Field of The Invention
[0001] The present invention generally finds application in the field of tanning and particularly
relates to a plant for drying pretreated flexible sheet products, such as industrial
hides, skins, imitation leather or leather derivatives.
Background art
[0002] After the various tanning, re-tanning and dyeing treatments, hides are known to often
exhibit surface defects that were naturally formed during the life of the animals
(scratches due to goring, contact with barbed wire or thorns) or caused by poor leather
preservation after flaying.
[0003] In these cases, once the hides have been dried, they undergo a surface treatment
typically known as finishing, whereby such defects are removed or made less visible,
for better use of the hides.
[0004] During chemical finishing, chemical compounds, generally in liquid form, are deposited
on the hides, to form a grain side layer that may have various thicknesses or be elastic
or tough according to the types of finishing and leather.
[0005] The compound is initially deposited in a predetermined amount on the grain side of
the hides and later dried to form a layer that binds with the fibers, to thereby be
integrated with the hide.
[0006] The finishing chemical compound is typically applied by spraying or by using rotating
rollers that contact the hides as they are being fed.
[0007] Furthermore, the chemical compound drying process is typically carried out using
an oven or a tunnel operating with infrared rays, catalytic gas and more often with
hot air.
[0008] For this purpose, the plants for surface treatment of hides comprise one or more
drying units, with hot air being conveyed thereto by high-flow compressors and blowers,
whose flow rates may reach thousands of m
3/h. The drying temperatures in these apparatus generally range from 80 °C to 160 °C.
[0009] A first drawback of these plants is that the manufacturing energy costs associated
with high hot air flows for drying the hides and with plant operation are very high.
[0010] A further drawback is that the hides dried as described above have a very high surface
temperature and cannot be easily handled and stacked.
[0011] Therefore, completely dried hides may be typically cooled using a cooling device,
such as a cold air chiller, which has high power consumption.
[0012] Another drawback is that high temperature drying processes are not uniform and tend
to alter the "hand" of leather, i.e. make it more rigid and less soft than they were
in the unfinished state.
[0013] Finally, any shrinking effect of the hot drying process will cause shrinkage in the
hides, thereby leading to a significant reduction of the useful leather area, and
to a reduction of the final inherent value of the treated hides.
[0014] In an attempt to at least partially obviate these drawbacks hide drying plants been
developed which use electromagnetic fields whose frequency falls within the radiofrequency
range.
[0015] EP2935631, by the proprietor hereof, discloses a plant for drying of the hides with a pair
of operating units comprising respective radiofrequency electromagnetic field applicators
located in a chamber and connected to respective high-frequency AC voltage generators.
[0016] Namely, the two operating units are configured to dry different finishing chemical
compounds that have been previously deposited on the hides by one or more deposition
units.
[0017] A first drawback of this arrangement is that this plant does not allow feedback-responsive
adjustment of the operation of the generator and the applicator according to the operating
conditions of the drying unit.
[0018] A further drawback is that the hides must undergo both drying processes for optimal
finishing. This drawback involves an increase of the overall machining costs.
[0019] Another drawback is that electrodes are arranged in the drying unit with a conventional
geometry that cannot be changed to optimize the application of the electromagnetic
field on the hides as they are being fed.
[0020] Yet another drawback is that the use of a single radiofrequency limits the drying
efficiency on chemical compounds and hides and causes an accumulation of residual
moisture in the drying units.
Technical Problem
[0021] In the light of the prior art, the technical problem addressed by the present invention
is to ensure combined adjustment and control of the various thermal and fluid-dynamic
parameters of the plant for efficient and quick drying of finishing chemical compounds
after the latter have been deposited on the products.
Disclosure of the invention
[0022] The object of the present invention is to solve the above problem, by providing a
drying plant for drying pretreated flexible sheet products that is highly efficient
and relatively cost-effective.
[0023] A particular object of the present invention is to provide a plant as described hereinbefore
that affords combined and feedback-responsive control and adjustments of the sheet
product drying components.
