Technical Field
[0001] The present invention relates to a safety door system used at a platform of a train
station and, more particularly, to a rope screen door (RSD) system used at a platform
of a train station, in which a plurality of blocks, to which ropes are connected,
are made smaller and raising blocks are provided to sequentially overlap with each
other, allowing installation height of a lifting mechanism to be minimized.
Background Art
[0002] Generally, as shown in FIG. 1, rope type platform screen (or safety) door systems
are configured such that ropes 200 are moved up and down by lifting mechanisms 100
installed at selected places from an inlet to an outlet of a platform beside rail
tracks to open and close safety doors, thereby allowing passengers to board trains
or alight from trains in a safe manner.
[0003] However, since door units of a conventional rope type platform screen door system
respectively require driving members for moving up and down a plurality of blocks
to which ropes are connected, a problem arises in that a great amount of volume and
height is required, causing reduced operation efficiency.
[0004] In the meantime, according to the conventional rope type platform screen door system,
as shown in FIG. 2, as blocks 130 to which ropes 200 are connected have an increased
size, blocks require higher lifting height (B), resulting in the lifting mechanisms
100 each having increased entire height and size.
[0005] Further, another problem arises in that the conventional rope type platform screen
door system could not be installed at platforms having narrow installation space and
low height.
[0006] The conventional rope type platform screen doors are disclosed in
Korean Patent Nos. 10-0601112 (published on July 19, 2006), and
10-0789706 (published on January 28, 2008),
10-1195652 (published on October 30, 2012),
10-1344995 (published on December 24, 2013), and
10-1345027 (published on December 26, 2013),
Korean Patent Application Publication No. 10-2012-0099566 (published on September
11, 2012),
Korean Patent Application Publication No. 10-2013-0101698 A and
Korean Patent Application Publication No. 10-2012-0099566 A.
Disclosure
Technical Problem
[0007] An object of the present invention is to provide a safety door system installed at
a platform of a train station, in which blocks and multi-stage blocks, to which ropes
are connected, are made smaller, thereby minimizing installation height and operation
space.
[0008] Another object of the present invention is to provide a safety door system installed
at a platform of a train station, in which blocks are moved up and down to move up
and down the multi-stage blocks, allowing both blocks and multi-stage blocks to overlap
with each other and to be separated from each other, respectively.
Technical Solution
[0009] In an aspect of the present invention, proposed is a safety door system provided
at a platform of a train station, the safety door system including a plurality of
lifting mechanisms 100 each having: a main body 110 provided at selected positions
from an inlet to an outlet of the platform; a driving unit (driving means) 120 provided
at an inside or an outside of the main body 110; a second rotor 123 rotating in response
to an operation of the driving unit 120; a third rotor 125 connected to one side of
the second rotor 123 and a diameter of which is larger or smaller than that of the
second rotor 123; a plurality of motion blocks 130 moved up and down along the main
body 110 in response to the operation of the driving unit 120 so as to overlap with
and be separated from each other, respectively; a plurality of ropes 200 horizontally
connecting the motion blocks 130 to allow a safety door to be opened or closed; a
plurality of multi-stage blocks 140 to which the ropes 200 are horizontally connected
so that the multi-stage blocks are moved up and down along the main body 110; and
an interworking unit 150 configured to, when the motion blocks 130 are moved up and
down, enable the multi-stage blocks 140 to be moved up and down, thereby overlapping
with and being separated from the blocks 130, respectively.
[0010] Here, a rail 111 is provided in the main body 110 in a vertical direction so as to
guide a motion of the motion blocks 130 and the multi-stage blocks 140.
[0011] The rail 111 is integrally provided with first support sections 111a and second support
sections 111b on opposite sides of a middle part and a front part of the rail as viewed
in a plan view to guide the motion blocks 130 and the multi-stage blocks 140, respectively.
[0012] The driving unit 120 may include a drive motor 121, wherein a first rotor 122 is
provided on one side of the drive motor 121 and a fourth rotor 126 is provided on
one side of the main body 110, and wherein first and second connectors 124 and 127
are provided and circulated between the first and second rotors 122 and 123 and between
the third and fourth rotors 125 and 126 so as to connect one motion block 130 and
another motion block 130, respectively.
