(19)
(11) EP 3 610 896 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
01.09.2021 Bulletin 2021/35

(21) Application number: 17902179.5

(22) Date of filing: 22.03.2017
(51) International Patent Classification (IPC): 
A61L 31/14(2006.01)
G02B 6/44(2006.01)
(86) International application number:
PCT/CN2017/077676
(87) International publication number:
WO 2018/170787 (27.09.2018 Gazette 2018/39)

(54)

SHAPE MEMORY ALLOY HYPOTUBE AND APPLICATION THEREOF IN BLOOD VESSEL OPTICAL FIBER GUIDE WIRE

HYPOTUBUS AUS FORMGEDÄCHTNISLEGIERUNG UND ANWENDUNG DAVON IN EINEM GLASFASERFÜHRUNGSDRAHT FÜR BLUTGEFÄSSE

TUBE DE THIOSULFATE DE SODIUM EN ALLIAGE À MÉMOIRE DE FORME ET SON APPLICATION COMME FIL GUIDE OPTIQUE VASCULAIRE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
19.02.2020 Bulletin 2020/08

(73) Proprietor: Shang, Hua
Nanjing, Jiangsu 210003 (CN)

(72) Inventor:
  • Shang, Hua
    Nanjing, Jiangsu 210003 (CN)

(74) Representative: Gille Hrabal Partnerschaftsgesellschaft mbB Patentanwälte 
Brucknerstraße 20
40593 Düsseldorf
40593 Düsseldorf (DE)


(56) References cited: : 
WO-A1-2016/055787
CN-A- 103 861 195
CN-A- 106 963 992
US-A- 6 080 160
US-A1- 2008 312 490
US-A1- 2013 205 567
CN-A- 101 125 099
CN-A- 104 759 022
US-A- 5 330 465
US-A1- 2008 008 430
US-A1- 2010 274 235
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present application relates to the field of the interventional radiology, specifically to a shape memory alloy hypotube and use thereof in a blood vessel optical fiber guide wire.

    BACKGROUND OF THE INVENTION



    [0002] The interventional radiology, also called interventional therapeutics, is a new subject developed in recent years by combining imaging diagnosis with clinic treatment. It is a generic term of several technologies for mini-invasive treatment through the guiding and monitoring by imaging device including digital subtraction angiography, CT, ultrasonic and magnetic resonance using puncture needle, catheter and other interventional equipment to guide specific equipment to a location of lesion through human body natural orifice and cavity or mini-wound. The common catheters are plastic pipes with a certain length at one end; the leading end is converging so as to be easily inserted into blood vessels and the tail end is consistent with that of the needle so as to be easily connected with an injector. The shape of the leading ends of the common catheters comprise, for example, a single arc, an anti-arc, a double-arc, a improved double-arc, liver arc anterior view, liver arc lateral view, three arcs and the like so as to be easily inserted into blood vessels at different parts. Specification of catheters is often represented by French No, such as 6F or 7F. French No is the number of length in millimeter of an outer perimeter of the catheter. The shape and structure of special catheters are relatively complex. Their medical functions performed are also various, for example, double cavity single balloon catheter, balloon catheters for coronary artery angioplasty. Other common catheters comprise guiding catheters, coaxial catheters, micro catheters, direction controlled catheters, catheters for cutting atrial septum, catheters for capturing blood clot, rotablator, rotational atherectomy catheter, mapping electrode catheter, radiofrequency ablation catheter (also known as a large tip catheter), pacemaker electrode catheter and the like. The coronary artery angioplasty (PTCA) catheter is an important catheter comprising PTCA guiding catheter, PTCA dilatation catheter, and guide wires. The tube wall of guiding catheter comprises three layers: an outer layer of polyurethane or polyethylene, a middle layer of an epoxy resin-fiber network or metal network, an inner layer of smooth Teflon. The metal network or spiral structure in the middle of the catheter are often termed as a hypotube, which ensures some strength of the catheter and maintains the flexibility, formed by precisely laser cutting process.

    [0003] The guide wire can guide the catheter into blood vessels or other lumen percutaneously. Further, it can help the catheter entering thin branches of blood vessels or other diseased cavity gaps, and changing catheters during operation. After the guide wire entering human body, under the guiding of the guide wire, the catheter can reach a desired location by the guide wire. Then drugs or special device, such as heart stent can be delivered by the catheter. The basic structure of the guide wire consists of an inner hard core and an outer closely wrapped winding wire. The inner core guide wire is known as an axial fiber, ensuring the hardness of the guide wire. The tip is converging, that is, the tip is gradually tapered, causing the tip softer. The outside of the axial fiber is formed by wrapping stainless steel spring coil winding wire.

    [0004] Shape memory alloy (SMA) possesses special properties such as shape memory, superelasticity. The martensite phase change of a shape memory alloy can be controlled by the temperature and stress of materials so as to achieve the special mechanical properties of materials. Thus, it can be used in the condition of intelligent control, such as an active control and a passive control. Springs of shape memory alloy are effective control elements for an active vibration control and a passive vibration control, which can be widely applied to the fields of spaceflight, industrial control and medical treatment. In particular, "shape memory alloy (SMA)" are mentioned in many documents, such as US2008/312490A1, US20137205567A1, WO2016/055787A1, US2010/274235A1 and US6080160A. US2008/008430A1 discloses fiber optic cables whose shape may be formed and retained while maintaining an acceptable bend radius. These features are produced by incorporating a compact compliant internal cable member into the cable structure The compliant internal member consists not only of the fiber optic cable, but also ductile and non-ductile elements.

    [0005] Compared with common means in the art such as surgery, chemotherapy and radiotherapy, the photodynamic therapy of tumors possess several advantages, such as less injury, less toxicity, better targeting and improved feasibility. However, the difficulty is how to transmit the light into the human body through human body blood vessels. The earlier applications 201611234625X and 2016214560291 filed by the applicant recite that the light can be transmitted to the location of lesion of the body by very thin optical fiber guide wire passing through blood vessel in human body. The diameter of an optical fiber guide wire is just hundreds of microns. Generally, the largest diameter is about 2mm, the smallest diameter is only about 100 µm. However, its length is about in the range of 1.5 to 2m. Thus, if inserting such thin and long optical fiber guide wire into human body, the structure of optical fiber guide wires should be good enough. Therefore, how to insert the optical fiber core wire and improve the strength and safety of the optical fiber guide wire are very important.

    SUMMARY OF THE INVENTION



    [0006] The invention is as defined in the appended claims.

    [0007] In view of the above, the object of the present application is to provide a shape memory alloy hypotube and use thereof in a blood vessel optical fiber guide wire, so as to address the above problems.

    [0008] The object of the present application is achieved by the following technical solutions:

    The present application provides a shape memory alloy hypotube. The hypotube is disposed in the periphery of an optical fiber guide wire, and the hypotube comprises several spiral coils. This hypotube is made from a shape memory alloy such that its diameter varies over temperature so as to closely wrap outside of an axial fiber.