[0024] A further object of the invention is to provide a plant as described hereinbefore
that can quickly and efficiently dry the finishing chemical compound, regardless of
the amount thereof that has been deposited on the sheet products.
[0025] Another object of the invention is to provide a plant as described hereinbefore that
can optimize the overall energy costs.
[0026] Yet another object of the present invention is to provide a plant as described hereinbefore
that can use a combination of different drying modes.
[0027] A further object of the present invention is to provide a plant as described hereinbefore
that can remove the residual moisture accumulated in the drying units.
[0028] Yet another object of the present invention is to provide a plant as described hereinbefore
that can modify the electromagnetic field applicator to optimize application efficiency
on the products.
[0029] These and other objects, as more clearly explained hereinafter, are fulfilled by
an plant for drying pretreated flexible sheet products as defined in claim 1, in which
the sheet products have at least one side with a layer of a chemical compound previously
deposited thereon.
[0030] The plant comprises feeding means for feeding the sheet products in a longitudinal
direction and drying means for drying the products as they are being fed.
[0031] The drying means have at least one operating unit with a chamber through which the
feeding means are designed to pass, and with at least one applicator therein, connected
to a respective generator for application of an AC electromagnetic field in the RF
range, to dry the chemical compound deposited on the products during processing.
[0032] The plant also comprises at least one control unit for controlling the generator
and/or the applicator. The AC electromagnetic field has an oscillation frequency that
ranges from 300 kHz to 300MHz and is preferably 27.12 MHz, with tolerances in the
admitted ISM bands, and at least one air blowing means (18) for delivering hot air
and/or at least one suction means (19) are provided.
[0033] The blowing means are controlled to deliver hot air at a predetermined temperature
and the suction means are configured to draw in the moisture removed during drying
from the chamber. The control unit is configured to change the speed of the feeding
means or to change the electromagnetic field application time and sensor means are
provided in the chamber for detecting one or more physical and/or thermodynamic parameters
of the at least one operating unit such as the temperature and/or the residual humidity
in the chamber and the temperature of the hides and also for controlling the feeding
means, the blowing means and the suction means separately from or in combination with
one another to ensure complete drying of the chemical compound layer.
[0034] Advantageous embodiments of the invention are defined in accordance with the dependent
claims.
Brief Description of The Drawings
[0035] Further features and advantages of the invention will be more apparent upon reading
the detailed description of a few preferred, non-exclusive embodiments of a plant
for drying pretreated flexible sheet elements such as industrial hides, skins, imitation
leather or leather derivatives according to the invention, which are described as
non-limiting examples with the help of the annexed drawings, in which:
FIG. 1 is a perspective view of the drying plant of the invention;
FIG. 2 is a lateral view of the plant of Fig. 1;
FIG. 3 is a front view of the plant of FIG. 1.
FIG. 4 is a lateral broken-away view of the plant of Fig. 1;
FIG. 5 is a lateral broken away view of the plant of Fig. 4.
Detailed description of a preferred exemplary embodiment
[0036] Referring to above figures, there is shown a plant for drying pretreated flexible
sheet products, such as industrial hides, skins, imitation leather or leather derivatives,
generally designated by numeral 1.
[0037] Hides are known to comprise a grain side and a flesh side and have a layer of previously
deposited finishing chemical compound on one of the two sides, preferably the grain
side.
[0038] The chemical compound drying process that is carried out by the plant 1 of the present
invention imparts particular aesthetic and tactile properties to the hide.
[0039] The finishing chemical compound may be deposited by known deposition means, such
as spray or roll deposition means. The latter are configured to deposit a layer of
chemical compound layer on at least one side of the sheet product with a surface density
that ranges from 0.001 g/m
2 to 500 g/m
2, preferably from 5 g/m
2 to 150 g/m
2.
[0040] By way of example, the deposited chemical compounds may act as a base, color and
finishing coat, and may be selected from the group comprising polymeric compounds
such as acrylic and polyurethane resins, inorganic compounds such as iron oxides and
pigments and natural compounds.