[0013] The second connector 127 may be provided with a weight 128 on one side thereof.
[0014] The interworking unit 150 may include an interworking section 151 fixed to one side
of each of the multi-stage blocks 140 so as to vertically pass through one side of
each of the motion blocks 130, and having engaging steps 151a on a lower portion thereof.
[0015] The interworking unit 150 may include: a pair of rollers 152 provided on upper and
lower parts of one multi-stage block 140; a belt 153 circulated between the rollers
152; a first connection part 154 connecting one side of the belt 153 and upper portions
of the motion blocks 130; a support part 155 provided on a lower portion of another
multi-stage block 140 adjacent to the multi-stage block 140; a support roller 156
provided on a lower portion of the support part 155; a support rope 157 connected
between the upper portion of the multi-stage block 140 and one side of an upper portion
of the main body 110 along the support roller 156; and a second connection part 158
connecting one side of the belt 153 and another motion block 130 adjacent to the motion
block 130.
Advantageous Effects
[0016] According to the present invention, ropes are sequentially moved up and down so as
to open and close safety doors of the platform door system such that passengers are
able to safely board and alight from a train.
[0017] Particularly, the plurality of blocks may be sequentially moved up and down using
a single driving unit, thereby improving operation efficiency.
[0018] Further, the plurality of blocks are sequentially overlapped with each other while
being moved up, thereby minimizing the entire installation height, allowing easy application
to a platform having lower height.
[0019] Further, the platform door system has a simple structure and allows ease of maintenance,
thereby improving operation efficiency.
Description of Drawings
[0020]
FIG. 1 is a front view schematically illustrating a structure of a conventional safety
platform door system;
FIG. 2 is a front view schematically illustrating a motion of ropes in the conventional
safety platform door system;
FIG. 3 is a front view illustrating a structure of a safety platform door system according
to the present invention;
FIG. 4 is a cross-sectional view taken along line A-A of FIG. 3;
FIG. 5 is a front view illustrating a moving-up motion of ropes in the safety platform
door system of the present invention;
FIGS. 6 and 7 are side views illustrating an operation of an interworking unit of
the safety platform door system; and
FIG. 8 is a front view schematically illustrating a moving-up motion or a moving-down
motion of ropes in the safety platform door system.
Best Mode
[0021] A preferred embodiment of the present invention will now be described with reference
to the accompanying drawings.
[0022] FIG. 3 is a front view illustrating a structure of a safety platform door system
according to the present invention, FIG. 4 is a cross-sectional view taken along line
A-A of FIG. 3, FIG. 5 is a front view illustrating a moving-up motion of ropes in
the safety platform door system of the present invention, FIGS. 6 and 7 are side views
illustrating an operation of an interworking unit of the safety platform door system,
and FIG. 8 is a front view schematically illustrating a moving-up motion or a moving-down
motion of ropes in the safety platform door system.
[0023] A safety door system according to the present invention is provided at a platform
of a train station. The safety door system includes a plurality of lifting mechanisms
100 each having: a main body 110 provided at selected positions from an inlet to an
outlet of the platform; a driving unit 120 provided on one side of the main body 110;
a second rotor 123 rotating in response to an operation of the driving unit 120; a
third rotor 125 connected to one side of the second rotor 123 and a diameter of which
is larger or smaller than that of the second rotor 123; a plurality of motion blocks
130 connected to the second and third rotors 123 and 125; respectively, so as to be
moved up and down in response to the operation of the driving unit 120, being overlapped
with and separated from each other, respectively; a plurality of ropes 200 horizontally
connecting the motion blocks 130 to allow a safety door to be opened or closed; a
plurality of multi-stage blocks 140 to which the ropes 200 are horizontally connected
so that the multi-stage blocks are moved up and down along the main body 110; and
an interworking unit 150 configured to, when the motion blocks 130 are moved up and
down, enable the multi-stage blocks 140 to be moved up and down, thereby overlapping
with and being separated from the blocks 130, respectively.
[0024] The lifting mechanism 100 is installed on a safety line on a platform of a train
where passengers can board or alight from a train. When a train arrives and stops
at a boarding position of the platform, the lifting mechanism is activated to move
up the motion blocks 130 and the ropes 200 to allow a safety door to be opened so
that passengers can board the train. On the contrary, when passengers have boarded
the train, the lifting mechanism 100 is activated to move down the motion blocks 130
and the ropes 200 to allow the safety door to be closed so that passengers cannot
board the train, thereby ensuring passenger safety.
