[0001] The present invention relates to a hydraulic, electromagnetic floating-piston motor
pump, and more particularly the present invention relates to a hydraulic, electromagnetic
floating-piston motor pump suitable for moving fluids such as water.
[0003] The operation of this type of motor pump is based on the presence of a coil that
cooperates with a pair of magnetic bearings: the coil is electrically powered and
causes the axial movement of the floating piston or of the piston with alternating
motion.
[0004] The same applicant has also made available in the State of the Art a particular type
of floating-piston motor pump, wherein a magnetic sleeve is also present, which cooperates
functionally with the remaining "magnetically active" parts of the motor pump itself
to improve the magnetic field interactions, thus improving the kinematics / dynamics
of the floating piston itself and therefore increasing the performance of the motor
pump at least in terms of the level of higher pressure achievable while maintaining
a very low total encumbrance of the motor pump itself (and equally low production
costs).
[0005] However, the known motor pumps disclosed hitherto are in any case affected by noise-related
drawbacks: in fact, it is possible that in particular working conditions the floating
piston, during its stroke, abuts in a more or less controlled manner on the other
parts of the motor pump, thus generating acoustic waves that can also be at high frequency
(and therefore in a perceived tone that is particularly annoying) or, in any case,
having high sound intensity.
[0006] Therefore, the object of the present invention is to overcome the above-mentioned
drawbacks, and more particularly, the present invention relates to the implementation
of a hydraulic, electromagnetic floating-piston motor pump wherein the noise level
generated during normal operation (but also during possible working moments in which
the stroke of the floating piston is "anomalous") is considerably reduced both in
terms of acoustic volume and of sound characteristics (frequency, duration and possible
resonance phenomena).
[0007] A further object of the present invention is that of providing a motor pump of the
type which can guarantee a high level of resistance and reliability over time, which
is easily manufactured and which can be made starting from minimal modifications (both
of the device and of the production line), with respect to other types of motor pumps
already available.
[0008] According to the present invention, these and other objects are obtained by a motor
pump as defined in claim 1.
- Figure 1 is a schematic exploded view of the motor pump of the Applicant already part
of the State of the Art and which serves as a basis for the technical improvements
introduced in the present invention;
- Figure 2 is a cross-sectional schematic view of a motor pump according to the present
invention in a first operating configuration thereof; and - Figure 3 is a cross-sectional
schematic view of a motor pump according to the present invention in a second operating
configuration thereof.
[0009] With reference to the figures, the motor pump of the present invention is generally
indicated with the reference numeral 10 and basically comprises the following structural
components:
- a body 12 which is partially delimited, in its outer part, by a coil 14;
- an inlet duct 44' and an outlet duct 36 opposite to the inlet duct 44' obtained in
the body 12;
- a piston 16, slidably placed inside the body 12; and
- a magnetic sleeve 52 having a first end located inside the body 12 and more precisely
in its part facing the inlet duct 44'.
[0010] In greater detail, the first end of the above-mentioned magnetic sleeve 52 is arranged
coaxially with the sliding axis of the piston 16 so as to couple with the body 12
in its intermediate part 42 (i.e. near the terminal part 44 which defines the inlet
duct 44'): at the same time, the magnetic sleeve 52 can interact functionally with
the body 12 - if necessary - to increase the overall magnetic field and, therefore,
in order to increase the magnetic attraction force exerted on the piston 16.
[0011] Going deeper in the details and referring to Figure 1, it can be seen that the motor
pump of the State of the Art represented therein further comprises a pair of magnetic
bearings 46, 46': these magnetic bearings are spaced apart from each other and placed
between the body 12 and the coil 14 and at the same time this pair of magnetic bearings
is arranged coaxially to a sliding axis 16a of the piston 16, interacting functionally
with the piston 16 and / or with the magnetic sleeve 52 to increase the magnetic field
and, therefore, the force of magnetic attraction exerted on the piston 16.
[0012] On the other hand, Figures 2 and 3 show a motor pump according to the invention,
where the magnetic bearings 46, 46' are not visible: in any case, these two structural
components (and in the same way, the coil 14, in turn not shown in Figures 2 and 3
but implicitly present in the structure of the invention, and in any case structurally
and functionally able to be positioned / coupled at least with the body 12 and/or
with the piston 16 according to well-known methods to a person skilled in the art
dealing with designing and realizing oscillating cursor motor pumps) can be considered
as optional structural features of the present invention and, if present, they are
located with respect to the body 12 and/or to the sliding axis 16a of the piston 16,
in the most suitable way in order to increase the magnetic interaction with the piston
16 and therefore to increase the flow and/or pressure performances of the motor pump
1.
