FIELD OF THE INVENTION
[0001] The invention relates to a control of operation of a driver device for providing
electric current to a light source. In particular, the invention relates to a driver
device and a method of controlling a power converter in a driver device.
BACKGROUND OF THE INVENTION
[0002] Driving current to a light source is typically provided by a driver device, which
converts AC power provided by a mains power network into DC current suitable for the
light source. Some light sources have highly nonlinear voltage-current characteristics.
For example, light emitting diodes (LEDs) have a threshold voltage, below which the
LED is essentially non-conducting and above which a small increase in voltage may
result in significant increase in current.
[0003] For simplicity, let us assume that a light source consists of a string of LEDs. When
a driver starts providing operating power to the light source, the voltage over the
LED string starts increasing but practically no current flows through the individual
LEDs. Eventually, the voltage exceeds the sum of threshold voltages of the individual
LEDs, and current starts passing through the light source and the light source starts
emitting light. After the threshold voltage is exceeded, the current through the light
source increases rapidly if voltage is further increased.
[0004] Usually, the driver device comprises at least one power converter stage and typically
at least one of the power converter stages of the driver device is controlled by a
feedback signal related to the current passing through the light source. For the feedback
control, the threshold-behavior of current through the light source is problematic.
As long as the voltage is below the threshold voltage, the feedback control requests
the power converter to increase the output power as much as possible. Once the threshold
voltage is exceeded and significant current suddenly starts passing through the light
source, the feedback control does not react fast enough to reduce the power provided
by the power converter and thus the current passing through the light source may become
even high enough to cause some damage.
[0005] For these reasons, an improved driver device and method for controlling the driver
device for a light source is needed.
[0006] In related art,
WO 2006/046207 A1 discloses a method and system of flicker suppression for an LED. The method includes
providing a power supply for supplying current to the LED. The power supply includes
a flicker suppressor and is responsive to a dim command signal. The method further
includes receiving the dim command signal at the power supply, switching the current
on and limiting the current to maintain LED light output below 110 percent of the
LED light output corresponding to the dim command signal.
[0007] WO 02/096162 A1 discloses a driver device for providing electric current to a light source connectable
to a driver output of the driver device, in the form of a dimmable LED power supply,
which comprises a power converter, a controller and a feedback circuit comprising
a Zener diode having a voltage output limiting function.
SUMMARY OF THE INVENTION
[0008] It is an object of the present invention to provide a driver device and a method
for controlling a power converter in a driver device with improved response when a
light source connected to a driver device has a threshold voltage for producing light.
[0009] The objects of the invention are reached by a driver device and a method as defined
by the respective independent claims.
[0010] According to a first aspect of the invention a driver device for providing electric
current to a light source connectable to a driver output of the driver device is provided.
The driver device comprises a power converter arranged to provide an output voltage
at a converter output, which converter output is coupled to the driver output via
an output circuit. The driver device further comprises a control circuit arranged
to control the operation of the power converter and a feedback circuit arranged to
provide to the control circuit a feedback signal based on at least one measured value
in the output circuit. The control circuit is arranged to control the operation of
the power converter based on the value of the feedback signal. The driver device further
comprises a limiting circuit coupled to the converter output and configured to provide
a measured value to the feedback circuit. The measured value is indicative of the
rate of change of the output voltage of the power converter. The limiting circuit
comprises a Zener diode for preventing a current from flowing in the limiting circuit
until the output voltage at the converter output has risen above the Zener voltage
of the Zener diode.
[0011] According to a second aspect of the invention a method of controlling a power converter
in a driver device for a light source is provided. The method comprises providing,
from a limiting circuit coupled to a converter output of the power converter, a measured
value that is indicative of a rate of change of an output voltage at the converter
output, creating a voltage feedback signal proportional to a rate of change of an
output voltage of the power converter, providing the voltage feedback signal as a
feedback signal to a control circuit which controls operation of the power converter,
and issuing, based on the feedback signal provided to the control circuit, control
commands to the power converter, wherein providing the measured value comprises using
a Zener diode for preventing a current from flowing in the limiting circuit until
the output voltage at the converter output has risen above the Zener voltage of the
Zener diode.
[0012] The exemplifying embodiments of the invention presented in this patent application
are not to be interpreted to pose limitations to the applicability of the appended
claims. The verb "to comprise" and its derivatives are used in this patent application
as an open limitation that does not exclude the existence of also unrecited features.
The features described hereinafter are mutually freely combinable unless explicitly
stated otherwise.
[0013] The novel features which are considered as characteristic of the invention are set
forth in particular in the appended claims. The invention itself, however, both as
to its construction and its method of operation, together with additional objects
and advantages thereof, will be best understood from the following detailed description
of specific embodiments when read in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014]
Figure 1 illustrates a driver device according to the state of the art.
Figure 2 illustrates an exemplary driver device.
Figure 3 illustrates an exemplary embodiment of a driver device.
Figure 4 illustrates an exemplary embodiment of a driver device.
Figure 5 illustrates an exemplary limiting circuit and feedback circuit in a driver
device.
Figure 6 illustrates an exemplary limiting circuit and feedback circuit in a driver
device.
Figure 7 illustrates an exemplary limiting circuit and feedback circuit in a driver
device.
Figure 8 illustrates an exemplary limiting circuit and feedback circuit in a driver
device.
Figure 9 illustrates an exemplary limiting circuit and feedback circuit in a driver
device.
DETAILED DESCRIPTION
[0015] Figure 1 illustrates an exemplary driver device 10 according to the state of the
art. The driver device 10 is arranged to receive operating power from an external
power source via power input 11. The driver device 10 is arranged to provide electric
current to a light source which is connectable to a driver output 12. The driver device
10 comprises a power converter 13 which is arranged to convert input power received
at power input 11 into converter output voltage at a driver output 12. The driver
device 10 also comprises a control circuit 14 arranged to control the operation of
the power converter 13 or at least one stage of the power converter 13. The driver
device 10 further comprises a feedback circuit 16. The feedback circuit 16 is arranged
to provide a feedback signal 17 to the control circuit 14. The control circuit 14
is arranged to control the operation of the power converter 13 based on the value
of the feedback signal 17. The feedback signal 17 is based on a measured value at
the driver output 12, such as on a measurement of a current passing through the light
source.
[0016] A driver device 10 according to the state of the art is able to provide a relatively
stable current to a light source during stable operation, in other words, when the
light source is emitting light. However, light sources such as LED light sources exhibit
non-linear voltage-current characteristics. Hence, a small increase in the voltage
provided to the light source may result in a significant increase in the current passing
through the light source. Typically, the response times of the feedback signal 17
and the control circuit 14 are not short enough to prevent a sizeable current overshoot.
The current overshoot may in turn result in excess reduction of the current, and only
after several oscillations the current passing through the light source may settle
into its desired value. Such a behavior is expected when the output voltage of the
power converter 13 is increased, for example during a start-up phase when the output
voltage is increased from essentially zero to around the threshold voltage of the
light source.
[0017] Figure 2 illustrates an exemplary driver device 210 according to an embodiment of
the invention.