[0025] Here, main bodies 110 of the lifting mechanisms are vertically firmly installed at
fixed positions at regular intervals along a platform.
[0026] Particularly, a rail 111 is vertically installed on one side so as to guide a motion
of the motion blocks 130 and multi-stage blocks 140, and rollers 131 and 141 are provided
on one side of each of the multi-stage blocks 140 to allow the multi-stage blocks
to be easily moved along the rail 111.
[0027] Here, as shown in FIG. 4, the rail 111 may be integrally provided with first support
sections 111a and second support sections 111b on opposite sides of a middle part
and a front part of the rail as viewed in a plan view to guide the motion blocks 130
and the multi-stage blocks 140, respectively, thereby enabling easy moving up and
down of the motion blocks 130 and the multi-stage blocks 140 along a single rail 111,
and therefore minimizing deformation that may occur due to load generated during the
moving-up and down motion.
[0028] An engaging member (not shown) may be provided on one side of a lower or middle portion
of the rail 111 in order to engage and stop the multi-stage blocks 140.
[0029] Specifically, while the motion block 130 can be stopped while being moved up and
down by the operation of the driving unit 120, the multi-stage block 140 cannot be
stopped at specified positions such that the multi-stage block 140 is moved up during
a moving-up motion of the motion block 130 and the multi-stage block 140 is not overlapped
with an upper portion of the motion block 130 in order to close the safety door and
prevent passengers boarding during a moving-down motion of the motion block 130. Thus,
a stopper member 112 may be provided to engage and stop the multi-stage block 140.
[0030] The engaging member may have a variety of configurations and shapes, such as a shock
absorber, a bolt or the like, and may be provided at a specified position of the rail
111 or the main body 110 in order to engage and stop the multi-stage block 140.
[0031] In the meantime, the driving unit 120 is an element that may be provided on one side
of an inside or an outside of the main body 110 according to installation space and
operation efficiency so as to move up and down the motion blocks 130.
[0032] The driving unit 120 includes a first rotor 123 that is provided on one side of an
upper portion of the main body 110 so as to be connected to the motion block 130,
the second rotor 125 having a larger or smaller diameter than that of the first rotor
123 and which is provided on one side of the first rotor 123 so as to be connected
to another motion block 130 adjacent to the motion block 130, and a drive motor 121
for rotating the first or second rotors 123 or 125.
[0033] Particularly, since the first and second rotors 123 and 125 have different diameters,
so the multi-stage blocks 140 as well as the motion blocks 130, connected by the rotors,
are not overlapped with, but separated from each other during a moving-up or down
motion, safety doors can be opened or closed with the action of the ropes 200.
[0034] Here, diameters of the first and second rotors 123 and 125 may vary according to
a moving-up or down position and a height of the motion block 130 and multi-stage
block 140.
[0035] A driving rotating body 122 and a third rotor 126 are provided on one sides of the
drive motor 121 and the main body 110, respectively, and a first connector 124 is
provided so as to be moved between the driving rotating body 122 and the first rotor
123 and connected to one motion block 130, and a second connector 127 is provided
so as to be moved between the second rotor 125 and the third rotor 126 and connected
to another block 130 adjacent to the motion block 130.
[0036] Here, the drive motor 121 may include a reduction gear or a brake so as to perform
a constant-speed rotation under the control of a controller.
[0037] Thus, the drive motor 121 enables both the rotation of the driving rotating body
122 and the first rotor 123 to move up and down the motion block 130 and the rotation
of the second and third rotors 125 and 126 to move up and down adjacent motion block
130 at the same time.
[0038] Particularly, the driving rotating body 122, the first rotor 123, the second rotor
125, and the third rotor 126 may employ an element such as a sprocket, a pulley or
the like, and the first and second connectors 124 and 127 may employ a chain, a belt
or the like at the same time.
[0039] A weight 128 may be provided on one side of the second connector 127 in order to
move down the second connector due to its self-load upon events such as emergency
situations, a breakout, or a failure of the driving unit 120 so as to forcedly move
up the motion blocks 130, the multi-stage blocks 140, and ropes 200 so that safety
doors can be opened.