[0041] In a preferred embodiment of the invention, the plant 1 comprises feeding means 2
for feeding the sheet products in a longitudinal direction L and drying means 3 for
drying the products as they are being fed.
[0042] As is known per se, the feeding means 2 may comprise an annular belt or wire conveyor
4 with the belt or wires tensioned by end rollers and defining a feeding plane π for
the sheet products with their top sections.
[0043] Furthermore, the drying means 3 comprise at least one operating unit 5 with a chamber
6 through which the feeding means 2 pass.
[0044] Namely, the chamber 6 may be at least partially closed and delimited by a box-like
structure 7 having an inlet 8 and an outlet 9 for the passage of the feeding means
2.
[0045] As best shown in FIGS. 4 and 5, the drying chamber 6 comprises therein at least one
applicator 10 connected to a high-frequency voltage generator 11 for applying an AC
electromagnetic field with an oscillation frequency that ranges from 300 kHz to 300MHz
to dry the chemical compound deposited on the products during processing, irrespective
of its surface density.
[0046] Preferably, the generator 11 is configured in such a manner that the oscillation
frequency of the electromagnetic field will have a value of 27.12 MHz with tolerances
within the admitted ISM bands.
[0047] Then, the electromagnetic field applied to the flexible sheet products flexible that
are being fed in the operating unit 5 can heat the chemical compound to a predetermined
temperature.
[0048] The generator 11 may be selected from the group comprising power triodes, inverter-controlled
power triodes, modular electronic power amplifiers, converter power amplifiers, possibly
with of solid-state technology or a combination thereof.
[0049] The applicator 10 comprises at least one series of electrodes arranged in the drying
chamber 6 and connected to a pair of terminals of the generator 11.
[0050] In a first embodiment of the invention, not shown, the electrodes may comprise at
least one pair of substantially parallel plates made of a conductive material having
the function of an anode and a cathode respectively, for applying the radiofrequency
electromagnetic field.
[0051] The plates may be placed below and above the feeding plane π at an adjustable distance,
to selectively change the intensity of the electromagnetic field applied to the products
during processing.
[0052] Alternatively, the electrodes may comprise first 12 and second series of transverse
bars 13 made of a conductive material, which are connected to first and second terminals
of the generator 11 respectively.
[0053] The electrodes of one series 12 are connected in parallel and have the function of
a cathode, and the electrodes of the other series 13 are also connected in parallel
and have the function of an anode.
[0054] The bars 12, 13 may be also placed at adjustable distances, to thereby adjust the
electromagnetic field intensity, as described above concerning the plates.
[0055] For example, as shown in the figures, the bars of a series 12 may be secured to a
longitudinal beam 14 that moves in a respective vertical direction by means of appropriate
drive means 15 to move the first bars toward or away from the bars of the other series
13.
[0056] In a second embodiment of the invention, as best shown in FIGS. 4 and 5, the first
12 and second series 13 of bars may be placed below or above the feeding plane π of
the conveyor 4.
[0057] Namely, the bars of the first series 12 may be longitudinally offset from and alternated
to the bars of the second series 13 and each bar of the first series 12 may define
a respective applicator 10, in combination with the bar of the second adjacent series
13.
[0058] In a third alternative embodiment, also not shown, the bars of one series 12 may
be placed below the feeding plane π whereas the bars of the other series 13 may be
placed above the feeding plane π.
[0059] Like in the second embodiment, the bars of the first series 12, irrespective of whether
they are placed below or above the feeding plane, will longitudinally offset from
and alternated to the bars of the second series 13.
[0060] Also in this embodiment, each bar of the first series 12, placed either below or
above, defines a respective applicator 10 with the bar of the second series 13, placed
either above or below, and longitudinally offset from the first series.
[0061] Furthermore, the plant may comprise at least one control unit 16 which is configured
to control the generator 11 and/or the applicator 10 and/or the feeding means 2 for
complete drying of the chemical compound that has been previously deposited on at
least one of the sides of the sheet product in the operating unit 5.