[0018] The driver device 210 is arranged to receive operating power from an external power
source via a power input 211. The external power source may be an AC power source
such as, for example, a mains power network. Alternatively, the external power source
may be a DC power source such as a battery.
[0019] The driver device 210 is arranged to provide electric current to a light source which
may be connected to a driver output 212. The light source may be an LED light source
comprising one or more LEDs. However, the light source may be any light source exhibiting
non-linear voltage-current relationship, such as a threshold voltage for conducting
current.
[0020] The driver device 210 comprises a power converter 213 which is arranged to convert
input power received at power input 211 into converter output voltage at a converter
output 213b. Preferably, the power converter 213 is a switched mode power converter.
Alternatively, the power converter 213 may be a regulator, a rectifier, or a transformer,
wherein in addition to the regulator, rectifier or transformer the power converter
213 also comprises a separate, controllable switch. Suitable switched mode power converters
are, for example, a buck converter or a boost converter. The power converter 213 may
also be an isolated converter, such as a flyback converter or a resonant converter,
such as an LLC converter. The power converter 213 may also comprise more than one
power conversion stage. In other words, the power converter 213 may be a multi-stage
power converter. If the power converter 213 comprises more than one power conversion
stage, a first power converter stage may be a rectifier stage for rectifying input
AC power. A power converter 213 may also comprise a power factor correction (PFC)
stage, formed by, for example, a boost converter. A multi-stage power converter 213
may also comprise a transformer stage followed by or preceded by a non-isolated switched
mode converter stage, such as a buck converter stage or a boost converter stage. However,
in any case the power converter 213 comprises at least one controllable switch, wherein
the output of the power converter 213 is arranged to be controlled by controlling
the operation of the at least one controllable switch, or by controlling the operation
of at least one of the controllable switches.
[0021] The converter output 213b is coupled to the driver output 212 via an output circuit
223. The output circuit 223 may comprise components that may modify the output of
the power converter 213, and thus the voltage, current and/or power at the driver
output 212 may be different from the voltage, current and/or power at the converter
output 213b. For example, the output circuit 223 may comprise a capacitor for reducing
ripple in the voltage provided to the driver output 212. However, in some cases such
a capacitor may also be considered to be part of the power converter 213. As another
example, the output circuit 223 may comprise a controllable switch to be used to control
the intensity of light provided by a light source connected to the driver output 212
using, for example, pulse width modulation (PWM) to limit the relative duration of
the time when operating power is provided to the light source. According to a third
example, the output circuit 223 may comprise an additional power converter which converts
a voltage at the converter output 213b into a voltage or current at the driver output
212. Alternatively or additionally, the output circuit 223 may comprise components
for monitoring the output of the power converter 213 or for monitoring the output
provided at the driver output 212. The output circuit 223 may comprise filtering components
for filtering the output provided at the driver output 212. The output circuit 223
may further comprise protection components for protecting either a light source connected
to the driver output 212 from sudden changes in the output provided to it, or for
protecting components in the driver device 210.
[0022] The driver device 210 also comprises a control circuit 214 arranged to control the
operation of the power converter 213 or at least one stage of the power converter
213. Typically, the control circuit 214 is arranged to control the operation of the
at least one controllable switch of the power converter 213. The control circuit 214
controls the operation of the power converter 213 by issuing control commands 218
to the power converter 213. The control commands 218 may, for example, control the
state of the at least one controllable switch of the power converter 213.
[0023] The driver device 210 according to an embodiment of the invention also comprises
a feedback circuit 216. The feedback circuit 216 is arranged to provide a feedback
signal 217 to the control circuit 214. The control circuit 214 is arranged to control
the operation of the power converter 213 based on the value of the feedback signal
217. In other words, the control commands 218 or the timing of the control commands
218 depend at least in part on the value of the feedback signal. The control commands
218 may be, for example, be selected or timed such that the value of the feedback
signal 217 remains below a preset limit, or such that the value of the feedback signal
217 is as close as possible to a predetermined target value.
[0024] The driver device 210 further comprises a limiting circuit 221. The limiting circuit
221 can be considered to be a part of the output circuit 223 or it can be considered
to be independent of the output circuit 223. Some components of the limiting circuit
221 may be considered to be also components of the output circuit 223. The limiting
circuit 221 is coupled to the converter output 213b and it is configured to provide
a measured value 224 to the feedback circuit 216.
[0025] The measured value 224 is indicative of the rate of change of the output voltage
of the power converter 213. The feedback circuit 216 is arranged to provide the feedback
signal 217 based on the measured value 224 indicative of the rate of change of the
output voltage of the power converter 213. The feedback signal 217 is derived from
the measured value 224 indicative of the rate of change of the output voltage of the
power converter 213 such that the feedback signal 217 has a constant, fixed value
when the rate of change of the output voltage of the power converter 213 remains constant.
Thus, based on the feedback signal, the control circuit 214 is arranged to control
the power converter 213 such that the rate of change of the output voltage remains
constant until the output voltage reaches its target value. The target value of the
output voltage of the power converter 213 is effectively the output voltage that provides
at the driver output 212 a voltage corresponding to the threshold voltage of a light
source connected to the driver output 212. Thus, the target voltage depends on the
light source connected to the driver output 212. The driver device 210 is preferably
arranged to accommodate a range of target voltages so that also a range of light sources
are connectable to the driver output 212.
[0026] The feedback circuit 216 may have a fixed reference value to which the measured value
224 indicative of the rate of change of the output voltage of the power converter
213 is compared. The result of the comparison is provided as the feedback signal 217
to the control circuit 214. The fixed reference value may be provided to the feedback
circuit 216 from an external source, or the fixed reference value may be an internal
value of the feedback circuit 216. The reference value may be a voltage or it may
be some other reference quantity.
[0027] Feedback to the control circuit 214 may also be based on two measured values 224,
225 in the output circuit 223. In such a case, the first measured value 224 is indicative
of the rate of change of the output voltage of the power converter 213. The second
measured value 225 may be, for example, related to a current provided to a light source
connected to the driver output 212. However, considering that changes in the current
provided to a light source connected to the driver output 212 are essentially caused
by changes in the output voltage of the power converter 213, provision of a second
measured value 225 related to a current provided to a light source, in addition to
the measured value 224 indicative of the rate of change of the output voltage of the
power converter 213, is optional.
[0028] Examples of arrangements wherein the feedback to the control circuit is based on
two measured values are illustrated in Figures 3 and 4.
[0029] The driver device 310 in Figure 3 is an exemplary embodiment of a driver device wherein
two feedback signals 317a, 317b are provided to control circuit 314. The power input
311, driver output 312, output circuit 323, limiting circuit 321 and measured value
324 correspond to the power input 211, driver output 212, output circuit 223, limiting
circuit 221 and measured value 224 of Figure 2.
[0030] Feedback signal 317a corresponds to feedback signal 217 of Figure 2. A measured value
324 indicative of the rate of change of the output voltage of the power converter
313 is provided to feedback circuit 316a by a limiting circuit 321. The feedback signal
317a is obtained, for example, by comparing the measured value 324 with a reference
value. The feedback signal 317a is provided to the control circuit 314, and the control
circuit 314 is arranged to control the operation of the power converter 313, and in
particular the rate of change of the output voltage of the power converter 313, based
on the value of the feedback signal 317a.
