Technical Field
[0001] The present invention is related to a transportation barge, an offshore structure
installation system and a method of installing an offshore structure, and especially,
to a transportation barge, an offshore structure installation system and a method
of installing an offshore structure, which are suitable to install a structure such
as a wind turbine offshore.
Background Art
[0002] Generally, when transporting and installing a structure such as a wind turbine offshore,
parts of the structure, a basis structure to install the wind turbine offshore and
so on are loaded on a transportation barge which is provided with a jack-up unit,
and a deck crane, and the transportation barge moves to an installation area of sea
through navigation or tow.
[0003] After the movement, in the condition which jack-up legs are lowered to a sea bottom
to raise the hull of the barge above the sea surface, an installation work of hoisting
each part from the transportation barge by using the deck crane is carried out.
[0004] Also, when a working barge is resident in the installation area of sea, the transportation
barge is jacked up in the neighborhood of the working barge, and then the parts of
the wind turbine loaded on the transportation barge are hoisted by a deck crane of
the working barge and are used for installation.
[0005] Patent Literature 1 (Japanese Utility Model Publication
JP H07-11033Y2) discloses a motion reducing unit for reducing pitching and rolling operations of
the structure in a ship.
[0006] Patent Literatures 2, 3, 4, 5 and 6 are further prior art.
Citation List
Summary of the Invention
[0008] However, in a conventional technique, an operation is required in which the transportation
barge is moved to an installation area of sea, and then is jacked up to unload the
transportation freight to fix the transportation barge.
[0009] Also, the installation area of sea for the wind turbine is far from the shore and
is deep in water depth in many cases, and the wind turbine itself tends to have a
larger size. For these reasons, an installation time is elongated and an installation
cost is increased.
[0010] The present invention is made in view of such circumstances, and has as an object,
to provide a transportation barge, and an offshore structure installation system,
in which the installation time and cost can be reduced and transportation freight
can be unloaded without damaging the transportation freight.
[0011] The present invention is defined by a transportation barge as recited in claim 1,
and a method of installing an offshore structure as recited in claim 8. Optional features
are specified in the respective dependent claims.
[0012] In order to achieve the above object, the transportation barge in the first viewpoint
of the present invention is used to install a structure offshore. The transportation
barge is provided with a loading platform for loading the structure. The loading platform
is allowed to move up and down in the barge.
[0013] Conventionally, because the heaving of a hull of the transportation barge occurs
due to waves when unloading the transportation freight from the transportation barge,
the transportation barge is jacked up to the sea bottom previously and the work is
carried out in a stationary condition in which the transportation barge is fixed.
[0014] Therefore, the loading platform of the transportation barge is configured to be moved
up-and-down and the loading platform is moved down when hoisting the transportation
freight from the loading platform.
[0015] Therefore, the influence of the heaving of the transportation barge due to waves
can be eased without jacking up the transportation barge to the sea bottom. In this
way, a collision of the transportation freight and the loading platform can be prevented
when the transportation freight is hoisted. Also, the time for the jacking-up and
the use cost of the transportation barge provided with an expensive jack-up unit can
be reduced.
[0016] The transportation barge in the first viewpoint of the present invention is provided
with an actuator group which drives the loading platform to move up and down. The
actuator group moves the loading platform down based on a first manual operation.
It is easy to control the timing of moving the loading platform down because the loading
platform is moved down based on the manual operation.
[0017] It is desirable that the actuator group moves the loading platform down at timing
of an upper limit of the heaving of the transportation barge. By moving the transportation
barge down at the timing of the upper limit of the heaving of the transportation barge,
the movement down of the transportation barge and the movement down of the loading
platform by the actuator group overlap to leave the loading platform from the hoisted
transportation freight promptly. Thus, the collision of the transportation freight
and the loading platform can be more surely prevented.
[0018] Moreover, in the first viewpoint of the present invention, the transportation barge
is further provided with an actuator control unit which automatically controls the
actuator group based on the pitching or rolling operation of the transportation barge
so that the motion of the loading platform can be reduced.
[0019] The pitching or rolling motion in addition to the heaving due to waves can be reduced
by providing the actuator control unit for the transportation barge, and an unloading
work of the transportation freight can be easily carried out.
[0020] Moreover, in the first viewpoint of the present invention, it is desirable that the
transportation barge is provided with motion reducing boards which reduces the pitching
and rolling motions of the transportation barge.
[0021] By providing the motion reducing boards for the transportation barge to reduce the
pitching or rolling operation of the transportation barge, it is possible to ease
the influence of the pitching and rolling operations in addition to the heaving due
to the waves, and the unloading work of the transportation freight can be carried
out easily.
[0022] The offshore structure installation system in a second viewpoint of the present invention
is provided with the above transportation barge and a crane ship. The transportation
barge is provided with the actuator group which drives the loading platform to move
up and down. The crane ship is provided with a deck crane, an actuator operation unit
which generates a first operation signal through a first manual operation and a crane
operation unit which generates a second operation signal through a second manual operation.
The actuator group moves the loading platform down based on the first operation signal.