[0062] For example, the control unit 16 may be configured to set the speed of the feeding
means 2 to a predetermined value ranging from 0.01 m/min to 30 m/min, preferably from
6 m/min to 15 m/min, or to change the electromagnetic field application time or intensity.
[0063] Furthermore, the control unit 16 may comprise a control algorithm installed therein
and a memory portion. The latter may store data and information corresponding to a
plurality of drying programs.
[0064] The software may be configured to select the most suitable drying program according
to the characteristics of the sheet product to be treated.
[0065] In addition, as best shown in FIG. 1, the control unit 16 may comprise interface
means 17 adapted to be actuated by the operator for management thereof.
[0066] Advantageously, the operating unit 5 may comprise at least one air blowing means
18 and/or at least one suction means 19, in fluid communication from the drying chamber
6.
[0067] The blowing means 18 and suction means 19 may also be connected to the control unit
16 to adjust the drying temperature of the sheet products and further dry the chemical
compound.
[0068] The blowing means 18 may be controlled to deliver hot air at a predetermined temperature,
whereas the suction means may be configured to draw in the moisture removed during
drying from the chamber 6.
[0069] Sensor means, not shown, may be further provided in the drying chamber 6 and connected
to the control unit 16.
[0070] The sensor means are configured to detect one or more physical and/or thermodynamic
parameters of the operating unit 5, e.g. the temperature of the chamber and/or the
temperature of the hides and/or the residual humidity in the chamber 6.
[0071] Furthermore, the control unit 16 may be configured to manually or automatically control
at least one of a generator 11, an applicator 10 and at least one feeding means 2
separately from or in combination with one another, possibly based on the physical
and/or thermodynamic parameters as detected by the sensor means.
[0072] Thus, the change of the operating conditions of the aforementioned components by
the control unit 16 will be quicker and more accurate as compared with existing plants.
[0073] The temperature of the sheet products as a result of the drying process carried out
by the operating unit 5 is determined according to the environmental conditions of
use of the plant 1.
[0074] This feature affords immediate handling and stacking of the sheet products by an
operator after drying and hence greatly reduces the overall processing times.
[0075] Also, this feature may avoid the use of cold air chillers, which have high costs
and maintenance requirements, downstream from the operating unit.
[0076] The hides, skins and imitation leather that undergo processing by the above described
plant have been found to be less prone to reduction of the useful leather area after
treatment, and to even increase it, and to have their initial softness unaffected
by the various treatment steps.
[0077] In the embodiment of the figures, the system 1 comprises a plurality of operating
units 5A, 5B, 5C, one downstream from the other in the longitudinal direction of feed
L.
[0078] Obviously, the number of units 5A, 5B, 5C may be also other than that as shown in
the figures, without departure from the scope of the present invention.
[0079] The units 5A, 5B, 5C may be connected by the above described feeding means 2 otherwise
an operator may manually transfer the sheet products from one operating unit to the
other at the end of the respective drying treatment.
[0080] Each of the units 5A, 5B, 5C comprises at least one respective generator 11A, 11B,
11C, one respective applicator 10A, 10B, 10C and possibly one respective control unit
16A, 16B, 16C to generate an electromagnetic field of suitable intensity in the respective
chamber 6A, 6B, 6C.
[0081] In addition, each of of operating units 5A, 5B, 5c may comprise respective blowing
means 18A, 18B, 18C, and/or suction/drying means 19A, 19B, 19C and/or sensors, which
are adapted to operate as described above for least one operating unit and are connected
to the control unit 16A, 16B, 16C.
[0082] The plant of the invention is susceptible of a number of changes and variants, within
the inventive concept as disclosed in the appended claims. All the details thereof
may be replaced by other technically equivalent parts, and the materials may vary
depending on different needs, without departure from the scope of the invention.
[0083] While the plant has been described with particular reference to the accompanying
figures, the numerals referred to in the disclosure and claims are only used for the
sake of a better intelligibility of the invention and shall not be intended to limit
the claimed scope in any manner.