[0013] In greater detail, it can be seen that the coil 14 and the pair of magnetic bearings
46, 46' can be implemented in a similar way to that shown in Figure 1 also in motor
pumps having the geometric / structural arrangement of the remaining components according
to the invention and more precisely according to Figures 2 and / or 3 (or they can
however be implemented according to a structural and functional coupling method which
is well known to a person skilled in the art dealing with designing and realizing
oscillating-cursor motor pumps).
[0014] According to the invention, the noise-decreasing means will be operationally active
also between the magnetic bearings 46, 46', between the magnetic sleeve 52 and between
the piston 16 (and of course between the coil 14).
[0015] Advantageously, the motor pump 10 according to the invention further comprises noise-decreasing
means operatively active and located between the magnetic sleeve 52, the piston 16
and the body 12 (and optionally, if present, also active between the structural elements
mentioned above and the magnetic bearings 46, 46'): such noise-decreasing means are
suitable to prevent impacts or shocks of the piston 16 on the other parts of the motor
pump 10 or, in the event that these shocks or impacts occur despite the "preventive"
technical measures, they are suitable to absorb and contain - at least partly - the
acoustic energy generated as a result of such shocks or impacts.
[0016] From a structural point of view, the noise-decreasing means mentioned above comprise
at least one passive kinetic and/or acoustic absorption element 100, which is positioned
at end strokes of the piston 16 and suitable to suffer an impact by the piston 16
itself: this passive kinetic and/or acoustic absorption element 100 comprises a body,
preferably an annular body, made of polymeric material and still more preferably made
of a material having hyperelastic behavior (therefore it can conveniently be made
of natural or synthetic rubber based materials, or in any case made of materials able
to absorb or dissipate the energy of the shocks/impacts of the piston 16, partially
or wholly dampening the acoustic waves deriving from these phenomena).
[0017] In other words, it can be seen that the passive kinetic and/or acoustic absorption
element 100 interposes between the piston 16 and one or more of the other structural
components of the motor pump 10 at least in correspondence to an "end of stroke" reaching
time of the movement of the piston 16 itself.
[0018] While the passive kinetic and/or acoustic absorption element 100 is active in its
function only when the piston 16 strokes reach a geometrically undesired point, suitable
"active/preventive" noise-decreasing means can also be present in the invention: these
means comprise at least one active prevention assembly 200 for shocks and/or impacts
which results to be active near at least one end of the piston 16 to prevent impacts
or material contacts of the same with one or more of these components:
- the body 12; and/or
- the magnetic sleeve 52; and/or
- the magnetic bearings 46, 46' (if present).
[0019] From the functional/operational point of view, the active prevention assembly 200
mentioned above is suitable to exploit particular changes (or variations) of direction
(and, if necessary, also of module) of the vectors resulting from the magnetic interactions
between the piston 16 and the body 12 and/or between the piston 16 and the magnetic
sleeve 52 and/or between the piston 16 and the magnetic bearings 46, 46': such magnetic
interactions, which, as mention above, vary in the vector direction, occur in particular
when the piston 16 crosses a certain threshold point of its stroke, defining a new
balance of forces in which the attractive magnetic component along the sliding axis
16a decreases and in which, therefore, the stroke of the piston 16 is braked.
[0020] Thanks to the suitable positioning and sizing of the active prevention assembly 200,
it is therefore possible to control the end parts of the piston 16 strokes, at least
near the maximum geometrical ends of strokes established by the dimensions of the
body 12, so as to stop and invert the motion of the piston 16 itself before it impacts
the structural components on which it has impacted - therefore "producing a sound"
-.
[0021] In greater detail, it can be seen that the active prevention assembly 200 comprises
a first interaction portion 200a formed on the piston 16, typically at one of its
ends, as well as a second interaction portion 200b located near the first interaction
portion 200a and always at an end of stroke of the piston 16 but which, in turn, is
formed in the magnetic sleeve 52 and/or (if present) in the magnetic bearings 46,
46' and/or in the body 12.
[0022] From the functional point of view, and, more precisely, from the mutual interaction
point of view, the first and second interaction portions 200a, 200b mutually interact
to define a vector variation of the magnetic interaction forces suitable to brake
and/or slow down the piston 16.