[0040] Further, a shock-absorber 132 may be provided on a lower portion of the motion block
130 to minimize a shock occurring during a moving up and down motion.
[0041] Further, the interworking unit 150 may be provided between the motion block 130 and
the multi-stage block to enable the multi-stage block 140 to be moved up and down
during moving up and down motions of the motion block 130, respectively.
[0042] Here, the interworking unit 150 may include an interworking section 151 fixed to
one side of each of the multi-stage blocks 140 so as to vertically pass through one
side of each of the motion blocks 130, and having engaging steps 151a on a lower portion
thereof.
[0043] The interworking section 151 may have a shape like a rod, a rail, or the like that
serves to assist moving-up of the multi-stage block 140 during a moving-up motion
of the motion block 130 and to assist self moving-down of the multi-stage block 140
during a moving-down motion of the multi-stage block 140 in a state of the engaging
step 151a being engaged.
[0044] According to the present invention, the interworking unit 150 serves to sequentially
move up or down the motion blocks 130 and the multi-stage blocks 140.
[0045] In an embodiment shown in FIG. 6, the interworking unit includes: a pair of rollers
152 provided on upper and lower parts of one multi-stage block 140; a belt 153 circulated
between the rollers 152; a first connection part 154 connecting one side of the belt
153 and upper portions of the motion blocks 130; a support part 155 provided on a
lower portion of another multi-stage block 140 adjacent to the multi-stage block 140;
a support roller 156 provided on a lower portion of the support part 155; a support
rope 157 connected between the upper portion of the multi-stage block 140 and one
side of an upper portion of the main body 110 along the support roller 156; and a
second connection part 158 connecting one side of the belt 153 and another motion
block 130 adjacent to the motion block 130.
[0046] Particularly, the roller 152 serves to allow the belt 153 to be smoothly moved and,
when the belt 153 is moved up with a moving-up motion of the motion block 130 and
cannot be moved further, the belt 153 is in a stage of being moved up while moving
up the multi-stage block 140 in a overlapped manner.
[0047] Further, the support part 155 and the support roller 156 serve to naturally move
up another multi-stage block 140 adjacent to the multi-stage block 140 when the multi-stage
block 140 is moved up.
[0048] That is, when the multi-stage block 140 is moved up, both a moving-up of the support
rope 157 and engagement of the support roller 156 occur at the same time, thereby
moving up another multi-stage block 140 adjacent to the multi-stage block 140.
[0049] Particularly, the support part 155 may preferably have a length extending such that,
when moved down, the motion block 130 and the multi-stage block 140 are not overlapped
with each other as viewed from a front side.
[0050] In the conventional technique, the motion blocks 130 should be connected to the driving
unit 120 via ropes 200 to activate a safety door, so the height of the motion block
130 is increased and an operating mechanism of the driving unit 120 becomes complex.
[0051] Unlike the conventional technique, the multi-stage blocks 140 according to the present
invention can solve the problem relevant to the height of the motion block 130, efficiently
prevent passengers from boarding, and can be freely moved in a vertical direction
because the multi-stage block 140 is not connected to the driving unit 120.
[0052] That is, the multi-stage block 140 may preferably be provided by plurality of blocks
such that they are sequentially moved up and down during moving-up and down motions
of the motion blocks 130 by the operation of the driving unit 120, being overlapped
with and separated from the motion blocks 130, respectively.
[0053] Further, the rope 200 is an essential element to prevent passengers from boarding,
and may be formed from a metallic core covered with a rubber or synthetic resinous
material in order to both prevent corrosion thereof and protect a passenger from a
safety accident such as a collision.
[0054] Thus, according to the present invention, as illustrated in FIG. 8, with the operation
of the driving unit 120, the multi-stage blocks 140 are moved up and overlapped with
the motion blocks during the moving-up of the motion blocks 130, thereby securing
height (A) for which a passenger can pass through and minimizing a moved-up height
(B) and an installation height of the lifting mechanism 100, and the multi-stage blocks
140 are sequentially moved down during the moving-down of the motion blocks 130, being
separated from the motion blocks 130, thereby preventing passengers from boarding.