    [0009] Further, a shape memory alloy for making the hypotube is nickel titanium alloy (NiTi) or copper zinc alloy (CuZn).

    [0010] Further, the axial fiber is an optical fiber core wire, which can transmit the light into a location of lesion of the human body.

    [0011] Further, at room temperature, spiral coils of the hypotube are closely combined.

    [0012] The present application also provides use of the shape memory alloy hypotube in a blood vessel optical fiber guide wire. The blood vessel optical fiber guide wire comprises a core disposed in an optical fiber core wire and a hypotube disposed outside of the optical fiber core wire. The use comprises:
    1. a. selecting a shape memory alloy material possessing a martensite phase change temperature of Ms and a reverse phase change temperature of As, then making a hypotube comprising several spiral coils from the shape memory alloy material (that is helix tubes);
    2. b. cooling the hypotube comprising several spiral coils made in step a to temperature of T0 lower than Ms;
    3. c. when the temperature is lower than Ms, opposite torques are applied at both ends of the hypotube so as to reduce the number of spiral coils of the hypotube and increase the diameter to D, due to the metals memory effects, shape of the hypotube at the temperature lower than Ms is maintained at the temperature of T0;
    4. d. increasing the temperature of the hypotube to room temperature T1 higher than As, and applying opposite torques at both ends of the hypotube so as to reduce the inner diameter of the hypotube to d, due to the metals memory effects, the shape of the hypotube at the temperature of T1 is maintained,
    5. e. selecting an optical fiber core wire of a diameter of Di, wherein D > Di≥ d, then cooling the hypotube with a shape memory function obtained in step d to a temperature of T0, then the inner diameter of the hypotube increases to D, inserting the optical fiber core wire into the hypotube, increasing the temperature of the hypotube into which the optical fiber core wire has been inserted to room temperature, then the inner diameter of the hypotube decreases, since the inner diameter d of the hypotube at the temperature of T1 is not larger than the outer diameter Di of the optical fiber core wire, the hypotube is wrapped closely outside of the optical fiber core wire.


    [0013] Further, in the step a, a metal thin tube is made from the shape memory alloy material firstly, then cutting the metal thin tube by laser to form the hypotube comprising several spiral coils.

    [0014] Further, in the step a, the shape memory alloy material is nickel titanium alloy (NiTi) or copper zinc alloy (CuZn).

    [0015] Further, in the step a, the shape memory alloy material is Nickel titanium alloy 51Nickel titanium with a martensite phase change temperature Ms of-20°C and a reverse phase change temperature As of-12°C.

    [0016] Further, in the steps b and e, the hypotube is dipped into a solution of dry ice-ethyl alcohol so as to be cooled to a temperature of T0 lower than the temperature of Ms.

    [0017] Further, in the steps c and d, the relationship between the diameter of the spiral coils and the number of spiral coils is:

    wherein D is the diameter of the spiral coils, N is the number of the spiral coils, H is the height of the spiral coils, when torques are applied at the both ends of the hypotube, the number of the spiral coils N decreases, the diameter D increases, the number of the spiral coils N increases, diameter D decreases.

    [0018] Further, the blood vessel optical fiber guide wire comprises at least one optical fiber core wire for transmitting the light, hypotube and a hydrophilic coating capable of improving compatibility with body liquids and reducing the resistance; the optical fiber core wire is disposed in a core of the optical fiber guide wire; the hypotube is wrapped outside of the optical fiber core wire spirally, the hydrophilic coating is coated outside of the hypotube;
    materials of the hydrophilic coating comprises at least one selected from the group consisting of polytetrafluoroethylene, silicone rubber, polyethylene, polyvinyl chloride, fluorine carbon polymer and polyurethane.

    [0019] Further, the optical fiber core wire comprising fiber core and a clad layer coated outside of each of the fiber core; the light conductivity of the clad layer is lower than that of the fiber core.

    [0020] Further, one or more metal/ polymer guide wires in parallel with the fiber core can be incorporated into the fiber core or polymer guide wire and the fiber core to improve the strength.

    [0021] Further, a light guide part is disposed at the end of the optical fiber guide wire guided into the blood vessel. The light guide part comprises a light transmitting part and a micro lens disposed at the top of the light transmitting part and being capable of guiding the light out of / into the fiber core. Several light guiding holes are disposed on the light transmitting part passing through the hydrophilic coating and hypotube and being perpendicular to the optical fiber core wire.

    [0022] The present application possesses the following advantageous effect.

    [0023] The present application provides a shape memory alloy hypotube formed from a shape memory alloy. The diameter of the hypotube varies over temperature due to properties of the shape memory alloy. It can be applied to an optical fiber guide wire. When the diameter increases, the optical fiber core wire can penetrate through the hypotube. Then, the diameter decreases by changing temperature such that the axial fiber and the winding wire (that is the hypotube) is fastened closely. The strength and reliability of the optical fiber guide wire is improved such that it can easily enter human body blood vessel. Further, the conventional winding process is simplified.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0024] 

    Figure 1 is a schematic diagram of the shape of the hypotube in an example of the present application the at the temperature of T0;

    Figure 2 is a schematic diagram of the relationship between the inner diameter and number of coils of the hypotube in an example of the present application;

    Figure 3 is a schematic diagram of the shape of the hypotube in an example of the present application the at the temperature of T1;

    Figure 4 is a schematic diagram of an optical fiber guide wire wrapped by the hypotube in an example of the present application at the temperature of T1;

    Figure 5 is a schematic diagram of partial cut optical fiber guide wire in an example of the present application;

    Figure 6 is a cross section schematic diagram of an optical fiber guide wire in an example of the present application;

    Figure 7 is a cross sectional view of the part inside of the dashed line in Figure 5;

    Figure 8 is a cross section schematic diagram of and optical fiber guide wire in another example of the present application.



    [0025] 1. hypotube; 2. optical fiber core wire; 3. through-hole ; 10. optical fiber guide wire; 11. fiber core; 12. clad layer; 14. hydrophilic coating; 15. micro len; 16. light guiding hole; 20. light guide part.

    DETAILED DESCRIPTION OF THE INVENTION



    [0026] The technical solutions of embodiment of the present application are described clearly and completely as follows. Obviously, the described embodiments are just some not all embodiments of the present application. The protection scope of the present application is not intended to be limited by embodiments of the present application provided below, but just represent selected embodiments of the present application. Based on embodiments of the present application, other embodiments that can be obtained by those skilled in the art without paying any creative work belong to the protection scope of the the present application.