[0023] According to the exemplary embodiment shown in the figures, the first and second
interaction portions 200a, 200b can conveniently be complementary shaped, and e.g.
They are geometrically interpenetrating into each other along the sliding axis 16a:
this mutual complementary geometric configuration allows an interpenetration degree
without contact when the piston 16 is moving, so as to be able to expose the piston
16 itself to the suitable magnetic field lines "varied in the slowing down/braking
direction" but without generating mechanical contacts which, in turn, generate noise.
[0024] Still with reference to the figures, it can be seen how the first interaction portion
200a comprises - for instance - a cylindrical or annular protrusion (or, on the contrary,
a cavity, not shown) placed on one end of the piston 16, while the second interaction
portion 200b complementarily comprises a cylindrical or annular cavity (or, on the
contrary, a protrusion, not shown) placed on the magnetic sleeve 52 and which can
be circumscribed or inscribed in the protrusion or cavity of the first interaction
portion 200a.
[0025] As already described previously, the motor pump 10 comprises, in its basic structure,
an inlet duct 44', an opposite outlet duct 36; a body 12 (partially delimited, in
its outer part, by a coil 14), optionally a pair of opposite magnetic bearings 46,
46' which are spaced from each other and placed between the body 12 and the coil 14,
a piston 16 which is placed inside the body 12 and flowing therein (resiliently supported
by a front coil spring 20 and a rear spring 20'). In front of the piston 16, in the
part facing the delivery duct, a sealing valve and an elastic band of the piston 16
are commonly placed: the elastic band and the sealing valve cooperate with a support
bearing and a rubber sealing gasket which is elastically stretched by an additional
coil spring.
[0026] The coil spring mentioned above and, at least partially, the rubber gasket are housed
inside a seat of the delivery duct whose diameter is suitable to house the assembly
formed by the rubber gasket and the coil spring (generally this diameter is greater
than that of the outlet duct or hole of the delivery duct).
[0027] A locking ring 38 with an internal thread that engages with a suitably counter-shaped
part (the latter can also be threaded, depending on the needs of the more or less
"reversible" connection torque) in the outer part of the container body 12 is placed
on the duct 22 according to the currently known technical methods.
[0028] For its part, the tubular body 12 comprises a front part 40 with a larger diameter
which faces the outlet duct 36, an adjacent intermediate part 42 (with a diameter
smaller than that of the front part 40) which delimits the sliding axial chamber of
the piston 16 and a terminal part 44 whose diameter is extremely smaller than that
of the intermediate part 42 which defines the inlet duct 44'.
[0029] The opposite magnetic bearings 46 and 46' can be conveniently spaced from each other
by the use of a spacer element and, if necessary, are adapted on the outer side surface
of the intermediate part 42 of the body 12: at the same time, the coil 14 is, in turn,
adapted on the body 12 so that it can include any magnetic bearings 46, 46'.
[0030] The coil 14 is stabilized with known technical means, which are made, e.g., of a
shaped elastic ring which is coupled with a face of the coil and a shoulder (which
can be seen in Figure 1 with the reference number 50) placed on the body 12 (such
coupling is, e.g., located between the front part 40 and the intermediate part 42,
with a smaller diameter which is coupled with the opposite face).
[0031] Inside the body 12 and, more precisely, in the central-lower part facing the inlet
duct 44', the magnetic sleeve 52 is housed, which can typically be made of a steel
having a low residual magnetic content.
[0032] The outer side surface of the magnetic sleeve 52 has different diameters and defines
a rear area 54 which faces the duct 44' with a diameter which is equal to or slightly
smaller than the inner diameter of the intermediate part 42 of the body 12 and defines
a front adjacent area 56 facing the hole or outlet duct 36with a smaller diameter.
[0033] The areas 54 and 56 mentioned above having different diameters form a coupling shoulder
58 for the rear spring 20' and globally the first end of the magnetic sleeve 52 couples
with the body 12 in the intermediate part 42 near the narrowing of the terminal part
44 which defines the inlet duct 44'.
[0034] The axial sliding return of the piston 16 is obtained by means of known technical
means, such as, e.g., the pair of coil springs 20 and 20' previously described (these
springs, therefore, cooperate with the piston 16 itself).
[0035] The supply of the coil 14 is obtained, e.g., by means of a conventional pair of electrical
connections, e.g. of the quick-coupling type as illustrated in Figure 1 with the reference
number 62.