[0055] With the configuration in which the motion block 130 and the multi-stage block 140
have a small size and they are overlapped with each other during a moving-up motion
thereof, a conventional problem in which the installation height (B) is relatively
increased due to a larger size of the motion block 130 can be resolved.
[0056] While the present invention has been described with reference to the embodiments,
the scope of present invention is not limited thereto. Of course, the disclosed embodiments
and equivalents thereof are included in the scope of the present invention.
1. A safety door system provided at a platform of a train station, the safety door system
comprising a plurality of lifting mechanisms (100) each including:
a main body (110) provided at selected positions from an inlet to an outlet of the
platform;
a driving unit (120) provided at an inside or an outside of the main body (110);
a second rotor (123) rotating in response to an operation of the driving unit (120);
a third rotor (125) connected to one side of the second rotor (123) and a diameter
of which is larger or smaller than that of the second rotor (123);
a plurality of motion blocks (130) moved up and down along the main body (110) in
response to the operation of the driving unit (120) so as to overlap with and be separated
from each other, respectively;
a plurality of ropes (200) horizontally connecting the motion blocks (130) to each
other to allow a safety door to be opened or closed;
a plurality of multi-stage blocks (140) to which the ropes (200) are horizontally
connected so that the multi-stage blocks are moved up and down along the main body
(110); and
an interworking unit (150) configured to, when the motion blocks (130) are moved up
and down, enable the multi-stage blocks (140) to be moved up and down, thereby overlapping
with and being separated from the blocks (130), respectively, wherein a rail (111)
is provided in the main body (110) in a vertical direction so as to guide a motion
of the motion blocks (130) and the multi-stage blocks (140), and wherein the rail
(111) is integrally provided with first support sections (111a) and second support
sections (111b) on opposite sides of a middle part and a front part of the rail as
viewed in a plan view to guide the motion blocks (130) and the multi-stage blocks
(140), respectively.
2. The safety door system according to claim 1, wherein the driving unit (120) includes
a drive motor (121), wherein a first rotor (122) is provided on one side of the drive
motor (121) and a fourth rotor (126) is provided on one side of the main body (110),
and wherein first and second connectors (124 and 127) are provided and circulated
between the first and second rotors (122 and 123) and between the third and fourth
rotors (125 and 126) so as to connect one motion block (130) and another motion block
(130), respectively.
3. The safety door system according to claim 2, wherein the second connector (127) is
provided with a weight (128) on one side thereof.
4. The safety door system according to claim 1, wherein the interworking unit (150) includes
an interworking section (151) fixed to one side of each of the multi-stage blocks
(140) so as to vertically pass through one side of each of the motion blocks (130),
and having engaging steps (151a) on a lower portion thereof.
5. The safety door system according to claim 1, wherein the interworking unit (150) includes:
a pair of rollers (152) provided on upper and lower parts of one multi-stage block
(140);
a belt (153) circulated between the rollers (152);
a first connection part (154) connecting one side of the belt (153) and upper portions
of the motion blocks (130);
a support part (155) provided on a lower portion of another multi-stage block (140)
adjacent to the multi-stage block (140);
a support roller (156) provided on a lower portion of the support part (155);
a support rope (157) connected between the upper portion of the multi-stage block
(140) and one side of an upper portion of the main body (110) along the support roller
(156); and
a second connection part (158) connecting one side of the belt (153) and another motion
block (130) adjacent to the motion block (130).