    Embodiment 1



    [0027] As shown in Figure 1 and Figure 3-Figure 4, a shape memory alloy hypotube is provided. The hypotube 1 is disposed outside of an optical fiber guide wire. The hypotube 1 comprises several spiral coils, and an optical fiber core wire 2 can be inserted into a through-hole 3 at the middle of the hypotube 1. The hypotube 1 is formed from a shape memory alloy. Thus, the diameter of the hypotube 1 varies over temperatures such that the hypotube 1 can closely wrap outside of the optical fiber core wire 2 disposed therein.

    [0028] The shape memory alloy for making the hypotube 1 is nickel titanium alloy (NiTi) or copper zinc alloy (CuZn), preferably Nickel titanium alloy 51 Nickel titanium with a martensite phase change temperature Ms of-20°C and a reverse phase change temperature As of-12°C.

    [0029] At room temperature, adjacent spiral coils in the hypotube 1 is closely combined, as shown in Figure 3 or Figure 4, so as to avoid the exposure of the optical fiber, which influence the transmitting of the light.

    Embodiment 2



    [0030] Use of a shape memory alloy hypotube in blood vessel optical fiber guide wire. The blood vessel optical fiber guide wire comprises an optical fiber core wire 2 disposed in a core and a hypotube 1 disposed outside of the optical fiber core wire 2. The use comprising:
    1. a. Selecting nickel titanium alloy 51Nickel titanium as a shape memory alloy with a martensite phase change temperature Ms of-20°C and a reverse phase change temperature As of-12°C; then making a metal thin tube is formed from the shape memory alloy material firstly, then making a hypotube comprising several spiral coils (that is, helix tubes) from the metal thin tube by laser cutting. If the inner diameter of the hypotube is 300µm and the length H is 5cm, spiral coil number of coils is 10.
    2. b. Dipping the hypotube 1 comprising several spiral coils formed in step a into a solution of dry ice-ethyl alcohol to be cooled into T0=-40°C lower than the temperature of Ms.
    3. c. When the temperature of the hypotube 1 is lower than T0=-40°C, which means lower than Ms, opposite torques are applied at both ends of the hypotube 1 to reduce the number of spiral coil of the hypotube 1 and increase the diameter. If the applied torque cause the hypotube 1 rotate four cycles (that is, remaining six cycles of spirals), the diameter D increases to 500µm. Due to the metals memory effects, the shape of the hypotube 1 at the temperature lower than Ms is maintained at the temperature of T0.
    4. d. Increasing the temperature of the hypotube 1 to room temperature T1 higher than As, and applying opposite torques at both ends of the hypotube 1 so as to reduce the inner diameter d of the hypotube 1 to 300µm. Due to the metals memory effects, the shape of the hypotube 1 at this T1 temperature is marinated.
    5. e. Selecting an optical fiber core wire 2 with an outer diameter Di of 300µm. At room temperature, the axial fiber cannot penetrate through the hypotube 1 with an inner diameter of 300µm. Dipping the hypotube 1 formed in step d and possessing a shape memory function into a solution of dry ice-ethyl alcohol, and cooling to T0=-40°C. The inner diameter D increases to 500µm, then the optical fiber core wire 2 can penetrate through easily.


    [0031] Inserting the optical fiber core wire 2 into the hypotube 1, ,then, increasing the temperature of the hypotube 1 into which the optical fiber core wire 2 has been inserted to room temperature, the inner diameter of the hypotube 1 decreases. Since at the temperature of T1, the inner diameter d of the hypotube 1 is the same as the outer diameter Di of the optical fiber core wire 2, the hypotube 1 is wrapped closely outside of the optical fiber core wire 2.

    [0032] In the above step c, when opposite torques are applied to the both ends of the hypotube 1, the diameter of the hypotube 1 increases. The reason is the hypotube 1 can be simplified as a spiral line. If the height of a spiral line is H, the diameter of the spiral coil is D, the number of the spiral coils is N. When the cylindrical surface is unfolded as a straight line, according to the Pythagorean theorem, the length L of the spiral line can be calculated as:



    [0033] The diameter in the above equation can be expressed as a function of the number N of the spiral coils:



    [0034] Figure 2 shows the relationship between N and D. It can be seen from Figure 2 that when torques are applied at both ends of the hypotube 1, the number of the spiral coils decreases and the diameter increases.

    [0035] As for T1 higher than the reverse phase change temperature As, in a similar manner with the above, opposite torques are applied at both ends of the hypotube 1 so as to reduce the inner diameter, as that in the above step d. Then enough torques are applied and after a period of time, a shape memory function is produced at the temperature of T1, as shown in Figure 3.

    [0036] After forming the shape memory alloy hypotube, the temperature is adjusted to T0. The inner diameter of the hypotube increases such that the axial fiber or other device can penetrate through. Then the temperature is adjusted to T1, the inner diameter of the hypotube decreases. Due to the elastic action, the hypotube is wrapped outside of axial fibers forming a tightly bound as shown in Figure 4.

    [0037] In the present application, a hypotube is formed by shape memory alloy (such as nickel titanium alloy, NiTi). The physical characteristics and the mechanical properties of NiTi shape memory alloy are shown in the following table.
    properties NiTi alloy 316L stainless steel
    density (g/cm3) 6.45 8.03
    tensile strength (MPa) >980 552
    fatigue strength (MPa) 558 343
    elasticity modulus (MPa) 61740 176400
    biocompatibility very good good
    magnetism No Yes


    [0038] The shape memory effects and superelasticity are related to the thermoelasticity martensite phase change. The shape memory effects may be manifested as following: when a parent phase sample possessing a shape is cooled from a temperature higher than As (a temperature for achieving a reverse phase change) to a temperature lower than Ms (a temperature for achieving a martensite phase change), a martensite is formed. The martensite will deform at the temperature lower than Ms. If it is heated to a temperature higher than As, the material will recover the shape at its parent phase by a reverse phase change. The essence is the thermoelasticity martensite phase change. Parts of NiTi alloy and their transformation temperature are shown in the following table.
    Alloy Components Ms/°C As/°C
    NiTi Ni-50Ti 60 78
    51Ni-Ti -20 -12
    Ni-Ti-Cu 20 Ni-Ti--30Cu 80 85
    Ni-Ti-Fe 47Ni-Ti--3Fe -90 -72

    Embodiment 3



    [0039] Based on Embodiment 2, the specific structure of the optical fiber guide wire is shown as follows.

    [0040] As shown in Figure 5-Figure 6, the optical fiber guide wire 10 comprises one optical fiber core wire, a hypotube 1 spirally wrapping the optical fiber core wire as well as a hydrophobic coating 14 coated outside of the hypotube 1.

    [0041] The optical fiber core wire is disposed at the core of the optical fiber guide wire 10. The optical fiber core wire comprises a fiber core 11 (that is an optical fiber) for transmitting the light as well as a clad layer 12 coated outside of the fiber core 11. The fiber core 11 is a single mode fiber core or multimode fiber core. The material of the fiber core 11 is at least one selected from the group consisting of quartz fiber core, polymer fiber core and/or metal hollow fiber core. The light conductivity of the clad layer 12 is less than that of the fiber core 11. Thus, the clad layer 12 may restrain the light in the fiber core 11.

