Daten zur Bestimmung des Gewichts Informationen der Trommel
(10) feststellt, wobei der Dehnungssensor (80) mit einem Sender (90) verbunden ist,
der die Daten an einen Empfänger (70) in Datenkommunikation mit einer Steuerung (72)
überträgt, und der Sender (90) ein drahtloses Signalmodul (92) aufweist, das in Kommunikation
mit dem Empfänger (70) steht, der ein entsprechendes drahtloses Modul (74) aufweist,
um die Daten von der Trommel (10) an einen entfernten Ort zu übertragen.
2. Mahlmühle nach Anspruch 2, bei der der Dehnungssensor (80) an einer Montageplatte
(40) angebracht ist, die am Außenumfang der Trommel (10) befestigt ist.
3. Mahlmühle nach einem der vorhergehenden Ansprüche, wobei ein Leistungsmodul (94) mit
dem Dehnungssensor (80) verbunden ist, um den Dehnungssensor (80) beim Start des Mahlvorgangs
zu aktivieren.
4. Mahlmühle nach Anspruch 4, wobei das Leistungsmodul (94) eine regenerative Energiequelle
umfasst.
5. Mahlmühle nach Anspruch 3 oder 4, wobei das Leistungsmodul (94) mit dem Funksignalmodul
(92) elektrisch verbunden ist und das Funksignalmodul (92) während der Datenübertragung
mit Strom versorgt.
6. Mahlmühle nach einem der vorhergehenden Ansprüche, wobei die Trommel (10) in eine
erste Kammer (11) und mindestens eine zweite Kammer (13) unterteilt ist, wobei der
Dehnungssensor (80) ein erstes Messelement (82) und ein zweites Messelement (84) aufweist,
die jeweils der ersten Kammer (11) und der zweiten Kammer (13) entsprechen, um die
Daten unabhängig voneinander zu liefern.
7. Mahlwerk nach Anspruch 6, wobei der Abstand zwischen dem Sender (90) und dem ersten
Messelement (82) oder dem zweiten Messelement (84) im Wesentlichen gleich ist.
8. Mahlmühle nach einem der vorhergehenden Ansprüche, wobei der Dehnungssensor (80) in
der Nähe des Schwerpunktes der Trommel (10) oder jeweils des Schwerpunktes der ersten
Kammer (11) und der zweiten Kammer (13) angeordnet ist.
9. Gewichtsmessverfahren für eine Mahlmühle nach einem der vorhergehenden Ansprüche,
mit den Schritten: Erhalten eines ersten Datensatzes (d1) von dem Dehnungssensor (80),
wenn die Trommel (10) leer ist; dann Erhalten eines zweiten Datensatzes (d2), während
die Trommel (10) mit den Kugeln (30) beschickt wird; Kalibrieren des Messsystems auf
der Grundlage des ersten und zweiten Datensatzes (d1, d2).
1. Un broyeur comprenant un tambour (10) dans lequel plusieurs balles (30) sont placées
de manière librement déplaçable ayant une entrée (12) à alimenter le matériau particulaire
à l'intérieur du tambour (10) et une sortie (14) à transférer le matériau fin après
le broyage caractérisé en ce qu'il comprend un capteur de contrainte (80) monté à la périphérie extérieure (18) du
tambour (10) de sorte que les données sont fournies pour déterminer l'information
de poids du tambour (10) où le capteur de contrainte (80) est connecté au transmetteur
(90) qui transmet les données au récepteur (70) en communication de données avec un
contrôleur (72) et le transmetteur (90) a un module de signaux sans fil (92) qui est
en communication avec le récepteur (70) ayant un module sans fil (74) correspondant
à transmettre les données du tambour (10) à un endroit éloigné.
2. Un broyeur selon la revendication 2, dans lequel le capteur de contrainte (80) est
attaché sur la plaque de fixation (40) qui est fixée à la périphérie extérieure du
tambour (10).
3. Un broyeur selon l'une quelconque des revendications précédentes, dans lequel un module
de puissance (94) est connecté au capteur de contrainte (80) à énergiser le capteur
de contrainte (80) au moment du démarrage du processus de broyage.
4. Un broyeur selon la revendication 4, dans lequel un module de puissance (94) comprend
une source de puissance régénérative.
5. Un broyeur selon la revendication 3 ou 4, dans lequel un module de puissance (94)
est connecté électriquement au module de signaux sans fil (92) fournissant l'électricité
au module de signaux sans fil (92) pendant la transmission des données.
6. Un broyeur selon l'une quelconque des revendications précédentes, dans lequel le tambour
(10) est divisé en premier compartiment (11) et au moins un deuxième compartiment
(13) dans lequel le capteur de contrainte (80) a un premier élément de mesure (82)
et un deuxième élément de mesure (84) correspondant à chacun du premier compartiment
(11) et du deuxième compartiment (13) à fournir les données indépendantes l'un de
l'autre.
7. Un broyeur selon la revendication 6, dans le quel la distance entre le transmetteur
(90) et le premier élément de mesure (82) ou le deuxième élément de mesure (84) est
sensiblement égale.
8. Un broyeur selon l'une quelconque des revendications précédentes, dans lequel le capteur
de contrainte (80) est arrangé à proximité du centre de gravité du tambour (10) ou
chacun des centres de gravité du premier compartiment (11) et du deuxième compartiment
(13).
9. Une méthode de mesure du poids pour un broyeur selon l'une quelconque des revendications
précédentes, comprenant les étapes d'obtention d'un premier ensemble de données (d1)
du capteur de contrainte (80) lorsque le tambour (10) est vide ; ensuite l'obtention
du deuxième ensemble de données (d2) lorsque le tambour (10) est chargé avec les balles
(30) calibrant le système de mesure basé sur le premier et deuxième ensemble des données
(d1, d2).

REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description