1. Sicherheitstürsystem, das an einem Bahnsteig eines Bahnhofs vorgesehen ist, wobei
das Sicherheitstürsystem eine Vielzahl von Anhebemechanismen (100) aufweist, welche
jeweils aufweisen:
einen Hauptkörper (110), der an ausgewählten Positionen von einem Einlass zu einem
Auslass des Bahnsteigs vorgesehen ist;
eine Antriebseinheit (120), die an einer Innenseite oder einer Außenseite des Hauptkörpers
(110) vorgesehen ist;
einen zweiten Rotor (123), welcher sich als Reaktion auf eine Betätigung der Antriebseinheit
(120) dreht;
einen dritten Rotor (125), der mit einer Seite des zweiten Rotors (123) verbunden
ist und dessen Durchmesser größer oder kleiner als jener des zweiten Rotors (123)
ist;
eine Vielzahl von Bewegungsblöcken (130), die als Reaktion auf die Betätigung der
Antriebseinheit (120) entlang des Hauptkörpers (110) nach oben und unten bewegt werden,
so dass sie einander überlappen bzw. voneinander getrennt werden;
eine Vielzahl von Seilen (200), welche die Bewegungsblöcke (130) horizontal miteinander
verbinden, um es einer Sicherheitstür zu erlauben, geöffnet oder geschlossen zu werden;
eine Vielzahl von mehrstufigen Blöcken (140), mit denen die Seile (200) horizontal
verbunden sind, so dass die mehrstufigen Blöcke entlang des Hauptkörpers (110) nach
oben und unten bewegt werden; und
eine Zusammenwirkungseinheit (150), die eingerichtet ist, zu ermöglichen, dass die
mehrstufigen Blöcke (140) nach oben und unten bewegt werden, wenn die Bewegungsblöcke
(130) nach oben und unten bewegt werden, wodurch sie sich mit den Blöcken (130) überlappen
bzw. von diesen getrennt werden, wobei eine Schiene (111) in dem Hauptkörper (110)
in einer Vertikalrichtung vorgesehen ist, um eine Bewegung der Bewegungsblöcke (130)
und der mehrstufigen Blöcke (140) zu führen, und wobei die Schiene (111) integral
mit ersten Stützabschnitten (lila) und zweiten Stützabschnitten (111b) in Draufsicht
betrachtet auf gegenüberliegenden Seiten eines mittleren Teils und eines vorderen
Teils der Schiene versehen ist, um die Bewegungsblöcke (130) bzw. die mehrstufigen
Blöcke (140) zu führen.
2. Sicherheitstürsystem nach Anspruch 1, wobei die Antriebseinheit (120) einen Antriebsmotor
(121) aufweist, wobei ein erster Rotor (122) auf einer Seite des Antriebsmotors (121)
vorgesehen ist und ein vierter Rotor (126) auf einer Seite des Hauptkörpers (110)
vorgesehen ist, und wobei erste und zweite Verbinder (124 und 127) vorgesehen sind
und zwischen den ersten und zweiten Rotoren (122 und 123) und zwischen den dritten
und vierten Rotoren (125 und 126) zirkulieren, so dass sie einen Bewegungsblock (130)
und einen anderen Bewegungsblock (130) jeweils miteinander verbinden.
3. Sicherheitstürsystem nach Anspruch 2, wobei der zweite Verbinder (127) mit einem Gewicht
(128) auf einer Seite dieses Verbinders versehen ist.
4. Sicherheitstürsystem nach Anspruch 1, wobei die Zusammenwirkungseinheit (150) einen
Zusammenwirkungsabschnitt (151) aufweist, der an einer Seite von jedem der mehrstufigen
Blöcke (140) befestigt ist, um vertikal durch eine Seite von jedem der Bewegungsblöcke
(130) zu verlaufen, und der Wirkverbindungsstufen (151a) an einem unteren Abschnitt
davon aufweist.
5. Sicherheitstürsystem nach Anspruch 1, wobei die Zusammenwirkungseinheit (150) aufweist:
ein Paar Rollen (152), die an oberen und unteren Teilen eines mehrstufigen Blocks
(140) vorgesehen sind;
einen Riemen (153), der zwischen den Rollen (152) zirkuliert;
ein erstes Verbindungsteil (154), das eine Seite des Riemens (153) und obere Abschnitte
der Bewegungsblöcke (130) verbindet;
ein Tragteil (155), das an einem unteren Abschnitt eines anderen mehrstufigen Blocks
(140) benachbart des mehrstufigen Blocks (140) vorgesehen sind;
eine Tragrolle (156), die an einem unteren Abschnitt des Tragteils (155) vorgesehen
ist;
ein Tragseil (157), das zwischen dem oberen Abschnitt des mehrstufigen Blocks (140)
und einer Seite eines oberen Abschnitts des Hauptkörpers (110) entlang der Tragrolle
(156) verbunden ist; und
ein zweites Verbindungsteil (158), das eine Seite des Riemens (153) und einen anderen
Bewegungsblock (130) benachbart des Bewegungsblocks (130) verbindet.
