FIELD OF THE DISCLOSURE
[0001] The present invention generally relates to the field of semiconductor manufacturing
technology and, more particularly, relates to an etching method and a fabrication
method of semiconductor structures.
BACKGROUND
[0002] With the rapid development of semiconductor manufacturing technologies, semiconductor
device evolves in a direction towards higher component density and higher integration
degree.
[0003] The improvement in the integration degree of the semiconductor device causes a reduction
in the distance between adjacent gate electrode structures, and common-drain MOS transistors
are emerged. To accommodate the reduced distance between gate electrode structures
in the common-drain MOS transistors, the application of self-aligned scheme in semiconductor
processes has become more and more important.
[0004] The self-aligned contact (SAC) technology has been applied to fabricate metal contact
structures. The SAC technology may realize the etching of relatively deep patterns
such as trenches, through-holes, etc., with a relatively high aspect ratio that are
disposed between adjacent gate electrode structures, thereby electrically connecting
the drain electrodes of the common-drain MOS transistors to the external circuit.
[0005] However, issues are commonly found in the current SAC technology as the etching process
can be easily terminated and the damages to the through-hole sidewalls are relatively
large.
BRIEF SUMMARY OF THE DISCLOSURE
[0007] It is an object of the present invention to provide an etching method and a corresponding
fabrication method of semiconductor structures which at least partially solve one
or more problems set forth above and other problems.
[0008] The object is achieved by an etching method according to claim 1, and a fabrication
method according to claim 7. Further embodiments are defined in the respective dependent
claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009]
FIG. 1 and FIG. 2 illustrate intermediate structures corresponding to each step of
an etching method;
FIG. 3 and FIG. 4 illustrate intermediate structures corresponding to each step of
an exemplary etching method consistent with the disclosed embodiments;
FIG. 5~FIG. 9 illustrate intermediate structures corresponding to an exemplary fabrication
method of a semiconductor structure consistent with the disclosed embodiments; and
FIG. 10 illustrates a flow chart of an exemplary fabrication method of a semiconductor
structure consistent with the disclosed embodiments.
DETAILED DESCRIPTION
[0010] Reference will now be made in detail to exemplary embodiments of the disclosure,
which are illustrated in the accompanying drawings. Wherever possible, the same reference
numbers will be used throughout the drawings to refer to the same or like parts.
[0011] FIG. 1 and FIG. 2 illustrate intermediate structures corresponding to each step of
an etching method.
[0012] FIG. 1 provides a semiconductor structure, and the semiconductor structure may include
a substrate 100, a plurality of gate electrodes 101 disposed on the substrate 100,
sidewall spacers 102 formed on side surfaces of gate electrodes 101, and a mask layer
103 on top surface of the gate electrodes 101. Trenches may be disposed between adjacent
gate electrodes 101, and a dielectric layer 104 may be formed in the trenches.
[0013] Further, a patterned photoresist layer 110 may be formed on surface of the semiconductor
structure, and the patterned photoresist layer 110 may have openings (not labeled)
exposing top surface of the dielectric layer 104.
[0014] Referring to FIG. 2, the dielectric layer 104 is etched. During the etching process
of the dielectric layer 104, the etching conditions may remain unchanged and a polymer
may be produced, for example, by a reaction between etchant and the sidewall spacers
102. In the etching method, the distance between adjacent side surfaces of each trench
may be relatively small. Thus, after the photoresist layer 110 is formed, due to the
resolution limit of the photolithography process, the photoresist layer 110 may expose
portions of top surface of the sidewall spacers 102. Accordingly, damages to the sidewall
spacers 102 during the etching process may need to be avoided.
[0015] During the etching process of the dielectric layer 104, if the deposition rate of
the polymer is greater than the etch rate, the polymer may be deposited on surface
of the sidewall spacers 102 and on surface of the dielectric layer 104. If the deposition
rate of the polymer is smaller than the etch rate, the sidewall spacers 102 and the
dielectric layer 104 may be etched continuously.
[0016] During the whole etching process, the etching conditions may remain unchanged, then
during the etching process, polymer may be deposited continuously, or the sidewall
spacers 102 and the dielectric layer 104 may be etched continuously. Specifically,
if the etch rate of the polymer is relatively large, the sidewall spacers 102 may
be etched easily, which increases the loss of the sidewall spacers 102, thus exposing
the gate electrodes 101. If the etch rate in the whole etching process is relatively
low, a relatively large amount of the polymer may be deposited on surface of the dielectric
layer 104, thus terminating the etching of the dielectric layer 104.
[0017] The present invention provides an exemplary etching method, including providing a
to-be-etched structure. Trenches are formed in the to-be-etched structure, and a dielectric
layer is disposed in the trenches. The etching method further includes etching the
dielectric layer in the trenches. When etching the dielectric layer, polymer is formed
on side surfaces of the to-be-etched structure. By varying the etching temperature,
the etching process includes a deposition stage and a removal stage of the polymer.