Industrial Applicability
[0084] The present invention may find application in industry, because it can be produced
on an industrial scale in tanning factories, particularly in surface treatment of
hides, skins, imitation leather and derivatives.
1. A drying plant (1) for drying pretreated flexible sheet products such as industrial
hides, skins, leather imitation or leather derivatives having at least one side with
a layer of a chemical compound previously deposited thereon, which plant (1) comprises:
- feeding means (2) for feeding the sheet products (M) in a longitudinal feed direction
(L);
- drying means (3) for drying the products as they are being fed, said drying means
(3) have at least one operating unit (5) with a chamber (6) through which said feeding
means (2) are designed to pass, and with at least one applicator (10) therein, which
is connected to a respective generator (11) for application of an AC electromagnetic
field in the RF range, to dry the chemical compound deposited on the products during
processing, said AC electromagnetic field having an oscillating frequency that ranges
from 300 kHz to 300MHz and being preferably 27.12 MHz with tolerances within the admitted
ISM bands;
- at least one control unit (16) for controlling said generator (11) and/or said applicator
(10);
characterized in that at least one air blowing means (18) for delivering hot air and/or at least one suction
means (19) are provided in said chamber (6), said blowing means (18) being controlled
to deliver hot air at a predetermined temperature and said suction means (19) being
configured to draw in the moisture extracted during the drying processes from said
chamber (6), said control unit (16) being configured to change the speed of said feeding
means (2) or to change the electromagnetic field application time, sensor means being
provided in said chamber (6) for detecting one or more physical and/or thermodynamic
parameters of said at least one operating unit (5) such as the temperature and/or
the residual humidity in the chamber and the temperature of the sheet products respectively
and also for controlling said feeding means (2), said blowing means (18) and said
suction means (19) separately from or in combination with one another and afford complete
drying of the chemical compound layer.
2. Plant as claimed in claim 1, characterized in that said electromagnetic field generator (11) is selected from the group comprising at
least one of the power triodes, inverter-controlled power triodes, modular electronic
power amplifiers, converter power amplifiers, amplifiers with solid-state technology
or a combination thereof.
3. Plant as claimed in claim 1, characterized in that said feeding means (2) comprise a belt or wire conveyor (4) with the belt or wires
tensioned by end rollers and defining a feeding plane (π) with their top section.
4. Plant as claimed in one or more of the 2 and 3, characterized in that said applicator (10) comprises at least one series of electrodes arranged in said
chamber (6) and connected to a pair of terminals of said generator (11).
5. Plant as claimed in claim 4, characterized in that said electrodes comprise at least one pair of substantially parallel plates made
of a conductive material having the function of an anode and a cathode respectively
for application of said radiofrequency electromagnetic field, said plates being respectively
placed below and above said feeding plane (π) at adjustable distances therefrom.
6. Plant as claimed in claim 4, characterized in that said electrodes comprise first (12) and second series of transverse bars (13) made
of a conductive material, which are connected to a first terminal and a second terminal
respectively of said generator (11), said bars being adapted to be placed at adjustable
distances from each other.
7. Plant as claimed in claim 6, characterized in that said first (12) and second series of bars (13) are placed below or above said conveyor
(4), the bars of said first series (12) being longitudinally offset from and alternated
to the bars of said second series (13).
8. Plant as claimed in claim 6, characterized in that the bars of one series (12) are placed below said feeding plane (π) and the bars
of the other series (13) are placed above said feeding plane (π), the bars of at least
said first series (12) being longitudinally offset from and alternated to the bars
of said at least one second series (13).
9. Plant as claimed in one or more of the preceding claims, characterized in that it comprises a plurality of operating units (5A, 5B, 5C), one downstream from the
other in said feed direction (L).
10. Plant as claimed in claim 9 characterized in that each of said operating units (5A, 5B, 5C) comprises at least one respective generator
(11A, 11B, 11C) and/or one respective applicator (10A, 10B, 10C) possibly connected
to at least one control unit (16A, 16B, 16C) to generate an electromagnetic field
of suitable intensity in the respective chamber (6A, 6B, 6C).