The deck crane hoists the transportation freight loaded on the loading platform based
on the second operation signal.
[0023] Because the system is provided with the crane operation unit which generates the
operation signal for the actuator group to move down the loading platform of the transportation
barge and the actuator operation unit which generates the operation signal for a deck
crane of the crane ship to hoist the transportation freight, the timing of moving
down the loading platform and the timing of hoisting the transportation freight can
be correctly adjusted, and the unloading work of the transportation freight can be
carried out without damaging the transportation freight.
[0024] In the offshore structure installation system in the second viewpoint of the present
invention, the transportation barge is further provided with a heaving sensor which
detects the heaving of the transportation barge to output a heaving detection signal.
It is desirable that the crane ship is provided with a display unit which displays
the heaving of the transportation barge based on the heaving detection signal.
[0025] The heaving of the transportation barge due to the waves is detected and displayed
on the display unit of the crane ship. Therefore, it is easy that the deck crane hoists
the transportation freight loaded on the loading platform at the timing of the upper
limit of the heaving of the transportation barge, and the actuator group moves down
the loading platform at the timing of the upper limit. Accordingly, by easing the
influence of the heaving of the transportation barge due to the waves, and by hoisting
the transportation freight and moving down the loading platform at the timing of the
upper limit, the collision of the transportation freight and the loading platform
when hoisting the transportation freight can be avoided and the transportation freight
can be easily unloaded.
[0026] Moreover, it is desirable that the crane ship includes a hull provided with the deck
crane and a jack-up unit to support the hull on the sea bottom.
[0027] By supporting the crane ship provided with the deck crane to hoist the transportation
freight to the sea bottom by the jack-up unit, the motion of the crane ship due to
the waves can be eliminated and the transportation freight can be easily unloaded.
[0028] A method of installing an offshore structure in the third viewpoint of the present
invention is provided with hoisting the transportation freight loaded on the loading
platform of the transportation barge offshore, and moving down the loading platform
when hoisting the transportation freight.
[0029] Therefore, the influence of the heaving of the transportation barge due to the waves
can be eased without jacking up the transportation barge to the sea bottom. Therefore,
the collision of the transportation freight and the loading platform can be prevented
when hoisting the transportation freight, and the time of jacking up the transportation
barge and the use cost of the transportation barge provided with the expensive jack-up
unit can be reduced.
[0030] The method of installing an offshore structure is further provided with the actuator
operation unit outputting a first operation signal based on a first manual operation
and the crane operation unit outputting a second operation signal based on a second
manual operation. The actuator group of the transportation barge moves down the loading
platform based on the first operation signal in the moving down the loading platform.
The deck crane of the crane ship hoists the transportation freight based on the second
operation signal in the hoisting of the transportation freight. The actuator operation
unit and the crane operation unit are provided for one of the transportation barge
and the crane ship.
[0031] Because the actuator operation unit and the crane operation unit are provided for
one of the transportation barge and the crane ship, the timing of moving down the
loading platform and the timing of hoisting the transportation freight can be correctly
adjusted, and the unloading work of the transportation freight can be carried out
without damaging the transportation freight.
[0032] When the actuator operation unit and the crane operation unit are provided for the
crane ship, it is desirable that the method of installing an offshore structure in
the third viewpoint is further provided with detecting the heaving of the transportation
barge and displaying the heaving of the transportation barge on a display unit of
the crane ship.
[0033] It is desirable that the hoisting of the transportation freight and the moving down
of the loading platform are carried out at the timing of the upper limit of the heaving
of the transportation barge.
[0034] It is desirable that that the crane ship supported on the sea bottom by jack-up legs
hoists the transportation freight in the hoisting of the transportation freight.
[0035] According to the present invention, the transportation barge, the offshore structure
installation system and the method of installing an offshore structure are provided
to prevent the collision of the transportation barge and the transportation freight
when hoisting the transportation freight from the transportation barge moving up and
down due to the waves.
Brief Description of the Drawings
[0036] The above object, other objects, effects and features of the present invention would
be made clear from the following description of embodiments in conjunction with the
following drawings:
FIG. 1 is a diagram showing an offshore structure installation system according to
a first embodiment of the present invention;
FIG. 2 is a conceptual diagram showing a control system of the offshore structure
installation system according to the first embodiment;
FIG. 3A is a diagram showing a procedure of a method of installing an offshore structure
according to the first embodiment;
FIG. 3B is a diagram showing a procedure of a method of installing an offshore structure
according to the first embodiment;
FIG. 3C is a diagram showing a procedure of a method of installing an offshore structure
according to the first embodiment;
FIG. 3D is a diagram showing a procedure of a method of installing an offshore structure
according to the first embodiment;
FIG. 4 is a conceptual diagram showing a control system of the offshore structure
installation system according to a second embodiment of the present invention;
FIG. 5 is a conceptual diagram showing the control system of the offshore structure
installation system according to a third embodiment of the present invention;
FIG. 6 is a diagram showing a transportation barge according to a fourth embodiment
of the present invention;
FIG. 7 is a diagram showing the transportation barge according to a fifth embodiment
of the present invention;
FIG. 8 is a diagram showing the transportation barge according to a sixth embodiment
of the present invention; and
FIG. 9 is a diagram showing the transportation barge according to a seventh embodiment
of the present invention.