[0031] The second feedback signal 317b in Figure 3 is similar to a feedback signal of prior
art, such as feedback signal 17 in Figure 1. Typically, the feedback signal 317b is
based on a measurement of a current provided to a light source connected to the driver
output 312. The measurement can be a measurement of a current passing through the
light source, or a measurement proportional to or related to a current passing through
the light source. A signal 325 indicative of the measured current is provided to a
feedback circuit 316b. Typically, the value of the signal 325 related to a current
provided to a light source is compared to a reference value, which may be provided
either externally to the feedback circuit 316b or which may internal to the feedback
circuit 316b. The feedback circuit 316b is arranged to provide a feedback signal 317b
to the control circuit 314 based on the comparison of the value of the signal 325
and the reference value. The control circuit 314 is arranged to control the operation
of the power converter 313 based on the value of the feedback signal 317b. In particular,
based on the value of the feedback signal 317b, the control circuit is arranged to
maintain the current provided to the light source connected to the driver output 312
at a constant level. The external or internal reference value of the feedback circuit
316b is selected such that the constant level of the current corresponds to a predetermined
or selected target current.
[0032] In the embodiment of Figure 3, the control circuit 314 receives two feedback signals,
a feedback signal 317a related to rate of change of the output voltage of the power
converter 313 and a feedback signal 317b related to the current provided to a light
source connected to the driver output 312. During a start-up phase, when the output
voltage of the power converter 313 is being increased towards the threshold voltage
of the light source connected to the driver output 312, essentially no current is
passing through the light source. Hence, the feedback signal 317b related to the current
passing through the light source would indicate a need to significantly increase the
output of the power converter 313 in order to reach a target value of the current.
On the other hand, feedback signal 317a, related to the rate of change of the output
voltage of the power converter 313 would aim to limit the rate at which the output
voltage of the power converter 313 is allowed to increase, simultaneously limiting
also the current provided to the light source connected to the driver output 312.
Both signals, however, indicate a need to increase the output of the power converter,
and the control circuit 314 needs to follow the one that is more restrictive, namely
the feedback signal 317a limiting the rate at which the requested increase in output
voltage of the power converter 313 is allowed to take place.
[0033] During steady-state operation, when a light source connected to the driver output
312 is providing light and where both the output voltage of the power converter 313
and the current provided to the light source connected to the driver output 312 remain
essentially constant, the feedback signal 317a related to the rate of change of the
output voltage of the power converter 313 would indicate a negligible rate of change
in the output voltage and hence would not cause the control circuit 314 to limit the
output of the power converter 313. Any small variations in the current provided to
the light source connected to the driver output 312 would cause also variations in
the corresponding feedback signal 317b and therefore would cause the control circuit
314 to adjust the operation of the power converter 313 in a manner that aims to return
the current provided to the light source to its target value.
[0034] It is possible that during steady-state operation, an adjustment requiring considerable
increase in the output voltage of the power converter 313 takes place. This might
be due to, for example, a sudden increase in the threshold voltage of the light source
connected to the driver output 312 because of an additional LED being activated in
a LED string of the light source. However, the rate of change of the output voltage
of the power converter 313 will be measured by the limiting circuit 321. The rate
of change is then relayed to the feedback circuit 316a in a form of measured value
324 and thus the feedback circuit 316a will provide a feedback signal 317a to the
control circuit 314 to limit the rate of change of the output voltage of the power
convert 313.
[0035] Another embodiment of the invention is illustrated in Figure 4. In the embodiment
of Figure 4, power input 411, power converter 413, output circuit 423, limiting circuit
421, measured value 424, control signal 418 and driver output 412 are as described
in connection with corresponding parts of Figures 2 and 3. The difference between
the embodiment of Figure 4 compared to that of Figure 3 is that in the embodiment
of Figure 4, only one feedback signal 417 is provided to the control circuit 414,
whereas in the embodiment of Figure 3, two feedback signals 317a, 317b are provided.
[0036] In the embodiment of Figure 4, a signal 425 related to a current provided to a light
source connected to the driver output 412 is combined with the measured value 424
indicative of the rate of change of the output voltage of the power converter 413,
and the combined signal is provided to the feedback circuit 416. In an alternate variation
of the embodiment, both signal 425 and the measured value 424 are provided to the
feedback circuit 416, and the combining of the two is performed within the feedback
circuit 416. In both cases, the feedback circuit 416 provides one feedback signal
417 to the control circuit 414, wherein the value of the feedback signal 417 is based
both on signal 425 related to a current provided to a light source connected to the
driver output 412 and on the measured value 424 indicative of the rate of change of
the output voltage of the power converter 414. The combining of the signal 425 related
to a current provided to a light source and the measured value 424 indicative of the
rate of change of the output voltage of the power converter 413 is performed such
that the feedback signal 417 is dominated by the signal which is more restrictive.
In other words, the signal which is more restrictive may determine the value of the
feedback signal or it may limit the value of the feedback signal. In practice, during
start-up phase when the output voltage of the power converter 413 is being increased
towards a threshold voltage of a light source connected to the driver output 412,
the measured value 424 indicative of the rate of change of the output voltage of the
power converter 413 will dominate the feedback signal. During steady-state operation,
when a light source connected to the driver output 412 is providing light, the signal
425 related to a current provided to the light source will dominate the feedback signal.
[0037] Based on the feedback signal 417, the control circuit 414 can control the power converter
413 such that the rate of change of the output voltage of the power converter 413
does not exceed a maximum allowed rate of change, and, during steady state operation,
the current provided to a light source connected to the driver output 412 remains
essentially constant.
[0038] Figure 5 illustrates an exemplary limiting circuit 521 and feedback circuit 516 in
a driver device, such as driver devices 210, 310, or 410 described earlier with reference
to Figures 2, 3 and 4, respectively. The limiting circuit 521 is connected to the
converter output 513b. V
CONV represents the output voltage of a power converter comprised in the driver device.
The converter output 513b is typically formed of two nodes having a potential difference
which corresponds to voltage V
CONV. Thus, one of the nodes has a higher potential than the other one, and therefore
the nodes may be named a high potential node and a low potential node. The potential
at the low potential node is typically the circuit ground on the output side of the
converter.
[0039] The exemplary limiting circuit 521 of Figure 5 comprises a capacitance C
L and a resistance R
L connected in series between the high potential node and the low potential node of
the converter output 513b.
[0040] Preferably, the capacitance C
L and the resistance R
L are arranged in series such that the capacitance C
L is connected to the high potential node of the converter output 513b and the resistance
R
L is connected to the low potential node of the converter output 513b. In other words,
preferably a first terminal of capacitance C
L is coupled or connected to the high potential node of the converter output 513b,
a second terminal of capacitance C
L is coupled or connected to a first terminal of resistance R
L, and a second terminal of resistance R
L is coupled or connected to the low potential node of the converter output 513b.