[0036] The applicant has discovered, experimentally, that the motor pump of the present
invention is highly efficient thanks to the presence of the magnetic sleeve 52 which,
being aligned with the sliding axis of the piston 16 with one of its ends, is close
to the piston and, therefore, at a shorter distance between the latter and one of
the two possible magnetic sleeves 46, 46' when placed in the position reached by the
piston 16 during the loading of the rear spring 20', generally near the terminal part
44 of the body 12.
[0037] The invention achieves different advantages.
[0038] First of all, the presence of noise-decreasing means, both in separate terms of the
"passive" or "active/preventive" elements (and, obviously, in joined and simultaneous
terms) allows to maintain rather heavy-duty working conditions of the motor pump,
without, however, being negatively affected by wobbling in the piston stroke and,
therefore, without generating noise, shocks or "mechanical impulse" phenomena that
can also damage the internal components of the motor pump itself.
[0039] In any case, the presence of the noise-decreasing means does not compromise the performance
increase due to the interaction between the magnetic sleeve 52 and the remaining magnetically
active/sensitive components of the motor pump: this means that this improved motor
pump is subjected only to an increase in the magnetic attraction force exerted on
the piston 16 and to that exerted on the fluid which comes out from the delivery duct
22, but it is not affected (except in predetermined "undesired" moments, i.e. in those
operating moments when the piston 16 has exceeded its maximum permissible stroke point
and is therefore very close to a noisy impact with other components of the motor pump
itself) by the slowing down/braking magnetic effects already mentioned in other parts
of the present description.
[0040] Thanks to the presence of the magnetic sleeve 52 it is conveniently possible to reduce
the number of wires of the coil 14, with considerable production savings.
[0041] The motor pump manufactured according to the description does not imply any impediments
or additional costs caused by the increased size of the coil and the related turns
of wires, while the magnetic sleeve 52 can be easily obtained and installed at low
cost (like the noise reduction/absorption/prevention means described so far and claimed
below).
[0042] Although the present invention has been described with reference to a possible embodiment
given as an illustrative and non-limiting example, changes and variations can be made,
all without departing from the scope of the invention, which is defined solely by
the appended claims.
1. Floating-piston motor pump (10) of hydraulic, electromagnetic type, comprising:
- a body (12) which is partially delimited, in its outer part, by a coil (14);
- an inlet duct (44') and an outlet duct (36) opposite to said inlet duct (44') obtained
in said body (12);
- a piston (16) slidably placed inside the body (12); and
- a magnetic sleeve (52) having a first end placed inside said body (12) in a part
thereof facing the inlet duct (44') and arranged coaxially to the sliding axis of
the piston (16), said first end of said magnetic sleeve (52) coupling to the body
(12) in an intermediate part (42) thereof adjacent to a terminal part (44) of the
body (12) defining the inlet duct (44'), said magnetic sleeve (52) interacting at
least with the coil (14) to increase the magnetic field and, therefore, the magnetic
attraction force exerted on the piston (16); and,
- noise-decreasing means operatively active and located at least between the magnetic
sleeve (52), the piston (16) and the body (12), Characterized in that said noise-decreasing means comprise:
- a pair of opposite magnetic bearings (46, 46') spaced between themselves and placed
between the body (12) and said coil (14), said pair of opposite magnetic bearings
(46, 46') being arranged coaxially to a sliding axis (16a) of the piston (16) and
interacting with the piston (16) and/or the magnetic sleeve (52) to increase the magnetic
field and, therefore, the magnetic attraction exerted on the piston (16), said noise-decreasing
means being operatively active also between the magnetic bearings (46, 46'), the magnetic
sleeve (52) and the piston (16); and
- at least one active prevention assembly (200) to actively prevent shocks and/or
impacts, which is operatively active near at least one end of the piston (16) to prevent
material impacts or contacts with the body (12) and/or the magnetic sleeve (52) and/or
magnetic bearings (46, 46'), said active prevention assembly (200) being able to exploit
vector variations of magnetic interactions between the piston (16) and the body (12)
and/or between the piston (16) and the magnetic sleeve (52) and/or between the piston
(16) and the magnetic bearings (46, 46') suitable to slow down and/or brake the piston
(16) itself in correspondence of at least one threshold point of its stroke along
the sliding axis (16a).
2. Motor pump according to claim 1, wherein said noise-decreasing means comprise at least
one passive kinetic and/or acoustic absorption element (100) placed at the end strokes
of the piston (16) and suitable to suffer an impact by the piston (16) itself.