Description of Embodiments
[0037] A transportation barge, an offshore structure installation system and a method of
installing an offshore structure according to embodiments of the present invention
will be described below with reference to the attached drawings.
[First Embodiment]
[0038] A first embodiment of the present invention will be described with reference to FIG.
1. The offshore structure installation system 10 is provided with a transportation
barge 20 and a crane ship 40. The transportation barge 20 is provided with a hull
21, a loading platform 22 and an actuator group 23. The crane ship 40 is provided
with a hull 41, a jack-up unit 42, a deck crane 43, and a crane operator room 44.
The deck crane 43 and the crane operator room 44 are provided on the hull 41. The
jack-up unit 42 is provided with jack-up legs 42a. The deck crane 43 is provided with
a hook 43a which hoists transportation freight. The transportation barge 20 and the
crane ship 40 are possible to self-navigate or be towed.
[0039] FIG. 2 is a diagram schematically showing a mechanism which hoists the transportation
freight loaded on the loading platform 22 of the transportation barge 20. The transportation
barge 20 is provided with an actuator control unit 24 and an actuator operation unit
25. The actuator group 23 is provided with a plurality of actuators 23A to 23D. The
actuators 23A to 23D are connected with the loading platform 22 and support the loading
platform 22 in a position above the hull 21. The actuator group 23 can drive the loading
platform 22 to move up and down. The actuator operation unit 25 outputs an operation
signal through a manual operation. The actuator control unit 24 controls the actuators
23A to 23D based on the operation signal outputted from the actuator operation unit
25. The crane ship 40 is provided with a crane operation unit 45 in the crane operator
room 44. The crane operation unit 45 outputs an operation signal through a manual
operation. The deck crane 43 operates based on the operation signal outputted from
the crane operation unit 45.
[0040] Hereinafter, in the present embodiment, a case that a structure installed offshore
by the offshore structure installation system 10 is a wind turbine will be described.
However, the structure installed offshore may be a petroleum platform, a bridge pier
and so on.
[0041] Referring to FIG. 1, the crane ship 40 is used for a crane work for the installation
of the wind turbine. If the crane ship 40 is arranged in a desired place on a sea
area for wind turbine installation, the jack-up legs 42a of the jack-up unit 42 are
downed to the sea bottom to lift the hull 41 above the sea surface. In this way, the
crane ship 40 is supported on the sea bottom through the jack-up legs 42a. The transportation
barge 20 is used for the transportation of parts and fundamental structures of the
wind turbine. The transportation freight 60 such as the parts and fundamental structures
of the wind turbine is loaded on the loading platform 22. The transportation barge
20 transports the transportation freight 60 from a harbor to the sea area for wind
turbine installation, and lies around the crane ship 40, desirably in a place neighboring
the crane ship 40.
[0042] After that, the transportation freight is unloaded by the crane. The crane work contains
a hoisting work of hoisting the transportation freight 60 from the transportation
barge 20. When carrying out the hoisting work, a hoisting worker 101 and an actuator
operator 102 work on the transportation barge 20 and a crane operator 103 operates
the deck crane 43 in the crane operator room 44.
[0043] In the hoisting work, a slinging worker hangs the transportation freight 60 from
a wire 50 with the hook 43a. Here, the slinging worker hands the transportation freight
60 from the wire 50 such that the transportation freight 60 does not rise from the
loading platform 22 when the transportation barge 20 comes to a lower limit of the
heaving and that the wire 50 sags when the transportation barge 20 comes to the upper
limit of the heaving. The slinging worker may be the hoisting worker 101 or the actuator
operator 102.
[0044] FIG. 3A is a diagram showing the transportation freight 60 and the wire 50 when the
transportation barge 20 came to the lower limit of the heaving. FIG. 3B is a diagram
showing the transportation freight 60 and the wire 50 when the transportation barge
20 came to the upper limit of the heaving. Because the crane ship 40 is supported
to the sea bottom through the jack-up legs 42a, the hook 43a does not move up and
down due to waves. When the transportation barge 20 comes to the lower limit of the
heaving, the wire 50 stretches such that the transportation freight 60 does not rise
from the loading platform 22. When the transportation barge 20 comes to the upper
limit of the heaving, the wire 50 sags.
[0045] The hoisting worker 101 gives a sign by using an instruction tool such as a flag,
a whistle or a transceiver at the timing when the transportation barge 20 comes to
the upper limit of the heaving. The crane operator 103 carries out the manual operation
to the crane operation unit 45 according to the sign from the hoisting worker 101.
The crane operation unit 45 outputs the operation signal based on the manual operation
of the crane operator 103. The deck crane 43 hoists or lifts the transportation freight
60 based on the operation signal outputted from the crane operation unit 45. The actuator
operator 102 carries out the manual operation to the actuator operation unit 25 according
to the sign of the hoisting worker 101. The actuator operation unit 25 outputs the
operation signal based on the manual operation of the actuator operator 102. The actuator
control unit 24 controls the actuator group 23 such that the actuator group 23 lowers
the loading platform 22 based on the operation signal outputted from the actuator
operation unit 25.