During the deposition stage, the deposition rate of the polymer is greater than the
etch rate of the polymer on the surface of the to-be-etched structure. During the
removal stage, the deposition rate of the polymer is smaller than the etch rate of
the polymer on the surface of the to-be-etched structure.
[0018] In the disclosed etching method, by varying the etching temperature, the etching
process is changed, and the etching process includes a deposition stage and a removal
stage of the polymer. During the deposition stage, the deposition rate of the polymer
is greater than the etch rate of the polymer on the surface of the to-be-etched structure.
During the removal stage, the deposition rate of the polymer is smaller than the etch
rate of the polymer on the surface of the to-be-etched structure. Further, during
the deposition stage, the polymer is deposited on the surface of the to-be-etched
structure, thus protecting the to-be-etched structure in the follow-up removal stage
and reducing the loss of the to-be-etched structure. During the removal stage, the
polymer deposited on the surface of the to-be-etched structure is etched and removed,
thus preventing the termination of the etching process caused by accumulation of too
much polymer on the surface of the to-be-etched structure.
[0019] To make the above goals, features, and advantages of the present invention more apparent
and understandable, specific embodiments of the present invention will be made in
detail with reference to the accompanying drawings.
[0020] FIG. 3 and FIG. 4 illustrate intermediate structures corresponding to each step of
an exemplary etching method consistent with the disclosed embodiments. Referring to
FIG. 3 and FIG. 4, the etching method includes providing a to-be-etched structure
10, forming trenches in the to-be-etched structure 10, and disposing a dielectric
layer 11 in the trenches.
[0021] The dielectric layer 11 in the trenches is etched and, during the etching process,
polymer is formed on the surface of the to-be-etched structure 10. Further, during
the etching process, by varying the etching temperature, the etching process includes
a deposition stage and a removal stage of the polymer. During the deposition stage,
the deposition rate of the polymer is greater than the etch rate of the polymer on
the surface of the to-be-etched structure 10. During the removal stage, the deposition
rate of the polymer is smaller than the etch rate of the polymer on the surface of
the to-be-etched structure 10.
[0022] Referring to FIG. 3, the trenches are formed in the to-be-etched structure 10, and
the dielectric layer 11 is formed in the trenches. According to the invention, the
material of the to-be-etched structure 10 is silicon nitride or silicon oxynitride.
According to the invention, the material of the dielectric layer 11 is silicon oxide.
[0023] Referring to FIG. 4, the dielectric layer 11 is etched. During the etching process,
polymer is formed on the surface of the to-be-etched structure 10, and by varying
the etching temperature, the etching process of the dielectric layer 11 includes the
deposition stage and the removal stage of the polymer. During the deposition stage,
the deposition rate of the polymer is greater than the etch rate of the polymer on
the surface of the to-be-etched structure 10. During the removal stage, the deposition
rate of the polymer is smaller than the etch rate of the polymer on the surface of
the to-be-etched structure 10.
[0024] According to the invention, by varying the etching temperature, the etching process
is changed and, thus, the etching process includes the deposition stage of the polymer
and the removal stage of the polymer. Specifically, in one embodiment, the deposition
stage and the removal stage may appear alternatingly and repeatedly, resulting in
the alternating and repeated occurrence of polymer deposition and polymer removal.
Accordingly, the loss of the to-be-etched structure 10 may be reduced, and the etching
may not be terminated easily.
[0025] From the above analysis, the disclosed etching method may be applied to etch the
dielectric layer 11 in the trenches with a relatively large aspect ratio. Specifically,
in one embodiment, the aspect ratio of the trenches may be greater than 7.
[0026] In one embodiment, the dielectric layer 11 may be etched via an anisotropic dry etching
process, and the vertical etch rate may be greater than the horizontal etch rate in
the anisotropic dry etching process. Accordingly, in the etching process, the loss
of the to-be-etched structure 10 may be relatively small. The disclosed etching may
be anisotropic etching, and the vertical etch rate may be relatively large, that is,
the etch rate of the dielectric layer 11 may be relatively large. During the whole
etching process, the vertical deposition rate of the polymer may be smaller than the
etch rate. Accordingly, the etching of the dielectric layer 11 may not be easily terminated
in the whole process.
[0027] The deposition stage and the removal stage form an etching circle. In one embodiment,
the etching process may include a plurality of etching circles. In other embodiments,
the etching process may only include one etching circle.