[0041] The limiting circuit 521 is connected across the converter output 513b, and in the
example of Figure 5, there are no components of an output circuit other than those
considered to be comprised in the limiting circuit 521. Hence, in the exemplary embodiment
of Figure 5, when a light source is connected to the driver output 512, the limiting
circuit 521 is connected in parallel with the light source. However, depending on
the further components of the output circuit, it can generally be stated that the
limiting circuit 521 is located in a circuit branch that is parallel to a circuit
branch comprising the driver output 512, and, therefore, also a light source connected
to the driver output 512 when a light source is connected to the driver output 512.
[0042] It should be noted that when the voltage at the driver output 512 is less than the
threshold voltage of a light source connected to the driver output 512, essentially
no current is passing through the light source, and, consequently, essentially all
current is passing through the limiting circuit 521. On the other hand, when the voltage
at the driver output 512 is more than the threshold voltage of a light source connected
to the driver output 512 and hence the voltage V
CONV is kept essentially constant, the capacitance C
L is charged to voltage V
CONV and practically no current is passing through the limiting circuit and essentially
all the current is passing through the light source connected to the driver output
512.
[0043] When the output voltage V
CONV of the power converter is being increased during a start-up phase, the voltage over
the limiting circuit 521 increases correspondingly. However, the capacitance C
L limits the charging current which passes through the limiting circuit 521 and charges
the capacitance C
L. The current passing through the limiting circuit 521 is equal to the product of
the capacitance C
L and the rate of change of the output voltage V
CONV of the power converter.
[0044] The measured value 524 indicative of the rate of change of the output voltage V
CONV of the power converter is extracted from a node between the capacitance C
L and the resistance R
L. The series connection of the capacitance C
L and the resistance R
L thus forms an RC differentiator, wherein the rate of change of the input voltage
to the RC differentiator is known to correspond to the voltage over the resistance
R
L at frequencies significantly lower than 1/(R
L·C
L). Thus, the measured value 524 indicative of the rate of change of output voltage
V
CONV of the power converter is obtained as the voltage over the resistance R
L.
[0045] The exemplary feedback circuit 516 of Figure 5 corresponds to the feedback circuit
216, 316a and 416 of Figures 2, 3 and 4. The feedback circuit 516 comprises a comparator,
wherein the measured value 524 indicative of the rate of change of the output voltage
V
CONV of a power converter is compared to a fixed reference value V
REF. The result of the comparison is provided as a feedback signal 517 to a control circuit
controlling the operation of the power converter. Thus, when there is a need to increase
the output voltage of the power converter, based on the feedback signal 517 the control
circuit will control the power converter such that the rate of change of the output
voltage of the power converter will not exceed the maximum allowed rate defined by
the reference value V
REF together with the capacitance C
L and resistance R
L.
[0046] The reference value V
REF is selected to correspond to a maximum allowed rate of change of the output voltage
V
CONV of the power converter. Preferably, the reference value V
REF is selected to correspond to the voltage at the node between the capacitance C
L and the resistance R
L at the maximum allowed rate of change of the output voltage V
CONV of the power converter, given by V
REF = (R
L·C
L) · dV
MAX, wherein dV
MAX is the maximum allowed rate of change of the output voltage V
CONV of the power converter.
[0047] In addition to the components shown, the feedback circuit 516 may comprise further
components, such as a feedback loop from the output of the comparator to an input
of the comparator, as is known in the art. Such a feedback loop may comprise, for
example, a series connection of a resistance and a capacitance.
[0048] Figure 6 illustrates a second exemplary limiting circuit 621 and feedback circuit
616 in a driver device according to an embodiment of the invention. The feedback circuit
616 is similar to the feedback circuit 516 of Figure 5. The limiting circuit 621 comprises,
in addition to the capacitance C
L and resistance R
L also present in the limiting circuit 521 of Figure 5, a second resistance R
Z. The second resistance R
Z is connected in series with the capacitance C
L and resistance R
L. Preferably, the resistance R
Z is connected between the high potential node of the converter output 613b and the
capacitance C
L. In other words, a first terminal of resistance R
Z is connected to the high potential node of the converter output 613b and a second
terminal of resistance R
Z is connected to a first terminal of capacitance C
L. The second terminal of capacitance C
L is connected to a first terminal of resistance R
L and a second terminal of resistance R
L is connected to the low potential node of the converter output 613b. A measured signal
624 indicative of the rate of change of the output voltage V
CONV of the power converter is obtained from a node between the second terminal of the
capacitance C
L and the first terminal of the resistance R
L.
[0049] The operating principle of the limiting circuit 621 is similar to that of limiting
circuit 521 of Figure 5. The contribution of the additional resistance R
Z is twofold.
[0050] On one hand, a certain value of V
REF may be easier to obtain than other values thus making it a preferred value of V
REF, or the feedback circuit 616 may have a fixed value for V
REF. Hence, when there are two resistances R
L, R
Z in series in the limiting circuit 621, the total resistance of the limiting circuit
621 is divided between the two resistances R
L, R
Z. Therefore, the value of R
L may be selected such that at maximum allowed rate of change of the output voltage
V
CONV of the power converter, the measured value 624 indicative of rate of change of the
output voltage V
CONV of the power converter corresponds to the preferred or fixed value of V
REF. This is due to the fact that the measured value 624 indicative of the rate of change
of the output voltage V
CONV of the power converter is equal to the product of the resistance R
L and the current passing through the limiting circuit 621.
[0051] On the other hand, the second resistance R
Z helps reduce high-frequency noise in the measured value 624 indicative of the rate
of change of the output voltage V
CONV of the power converter. This high-frequency noise may be due to, for example, high-frequency
variations in the output voltage V
CONV of the power converter due to operation of the power converter or interference in
the input power to the power converter. For high-frequency signals with frequencies
above 1/(R
L·C
L), the series connection of C
L and R
L acts as a high pass filter. By including an additional resistance R
Z, the gain of the limiting circuit 621 for high frequency signals can be reduced.
The contribution of the high-frequency noise is therefore reduced in the feedback
signal 617 provided to the control circuit and hence it will not affect significantly
the control signals issued by the control circuit to the power converter.
[0052] Figure 7 illustrates a third exemplary limiting circuit 721 and feedback circuit
716 in a driver device 210, 310, 410 according to an embodiment of the invention.
The feedback circuit 716 is similar to the feedback circuit 516 and 616 of Figures
5 and 6, respectively. In addition to capacitance C
L, resistance R
L and optional resistance R
Z, the limiting circuit comprises a protection diode D. The protection diode D is arranged
in series with the other components of the limiting circuit 721. For example, the
anode of the protection diode D may be connected to a high potential node of converter
output 713b and the cathode of the protection diode D may be connected to a first
terminal of either the optional resistance R
Z, as shown in Figure 7, or to a first terminal of the capacitance C
L. The second terminal of the optional resistance R
Z is connected to a first terminal of the capacitance C
L. The second terminal of the capacitance C
L is connected to a first terminal of the resistance R
L, and the second terminal of the resistance R
L is connected to the low potential node of the converter output 713b.
[0053] The protection diode D serves to protect the feedback circuit 716 from excessive
negative voltages, which may occur, due to, for example, the light source connected
to the driver output 712 being suddenly short-circuited. In the case of a short-circuit
and in the absence of the protection diode D the charge stored in capacitance C
L would be discharged via the short-circuited light source, thereby causing also high
negative voltage at an input of the feedback circuit 716.