[0046] Therefore, as shown in FIG. 3C, at the timing when the transportation barge 20 comes
to the upper limit of the heaving, the transportation freight 60 is hoisted up, and
the loading platform 22 is lowered or moved down. As a result, as shown in FIG. 3D,
the heaving of the hull 21 due to the waves is eased and a sufficient distance is
promptly kept between the transportation freight 60 and the loading platform 22. Thus,
when the transportation freight 60 is hoisted, the collision of the transportation
freight 60 and the loading platform 22 due to the heaving can be prevented. Moreover,
it is possible to prevent that the transportation freight 60 and the loading platform
22 collide at the timing of the upper limit of the next heaving after the transportation
freight 60 is hoisted.
[0047] According to the transportation barge 20, the offshore structure installation system
10 and a method of installing an offshore structure in the present embodiment, the
collision of the transportation freight 60 and the transportation barge 20 can be
prevented when the transportation freight 60 is hoisted from the transportation barge
20 which moves up and down due to the waves. The work steps can be reduced in the
transportation barge 20, the offshore structure installation system 10 and the method
of installing a offshore structure according to the present embodiment, compared with
a case where the transportation freight 60 is lifted in the condition which the transportation
barge 20 has been jacked up and a case where the transportation barge 20 is used for
both of the transportation of the transportation freight 60 and the crane work. Because
the work steps for raising and falling the jack-up legs of the jack-up unit can be
reduced, the transportation barge 20, the offshore structure installation system 10,
and the method of installing an offshore structure according to the present embodiment
are favorable especially when the structure such as the wind turbine is installed
in the sea area with deep water depth. Moreover, because the transportation barge
20 is not required to be provided with the expensive jack-up unit, the chartered vessel
cost of the transportation barge 20 can be reduced.
[Second Embodiment]
[0048] The offshore structure installation system 10 and the method of installing an offshore
structure according to a second embodiment of the present invention will be described
with reference to FIG. 4. The offshore structure installation system 10 and the method
of installing an offshore structure according to the present embodiment are different
from those of the first embodiment in the following point, and are the same as those
of in the other points.
[0049] The transportation barge 20 is provided with a pitching sensor 27 and a rolling sensor
28. Each of the pitching sensor 27 and the rolling sensor 28 is provided with an accelerometer
or a draft gauge. The pitching sensor 27 detects a pitching operation of the hull
21 and outputs a pitching detection signal. The rolling sensor 28 detects a rolling
operation of the hull 21 and outputs a rolling detection signal. The actuator control
unit 24 automatically controls the actuator group 23 to reduce the motion of the loading
platform 22 based on the pitching detection signal and the rolling detection signal.
When receiving the operation signal outputted from the actuator operation unit 25,
the actuator control unit 24 controls the actuator group 23 to stop the automatic
control for reducing the motion of the loading platform 22, and to lower the loading
platform 22. Or, the actuator control unit 24 may carry out both of the automatic
control for reducing the motion of the loading platform 22 and the lowering control
of the loading platform 22 in response to the operation signal outputted from the
actuator operation unit 25.
[0050] According to the present embodiment, because the pitching operation and rolling operation
of the loading platform 22 are reduced, it is possible to carry out the hoisting operation
more easily.
[Third Embodiment]
[0051] The offshore structure installation system 10 and the method of installing an offshore
structure according to a third embodiment of the present invention will be described
with reference to FIG. 5. The offshore structure installation system 10 and the method
of installing an offshore structure according to the present embodiment are different
from those of the first embodiment in the following points, and are the same as those
of the first embodiment in the other points.
[0052] The transportation barge 20 is provided with a heaving sensor 26 which outputs a
heaving detection signal, when detecting the heaving of the transportation barge 20
(e.g. the hull 21). The heaving sensor 26 is provided with an accelerometer or a draft
gauge. The crane ship 40 is provided with an actuator operation unit 46 and a display
unit 47. The actuator operation unit 46 and the display unit 47 are provided in the
crane operator room 44. The display unit 47 receives the heaving detection signal
outputted from the heaving sensor 26 in wired or wireless communication, and displays
the heaving of the transportation barge 20 (e.g. the hull 21) to the crane operator
103 based on the heaving detection signal. For example, the display unit 47 is an
oscilloscope. The actuator operation unit 46 outputs the operation signal through
the manual operation. The actuator control unit 24 receives the operation signal outputted
from the actuator operation unit 46 in the wired or wireless communication.
[0053] The crane operator 103 determines the timing of the upper limit of the heaving of
the transportation barge 20 based on the heaving of the transportation barge 20 displayed
on the display unit 47, and carries out a manual operation to the crane operation
unit 45 and the actuator operation unit 46 at the determined timing. The operation
of crane operation unit 45 based on the manual operation of the crane operator 103
and the working of the deck crane 43 are same as described in the first embodiment.