1. Trocknungsanlage (1) zum Trocknen vorbehandelter flexibler Folienprodukte wie Industriehäute,
Felle, Lederimitationen oder Lederderivate mit mindestens einer Seite mit einer Schicht
einer zuvor darauf abgelagerten chemischen Verbindung, wobei diese Anlage (1) umfasst:
- Zuführmittel (2) zum Zuführen der Blattprodukte (M) in Längsvorschubrichtung (L);
- Trocknungsmittel (3) zum Trocknen der Produkte, während sie zugeführt werden, wobei
die Trocknungsmittel (3) mindestens eine Bedieneinheit (5) mit einer Kammer (6) aufweisen,
durch die die Zufuhrmittel (2) geleitet werden sollen, und mit zumindest einen Applikator
(10) darin, der mit einem jeweiligen Generator (11) zum Anlegen eines elektromagnetischen
Wechselstromfeldes im HF-Bereich verbunden ist, um die während der Verarbeitung auf
den Produkten abgelagerte chemische Verbindung zu trocknen, wobei das elektromagnetische
Wechselstromfeld eine oszillierende Frequenz aufweist, die reicht von 300 kHz bis
300 MHz und ist vorzugsweise 27,12 MHz mit Toleranzen innerhalb der zugelassenen ISM-Bänder;
- mindestens eine Steuereinheit (16) zum Steuern des Generators (11) und/oder des
Applikators (10);
dadurch gekennzeichnet, dass in der Kammer (6) mindestens eine Luftblaseinrichtung (18) zur Abgabe von Heißluft
und/oder mindestens eine Saugeinrichtung (19) vorgesehen sind, wobei die Blaseinrichtung
(18) gesteuert wird, um Heißluft mit einer vorbestimmten Temperatur zu liefern, und
die Saugeinrichtung (19) konfiguriert ist, um die Feuchtigkeit einzusaugen, die während
der Trocknungsprozesse aus der Kammer (6) extrahiert wird, wobei die Steuereinheit
(16) konfiguriert ist, um die Geschwindigkeit der Zuführeinrichtung (2) zu ändern
oder die Anwendungszeit des elektromagnetischen Feldes zu ändern, Sensorenmittel,
die in der Kammer (6) vorgesehen sind, um einen oder mehrere physikalische und/oder
thermodynamische Parameter der mindestens einen Betriebseinheit (5) wie die Temperatur
und/oder die Restfeuchtigkeit in der Kammer bzw. die Temperatur der Plattenprodukte
jeweils zu erfassen, wobei die Sensorenmittel auch zur Steuerung der Zuführeinrichtung
(2), der Blaseinrichtung (18) und der Saugeinrichtung (19), getrennt voneinander oder
in Kombination miteinander, vorgesehen sind, um eine vollständige Trocknung der chemischen
Verbindungsschicht zu ermöglichen.
2. Anlage nach Anspruch 1, dadurch gekennzeichnet, dass der elektromagnetische Feldgenerator (11) aus der Gruppe bestehend aus mindestens
einer der Leistungstrioden, invertergesteuerten Leistungstrioden, modularen elektronischen
Leistungsverstärkern, Wandlerleistungsverstärkern, Verstärkern mit Festkörpertechnologie
oder eine Kombination davon ausgewählt ist.
3. Anlage nach Anspruch 1, dadurch gekennzeichnet, dass die Zuführeinrichtung (2) einen Bandförderer oder einen Drahtförderer (4) umfasst,
wobei das Band oder die Drähte durch Endwalzen gespannt sind und eine Zuführungsebene
(π) mit ihrem oberen Abschnitt definieren.
4. Anlage nach einem oder mehreren der Ansprüche 2 und 3, dadurch gekennzeichnet, dass der Applikator (10) mindestens eine Reihe von Elektroden umfasst, die in der Kammer
(6) angeordnet und mit einem Paar von den Anschlüssen des Generators (11) verbunden
sind.