3. Motor pump according to claim 2, wherein said at least one passive kinetic and/or
acoustic absorption element (100) comprise a body, preferably an annular body, made
of polymeric material and still more preferably made of material having hyperelastic
behavior.
4. Motor pump according to claim 1, wherein the active prevention assembly (200) comprises:
- a first interaction portion (200a) formed on the piston (16) preferably at one end
thereof; and
- a second interaction portion (200b) placed near said first interaction portion (200a)
at an end of stroke of the piston (16) and preferably formed in the magnetic sleeve
(52) and/or in the magnetic bearings (46, 46') and/or in the body (12),
said first and second interaction portions (200a, 200b) being mutually interacting
to define variations of magnetic vector interactions suitable to brake and/or slow
down the piston (16).
5. Motor pump according to claim 4, wherein the first and second interaction portion
(200a), (200b) are complementary shaped and, preferably, are geometrically interpenetrating
into each other along the sliding axis (16a).
6. Motor pump according to claim 5, wherein the first interaction portion (200a) comprises
a protrusion or a cylindrical or annular cavity placed on one end of the piston (16),
the second interaction portion (200b) complementarily comprising a cavity or a cylindrical
or annular protrusion placed on the magnetic sleeve (52) and which can be circumscribed
or inscribed in said protrusion or cavity of the first interaction portion (200a).
7. Motor pump according to any one of the preceding claims, wherein the piston (16) is
supported by a front coil spring (20) and a rear coil spring (20') placed inside the
body (12).
8. Motor pump according to any one of the preceding claims, wherein the body (12) comprises:
- a front wall (40) having a larger diameter facing the outlet duct (36);
- an adjacent intermediate part (42) having a diameter smaller than that of said front
part (40) and delimiting a sliding chamber of the piston (16); and
- a terminal part (44) having a diameter smaller than that of said intermediate part
(42), said terminal part (44) defining the inlet duct (44').
9. Motor pump according to claims 7 or 8, wherein an outer side surface of the magnetic
sleeve (52) comprises:
- a rear area (54) facing the duct (44') and having a diameter equal to or slightly
less than an inner diameter of the intermediate part (42) of the body (12); and
- an adjacent front area (56) facing the outlet duct (36) and having a diameter smaller
than that of said rear area (54), said areas (54) and (56) defining a coupling shoulder
(58) for the rear spring (20').
10. Motor pump according to any one of the preceding claims, in which the first end of
the magnetic sleeve (52) couples with the body (12) in the intermediate part (42)
adjacent to the narrowing of the terminal part (44) defining the inlet duct (44'),
the distance between an opposite end of said sleeve (52) and the piston (16) being
smaller than the distance between the latter and the one or the other of the two magnetic
bearings (46, 46') when placed in the position which is reached by the piston (16)
during the loading step of the rear spring (20').
11. Motor pump according to any one of the preceding claims, wherein the magnetic sleeve
(52) is made of a steel having a low residual magnetic content.
1. Motorpumpe mit schwimmendem Kolben (10) vom hydraulischen elektromagnetischen Typ,
umfassend:
- einen Körper (12), der in seinem äußeren Teil teilweise durch eine Spule (14) begrenzt
ist;
- einen Einlasskanal (44') und einen Auslasskanal (36) gegenüber dem Einlasskanal
(44'), die in dem Körper (12) ausgebildet sind;
- einen Kolben (16), der verschiebbar in den Körper (12) platziert ist; und
- eine Magnethülse (52) mit einem ersten Ende, das in dem Körper (12) in einem Teil
davon platziert ist, der dem Einlasskanal (44') zugewandt ist, und koaxial zur Gleitachse
des Kolbens (16) angeordnet ist, wobei das erste Ende der Magnethülse (52), die an