The actuator operation unit 46 outputs the operation signal based on the manual operation
of the crane operator 103. The actuator control unit 24 controls the actuator group
23 to move down the loading platform 22 based on the output operation signal outputted
from the actuator operation unit 46.
[0054] According to the present embodiment, because the hoisting operation of the transportation
freight 60 and the lowering operation of the loading platform 22 are carried out with
the manual operations in the same crane operator room 44, it is easy to adjust the
timing of the lifting operation of the transportation freight 60 and the timing of
the lowering operation of the loading platform 22.
[0055] It should be noted that another crane operation unit (not shown) different from the
crane operation unit 45 may be provided near the actuator operation unit 25, and the
hoisting operation of the transportation freight 60 and the lowering operation of
the loading platform 22 may be carried out based on the manual operation of the actuator
operator 102. Moreover, the actuator control unit 24 may execute the same control
as the second embodiment.
[Fourth Embodiment]
[0056] The transportation barge 20 according to a fourth embodiment of the present invention
will be described with reference to FIG. 6. The transportation barge 20 according
to the present embodiment, another loading platform 22 and another actuator group
23 are added to the transportation barge 20 according to either of the first to third
embodiments. The other loading platform 22 and the other actuator group 23 are configured
and work in the same manner as the loading platform 22 and the actuator group 23.
Other transportation freight 60 is loaded on the other loading platform 22.
[0057] According to the present embodiment, because the loading platform 22 is provided
for each of transportation freights 60, the hoisting operation becomes easy.
[Fifth Embodiment]
[0058] The transportation barge 20 according to a fifth embodiment of the present invention
will be described with reference to FIG. 7. The transportation barge 20 according
to the present embodiment is provided with swinging motion reducing plates 29 to the
transportation barge 20 according to either of the first to fourth embodiments. The
swinging motion reducing plates 29 project from the hull 21 in front and back directions
to reduce the pitching operation of the transportation barge 20 or project from the
hull 21 to left and right directions to reduce the rolling operation of the transportation
barge 20. According to the present embodiment, because the pitching operation or rolling
operation of the transportation barge 20 is reduced, the hoisting work becomes easy.
It should be noted that the swinging motion reducing plates 29 may be provided to
reduce both the pitching operation and the rolling operation.
[Sixth Embodiment]
[0059] The transportation barge 20 according to a sixth embodiment of the present invention
will be described with reference to FIG. 8. The transportation barge 20 according
to the present embodiment has a ship shape different from that of the transportation
barge 20 according to either of the first to fifth embodiments. The transportation
barge 20 according to the present embodiment has a hull 21 of a SWATH (Small Waterplane
Area Twin Hull) type. According to the present embodiment, because the amplitude of
the heaving of the transportation barge 20 becomes small, the hoisting work becomes
easy.
[Seventh Embodiment]
[0060] The transportation barge 20 according to a seventh embodiment of the present invention
will be described with reference to FIG. 9. The transportation barge 20 according
to the present embodiment has a ship shape different from that of the transportation
barge 20 according to either of the first to fifth embodiments. The transportation
barge 20 according to the present embodiment has a hull 21 of a semi-sub (Semi-Submersible)
type. According to the present embodiment, because the amplitude of the heaving of
the transportation barge 20 becomes small, the hoisting work becomes easy.
[0061] In the above, the transportation barge, the offshore structure installation system
and the method of installing an offshore structure according to the embodiments of
the present invention have been described. However, the present invention is only
limited by the following claims.
1. A transportation barge (20) for installing a structure offshore, wherein the transportation
barge is provided with a hull (21) and a loading platform (22) which is supported
in a position above the hull (21) and on which the structure can be loaded in said
transportation barge, wherein the loading platform is movable up and down, wherein
said transportation barge comprises
an actuator group (23) which is configured to drive said loading platform to move
up and down with respect to the hull (21),
a pitching sensor (27) configured to detect a pitching motion of the hull (21) and
output a pitching detection signal, and
a rolling sensor (28) configured to detect a rolling motion of the hull (21) and output
a rolling detection signal,
said actuator group is configured to move down said loading platform (22) with respect
to the hull (21) based on a first manual operation when the structure is hoisted,
and
the transportation barge further comprises an actuator control unit (24) configured
to automatically control said actuator group based on the pitching detection signal
and/or the rolling detection signal such that the pitching motion and/or the rolling
motion of said loading platform (22) is reduced.
2. The transportation barge according to claim 1, wherein said actuator group is further
configured to move down said loading platform at a timing of an upper limit of a heaving
of said transportation barge.
3. The transportation barge according to claim 1 or 2, further comprising swinging motion
reducing plates (29) provided to reduce a pitching motion or a rolling motion of said
transportation barge.
4. An offshore structure installation system comprising:
a transportation barge according to any one of the preceding claims; and
a crane ship,
wherein said crane ship comprises:
a deck crane;
an actuator operation unit (25) configured to generate a first operation signal through
the first manual operation; and
a crane operation unit configured to generate a second operation signal through a
second manual operation,
wherein said deck crane hoists the structure loaded on said loading platform based
on the second operation signal.