[0054] Figure 8 illustrates an example of an arrangement according to Figure 4, wherein
a single feedback signal 417, 817 based on two measured values in the output circuit
is provided to the control circuit 414. The feedback signal 817 is formed by the feedback
circuit 816 based on a signal which consists of a combination of a measured value
indicative of the rate of change of the output voltage V
CONV of a power converter and a signal indicative of a current provided to a light source
connected to the driver output 812.
[0055] The resistance R
S is on a current path of a current flowing though the light source connected to the
driver output 812. Hence, the voltage over the resistance R
S is proportional to the current flowing through the light source connected to the
driver output 812. In an alternate embodiment, only a part of the current passing
through the light source connected to the driver output 812 may be passing through
the resistance R
S.
[0056] The driver output 812 has two terminals: a high terminal coupled to the high potential
node of the output of the power converter, and a low terminal coupled to the low potential
node of the output of the power converter.
[0057] In the embodiment of Figure 8, the resistance R
S is located between a low terminal of the driver output 812 and the low potential
node of the converter output 813b. The resistance R
L is connected to a node between the low terminal of the driver output 812 and the
resistance R
S. Therefore, resistance R
S is also in the current path of the current flowing in the limiting circuit 821.
[0058] The measured value 824 is obtained based on two separate measurements in the circuit:
the rate of change of the output voltage V
CONV of the power converter and the current passing through a light source connected to
the driver output 812. However, one measurement dominates at a time. During a start-up
phase, when the output voltage V
CONV of the power converter is being increased towards the threshold voltage of a light
source connected to the driver output 812, essentially no current is flowing through
the light source connected to the driver output 812. Hence, the potential at the node
where the measured value 824 is extracted depends on the current in the limiting circuit,
which is determined by the rate of change of the output voltage V
CONV of the power converter. On the other hand, once the threshold voltage of the light
source connected to the driver output 812 has been reached, the output voltage V
CONV of the power converter remains essentially constant, and hence the measured value
indicative of the rate of change of the output voltage V
CONV of the power converter will remain essentially zero. Thus the potential at the node
where the measured value 824 is extracted depends on the voltage over the resistance
R
S, in other words, on the current passing through a light source connected to the driver
output 812.
[0059] Figure 9 illustrates a third exemplary limiting circuit 921 and feedback circuit
916 in a driver device 210, 310, 410 according to an embodiment of the invention.
The feedback circuit 916 is similar to the feedback circuit 516 and 616 of Figures
5 and 6, respectively. In addition to capacitance C
L, resistance R
L and optional resistance R
Z, the limiting circuit comprises a Zener diode D
Z. The Zener diode Dz is arranged in series with the other components of the limiting
circuit 921. For example, the cathode of the Zener diode D
Z may be connected to a high potential node of converter output 913b and the anode
of the Zener diode D
Z may be connected either to a first terminal of the optional resistance R
Z, as shown in Figure 9, or to a first terminal of the capacitance C
L. The second terminal of the optional resistance R
Z is connected to a first terminal of the capacitance C
L. The second terminal of the capacitance C
L is connected to a first terminal of the resistance R
L, and the second terminal of the resistance R
L is connected to the low potential node of the converter output 913b.
[0060] Because of the Zener diode D
Z, current will not flow in the limiting circuit 921 until the output voltage V
CONV of the power converter has risen above the Zener voltage of the Zener diode D
Z. Hence, the rate of change of the output voltage V
CONV of the power converter is not limited until the Zener voltage of the Zener diode
D
Z is reached. Thus, due to the higher rate of change of the output voltage V
CONV of the power converter, the output voltage V
CONV of the power converter reaches the level of the Zener voltage faster than if the
rate of change was limited by the limiting circuit 921.
[0061] Preferably, the Zener voltage of the Zener diode D
Z is significantly lower than the lowest threshold voltage of a light source connectable
to the driver output 912 so that the limiting circuit 921 is able to prevent an overshoot
of the voltage and current provided to the light source when the threshold voltage
of the light source is reached.
[0062] The limiting circuit 921 may also comprise a protection diode D as described in connection
of Figure 7. In such a case, the Zener diode and the protection diode D can be connected
in series with each other and the rest of the limiting circuit 921.
[0063] The operations, procedures and/or functions described hereinbefore in context of
the driver device may also be expressed as steps of a method implementing the corresponding
operation, procedure and/or function. The method may be arranged to control the operation
of a power converter in a driver device for a light source.
[0064] The method comprises creating a voltage feedback signal proportional to a rate of
change of an output voltage of a power converter. The voltage feedback signal is preferably
based on a measured value at converter output indicative of the rate of change of
the output voltage at the converter output, as described in relation to embodiments
of Figures 2 to 8. Thus, the voltage feedback signal of the method corresponds to
feedback signals 217, 317a, 417, 517, 617, 717, 817 illustrated in Figure 2, 3, 4,
5, 6, 7 and 8, respectively.
[0065] The method further comprises providing the voltage feedback signal as a feedback
signal to a control circuit which controls the operation of the power converter. The
method 900 also comprises issuing control commands to the power converter based on
the feedback signal provided to the control circuit. The control commands correspond
to control commands 218, 318, 418 illustrated in Figures 2, 3 and 4, respectively.
[0066] In a second method according to an embodiment of the invention, also feedback information
relating to an output current is provided. In addition to the actions of the first
method, the second method comprises measuring a current provided to a light source
connected to the driver device, wherein the current is provided by the driver device.
The current may be measured by a resistor arranged on a current path passing through
the light source, as illustrated in Figure 8 with resistance R
S. The second method further comprises providing a current feedback signal based on
the measured current to the control circuit which controls the operation of the power
converter. The second method also comprises issuing control commands to the power
converter based on the current feedback signal provided to the control circuit.
[0067] A third method according to an embodiment of the invention comprises combining the
voltage feedback signal and the current feedback signal of the second method into
a feedback signal. The third method further comprises providing the feedback signal
to the control circuit which controls the operation of the power converter. The third
method also comprises issuing control commands to the power converter based on the
feedback signal provided to the control circuit.
[0068] Preferably, in the third method, the voltage feedback signal is arranged to dominate
the feedback signal during a start-up phase of the driver device, and the current
feedback signal is arranged to dominate the feedback signal during stable operation,
in other words, when a light source connected to the driver output is providing light.
[0069] A method according to an embodiment of the invention may also comprise filtering
high-frequency components from the voltage feedback signal.
[0070] An additional benefit of the invention is that it enables providing essentially two
measurements from the output circuit to the control circuit with only one signal.
The measured value indicative of the rate of change of the output voltage of the power
converter already carries also information relating to the current provided to a light
source connected to the driver output of the driver device. According to some embodiments
of the invention, the current provided to a light source connected to a driver output
is separately measured but a combined signal is provided to the control circuit.