    [0042] The hypotube 1 may improve the tenacity and strength of the optical fiber guide wire greatly.

    [0043] The hydrophilic coating 14 can improve body liquid compatibility and reduce the resistance of body when the optical fiber guide wire 10 passing through, such as improve blood compatibility and reduce the resistance in the blood. The hydrophilic coating 14 is made from chemically stable materials.

    [0044] Materials for the hydrophilic coating 14 include but not limited to polytetrafluoroethylene, silicone rubber, polyethylene, polyvinyl chloride, fluorine carbon polymer and polyurethane. The hydrophilic coating 14 can be formed from any one or two of the above materials. The hydrophilic coating 14 can be formed outside of the wire wrapping layer 13 by plating, coating or heat shrinkage,etc.

    [0045] As shown in Figure 7, a light guide part 20 is disposed at the head portion of the end of the optical fiber guide wire 10 guiding into blood vessel of human body. The light guide part 20 comprises a light transmitting part and a micro lens 15 disposed at the top (that is, the top of the optical fiber guide wire 10) of the light transmitting part and capable of guiding the light out of / into the fiber core 11. The optical fiber core wire extends from the main body of the optical fiber guide wire 10 to the light transmitting part. Then, the light transmitted in the optical fiber core wire is converged into the micro lens 15 and transmitted to the optical fiber guide wire 10 to irradiate the desired location. Several light guiding holes 16 are disposed on the light transmitting part passing through the hydrophilic coating 14 and hypotube 1 and being perpendicular to the optical fiber core wire. The optical fiber core wire can be exposed by these holes. That is, the optical fiber core wire can be seen through these holes. A small part of the light in the fiber core 11 may pass through the clad layer 12 and be transmitted from light guiding hole 16. The length of the light transmitting part is generally in the range of 1-4 cm, preferably in the range of 2-3 cm, which facilitates the treatment and the passing of the optical fiber guide wire 10.

    [0046] The above light guiding hole 16 in the light transmitting part can be formed between gaps of spiral coils. That is, during the processing, gaps between spiral coils of the hypotube adjacent to the light guide part 20 can be provided as a suitable size to form the light guiding hole 16 for transmitting the light.

    [0047] For other parts of the optical fiber guide wire 10 than the light transmitting part, preferably at room temperature, spiral coils of the hypotube 1 combine closely. That is, they seem wrapped closely to ensure the strength of the optical fiber guide wire 10 and no leaked light.

    [0048] The micro lens 15 is in a shape of circular and hemisphere, etc., which may converge the light or heat. Further, the micro lens 15 is also disposed to reduce the resistance of the optical fiber guide wire 10 when passing in blood vessels. Certainly, the micro lens 15 can be in other structures.

    [0049] As a further preferred embodiment, one or more metals / polymer guide wire in parallel with the fiber core 11 can be incorporated into the fiber core 11 to improve its strength.

    [0050] As a further preferred embodiment, as shown in Figure 8, the number of the optical fiber core wire can be two or greater. They are disposed in parallel at the core of optical fiber guide wire 10. The optical fiber core wire comprises fiber core 11 and a clad layer 12 coated outside of each fiber core 11. The hypotube 1 is wrapped outside of all optical fiber core wires to improve their tenacity and strength. The light conductivity of the clad layer 12 is less than that of the fiber core 11. Thus, the clad layer 12 may restrain the light in the fiber core 11.

    [0051] If optical fiber guide wire 10 comprises more fiber cores 11, the fiber core 11 may comprise a first fiber core guiding into the light and a second fiber core guiding out of the light. That is, for more than one fiber core 11, one or more fiber cores can be used to guide into the light, one or more fiber cores can be used to guide out of the light simultaneously. The fiber core guiding into the light may transmit the light out of blood vessel after the light effecting. A computer can be used to analyze datas such as spectrum of light guided out of the fiber cores to determine the treatment or diseases. Then, corresponding therapies can be used for treating.

    [0052] In this embodiment, the diameter of the optical fiber guide wire 10 is just hundreds of micron. Generally, the largest diameter is about 2mm, the smallest diameter is only about 100 µm. Therefore, the optical fiber guide wire 10 may pass into human body through blood vessels for interventional treatments. The length of the optical fiber guide wire 10 is about in the range of 1.5 to 2m. Due to this length, the light source can be send to any location of lesion in human body, with a range of 0.4-1m remain outside of the body.

    [0053] In photodynamic tumor treatment, if a liver tumor is treated by the interventional treatment, it needs to enter blood vessels in liver tumor. The optical fiber guide wire is coupled with a laser emitter through a coupling device. An end of the optical fiber guide wire enters blood vessels percutaneously. Under the guidance of clinic imaging, the optical fiber guide wire is slowly rotated into blood vessels until to the location of lesion to irradiate. That is, the optical fiber guide wire is rotate into blood vessels in liver tumor and inserted into the diseased region. After opening the laser emitter, the laser light guided into by the optical fiber guide wire irradiates tumor into which a photo sensitizer has been injected. Therefore, the photo sensitizer reacts in the tumor and produces singlet oxygen to cause the necrosis and apoptosis of the tumor achieving the target of tumor treatment.

    [0054] In the present application, as for the ratio of dry ice and ethyl alcohol, the prior art can be referred, as long as the temperature can be achieved in the present application. Certainly, other cooling methods in the art can be selected in the present application.

    [0055] The above is just some preferable embodiments of the present application, rather than the limitation to the present application. For those skilled in the art, various of modifications and changes could be made in the present application.

    [0056] The invention is as defined in the appended claims.


    Claims

    1. A blood vessel optical fiber guide wire (10) comprising a shape memory alloy hypotube (1), the hypotube (1) is disposed in the periphery of the optical fiber guide wire (10), wherein the hypotube (1) comprises several spiral coils; and the hypotube (1) is made from a shape memory alloy such that its diameter varies over temperature so as to closely wrap outside of an axial fiber,
    wherein the blood vessel optical fiber guide wire (10) comprises an optical fiber core wire (2) disposed in a core and the hypotube (1) disposed outside of the optical fiber core wire (2),
    wherein the coils of the hypotube (1) are made from a shape memory alloy material possessing a martensite phase change temperature of Ms and a reverse phase change temperature of As;
    wherein the hypotube (1) is configured such that when cooling the hypotube (1) to a temperature of T0 lower than Ms and applying opposite torques at both ends of the hypotube (1) so as to reduce the number of spiral coils of the hypotube (1) and increase the diameter to D, shape of the hypotube (1) at the temperature lower than Ms is maintained at the temperature of T0 due to the metals memory effects;
    wherein the hypotube (1) is configured such that increasing the temperature of the hypotube (1) to room temperature T1 higher than As, and applying opposite torques at both ends of the hypotube (1) so as to reduce the inner diameter of the hypotube (1) to d, a shape of the hypotube (1) at the temperature of T1 is maintained due to metals memory effects;
    wherein the optical fiber core wire (2) of the hypotube (1) is selected of a diameter of Di, wherein D > Di≥d, and is configured such that when cooling the hypotube (1) with the obtained shape memory function to a temperature of T0, the inner diameter of the hypotube (1) increases to D, so that the optical fiber core wire (2) can be inserted into the hypotube (1), wherein the hypotube (1) is configured such that when increasing the temperature of the hypotube (1) into which the optical fiber core wire (2) has been inserted to room temperature, the inner diameter of the hypotube (1) decreases, since the inner diameter d of the hypotube at the temperature of T1 is not larger than the outer diameter Di of the optical fiber core wire (2), so that the hypotube (1) is wrapped closely outside of the optical fiber core wire (2).
     