5. The offshore structure installation system according to claim 4,
wherein said transportation barge comprises a heaving sensor configured to detect
a heaving of said transportation barge to output a heaving detection signal, and
wherein said crane ship comprises a display unit configured to display the heaving
of said transportation barge based on the heaving detection signal.
6. The offshore structure installation system according to claim 4,
wherein said deck crane is configured to hoist the transportation freight loaded on
said loading platform at timing of an upper limit of the heaving of said transportation
barge, and
wherein said actuator group is configured to move down said loading platform at the
timing of the upper limit.
7. The offshore structure installation system according to any of claims 4 to 6, wherein
said crane ship comprises:
a hull on which said deck crane is provided; and
a jack-up unit which supports said hull on a sea bottom.
8. A method of installing an offshore structure, comprising:
hoisting a transportation freight (60) loaded on a loading platform (22) of a transportation
barge (20) offshore; and
moving down said loading platform when hoisting the transportation freight,
outputting a first operation signal from an actuator operation unit (25, 46) based
on a first manual operation; and
outputting a second operation signal from a crane operation unit (45) based on a second
manual operation,
wherein said moving down comprises moving down said loading platform by an actuator
group (23) of said transportation barge based on the first operation signal,
wherein said hoisting comprises hoisting the transportation freight by a deck crane
(43) of a crane ship (40) based on the second operation signal, and
wherein said actuator operation unit and said crane operation unit are provided for
one of said transportation barge and said crane ship,
wherein said method further comprises
using a pitching sensor (27) of the transportation barge to detect a pitching motion
of the hull (21) and output a pitching detection signal,
using a rolling sensor (28) of the transportation barge to detect a rolling motion
of the hull (21) of the transportation barge and output a rolling detection signal,
and
using an actuator control unit (24) of the transportation barge to automatically control
said actuator group (23) based on the pitching detection signal and/or the rolling
detection signal such that the pitching motion and/or the rolling motion of said loading
platform (22) is reduced.
9. The method according to claim 8, wherein said actuator operation unit and said crane
operation unit are provided for said crane ship, and
wherein said method further comprises:
detecting a heaving of said transportation barge; and
displaying the heaving of said transportation barge on a display unit (47) of said
crane ship.
10. The method according to any of claims 8 and 9, wherein said hoisting and said moving
down are carried out at a timing of an upper limit of the heaving of said transportation
barge.
11. The method according to claim 8, wherein said hoisting comprises hoisting the transportation
freight by a crane ship supported on a sea bottom through jack-up legs (42a).
1. Transportbarge (20) zum Installieren einer Struktur offshore, wobei die Transportbarge
mit einem Rumpf (21) und einer Ladeplattform (22) bereitgestellt ist, welche in einer
Position oberhalb des Rumpfes (21) abgestützt ist, und auf welche die Struktur in
der Transportbarge geladen werden kann, wobei die Ladeplattform auf und ab bewegbar
ist, wobei
die Transportbarge umfasst
eine Aktuatorgruppe (23), die dazu konfiguriert ist, die Ladeplattform anzutreiben,
um sie in Bezug auf den Rumpf (21) auf und ab zu bewegen,
einen Nicksensor (27), der dazu konfiguriert ist, eine Nickbewegung des Rumpfes (21)
zu erfassen und ein Nickerfassungssignal auszugeben, und
einen Rollsensor (28), der dazu konfiguriert ist, eine Rollbewegung des Rumpfes (21)
zu erfassen und ein Rollerfassungssignal auszugeben,
wobei die Aktuatorgruppe dazu konfiguriert ist, die Ladeplattform (22) in Bezug auf
den Rumpf (21) basierend auf einer ersten manuellen Bedienung nach unten zu bewegen,
wenn die Struktur angehoben wird, und
wobei die Transportbarge weiter eine Aktuatorsteuereinheit (24) umfasst, die dazu
konfiguriert ist, die Aktuatorgruppe basierend auf dem Nickerfassungssignal und/oder
dem Rollerfassungssignal derart automatisch zu steuern, dass die Nickbewegung und/oder
die Rollbewegung der Ladeplattform (22) reduziert wird.
2. Transportbarge nach Anspruch 1, wobei die Aktuatorgruppe weiter dazu konfiguriert
ist, die Ladeplattform zu einem Zeitpunkt einer oberen Grenze eines Hebens der Transportbarge
nach unten zu bewegen.
3. Transportbarge nach Anspruch 1 oder 2, weiter umfassend Platten (29) zur Reduzierung
einer Schwingungsbewegung, die dazu bereitgestellt sind, eine Nickbewegung oder eine
Rollbewegung der Transportbarge zu reduzieren.
4. Offshore-Struktur-Installationssystem, umfassend:
eine Transportbarge nach einem der vorstehenden Ansprüche; und
ein Kranschiff,
wobei das Kranschiff umfasst:
einen Deckkran;
eine Aktuatorbedieneinheit (25), die dazu konfiguriert ist, ein erstes Bediensignal
durch die erste manuelle Bedienung zu erzeugen; und
eine Kranbedieneinheit, die dazu konfiguriert ist, ein zweites Bediensignal durch
eine zweite manuelle Bedienung zu erzeugen,
wobei der Deckkran die auf die Ladeplattform geladene Struktur basierend auf dem zweiten
Bediensignal anhebt.