1. A driver device (210, 310, 410) adapted to provide electric current to a light source
adapted to be connected to a driver output (912) of the driver device (210, 310, 410),
comprising:
- a power converter (213, 313, 413) arranged to provide an output voltage at a converter
output (913b), which converter output (913b) is coupled to the driver output (912)
via an output circuit (223, 323, 423),
- a control circuit (214, 314, 414) arranged to control the operation of the power
converter (213, 313, 413),
- a feedback circuit (916) arranged to provide to the control circuit (214, 314, 414)
a feedback signal (917) based on at least one measured value in the output circuit
(223, 323, 423), wherein the control circuit (214, 314, 414) is arranged to control
the operation of the power converter (213, 313, 413) based on the value of the feedback
signal (917), and
- a limiting circuit (921) coupled to the converter output (913b) and configured to
provide a measured value to the feedback circuit (916), wherein the measured value
is indicative of the rate of change of the output voltage of the power converter (213,
313, 413),
characterized in that the limiting circuit (921) comprises a Zener diode (D
z) for preventing a current from flowing in the limiting circuit (921) until the output
voltage at the converter output (913b) has risen above the Zener voltage of the Zener
diode (D
z).
2. A driver device according to claim 1, wherein
- the output circuit comprises a current measurement part arranged to provide a signal
related to a measured current at the driver output and
- a feedback circuit is arranged to provide a feedback signal to the control circuit
based on the signal related to a measured current at the driver output.
3. A driver device according to claim 2, wherein the feedback signal is a combination
of the measured value provided by the limiting circuit and the signal related to a
measured current at the driver output.
4. A driver device according to claim 3, wherein the measured value provided by the limiting
circuit is arranged to dominate the feedback signal during start-up phase of the driver
device and the signal related to measured current at the driver output is arranged
to dominate the feedback signal when the light source is providing light.
5. A driver device according to claim 2, wherein the control circuit is arranged to receive
the feedback signal related to a measured current as a separate signal from the feedback
signal based on a measured value indicative of the rate of change of the output voltage
of the power converter.
6. A driver device according to claim 5, wherein the measured value provided by the limiting
circuit is arranged to determine the response of the control circuit during start-up
phase of the driver device and the signal related to measured current at the driver
output is arranged to determine the response of the control circuit when the light
source is providing light.
7. A driver device according to any previous claim, wherein the limiting circuit comprises
a capacitance, which is coupled to receive electric charge from the converter output
voltage, wherein the value of the capacitance determines the rate at which the converter
output voltage is controlled to increase based on the feedback signal.
8. A driver device according to any previous claim, wherein the limiting circuit comprises
a resistance in a current path from converter output via limiting circuit to output
circuit, to limit the current through the capacitance.
9. A driver device according to any of the previous claims, wherein the limiting circuit
comprises a protection diode.
10. A driver device according to any of the previous claims, wherein the Zener voltage
of the Zener diode is significantly lower than the lowest threshold voltage of a light
source connectable to the driver output (912).
11. A driver device according to any previous claim, wherein the limiting circuit comprises
a resistance connected in series with the capacitance to limit feedback gain for high
frequency signals.
12. A driver device according to any previous claim, wherein the power converter is a
switched mode power converter comprising one or more switches, and the control circuit
is arranged to control the operation of the one or more switches.
13. A driver device according to any previous claim, wherein the power converter is a
multistage power converter.
14. A method of controlling a power converter (213, 313, 413) in a driver device (210,
310, 410) for a light source, comprising:
- providing, from a limiting circuit (921) coupled to a converter output (913b) of
the power converter (213, 313, 413), a measured value that is indicative of a rate
of change of an output voltage at the converter output (913b),
- creating a voltage feedback signal proportional to the rate of change of the output
voltage of the power converter (213, 313, 413),
- providing the voltage feedback signal as a feedback signal (917) to a control circuit
(214, 314, 414) which controls operation of the power converter (213, 313, 413), and
- issuing, based on the feedback signal provided to the control circuit (214, 314,
414), control commands to the power converter (213, 313,413),
- characterized in that providing the measured value comprises using a Zener diode (Dz) for preventing a current from flowing in the limiting circuit (921) until the output
voltage at the converter output (913b) has risen above the Zener voltage of the Zener
diode (Dz).
15. A method according to claim 14, further comprising:
- measuring a current provided to a light source by the driver device,
- providing a current feedback signal based on the measured current to the control
circuit which controls operation of the power converter, and
- issuing, based on the current feedback signal provided to the control circuit, control
commands to the power converter
16. A method according to claim 15, further comprising:
- combining the voltage feedback signal and the current feedback signal into a feedback
signal
- providing the feedback signal to a control circuit which controls operation of the
power converter, and
- issuing, based on the feedback signal provided to the control circuit, control commands
to the power converter.
17. A method according to any of claims 14 to 16, wherein the voltage feedback signal
dominates the feedback signal during start-up phase of the driver device and the current
feedback signal dominates the feedback signal when the light source is providing light.
18. A method according to any of claims 14 to 17, comprising also filtering high-frequency
components from the voltage feedback signal.
1. Treibervorrichtung (210, 310, 410), die dazu ausgelegt ist, eine Lichtquelle mit elektrischem
Strom zu versorgen, die dazu geeignet ist, an einen Treiberausgang (912) der Treibervorrichtung
(210, 310, 410) angeschlossen zu werden, umfassend:
- einen Leistungswandler (213, 313, 413), der angeordnet ist, um eine Ausgangsspannung
an einem Wandlerausgang (913b) bereitzustellen, wobei der Wandlerausgang (913b) über
eine Ausgangsschaltung (223, 323, 423) mit dem Treiberausgang (912) verbunden ist,
- eine Steuerschaltung (214, 314, 414), die angeordnet ist, um den Betrieb des Leistungswandlers
(213, 313, 413) zu steuern;
- eine Rückkopplungsschaltung (916), die angeordnet ist, um der Steuerschaltung (214,
314, 414) ein Rückkopplungssignal (917) bereitzustellen, das auf mindestens einem
gemessenen Wert in der Ausgangsschaltung (223, 323, 423) basiert, wobei die Steuerschaltung
(214, 314, 414) angeordnet ist, um den Betrieb des Leistungswandlers (213, 313, 413)
basierend auf dem Wert des Rückkopplungssignals (917) zu steuern, und
- eine Begrenzungsschaltung (921), die mit dem Wandlerausgang (913b) gekoppelt und
konfiguriert ist, um der Rückkopplungsschaltung (916) einen Messwert bereitzustellen;
wobei der gemessene Wert die Änderungsrate der Ausgangsspannung des Leistungswandlers
(213, 313, 413) anzeigt,
dadurch gekennzeichnet, dass die Begrenzungsschaltung (921) eine Zenerdiode (D
z) umfasst, um zu verhindern, dass ein Strom in der Begrenzungsschaltung (921) fließt,
bis die Ausgangsspannung am Wandlerausgang (913b) über die Zenerenspannung der Zenerdiode
(D
z) angestiegen ist.
2. Treibervorrichtung nach Anspruch 1, wobei
- die Ausgangsschaltung einen Strommessteil umfasst, der angeordnet ist, um ein Signal
zu liefern, das sich auf einen gemessenen Strom am Treiberausgang bezieht, und
- eine Rückkopplungsschaltung angeordnet ist, um der Steuerschaltung ein Rückkopplungssignal
zu liefern, das auf dem Signal basiert, das sich auf einen gemessenen Strom am Treiberausgang
bezieht.