    2. The blood vessel optical fiber guide wire (10) according to claim 1, wherein
    the shape memory alloy for making the hypotube (1) is nickel titanium alloy or copper zinc alloy;
    the axial fiber is the optical fiber core wire (2) capable of transmitting the light into a location of lesion of human body through a blood vessel; and
    at room temperature, the spiral coils of the hypotube (1) are closely combined.
     
    3. Use of a shape memory alloy hypotube (1) in a blood vessel optical fiber guide wire (10), characterized in that the blood vessel optical fiber guide wire (10) comprises an optical fiber core wire (2) disposed in a core of the optical fiber guide wire (10) and the hypotube (1) disposed outside of the optical fiber core wire (2), wherein the hypotube (1) comprises several spiral coils, and is made from a shape memory alloy such that a diameter of the hypotube (1) varies over temperature so as to closely wrap outside of an axial fiber; wherein the use comprises

    a. selecting a shape memory alloy material possessing a martensite phase change temperature of Ms and a reverse phase change temperature of As, then making the hypotube (1) comprising several spiral coils from the shape memory alloy material;

    b. cooling the hypotube (1) comprising several spiral coils made in step a to a temperature of T0 lower than Ms;

    c. when the temperature is lower than Ms, opposite torques are applied at both ends of the hypotube (1) so as to reduce the number of spiral coils of the hypotube (1) and increase the diameter to D, shape of the hypotube (1) at the temperature lower than Ms is maintained at the temperature of T0 due to metals memory effects;

    d. increasing the temperature of the hypotube (1) to room temperature T1 higher than As, and applying opposite torques at both ends of the hypotube (1) so as to reduce the diameter of the hypotube (1) to d, a shape of the hypotube (1) at the temperature of T1 is maintained due to metals memory effects;

    e. selecting an optical fiber core wire (2) of a diameter of Di, wherein D> Di≥d, then cooling the hypotube (1) with a shape memory function obtained in step d to the temperature of T0, then the diameter of the hypotube (1) increases to D, inserting the optical fiber core wire (2) into the hypotube (1), increasing the temperature of the hypotube (1) into which the optical fiber core wire (2) has been inserted to room temperature, then the diameter of the hypotube (1) decreases, since the diameter d of the hypotube (1) at the temperature of T1 is not larger than the diameter Di of the optical fiber core wire (2), the hypotube (1) is wrapped closely outside of the optical fiber core wire (2).


     
    4. The use of the shape memory alloy hypotube (1) according to claim 3, wherein in the step a, a metal thin tube is made from the shape memory alloy material firstly, then cut by laser to form the hypotube (1) comprising several spiral coils.
     
    5. The use of the shape memory alloy hypotube (1) according to claim 4, wherein in the step a, the shape memory alloy material is nickel titanium alloy or copper zinc alloy.
     
    6. The use of the shape memory alloy hypotube (1) according to claim 5, wherein in the step a, the shape memory alloy material is nickel titanium alloy 51 Ni-Ti with a martensite phase change temperature Ms of -20°C and a reverse phase change temperature As of-12°C; and
    in the steps b and e, the hypotube (1) is dipped into a solution of dry ice-ethyl alcohol so as to be cooled to the temperature of T0 lower than the temperature of Ms.
     
    7. The use of the shape memory alloy hypotube (1) according to claim 6, wherein in the steps c and d, a relationship between the diameter of the hypotube (1) and the number of spiral coils is:

    wherein D is the diameter of the hypotube (1), N is the number of the spiral coils, and H is a height of the spiral coil,
    when torques are applied at both ends of the hypotube (1), the number of the spiral coils N decreases, the diameter D increases; and the number of the spiral coils N increases, the diameter D decreases.
     
    8. The use of the shape memory alloy hypotube (1) according to claim 7, wherein the blood vessel optical fiber guide wire (10) comprises at least one optical fiber core wire (2) for transmitting light, the hypotube (1) and a hydrophilic coating (14) capable of improving compatibility with body liquids and reducing resistance; the optical fiber core wire (2) is disposed in the core of the optical fiber guide wire (10); the hypotube (1) is wrapped outside of the optical fiber core wire (2) spirally; the hydrophilic coating (14) is coated outside of the hypotube (1);
    materials of the hydrophilic coating (14) comprise at least one selected from the group consisting of polytetrafluoroethylene, silicone rubber, polyethylene, polyvinyl chloride, fluorine carbon polymer and polyurethane.
     
    9. The use of the shape memory alloy hypotube (1) according to claim 8, wherein the optical fiber core wire (2) comprises a fiber core (11) and a clad layer (12) coated outside of the fiber core (11); light conductivity of the clad layer (12) is lower than light conductivity of the fiber core (11);
    one or more metal/ polymer guide wires in parallel with the fiber core (11) are incorporated into the fiber core to improve strength.
     
    10. The use of the shape memory alloy hypotube (1) according to claim 9, wherein a light guide part (20) is disposed at an end of the optical fiber guide wire (10) to be guided into a blood vessel; the light guide part (20) comprises a light transmitting part and a micro lens (15) disposed at a top of the light transmitting part and capable of guiding light into or out of the fiber core (11); several light guiding holes (16) passing through the hydrophilic coating (14) and the hypotube (1) and being perpendicular to the optical fiber core wire (2) are disposed on the light transmitting part.
     