5. Offshore-Struktur-Installationssystem nach Anspruch 4,
wobei die Transportbarge einen Hebesensor umfasst, der dazu konfiguriert ist, ein
Heben der Transportbarge zu erfassen, um ein Hebeerfassungssignal auszugeben, und
wobei das Kranschiff eine Anzeigeeinheit umfasst, die dazu konfiguriert ist, das Heben
der Transportbarge basierend auf dem Hebeerfassungssignal anzuzeigen.
6. Offshore-Struktur-Installationssystem nach Anspruch 4,
wobei der Deckkran dazu konfiguriert ist, die auf die Ladeplattform geladene Transportfracht
zum Zeitpunkt einer oberen Grenze des Hebens der Transportbarge anzuheben, und
wobei die Aktuatorgruppe dazu konfiguriert ist, die Ladeplattform zum Zeitpunkt der
oberen Grenze nach unten zu bewegen.
7. Offshore-Struktur-Installationssystem nach einem der Ansprüche 4 bis 6, wobei das
Kranschiff umfasst:
einen Rumpf, auf welchem der Deckkran bereitgestellt ist; und
eine Hubeinheit, welche den Rumpf auf einem Meeresboden abstützt.
8. Verfahren zum Installieren einer Offshore-Struktur, umfassend:
offshore Anheben einer Transportfracht (60), die auf eine Ladeplattform (22) einer
Transportbarge (20) geladen ist, und
Bewegen der Ladeplattform nach unten, wenn die Transportfracht angehoben wird,
Ausgeben eines ersten Bediensignals von einer Aktuatorbedieneinheit (25, 46) basierend
auf einer ersten manuellen Bedienung; und
Ausgeben eines zweiten Bediensignals von einer Kranbedieneinheit (45) basierend auf
einer zweiten manuellen Bedienung,
wobei das Bewegen nach unten ein nach unten Bewegen der Ladeplattform durch eine Aktuatorgruppe
(23) der Transportbarge basierend auf dem ersten Bediensignal umfasst,
wobei das Anheben ein Anheben der Transportfracht durch einen Deckkran (43) eines
Kranschiffs (40) basierend auf dem zweiten Bediensignal umfasst, und wobei die Aktuatorbedieneinheit
und die Kranbedieneinheit für eines von der Transportbarge und dem Kranschiff bereitgestellt
sind,
wobei das Verfahren weiter ein Verwenden eines Nicksensors (27) der Transportbarge
umfasst, um eine Nickbewegung des Rumpfes (21) zu erfassen und ein Nickerfassungssignal
auszugeben,
ein Verwenden eines Rollsensors (28) der Transportbarge, um eine Rollbewegung des
Rumpfes (21) der Transportbarge zu erfassen und ein Rollerfassungssignal auszugeben,
und
ein Verwenden einer Aktuatorsteuereinheit (24) der Transportbarge zum automatischen
Steuern der Aktuatorgruppe (23) basierend auf dem Nickerfassungssignal und/oder dem
Rollerfassungssignal derart, dass die Nickbewegung und/oder die Rollbewegung der Ladeplattform
(22) reduziert wird.
9. Verfahren nach Anspruch 8, wobei die Aktuatorbedieneinheit und die Kranbedieneinheit
für das Kranschiff bereitgestellt sind, und
wobei das Verfahren weiter umfasst:
Erfassen eines Hebens der Transportbarge; und
Anzeigen des Hebens der Transportbarge auf einer Anzeigeeinheit (47) des Kranschiffs.
10. Verfahren nach einem der Ansprüche 8 und 9, wobei das Anheben und das Bewegen nach
unten zu einem Zeitpunkt einer Obergrenze des Hebens der Transportbarge durchgeführt
werden.
11. Verfahren nach Anspruch 8, wobei das Anheben ein Anheben der Transportfracht durch
ein Kranschiff umfasst, das durch Hubbeine (42a) auf einem Meeresboden abgestützt
ist.
1. Barge de transport (20) permettant d'installer une structure offshore, dans laquelle
la barge de transport est dotée d'une coque (21) et d'une plateforme de chargement
(22) qui est supportée dans une position au-dessus de la coque (21) et sur laquelle
la structure peut être chargée dans ladite barge de transport, dans laquelle la plateforme
de chargement peut être montée et descendue, dans laquelle
ladite barge de transport comprend
un groupe d'actionneurs (23) qui est configuré pour amener ladite plateforme de chargement
à monter et descendre par rapport à la coque (21),
un capteur de tangage (27) configuré pour détecter un mouvement de tangage de la coque
(21) et émettre un signal de détection de tangage, et
un capteur de roulis (28) configuré pour détecter un mouvement de roulis de la coque
(21) et émettre un signal de détection de roulis,
ledit groupe d'actionneurs est configuré pour faire descendre ladite plateforme de
chargement (22) par rapport à la coque (21) sur la base d'une première opération manuelle
lorsque la structure est hissée, et
la barge de transport comprend en outre une unité de commande d'actionneurs (24) configurée
pour commander automatiquement ledit groupe d'actionneurs sur la base du signal de
détection de tangage et/ou du signal de détection de roulis de sorte que le mouvement
de tangage et/ou le mouvement de roulis de ladite plateforme de chargement (22) soit
réduit.