3. Treibervorrichtung nach Anspruch 2, wobei das Rückkopplungssignal eine Kombination
des von der Begrenzungsschaltung bereitgestellten Messwerts und des Signals ist, das
sich auf einen gemessenen Strom am Treiberausgang bezieht.
4. Treibervorrichtung nach Anspruch 3, wobei der von der Begrenzungsschaltung bereitgestellte
Messwert angeordnet ist, um das Rückkopplungssignal während der Startphase der Treibervorrichtung
zu dominieren und das auf den gemessenen Strom am Treiberausgang bezogene Signal angeordnet
ist, um das Rückkopplungssignal zu dominieren, wenn die Lichtquelle Licht liefert.
5. Treibervorrichtung nach Anspruch 2, wobei die Steuerschaltung angeordnet ist, um das
auf einen gemessenen Strom bezogene Rückkopplungssignal als ein von dem Rückkopplungssignal
bezogenes getrenntes Signal basierend auf einem gemessenen Wert zu empfangen, der
die Änderungsrate der Ausgangsspannung des Leistungswandlers anzeigt.
6. Treibervorrichtung nach Anspruch 5, wobei der von der Begrenzungsschaltung bereitgestellte
Messwert angeordnet ist, um die Reaktion der Steuerschaltung während der Startphase
der Treibervorrichtung zu bestimmen und das Signal, das sich auf den gemessenen Strom
am Treiberausgang bezieht, angeordnet ist, um die Reaktion der Steuerschaltung zu
bestimmen, wenn die Lichtquelle Licht liefert.
7. Treibervorrichtung nach einem vorhergehenden Anspruch, wobei die Begrenzungsschaltung
eine Kapazität umfasst, die gekoppelt ist, um elektrische Ladung von der Wandlerausgangsspannung
zu empfangen, wobei der Wert der Kapazität die Rate bestimmt, mit der die Wandlerausgangsspannung
gesteuert wird, um basierend auf dem Rückkopplungssignal anzusteigen.
8. Treibervorrichtung nach einem vorhergehenden Anspruch, wobei die Begrenzungsschaltung
einen Widerstand in einem Strompfad vom Wandlerausgang über die Begrenzungsschaltung
zur Ausgangsschaltung umfasst, um den Strom durch die Kapazität zu begrenzen.
9. Treibervorrichtung nach einem der vorhergehenden Ansprüche, wobei die Begrenzungsschaltung
eine Schutzdiode umfasst.
10. Treibervorrichtung nach einem der vorhergehenden Ansprüche, wobei die Zenerspannung
der Zenerdiode signifikant niedriger ist als die niedrigste Schwellenspannung einer
Lichtquelle, die mit dem Treiberausgang (912) verbunden werden kann.
11. Treibervorrichtung nach einem vorhergehenden Anspruch, wobei die Begrenzungsschaltung
einen Widerstand umfasst, der in Reihe mit der Kapazität geschaltet ist, um die Rückkopplungsverstärkung
für Hochfrequenzsignale zu begrenzen.
12. Treibervorrichtung nach einem vorhergehenden Anspruch, wobei der Leistungswandler
ein Schaltwandler ist, der einen oder mehrere Schalter umfasst, und die Steuerschaltung
angeordnet ist, um den Betrieb des einen oder der mehreren Schalter zu steuern.
13. Treibervorrichtung nach einem vorhergehenden Anspruch, wobei der Leistungswandler
ein mehrstufiger Leistungswandler ist.
14. Verfahren zum Steuern eines Leistungswandlers (213, 313, 413) in einer Treibervorrichtung
(210, 310, 410) für eine Lichtquelle, umfassend:
- Bereitstellen, von einer Begrenzungsschaltung (921), die mit einem Wandlerausgang
(913b) des Leistungswandlers (213, 313, 413) gekoppelt ist, eines Messwerts, der eine
Änderungsrate einer Ausgangsspannung am Wandlerausgang (913b) anzeigt,
- Erzeugen eines Spannungsrückkopplungssignals proportional zur Änderungsrate der
Ausgangsspannung des Leistungswandlers (213, 313, 413),
- Bereitstellen des Spannungsrückkopplungssignals als Rückkopplungssignal (917) an
eine Steuerschaltung (214, 314, 414), die den Betrieb des Leistungswandlers (213,
313, 413) steuert, und
- Ausgeben von Steuerbefehlen an den Leistungswandler (213, 313, 413), basierend auf
dem Rückkopplungssignal, das an die Steuerschaltung (214, 314, 414) bereitgestellt
wird,
- dadurch gekennzeichnet, dass das Bereitstellen des gemessenen Wertes die Verwendung einer Zenerdiode (Dz) umfasst, um zu verhindern, dass ein Strom in der Begrenzungsschaltung (921) fließt,
bis die Ausgangsspannung am Wandlerausgang (913b) über die Zenerspannung der Zenerdiode
(Dz) angestiegen ist.
15. Verfahren nach Anspruch 14, ferner umfassend:
- Messen eines Stroms, der von der Treibervorrichtung an eine Lichtquelle bereitgestellt
wird,
- Bereitstellen eines Stromrückkopplungssignals basierend auf dem gemessenen Strom
an die Steuerschaltung, die den Betrieb des Leistungswandlers steuert, und
- Ausgeben von Steuerbefehlen an den Leistungswandler, basierend auf dem Stromrückkopplungssignal,
das an die Steuerschaltung bereitgestellt wird.
16. Verfahren nach Anspruch 15, ferner umfassend:
- Kombinieren des Spannungsrückkopplungssignals und des Stromrückkopplungssignals
zu einem Rückkopplungssignal
- Bereitstellen des Rückkopplungssignals an eine Steuerschaltung, die den Betrieb
des Leistungswandlers steuert, und
- Ausgeben von Steuerbefehlen an den Leistungswandler, basierend auf dem Rückkopplungssignal,
das an die Steuerschaltung bereitgestellt wird.
17. Verfahren nach einem der Ansprüche 14 bis 16, wobei das Spannungsrückkopplungssignal
das Rückkopplungssignal während der Startphase der Treibervorrichtung dominiert und
das Stromrückkopplungssignal das Rückkopplungssignal dominiert, wenn die Lichtquelle
Licht liefert.
18. Verfahren nach einem der Ansprüche 14 bis 17, umfassend auch das Filtern von Hochfrequenzkomponenten
aus dem Spannungsrückkopplungssignal.