den Körper (12) in einem Zwischenteil (42) davon, der an einen Anschlussteil (44)
des Körpers (12) angrenzt, der den Einlasskanal (44') definiert, gekoppelt ist, wobei
die Magnethülse (52) zumindest mit der Spule (14) interagiert, um das Magnetfeld und
damit die auf den Kolben (16) ausgeübte magnetische Anziehungskraft zu erhöhen; und
- geräuschmindernde Mittel, die betriebswirksam aktiv sind und sich mindestens zwischen
der Magnethülse (52), dem Kolben (16) und dem Körper (12) befinden,
dadurch gekennzeichnet, dass die geräuschmindernden Mittel umfassen:
- ein Paar gegenüberliegender Magnetlager (46, 46'), die untereinander beabstandet
sind und zwischen dem Körper (12) und der Spule (14) platziert sind, wobei das Paar
gegenüberliegender Magnetlager (46, 46') koaxial zu einer Gleitachse (16a) des Kolbens
(16) angeordnet ist und mit dem Kolben (16) und/oder der Magnethülse (52) interagiert,
um das Magnetfeld und damit die auf den Kolben (16) ausgeübte magnetische Anziehungskraft
zu erhöhen, wobei die geräuschmindernden Mittel betriebswirksam auch zwischen den
Magnetlagern (46, 46') der Magnethülse (52) und dem Kolben (16) aktiv sind; und
- mindestens eine aktive Verhinderungsanordnung (200) zur aktiven Verhinderung von
Schocks und/oder Stößen, die in der Nähe von mindestens einem Ende des Kolbens (16)
betriebswirksam ist, um Materialstöße oder - kontakte mit dem Körper (12) und/oder
der Magnethülse (52) und/oder den Magnetlagern (46, 46') zu verhindern, wobei die
aktive Verhinderungsanordnung (200) in der Lage ist, Vektorvariationen magnetischer
Interaktionen zwischen dem Kolben (16) und dem Körper (12) und/oder zwischen dem Kolben
(16) und der Magnethülse (52) und/oder zwischen dem Kolben (16) und den Magnetlagern
(46, 46'), die zum Verlangsamen und/oder Bremsen des Kolbens (16) selbst an mindestens
einem Schwellenpunkt seines Hubs entlang der Gleitachse (16a) geeignet sind, auszunutzen.
2. Motorpumpe nach Anspruch 1, wobei die geräuschmindernden Mittel mindestens ein passives
kinetisches und/oder akustisches Absorptionselement (100) umfassen, das an den Endhüben
des Kolbens (16) platziert ist und geeignet ist, einen Stoß durch den Kolben (16)
zu erleiden.
3. Motorpumpe nach Anspruch 2, wobei das mindestens eine passive kinetische und/oder
akustische Absorptionselement (100) einen Körper, vorzugsweise einen ringförmigen
Körper, aus Polymermaterial und noch bevorzugter aus Material mit hyperelastischem
Verhalten umfasst.
4. Motorpumpe nach Anspruch 1, wobei die aktive Verhinderungsanordnung (200) umfasst:
- einen ersten Interaktionsabschnitt (200a), der an dem Kolben (16) vorzugsweise an
einem Ende davon ausgebildet ist; und
- einen zweiten Interaktionsabschnitt (200b), der in der Nähe des ersten Interaktionsabschnitts
(200a) an einem Ende des Hubs des Kolbens (16) platziert ist und vorzugsweise in der
Magnethülse (52) und/oder in den Magnetlagern (46, 46') und/oder in dem Körper (12)
ausgebildet ist, wobei der erste und der zweite Interaktionsabschnitt (200a, 200b)
miteinander interagieren, um Variationen von magnetischen Vektorinteraktionen zu definieren,
die zum Bremsen und/oder Verlangsamen des Kolbens (16) geeignet sind.
5. Motorpumpe nach Anspruch 4, wobei der erste und der zweite Interaktionsabschnitt (200a),
(200b) komplementär geformt sind und vorzugsweise entlang der Gleitachse (16a) geometrisch
ineinander eindringen.
6. Motorpumpe nach Anspruch 5, wobei der erste Interaktionsabschnitt (200a) einen Vorsprung
oder einen zylindrischen oder ringförmigen Hohlraum umfasst, der an einem Ende des
Kolbens (16) platziert ist, wobei der zweite Interaktionsabschnitt (200b) einen Hohlraum
oder einen zylindrischen oder ringförmigen Vorsprung komplementär umfasst, der an
der Magnethülse (52) platziert ist und der in den Vorsprung oder Hohlraum des ersten
Interaktionsabschnitts (200a) umschrieben oder eingeschrieben werden kann.
7. Motorpumpe nach einem der vorhergehenden Ansprüche, wobei der Kolben (16) von einer
vorderen Schraubenfeder (20) und einer hinteren Schraubenfeder (20') getragen wird,
die in dem Körper (12) platziert sind.