1. Système de porte de sécurité disposé au niveau d'un quai d'une gare ferroviaire, le
système de porte de sécurité comprenant une pluralité de mécanismes élévateurs (100)
comportant chacun :
un corps principal (110) disposé au niveau de positions sélectionnées, d'une entrée
jusqu'à une sortie du quai ;
une unité d'entraînement (120) disposée au niveau d'un intérieur ou d'un extérieur
du corps principal (110) ;
un deuxième rotor (123) tournant en réponse à un fonctionnement de l'unité d'entraînement
(120) ;
un troisième rotor (125) relié à un côté du deuxième rotor (123) et dont un diamètre
est plus grand ou plus petit que celui du deuxième rotor (123) ;
une pluralité de blocs à mouvement (130) pouvant être déplacés vers le haut et vers
le bas le long du corps principal (110) en réponse au fonctionnement de l'unité d'entraînement
(120), afin de se chevaucher et d'être séparés les uns des autres, respectivement
;
une pluralité de cordes (200) reliant horizontalement les blocs à mouvement (130)
entre eux, afin de permettre l'ouverture ou la fermeture d'une porte de sécurité ;
une pluralité de blocs à étages multiples (140) auxquels les cordes (200) sont reliées
horizontalement, de sorte que les blocs à étages multiples se déplacent vers le haut
et vers le bas le long du corps principal (110) ; et
une unité d'interfonctionnement (150) conçue, lorsque les blocs à mouvement (130)
sont déplacés vers le haut et vers le bas, pour permettre aux blocs à étages multiples
(140) d'être déplacés vers le haut et vers le bas, donc chevauchant avec les blocs
(130) et se séparant de ces derniers, respectivement, un rail (111) étant prévu dans
le corps principal (110), dans une direction verticale, afin de guider un mouvement
des blocs à mouvement (130) et des blocs à étages multiples (140), et le rail (111)
étant doté intégralement de premières sections de support (111a) et de seconds sections
de support (111b) sur des côtés opposés d'une partie centrale et d'une partie avant
du rail, selon une vue en plan, afin de guider les blocs à mouvement (130) et les
blocs à étages multiples (140), respectivement.
2. Le système de porte de sécurité selon la revendication 1, dans lequel l'unité d'entraînement
(120) comprend un moteur d'entraînement (121), dans lequel un premier rotor (122)
est prévu d'un côté du moteur d'entraînement (121) et un quatrième rotor (126) est
prévu d'un côté du corps principal (110), et dans lequel des premier et second raccords
(124 et 127) sont prévus et circulés entre les premier et deuxième rotors (122 et
123) et entre les troisième et quatrième rotors (125 et 126), afin de relier un bloc
à mouvement (130) et un autre bloc à mouvement (130), respectivement.
3. Le système de porte de sécurité selon la revendication 2, dans lequel le second raccord
(127) est muni d'un poids (128) d'un côté dudit raccord.
4. Le système de porte de sécurité selon la revendication 1, dans lequel l'unité d'interfonctionnement
(150) comprend une section d'interfonctionnement (151) fixée à un côté de chaque bloc
à étages multiples (140), afin de passer verticalement à travers un côté de chaque
bloc à mouvement (130), et comportant des marches d'entrée en prise (151a) sur une
partie inférieure de ladite section.
5. Le système de porte de sécurité selon la revendication 1, dans lequel l'unité d'interfonctionnement
(150) comprend :
une pair de rouleaux (152) prévus sur des parties supérieure et inférieure d'un bloc
à étages multiples (140) ;
une courroie (153) circulant entre les rouleaux (152) ; une première partie de liaison
(154) reliant un côté de la courroie (153) et des parties supérieures des blocs à
mouvement (130) ;
une partie de support (155) prévue sur une partie inférieure d'un autre bloc à étages
multiples (140) adjacent au bloc à étages multiples (140) ;
un rouleau de support (156) prévu sur une partie inférieure de la partie de support
(155) ;
une corde de support (157) reliée entre la partie supérieure du bloc à étages multiples
(140) et un côté d'une partie supérieure du corps principal (110) le long du rouleau
de support (156) ; et
une seconde partie de liaison (158) reliant un côté de la courroie (153) et un autre
bloc à mouvement (130) adjacent au bloc à mouvement (130).