1. Dispositif de circuit d'attaque (210, 310, 410) conçu pour fournir un courant électrique
à une source lumineuse conçue pour être connectée à une sortie de circuit d'attaque
(912) du dispositif de circuit d'attaque (210, 310, 410), comprenant :
- un convertisseur de puissance (213, 313, 413) conçu pour fournir une tension de
sortie à une sortie du convertisseur (913b), laquelle sortie du convertisseur (913b)
est couplée à la sortie de circuit d'attaque (912) par l'intermédiaire d'un circuit
de sortie (223, 323, 423),
- un circuit de commande (214, 314, 414) conçu pour commander le fonctionnement du
convertisseur de puissance (213, 313, 413),
- un circuit de rétroaction (916) conçu pour fournir au circuit de commande (214,
314, 414) un signal de rétroaction (917) sur la base d'au moins une valeur mesurée
dans le circuit de sortie (223, 323, 423), dans lequel le circuit de commande (214,
314, 414) est conçu pour commander le fonctionnement du convertisseur de puissance
(213, 313, 413) sur la base de la valeur du signal de rétroaction (917), et
- un circuit limiteur (921) couplé à la sortie du convertisseur (913b) et conçu pour
fournir une valeur mesurée au circuit de rétroaction (916), dans lequel la valeur
mesurée indique le taux de variation de la tension de sortie du convertisseur de puissance
(213, 313, 413),
caractérisé en ce que le circuit limiteur (921) comprend une diode Zener (D
z) pour empêcher un courant de circuler dans le circuit limiteur (921) jusqu'à ce que
la tension de sortie à la sortie du convertisseur (913b) dépasse la tension Zener
de la diode Zener (D
z).
2. Dispositif de circuit d'attaque selon la revendication 1, dans lequel
- le circuit de sortie comprend une partie de mesure de courant conçue pour fournir
un signal associé à un courant mesuré à la sortie de circuit d'attaque et
- un circuit de rétroaction est conçu pour fournir un signal de rétroaction au circuit
de commande sur la base du signal associé à un courant mesuré à la sortie de circuit
d'attaque.
3. Dispositif de circuit d'attaque selon la revendication 2, dans lequel le signal de
rétroaction est une combinaison de la valeur mesurée fournie par le circuit limiteur
et du signal associé à un courant mesuré à la sortie de circuit d'attaque.
4. Dispositif de circuit d'attaque selon la revendication 3, dans lequel la valeur mesurée
fournie par le circuit limiteur est conçue pour dominer le signal de rétroaction pendant
la phase de démarrage du dispositif de circuit d'attaque et le signal associé au courant
mesuré à la sortie de circuit d'attaque est conçu pour dominer le signal de rétroaction
lorsque la source lumineuse fournit de la lumière.
5. Dispositif de circuit d'attaque selon la revendication 2, dans lequel le circuit de
commande est conçu pour recevoir le signal de rétroaction associé à un courant mesuré
en tant que signal séparé du signal de rétroaction sur la base d'une valeur mesurée
indiquant le taux de variation de la tension de sortie du convertisseur de puissance.
6. Dispositif de circuit d'attaque selon la revendication 5, dans lequel la valeur mesurée
fournie par le circuit limiteur est conçue pour déterminer la réponse du circuit de
commande pendant la phase de démarrage du dispositif de circuit d'attaque et le signal
associé au courant mesuré à la sortie de circuit d'attaque est conçu pour déterminer
la réponse du circuit de commande lorsque la source lumineuse fournit de la lumière.
7. Dispositif de circuit d'attaque selon une quelconque revendication précédente, dans
lequel le circuit limiteur comprend un condensateur, qui est couplé pour recevoir
une charge électrique de la tension de sortie du convertisseur, dans lequel la valeur
du condensateur détermine la vitesse à laquelle la tension de sortie du convertisseur
augmente sur la base du signal de rétroaction.
8. Dispositif de circuit d'attaque selon une quelconque revendication précédente, dans
lequel le circuit limiteur comprend une résistance dans un trajet de courant depuis
la sortie du convertisseur, par l'intermédiaire du circuit limiteur, vers le circuit
de sortie, afin de limiter le courant à travers le condensateur.
9. Dispositif de circuit d'attaque selon l'une quelconque des revendications précédentes,
dans lequel le circuit limiteur comprend une diode de protection.
10. Dispositif de circuit d'attaque selon l'une quelconque des revendications précédentes,
dans lequel la tension Zener de la diode Zener est significativement inférieure à
la tension de seuil la plus basse d'une source lumineuse pouvant être connectée à
la sortie de circuit d'attaque (912).
11. Dispositif de circuit d'attaque selon une quelconque revendication précédente, dans
lequel le circuit limiteur comprend une résistance connectée en série au condensateur
pour limiter le gain de rétroaction pour des signaux à haute fréquence.
12. Dispositif de circuit d'attaque selon une quelconque revendication précédente, dans
lequel le convertisseur de puissance est un convertisseur de puissance à découpage
comprenant un ou plusieurs commutateurs, et le circuit de commande est conçu pour
commander le fonctionnement d'un ou de plusieurs commutateurs.
13. Dispositif de circuit d'attaque selon une quelconque revendication précédente, dans
lequel le convertisseur de puissance est un convertisseur de puissance à étages multiples.
14. Procédé de commande d'un convertisseur de puissance (213, 313, 413) dans un dispositif
de circuit d'attaque (210, 310, 410) pour une source lumineuse, comprenant :
- la fourniture, à partir d'un circuit limiteur (921) couplé à une sortie du convertisseur
(913b) du convertisseur de puissance (213, 313, 413), d'une valeur mesurée qui indique
un taux de variation d'une tension de sortie à la sortie du convertisseur (913b),
- la création d'un signal de rétroaction de tension proportionnel au taux de variation
de la tension de sortie du convertisseur de puissance (213, 313, 413),
- la fourniture du signal de rétroaction de tension en tant que signal de rétroaction
(917) à un circuit de commande (214, 314, 414) qui commande le fonctionnement du convertisseur
de puissance (213, 313, 413), et
- l'émission, sur la base du signal de rétroaction fourni au circuit de commande (214,
314, 414), d'instructions de commande au convertisseur de puissance (213, 313, 413),
- caractérisé en ce que la fourniture de la valeur mesurée comprend l'utilisation d'une diode Zener (Dz) pour empêcher un courant de circuler dans le circuit limiteur (921) jusqu'à ce que
la tension de sortie à la sortie du convertisseur (913b) dépasse la tension Zener
de la diode Zener (Dz).
15. Procédé selon la revendication 14, comprenant en outre :
- la mesure d'un courant fourni à une source lumineuse par le dispositif de circuit
d'attaque,
- la fourniture d'un signal de rétroaction de courant sur la base du courant mesuré
au circuit de commande qui commande le fonctionnement du convertisseur de puissance,
et
- l'émission, sur la base du signal de rétroaction de courant fourni au circuit de
commande, d'instructions de commande au convertisseur de puissance.
16. Procédé selon la revendication 15, comprenant en outre :
- la combinaison du signal de rétroaction de tension et du signal de rétroaction de
courant en un signal de rétroaction
- la fourniture du signal de rétroaction à un circuit de commande qui commande le
fonctionnement du convertisseur de puissance, et
- l'émission, sur la base du signal de rétroaction fourni au circuit de commande,
d'instructions de commande au convertisseur de puissance.
17. Procédé selon l'une quelconque des revendications 14 à 16, dans lequel le signal de
rétroaction de tension domine le signal de rétroaction pendant la phase de démarrage
du dispositif de circuit d'attaque et le signal de rétroaction de courant domine le
signal de rétroaction lorsque la source lumineuse fournit de la lumière.
18. Procédé selon l'une quelconque des revendications 14 à 17, comprenant également le
filtrage de composantes haute fréquence du signal de rétroaction de tension.