5. Anlage nach Anspruch 4, dadurch gekennzeichnet, dass die Elektroden mindestens ein Paar im wesentlichen paralleler Platten aus einem leitenden
Material mit der Funktion einer Anode bzw. einer Kathode zum Anlegen des hochfrequenten
elektromagnetischen Feldes umfassen, wobei die Platten jeweils unterhalb und oberhalb
der Zuführungsebene (π) in einstellbaren Abständen davon angeordnet sind.
6. Anlage nach Anspruch 4, dadurch gekennzeichnet, dass die Elektroden erste (12) und zweite Reihen von Querstangen (13) aus einem leitenden
Material umfassen, die mit einem ersten Anschluss bzw. einem zweiten Anschluss des
Generators (11) verbunden sind, wobei die Stangen so angepasst sind, dass sie in einstellbaren
Abständen voneinander angeordnet sind.
7. Anlage nach Anspruch 6, dadurch gekennzeichnet, dass die ersten (12) und zweiten Reihen von Stangen (13) unter oder über dem Förderer
(4) angeordnet sind, wobei die Stangen der ersten Reihen (12) in Längsrichtung versetzt
und abwechselnd angeordnet zu den Stäben der zweiten Reihen (13) sind.
8. Anlage nach Anspruch 6, dadurch gekennzeichnet, dass die Stäbe einer Reihe (12) unterhalb der Zuführungsebene (π) und die Stäbe der anderen
Reihe (13) oberhalb der Zuführungsebene (π) angeordnet sind, die Stäbe von der mindestens
einen ersten Reihe (12) in Längsrichtung versetzt und abwechselnd angeordnet zu den
Stäben der mindestens einen zweiten Reihe (13) sind.
9. Anlage nach einem oder mehreren der vorhergehenden Ansprüche, gekennzeichnet dadurch, dass sie mehrere Betriebseinheiten (5A, 5B, 5C) umfasst, die nacheinander in Vorschubrichtung
(L) positioniert sind.
10. Anlage nach Anspruch 9, dadurch gekennzeichnet, dass jede der Betriebseinheiten (5A, 5B, 5C) mindestens einen jeweiligen Generator (11A,
11B, 11C) und/oder einen jeweiligen Applikator (10A, 10B, 10C) umfasst, die möglicherweise
mit mindestens einer Steuereinheit (16A, 16B, 16C) verbunden sind, um ein elektromagnetisches
Feld geeigneter Intensität in der jeweiligen Kammer (6A, 6B, 6C) zu erzeugen.
1. Installation de séchage (1) pour sécher des produits en feuilles flexibles prétraités
tels que des cuirs industriels, des peaux, du similicuir ou des dérivés du cuir ayant
au moins une face avec une couche d'un composé chimique préalablement déposée dessus,
laquelle plante (1) comprend:
- des moyens d'alimentation (2) pour amener les produits en feuille (M) dans une direction
d'avance longitudinale (L);
- des moyens de séchage (3) pour sécher les produits au fur et à mesure de leur acheminement,
lesdits moyens de séchage (3) comportant au moins une unité de fonctionnement (5)
avec une chambre (6) à travers laquelle lesdits moyens d'alimentation (2) sont destinés
à passer, et avec au moins un applicateur (10) à l'intérieur, qui est connecté à un
générateur respectif (11) pour l'application d'un champ électromagnétique AC dans
la gamme RF, pour sécher le composé chimique déposé sur les produits pendant le traitement,
ledit champ électromagnétique AC ayant une fréquence d'oscillation qui va de 300 kHz
à 300 MHz et étant de préférence de 27,12 MHz avec des tolérances dans les bandes
ISM admises;
- au moins une unité de commande (16) pour commander ledit générateur (11) et/ou ledit
applicateur (10);
caractérisé en ce qu'au moins un moyen de soufflage d'air (18) pour fournir de l'air chaud et/ou au moins
un moyen d'aspiration (19) sont prévus dans ladite chambre (6), ledit moyen de soufflage
(18) étant commandé pour fournir de l'air chaud à un température prédéterminée et
lesdits moyens d'aspiration (19) étant configurés pour aspirer l'humidité extraite
pendant les processus de séchage de ladite chambre (6), ladite unité de commande (16)
étant configurée pour changer la vitesse desdits moyens d'alimentation (2) ou pour
changer le temps d'application du champ électromagnétique, des moyens capteurs étant
prévus dans ladite chambre (6) pour détecter un ou plusieurs paramètres physiques
et/ou thermodynamiques de ladite au moins une unité opérationnelle (5) tels que la
température et/ou l'humidité résiduelle dans la chambre et la température des feuilles
de produits respectivement et également pour commander lesdits moyens d'alimentation
(2), lesdits moyens de soufflage (18) et lesdits moyens d'aspiration (19) séparément
ou en combinaison les uns avec les autres et permettre un séchage complet de la couche
de composé chimique.