    Ansprüche

    1. Lichtleitfaser-Führungsdraht (10) für Blutgefäße mit einer Hypotube (1) aus einer Formgedächtnislegierung, die Hypotube (1) in der Peripherie des Lichtleitfaser-Führungsdrahts (10) angeordnet ist, wobei die Hypotube (1) mehrere Spiralspulen umfasst; und die Hypotube (1) aus einer Formgedächtnislegierung hergestellt ist, so dass sich ihr Durchmesser über die Temperatur ändert, um sich außerhalb einer axialen Faser eng zu wickeln, dadurch gekennzeichnet, dass der Lichtleitfaser-Führungsdraht (10) für Blutgefäße einen in einem Kern angeordneten Lichtleitfaser-Kerndraht (2) und eine außerhalb des Lichtleitfaser-Kerndrahts (2) angeordnete Hypotube (1) umfasst,
    wobei die Spulen der Hypotube (1) aus einem Formgedächtnislegierungsmaterial hergestellt sind, das eine Martensit-Phasenänderungstemperatur Ms und eine Umkehrphasenänderungstemperatur As besitzt;
    wobei die Hypotube (1) so konfiguriert ist, dass die Form der Hypotube (1) bei einer niedrigeren Temperatur als Ms aufgrund der Gedächtniseffekte der Metalle bei der Temperatur von T0 beibehalten wird, wenn der Hypotube (1) auf eine Temperatur von T0 abgekühlt ist, die niedriger als Ms ist, und die entgegengesetzten Drehmomente an beiden Enden der Hypotube (1) aufgebracht sind, um die Anzahl der Spiralspulen der Hypotube (1) zu verringern und den Durchmesser auf D zu vergrößern;
    wobei die Hypotube (1) so konfiguriert ist, dass eine Form der Hypotube (1) bei der Temperatur von T1 aufgrund der Gedächtniseffekten der Metalle beibehalten wird, wenn die Temperatur der Hypotube (1) auf eine Raumtemperatur von T1 erhöht ist, die höher als As, und die entgegengesetzte Drehmomente an beiden Enden der Hypotube (1) aufgebracht sind, um den Innendurchmesser der Hypotube (1) auf d zu reduzieren;
    wobei der Lichtleitfaser-Kerndraht (2) der Hypotube (1) aus einem Durchmesser von Di ausgewählt ist, wobei D>Di≥d, und so konfiguriert ist, dass beim Abkühlen der Hypotube (1) mit der erhaltenen Formgedächtnisfunktion auf eine Temperatur von T0 der Innendurchmesser der Hypotube (1) sich auf D erhöht, so dass der Lichtleitfaser-Kerndraht (2) in die Hypotube (1) eingeführt werden kann, wobei die Hypotube (1) so konfiguriert ist, dass bei Erhöhung der Temperatur der Hypotube (1) auf Raumtemperatur, in die der Lichtleitfaser-Kerndraht (2) eingeführt wurde, der Innendurchmesser der Hypotube (1) nimmt ab, da der Innendurchmesser d der Hypotube bei der Temperatur von T1 nicht größer als der Außendurchmesser Di des Lichtleitfaser-Kerndrahts (2), wird die Hypotube (1) außerhalb des Lichtleitfaser-Kerndrahts (2) eng gewickelt.
     
    2. Lichtleitfaser-Führungsdraht (10) für Blutgefäße nach Anspruch 1, wobei die Formgedächtnislegierung zur Herstellung der Hypotube (1) eine Nickel-Titan Legierung oder eine Kupfer-Zink Legierung ist;
    die axiale Faser der Lichtleitfaser-Kerndraht (2) ist, der das Licht durch ein Blutgefäß in eine Läsionsstelle des menschlichen Körpers übertragen kann; und
    bei Raumtemperatur die Spiralspulen der Hypotube (1) eng miteinander verbunden sind.
     
    3. Verwendung einer Hypotube (1) aus einer Formgedächtnislegierung in einem Lichtleitfaser-Führungsdraht (10) für ein Blutgefäß, dadurch gekennzeichnet, dass der Lichtleitfaser-Führungsdraht (10) für ein Blutgefäß einen in einem Kern des Lichtleitfaser-Führungsdrahts (10) angeordneten Lichtleitfaser-Kerndraht (2) und eine außerhalb des Lichtleitfaser-Kerndrahts (2) angeordnete Hypotube (1) umfasst, wobei die Hypotube (1) mehrere Spiralspulen umfasst und aus einer Formgedächtnislegierung hergestellt ist, so dass ein Durchmesser der Hypotube (1) sich über die Temperatur ändert, um sich außerhalb einer axialen Faser eng zu wickeln; wobei die Verwendung umfasst:

    a. Auswählen eines Formgedächtnislegierungsmaterials, das eine Martensit-Phasenänderungstemperatur von Ms und eine Umkehrphasenänderungstemperatur von As besitzt, dann Herstellen der Hypotube (1) mit mehreren Spiralspulen aus dem Formgedächtnislegierungsmaterial;

    b. Abkühlen der Hypotube (1) mit mehreren Spiralspulen, die in Schritt a hergestellt ist, auf eine Temperatur von T0, die niedriger als Ms ist;

    c. wenn die Temperatur niedriger als Ms ist und die entgegengesetzten Drehmomente an beiden Enden der Hyporöhre (1) aufgebracht sind, um die Anzahl der Spiralspulen der Hyporöhre (1) zu reduzieren und den Durchmesser auf D zu vergrößern, wird eine Form der Hyporöhre (1) bei einer niedrigeren Temperatur als Ms aufgrund der Gedächtniseffekten der Metalle bei der Temperatur von T0 beibehalten;

    d. Erhöhen der Temperatur der Hypotube (1) auf Raumtemperatur T1, die höher als As ist, und Aufbringen entgegengesetzter Drehmomente an beiden Enden der Hypotube (1), um den Durchmesser der Hypotube (1) auf d zu reduzieren, eine Form der Hypotube (1) bei der Temperatur von T1 aufgrund der Gedächtniseffekten der Metalle beibehalten wird;

    e. Auswählen eines Lichtleitfaserkerndrahts (2) mit einem Durchmesser von Di, wobei D>Di≥d, dann Abkühlen der Hypotube (1) mit einer in Schritt d erhaltenen Formgedächtnisfunktion auf die Temperatur von T0, dann der Durchmesser der Hypotube (1) sich auf D erhöht, Einführen des Lichtwellenleiter-Kerndrahts (2) in die Hypotube (1), Erhöhen der Temperatur der Hypotube (1), in die der Lichtwellenleiter-Kerndraht (2) eingeführt wurde, auf Raumtemperatur, dann der Durchmesser der Hypotube (1) nimmt ab, da der Durchmesser d der Hypotube (1) bei der Temperatur von T1 nicht größer als der Durchmesser Di des Lichtleitfaserkerndrahts (2) ist, wird die Hypotube (1) außerhalb des Lichtleitfaser-Kerndrahts (2) eng gewickelt.


     
    4. Verwendung der Hypotube (1) aus einer Formgedächtnislegierung nach Anspruch 3, wobei in Schritt a zunächst eine dünne metallische Tube aus dem Formgedächtnislegierungsmaterial hergestellt und dann durch Laser geschnitten wird, um die Hypotube (1) mit mehreren Spiralspulen zu bilden.
     
    5. Verwendung der Hypotube (1) aus einer Formgedächtnislegierung nach Anspruch 4, wobei in Schritt a das Formgedächtnislegierungsmaterial eine Nickel-Titan Legierung oder eine Kupfer-Zink Legierung ist.
     