8. Motorpumpe nach einem der vorhergehenden Ansprüche, wobei der Körper (12) umfasst:
- eine Vorderwand (40) aufweisend einen größeren Durchmesser, die dem Auslasskanal
(36) zugewandt ist;
- ein angrenzendes Zwischenteil (42) aufweisend einen Durchmesser, der kleiner als
der des Vorderteils (40) ist und eine Gleitkammer des Kolbens (16) begrenzt; und
- einen Anschlussteil (44) aufweisend einen Durchmesser, der kleiner als der des Zwischenteils
(42) ist, wobei der Anschlussteil (44) den Einlasskanal (44') definiert.
9. Motorpumpe nach Anspruch 7 oder 8, wobei eine Außenseitenfläche der Magnethülse (52)
umfasst:
- einen hinteren Bereich (54), der dem Kanal (44') zugewandt ist und einen Durchmesser
aufweist, der gleich oder geringfügig kleiner als ein Innendurchmesser des Zwischenteils
(42) des Körpers (12) ist; und
- einen angrenzenden vorderen Bereich (56), der dem Auslasskanal (36) zugewandt ist
und einen Durchmesser hat, der kleiner als der des hinteren Bereichs (54) ist, wobei
die Bereiche (54) und (56) eine Kupplungsschulter (58) für die hintere Feder (20')
definieren.
10. Motorpumpe nach einem der vorhergehenden Ansprüche, wobei das erste Ende der Magnethülse
(52) mit dem Körper (12) in dem Zwischenteil (42) gekoppelt ist, der an die Verengung
des Anschlussteils (44) angrenzt, der das Einlasskanal (44') definiert, wobei der
Abstand zwischen einem gegenüberliegenden Ende der Hülse (52) und dem Kolben (16)
kleiner ist als der Abstand zwischen dem letzteren und dem einen oder anderen der
beiden Magnetlager (46, 46'), wenn in der Position platziert, die der Kolben (16)
während des Ladeschritts der hinteren Feder (20') erreicht.
11. Motorpumpe nach einem der vorhergehenden Ansprüche, wobei die Magnethülse (52) aus
einem Stahl mit einem geringen magnetischen Restgehalt besteht.
1. Pompe à moteur à piston flottant (10) de type hydraulique, électromagnétique, comprenant
:
- un corps (12) étant partiellement délimité, dans sa partie extérieure, par une bobine
(14) ;
- un conduit d'entrée (44') et un conduit de sortie (36), opposé audit conduit d'entrée
(44'), obtenus dans ledit corps (12) ;
- un piston (16) placé de manière coulissante à l'intérieur du corps (12) ; et
- un manchon magnétique (52) comportant une première extrémité placée à l'intérieur
dudit corps (12) dans une partie de celui-ci faisant face au conduit d'entrée (44')
et disposée coaxialement à l'axe de coulissement du piston (16), ladite première extrémité
dudit manchon magnétique (52) étant couplée au corps (12) dans une partie intermédiaire
(42) de celui-ci adjacente à une partie terminale (44) du corps (12) définissant le
conduit d'entrée (44'), ledit manchon magnétique (52) interagissant au moins avec
la bobine (14) pour augmenter le champ magnétique et, par conséquent, la force d'attraction
magnétique exercée sur le piston (16) ; et
- des moyens de réduction du bruit fonctionnellement actifs et situés au moins entre
le manchon magnétique (52), le piston (16) et le corps (12),
caractérisée en ce que lesdits moyens de réduction du bruit comprennent :
- une paire de paliers magnétiques opposés (46, 46') espacés entre eux et placés entre
le corps (12) et ladite bobine (14), ladite paire de paliers magnétiques opposés (46,
46') étant disposée coaxialement à un axe de coulissement (16a) du piston (16) et
interagissant avec le piston (16) et/ou le manchon magnétique (52) pour augmenter
le champ magnétique et, par conséquent, l'attraction magnétique exercée sur le piston
(16), lesdits moyens de réduction du bruit étant aussi actifs de manière fonctionnelle
entre les paliers magnétiques (46, 46'), le manchon magnétique (52) et le piston (16)
; et
- au moins un ensemble de prévention active (200), pour empêcher activement les chocs
et/ou les impacts, étant actif de manière fonctionnelle près d'au moins une extrémité
du piston (16) pour empêcher les impacts ou les contacts matériels avec le corps (12)
et/ou le manchon magnétique (52) et/ou les paliers magnétiques (46, 46'), ledit ensemble
de prévention active (200) étant capable d'exploiter les variations vectorielles des
interactions magnétiques entre le piston (16) et le corps (12) et/ou entre le piston
(16) et le manchon magnétique (52) et/ou entre le piston (16) et les paliers magnétiques
(46, 46') adaptées pour ralentir et/ou freiner le piston (16) lui-même en correspondance
d'au moins un point de seuil de sa course le long de l'axe de coulissement (16a).