2. Installation selon la revendication 1, caractérisée en ce que ledit générateur de champ électromagnétique (11) est choisi dans le groupe comprenant
au moins une des: triodes de puissance, triodes de puissance commandées par onduleur,
amplificateurs de puissance électroniques modulaires, amplificateurs de puissance
convertisseurs, amplificateurs à la technologie à l'état solide ou une combinaison
de celles-ci.
3. Installation selon la revendication 1, caractérisée en ce que lesdits moyens d'alimentation (2) comprennent un convoyeur à bande ou à fil (4) avec
la bande ou les fils tendus par des rouleaux d'extrémité et définissant un plan d'alimentation
(π) avec leur section supérieure.
4. Installation selon l'une ou plusieurs des revendications 2 et 3, caractérisée en ce que ledit applicateur (10) comprend au moins une série d'électrodes disposées dans ladite
chambre (6) et reliées à une paire de bornes dudit générateur (11).
5. Installation selon la revendication 4, caractérisée en ce que lesdites électrodes comprennent au moins une paire de plaques sensiblement parallèles
en un matériau conducteur ayant respectivement la fonction d'une anode et d'une cathode
pour l'application dudit champ électromagnétique radiofréquence, lesdites plaques
étant respectivement placé au-dessous et au-dessus dudit plan d'alimentation (π) à
des distances réglables de celui-ci.
6. Installation selon la revendication 4, caractérisée en ce que lesdites électrodes comprennent des première (12) et deuxième séries de barres transversales
(13) en matériau conducteur, qui sont reliées respectivement à une première borne
et une deuxième borne dudit générateur (11), lesdites barres étant adaptées pour être
placées à des distances réglables les unes des autres.
7. Installation selon la revendication 6, caractérisée en ce que lesdites première (12) et deuxième séries de barres (13) sont placées au-dessous
ou au-dessus dudit convoyeur (4), les barres desdites première séries (12) étant décalées
longitudinalement et alternées aux barres desdites deuxième séries (13).
8. Installation selon la revendication 6, caractérisée en ce que les barres d'une série (12) sont placées sous ledit plan d'alimentation (π) et les
barres de l'autre série (13) sont placées au-dessus dudit plan d'alimentation (π),
les barres de au moins une desdites première séries (12) étant décalées longitudinalement
et alternées avec les barres de au moins une desdites deuxième séries (13).
9. Installation selon l'une ou plusieurs des revendications précédentes, caractérisée en ce qu'elle comprend une pluralité d'unités de fonctionnement (5A, 5B, 5C), l'une en aval
de l'autre dans ladite direction d'alimentation (L).
10. Installation selon la revendication 9 caractérisée en ce que chacune desdites unités de fonctionnement (5A, 5B, 5C) comprend au moins un générateur
respectif (11A, 11B, 11C) et/ou un applicateur respectif (10A, 10B, 10C) éventuellement
connecté à au moins une unité de commande (16A, 16B, 16C) pour générer un champ électromagnétique
d'intensité appropriée dans la chambre respective (6A, 6B, 6C).