    6. Verwendung der Hypotube (1) aus einer Formgedächtnislegierung nach Anspruch 5, wobei in Schritt a das Formgedächtnislegierungsmaterial eine Nickel-Titan Legierung 51 Ni-Ti mit einer Martensit-Phasenänderungstemperatur Ms von -20°C und einer Umkehrphasenänderungstemperatur As von -12°C ist; und
    in den Schritten b und e die Hypotube (1) in eine Lösung von Trockeneis-Ethylalkohol getaucht wird, um auf die Temperatur von T0, die niedriger als die Temperatur von Ms ist, abgekühlt zu werden.
     
    7. Verwendung der Hypotube (1) aus einer Formgedächtnislegierung nach Anspruch 6, wobei in den Schritten c und d eine Beziehung zwischen dem Durchmesser der Spiralspulen der Hypotube (1) und der Anzahl der Spiralspulen ist:

    wobei D der Durchmesser der Hypotube (1) ist, N die Anzahl der Spiralspulen ist und H eine Höhe der Spiralspulen ist,
    wenn die Drehmomente an beiden Enden der Hypotube (1) aufgebracht werden, nimmt die Anzahl der Spiralspulen N ab, nimmt der Durchmesser D zu; und nimmt die Anzahl der Spiralspulen N zu, nimmt der Durchmesser D ab.
     
    8. Verwendung der Hypotube (1) aus einer Formgedächtnislegierung nach Anspruch 7, wobei der Lichtleitfaser-Führungsdraht (10) für Blutgefäße mindestens einen Lichtleitfaser-Kerndraht (2) zum Übertragen von Licht, die Hypotube (1) und eine hydrophile Beschichtung (14) umfasst, die die Verträglichkeit mit Körperflüssigkeiten verbessern und den Widerstand verringern kann; der Lichtwellenleiter-Kerndraht (2) im Kern des Lichtwellenleiter-Führungsdrahts (10) angeordnet ist; die Hypotube (1) außerhalb des Lichtwellenleiter-Kerndrahts (2) spiralförmig gewickelt ist; die hydrophile Beschichtung (14) außerhalb der Hypotube (1) aufgetragen ist;
    die Materialien der hydrophilen Beschichtung (14) mindestens eines material umfassen, das aus der Gruppe bestehend aus Polytetrafluorethylen, Silikongummi, Polyethylen, Polyvinylchlorid, Fluorkohlenstoffpolymer und Polyurethan ausgewählt ist.
     
    9. Verwendung der Hypotube (1) aus einer Formgedächtnislegierung nach Anspruch 8, wobei der Lichtleitfaserkerndraht (2) einen Faserkern (11) und eine außerhalb des Faserkerns (11) beschichteten Mantelschicht (12) umfasst, die Lichtleitfähigkeit der Mantelschicht (12) geringer ist als die Lichtleitfähigkeit des Faserkerns (11);
    ein oder mehrere Metall-/Polymer-Führungsdrähte parallel zum Faserkern (11) in den Faserkern eingearbeitet ist oder sind, um die Festigkeit zu verbessern.
     
    10. Verwendung der Hypotube (1) aus einer Formgedächtnislegierung nach Anspruch 9, wobei an einem in das Blutgefäß geführten Ende des Lichtleitfaser-Führungsdrahts (10) ein Lichtleitteil (20) angeordnet ist, der Lichtleitteil (20) einen lichtdurchlässigen Teil und eine Mikrolinse (15) umfasst, die an der Oberseite des lichtdurchlässigen Teils angeordnet ist und Licht in den Faserkern hinein oder aus diesem herausführen kann, auf dem lichtdurchlässigen Teil mehrere Lichtleitlöcher (16) angeordnet sind, die durch die hydrophile Beschichtung (14) und die Hypotube (1) hin und senkrecht zum Lichtleitfaserkerndraht (2) verlaufen.
     


    Revendications

    1. Un fil de guidage vasculaire (10) de fibre optique , comprenant un hypotude (1) en alliage à mémoire de forme,et disposé à la périphérie du fil de guidage (10) de fibre optique, dans lequel l'hypotube (1) comprend plusieurs bobines hélicoïdales, est en alliage de mémoire de forme, le diamètre du hypotude varie en fonction de la température, de sorte qu'il est étroitement enveloppé à l'extérieur de la fibre axiale, le fil de guidage (10) de fibre optique vasculaire est caractérisé en comprenant un fil de noyau (2) de fibre optique disposé dans le noyau et l'hypotude (1) disposé à l'extérieur du fil de noyau (2) de fibre optique,
    dans lequel les bobines du hypotube (1) sont faite d'un matériau en alliage de mémoire de forme possédant une température de changement de phase martensitique Ms et possédant une température de changement de phase inverse As;
    dans lequel l'hypotube (1) est configuré de telle sorte que lorsque l'hypotube (1) est refroidi à une température T0 inférieure à Ms et que des couples opposés sont appliqués aux deux extrémités du hypotube (1) pour réduire le nombre de bobines hélicoïdales du hypotube (1) et augmenter le diamètre à D, la forme du hypotube (1) est maintenue à la forme à la température T0 en raison de l'effet de mémoire métallique;
    dans lequel l'hypotube (1) est configuré de telle sorte que lorsque la température du hypotube (1) est augmentée à une température ambiante T1 supérieure à As et que des couples opposés sont appliqués aux deux extrémités du hypotube (1) afin de réduire le diamètre intérieur du hypotube (1) à d, la forme du hypotube (1)à la température T1 est maintenue en raison de l'effet de mémoire métallique;
    dans lequel le diamètre du fil noyau (2) de fibre optique du hypotube (1) est Di, où D>Di≥d, et le fil noyau (2) de fibre optique est configuré de telle sorte que, lorsque l'hypotube (1) ayant la fonction de mémoire de forme obtenue est refroidi à la température de T0, le diamètre intérieur du hypotube (1) soit augmenté à D de sorte que le fil de noyau (2) de fibre optique puisse être inséré dans l'hypotube (1), dans lequel l'hypotube (1) est configuré de telle sorte que, lorsque la température du l'hypotube (1) dans lequel le fil de noyau (2) de fibre optique a été inséré est augmentée à la température ambiante, le diamètre intérieur du hyupotube (1) diminue , et comme le diamètre intérieur d du hypotube à la température T1 n'est pas supérieur au diamètre extérieur Di du fil de noyau (2) de fibre optique, l'hypotube (1) est étroitement enveloppé à l'extérieur du fil de noyau (2) de fibre optique.
     