2. Pompe à moteur selon la revendication 1, dans laquelle lesdits moyens de réduction
du bruit comprennent au moins un élément d'absorption cinétique et/ou acoustique passif
(100) placé aux courses d'extrémité du piston (16) et adapté pour subir un impact
par le piston (16) lui-même.
3. Pompe à moteur selon la revendication 2, dans laquelle ledit au moins un élément d'absorption
cinétique et/ou acoustique passif (100) comprend un corps, de préférence un corps
annulaire, constitué d'un matériau polymère et encore plus préférentiellement constitué
d'un matériau ayant un comportement hyperélastique.
4. Pompe à moteur selon la revendication 1, dans laquelle l'ensemble de prévention active
(200) comprend :
- une première partie d'interaction (200a) formée sur le piston (16), de préférence
à une extrémité de celui-ci ; et
- une seconde partie d'interaction (200b) placée près de ladite première partie d'interaction
(200a) à une extrémité de la course du piston (16) et formée de préférence dans le
manchon magnétique (52) et/ou dans les paliers magnétiques (46, 46') et/ou dans le
corps (12), lesdites première et seconde parties d'interaction (200a, 200b) interagissant
mutuellement pour définir des variations d'interactions vectorielles magnétiques appropriées
pour freiner et/ou ralentir le piston (16).
5. Pompe à moteur selon la revendication 4, dans laquelle la première et la seconde partie
d'interaction (200a), (200b) sont de forme complémentaire et, de préférence, s'interpénètrent
géométriquement l'une dans l'autre le long de l'axe de coulissement (16a).
6. Pompe à moteur selon la revendication 5, dans laquelle la première partie d'interaction
(200a) comprend une saillie ou une cavité cylindrique ou annulaire placée sur une
extrémité du piston (16), la seconde partie d'interaction (200b) comprenant de manière
complémentaire une cavité ou une saillie cylindrique ou annulaire placée sur le manchon
magnétique (52) et pouvant être circonscrite ou inscrite dans ladite saillie ou cavité
de la première partie d'interaction (200a).
7. Pompe à moteur selon l'une quelconque des revendications précédentes, dans laquelle
le piston (16) est supporté par un ressort hélicoïdal antérieur (20) et un ressort
hélicoïdal postérieur (20') placés à l'intérieur du corps (12).
8. Pompe à moteur selon l'une quelconque des revendications précédentes, dans laquelle
le corps (12) comprend :
- une paroi avant (40) présentant un plus grand diamètre faisant face au conduit de
sortie (36) ;
- une partie intermédiaire adjacente (42) ayant un diamètre inférieur à celui de ladite
partie avant (40) et délimitant une chambre de coulissement du piston (16) ; et
- une partie terminale (44) ayant un diamètre inférieur à celui de ladite partie intermédiaire
(42), ladite partie terminale (44) définissant le conduit d'entrée (44').
9. Pompe à moteur selon la revendication 7 ou 8, dans laquelle une surface latérale extérieure
du manchon magnétique (52) comprend :
- une zone arrière (54) faisant face au conduit (44') et ayant un diamètre égal ou
légèrement inférieur à un diamètre intérieur de la partie intermédiaire (42) du corps
(12) ; et
- une zone avant adjacente (56) faisant face au conduit de sortie (36) et ayant un
diamètre inférieur à celui de ladite zone arrière (54), lesdites zones (54) et (56)
définissant un épaulement de couplage (58) pour le ressort postérieur (20').
10. Pompe à moteur selon l'une quelconque des revendications précédentes, dans laquelle
la première extrémité du manchon magnétique (52) s'accouple avec le corps (12) dans
la partie intermédiaire (42) adjacente au rétrécissement de la partie terminale (44)
définissant le conduit d'entrée (44'), la distance entre une extrémité opposée dudit
manchon (52) et le piston (16) étant inférieure à la distance entre ce dernier et
l'un ou l'autre des deux paliers magnétiques (46, 46') lorsqu'ils sont placés dans
la position atteinte par le piston (16) lors de l'étape de chargement du ressort postérieur
(20').
11. Pompe à moteur selon l'une quelconque des revendications précédentes, dans laquelle
le manchon magnétique (52) est constitué d'un acier à faible teneur magnétique résiduelle.