2. Barge de transport selon la revendication 1, dans laquelle ledit groupe d'actionneurs
est en outre configuré pour faire descendre ladite plateforme de chargement à un moment
d'une limite supérieure d'un pilonnement de ladite barge de transport.
3. Barge de transport selon la revendication 1 ou 2, comprenant en outre des plaques
de réduction de mouvement de balancement (29) prévues pour réduire un mouvement de
tangage ou un mouvement de roulis de ladite barge de transport.
4. Système d'installation de structure offshore comprenant :
une barge de transport selon l'une quelconque des revendications précédentes ; et
un bateau à grue,
dans lequel ledit bateau à grue comprend :
une grue de pont ;
une unité d'opération d'actionneurs (25) configurée pour générer un premier signal
d'opération par le biais de la première opération manuelle ; et
une unité d'opération de grue configurée pour générer un second signal d'opération
par le biais d'une seconde opération manuelle,
dans lequel ladite grue de pont hisse la structure chargée sur ladite plateforme de
chargement sur la base du second signal d'opération.
5. Système d'installation de structure offshore selon la revendication 4,
dans lequel ladite barge de transport comprend un capteur de pilonnement configuré
pour détecter un pilonnement de ladite barge de transport pour émettre un signal de
détection de pilonnement, et
dans lequel ledit bateau à grue comprend une unité d'affichage configurée pour afficher
le pilonnement de ladite barge de transport sur la base du signal de détection de
pilonnement.
6. Système d'installation de structure offshore selon la revendication 4,
dans lequel ladite grue de pont est configurée pour hisser le fret de transport chargé
sur ladite plateforme de chargement à un moment d'une limite supérieure du pilonnement
de ladite barge de transport, et
dans lequel ledit groupe d'actionneurs est configuré pour faire descendre ladite plateforme
de chargement au moment de la limite supérieure.
7. Système d'installation de structure offshore selon l'une quelconque des revendications
4 à 6, dans lequel ledit bateau à grue comprend :
une coque sur laquelle ladite grue de pont est prévue ; et
une unité autoélévatrice qui supporte ladite coque sur un fond marin.
8. Procédé d'installation d'une structure offshore, comprenant :
un hissage d'un fret de transport (60) chargé sur une plateforme de chargement (22)
d'une barge de transport (20) offshore ; et
une descente de ladite plateforme de chargement lors du hissage du fret de transport,
une émission d'un premier signal d'opération à partir d'une unité d'opération d'actionneurs
(25, 46) sur la base d'une première opération manuelle ; et
une émission d'un second signal d'opération à partir d'une unité d'opération de grue
(45) sur la base d'une seconde opération manuelle,
dans lequel ladite descente comprend une descente de ladite plateforme de chargement
par un groupe d'actionneurs (23) de ladite barge de transport sur la base du premier
signal d'opération,
dans lequel ledit hissage comprend un hissage du fret de transport par une grue de
pont (43) d'un bateau à grue (40) sur la base du second signal d'opération, et
dans lequel ladite unité d'opération d'actionneurs et ladite unité d'opération de
grue sont prévues pour l'un de ladite barge de transport et dudit bateau à grue,
dans lequel ledit procédé comprend en outre
une utilisation d'un capteur de tangage (27) de la barge de transport pour détecter
un mouvement de tangage de la coque (21) et émettre un signal de détection de tangage,
une utilisation d'un capteur de roulis (28) de la barge de transport pour détecter
un mouvement de roulis de la coque (21) de la barge de transport et émettre un signal
de détection de roulis, et
une utilisation d'une unité de commande d'actionneurs (24) de la barge de transport
pour commander automatiquement ledit groupe d'actionneurs (23) sur la base du signal
de détection de tangage et/ou du signal de détection de roulis de sorte que le mouvement
de tangage et/ou le mouvement de roulis de ladite plateforme de chargement (22) soit
réduit.
9. Procédé selon la revendication 8, dans lequel ladite unité d'opération d'actionneurs
et ladite unité d'opération de grue sont prévues pour ledit bateau à grue, et
dans lequel ledit procédé comprend en outre :
une détection d'un pilonnement de ladite barge de transport ; et
un affichage du pilonnement de ladite barge de transport sur une unité d'affichage
(47) dudit bateau à grue.
10. Procédé selon l'une quelconque des revendications 8 et 9, dans lequel ledit hissage
et ladite descente sont réalisés à un moment d'une limite supérieure du pilonnement
de ladite barge de transport.
11. Procédé selon la revendication 8, dans lequel ledit hissage comprend un hissage du
fret de transport par un bateau à grue supporté sur un fond marin par le biais de
pieds autoélévateurs (42a).