    2. Le fil de guidage vasculaire (10) de fibre optique selon la revendication 1, dans lequel,
    l'alliage de mémoire de forme utilisé pour fabriquer l'hypotube (1) est un alliage nickel - titane ou un alliage cuivre - zinc;
    la fibre axiale est le fil de noyau (2) de fibre optique qui peut transmettre la lumière dans un emplacement de lésion du corps humain à travers un vaisseau sanguin, tt
    à la température ambiante, les bobines hélicoïdales du hypotube (1) sont étroitement combinées.
     
    3. L'application d'un hypotube (1) en alliage de mémoire de forme dans un fil de guidage vasculaire (10) de fibre optique , caractérisée en ce que ledit fil de guidage vasculaire (10) de fibre optique comprend un fil de noyau (2) de fibre optique disposé dans le noyau du fil de guidage vasculaire (10) de fibre optique et l'hypotude (1) disposé à l'extérieur du fil de noyau (2) de fibre optique, dans lequel l'hypotube (1) comprend des bobines hélicoïdales et est faite d'un matériau en alliage de mémoire de forme de telle sorte que un diamètre du hypotube (1) varie en fonction de la température de manière à s'envelopper étroitement à l'extérieur d'un fil axial, l'application comprenant:

    a. choisir un matériau de l'alliage de mémoire de forme possédant une température de changement de phase martensitique Ms et possédant une température de changement de phase inverse As, et réaliser l'hypotube (1) composé de plusieurs bobines hélicoïdales à partir du matériau de l'alliage de mémoire de forme;

    b. refroidir l'hypotube (1) composé de plusieurs bobines hélicoïdales fabriqué à l'étape a, à une température T0 inférieure à Ms;

    c. lorsque la température est inférieure à Ms, des couples opposés sont appliqués aux deux extrémités du hypotube (1) afin de réduire le nombre de bobines hélicoïdales du hypotube (1) et d'augmenter le diamètre à D, la forme du hypotube (1) à des températures inférieures à Ms étant maintenue à la forme à la température T0 en raison de l'effet de mémoire métallique;

    d. augmenter la température du hypotube (1) à une température ambiante T1 supérieure à As, et appliquer des couples opposés aux deux extrémités du hypotube (1) afin de réduire le diamètre du hypotube (1) à d, et la forme du hypotube (1) à la température T1 reste inchangée en raison de l'effet de mémoire métallique;

    e. sélectionnez un fil de noyau (2) de fibre optique de diamètre Di, où D> Di≥d Ensuite, refroidir le hypotube (1) avec la fonction de mémoire de forme obtenue à l'étape d à la température T0, puis le diamètre du hypotube (1) est augmenté à D, et le fil de noyau (2) de fibre optique est inséré dans l'hypotube (1), augmenter la température du hypotube (1) dans lequel a été insérée le fil de noyau (2) de fibre optique à la température ambiante, puis le diamètre du hypotube (1) diminue, l'hypotube (1) est étroitement enveloppé à l'extérieur du fil de noyau (2) de fibre optique (2) parce que le diamètre d du hypotube (1) à la température T1 n'est pas supérieur au diamètre di du fil de noyau (2) de fibre optique (2).


     
    4. L' application d'un hypotube (1) en alliage de mémoire de forme selon la revendication 3, caractérisé en ce que, à l'étape a, un tube métallique fin est d'abord fabriqué à partir d'un matériau en alliage de mémoire de forme, puis coupé au laser pour former l'hypotube (1) coprenant une pluralité de bobines hélicoïdales.
     
    5. L'application d'un hypotube (1) en alliage de mémoire de forme selon la revendication 4, caractérisé en ce que, à l'étape a, le matériau en alliage de mémoire de forme est un alliage nickel - titane ou un alliage cuivre - zinc.
     
    6. L'application d'un hypotube (1) en alliage de mémoire de forme selon la revendication 5, dans lequel, à l'étape a, le matériau de l'alliage à mémoire de forme est un alliage de nickel - titane 51 Ni-Ti possédant une température de changement de phase martensitique de Ms -20°C et une température de changement de phase inverse de As -12°C; et
    aux étapes b et e, immerger l-'hypotube (1) dans une solution de glace carbonique-alcool éthylique pour le refroidir à une température T0 inférieure à la température de Ms.
     
    7. L'application d'un hypotube (1) en alliage de mémoire de forme selon la revendication 6, dans lequel, aux étapes d et d, la relation entre le diamètre du hytotube (1) et le nombre de bobines hélicoïdales est la suivante:

    où D est le diamètre du hypotube (1), N est le nombre de bobines hélicoïdales et H est la hauteur de la bobine hélicoïdale,
    Lorsque des couples sont appliqués aux deux extrémités du hypotube (1), le nombre de bobines hélicoïdales N diminue et le diamètre D augmente; lorsque le nombre de bobines hélicoïdales N augmente, le diamètre D diminue.
     
    8. L'application d'un hypotube (1) en alliage de mémoire de forme selon la revendication 7, caractérisé en ce que ledit fil de guidage vasculaire (10) de fibre optique comprend au moins un fil de noyau (2) de fibre optique pour la transmission de la lumière, l'hypotube (1) et un revêtement hydrophile (14) capable d'améliorer la compatibilité avec les fluides corporels et de réduire la résistance; le fil de noyau (2)de fibre optique est disposé dans le noyau du fil de guidage vasculaire (10) de fibre optique; l'hypotube (1) est enroulé en spirale à l'extérieur du fil de noyau (2) de fibre optique; le revêtement hydrophile (14) est appliqué à l'extérieur du hypotube (1);
    matériaux du revêtement hydrophile (14) comprend au moins un matériau choisi parmi le polytétrafluoroéthylène, le caoutchouc silicone, le polyéthylène, le chlorure de polyvinyle, le polymère fluorocarbonique et le polyuréthane.
     
    9. L'application d'un hypotube (1) en alliage de mémoire de forme selon la revendication 8, caractérisé en ce que ledit fil de noyau (2) de fibre optiquecomprend un noyau de fibre (11) et un revêtement (12) recouvert à l'extérieur du noyau de fibre (11); la conductivité optique du revêtement (12) est inférieure à celle du noyau de fibre(11);
    un ou plusieurs fil de guidage métalliques / polymères parallèles au noyau de fibre (11) sont incorporés dans le noyau de fibre pour augmenter la résistance.
     
    10. L'application d'un hypotube (1) en alliage de mémoire de forme selon la revendication 9, dans lequel l'unité de guidage de la lumière (20) est disposée à l'extrémité du fil de de guidage de fibre optique (10) qui conduit dans le vaisseau; la partie de guidage de la lumière (20) comprend une partie de transmission de la lumière et une micro - lentille (15), qui est disposée au sommet de la partie de transmission de la lumière et qui est capable d'guider la lumière dans ou hors du noyau de fibre (11); la partie de transmission de la lumière est équipée d'un certain nombre de trous de guidage de la lumière (16) qui traversent le revêtement hydrophile (14) et le hypotube (1) et qui sont perpendiculaires au fil de noyau (2) de fibre optique (2).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description