[0028] Specifically, the number of the etching circles may be selected according to the
thickness of the dielectric layer 11. The thickness of the dielectric layer 11 may
refer to the distance from the top surface of the dielectric layer 11 to the bottom
of the trenches. In one embodiment, the thickness of the dielectric layer 11 may be
approximately 100 Å∼300 Å, and the number of the etching circles included in the etching
process may be greater than 4. In one embodiment, when etching the dielectric layer
11, the plurality of etching circles may be the same. In other embodiments, the plurality
of etching circles may be different.
[0029] According to the invention, the etching gas is one or more selected from CF
4, C
3F
8, and C
4F
8. According to the invention, the temperature at which the deposition rate of the
polymer is equal to the etch rate of the polymer on the surface of the to-be-etched
structure 10 is an equilibrium temperature T
0. In the etching process, the etching temperature includes a first temperature higher
than the equilibrium temperature and a second temperature lower than the equilibrium
temperature.
[0030] According to the invention, the etching temperature is expressed as a sine function
of the time. T represents the etching temperature, and t represents the etching time.
The relationship between the etching temperature T and the etching time t is shown
as follows:

[0031] Where, T
0 is the equilibrium temperature, T
1 is the amplitude of variation of the etching temperature indicating the maximum value
of the etching temperature deviating from the equilibrium temperature T
0, and t
0 is the duration of the etching circle.
[0032] The first time when the etching temperature equals to the equilibrium temperature
may be labeled as t
1. In one embodiment, t
1 may refer to a moment after the time when the etching begins.
[0033] In one embodiment, the polymer may be a material produced by reaction between the
etching gas and the sidewall spacers. The equilibrium temperature T
0 may be within the range of approximately 60°C∼80°C.
[0034] In one embodiment, if the amplitude of the variation of the etching temperature is
too small, the deposition stage and the removal stage of the polymer may not be easily
controlled. For example, the amplitude of the variation of the etching temperature
may be greater than 30°C.
[0035] If the duration of the etching circle t
0 is too small, the requirements of the device may easily become higher. In one embodiment,
the duration of the etching circle t
0 may be longer than 10 seconds.
[0036] In one embodiment, as the etching temperature increases, the etch rate of the polymer
may be increased and the deposition rate of the polymer may be reduced. That is, when
the etching temperature is the second temperature, the etching process may be in the
deposition stage. When the etching temperature is the first temperature, the etching
process may be in the removal stage. The first temperature and the second temperature
may occur alternatingly, and the polymer may be deposited or etched alternatingly,
which reduces the loss of the to-be-etched structure, and prevents the etching from
being terminated.
[0037] As such, in the disclosed etching method, by varying the etching temperature, the
etching process is changed, and the etching process includes a deposition stage and
a removal stage of the polymer. During the deposition stage, the deposition rate of
the polymer is greater than the etch rate of the polymer on the surface of the to-be-etched
structure. During the removal stage, the deposition rate of the polymer is smaller
than the etch rate of the polymer on the surface of the to-be-etched structure. In
the deposition stage, the polymer is deposited on the surface of the to-be-etched
structure, thus protecting the to-be-etched structure in the follow-up removal stage
and reducing the loss of the to-be-etched structure. In the removal stage, the polymer
deposited on the surface of the to-be-etched structure is etched, thus preventing
the termination of the etching process caused by accumulation of too much polymer
on the surface of the to-be-etched structure.
[0038] FIG. 5~FIG. 9 illustrate intermediate structures corresponding to an exemplary fabrication
method of a semiconductor structure consistent with the disclosed embodiments. FIG.
10 illustrates a flow chart of an exemplary fabrication method of a semiconductor
structure consistent with the disclosed embodiments.
[0039] Referring to FIG. 5~FIG. 10, the fabrication method of the semiconductor structure
includes providing a substrate 200. A plurality of device structures 201 (e.g., gate
electrode structures) are disposed on surface of the substrate 200, and the sidewall
spacers 202 are disposed on side surfaces of the device structures 201. A mask layer
203 may be disposed on the top surface of the device structure 201, and trenches are
formed between sidewall spacers 202 of adjacent device structures 201.
[0040] A dielectric layer 204 is formed on the surface of the substrate 200 and the surface
of the sidewall spacers 202. The dielectric layer 204 in the trenches is etched, and
polymer is formed on the surface of the sidewall spacers 202. During the etching process
of the dielectric layer 204, by varying the etching temperature, the etching process
includes the deposition stage and the removal stage of the polymer. During the deposition
stage, the deposition rate of the polymer is greater than the etch rate of the polymer
on the surface of the sidewall spacers 202. During the removal stage, the deposition
rate of the polymer is smaller than the etch rate of the polymer on the surface of
the sidewall spacers 202.
[0041] In the SAC technology, the distance between adjacent gate electrode structures may
be relatively small, resulting in a relatively high aspect ratio of the trenches between
the gate electrode structures, and the difficulty to etch the dielectric layer 204
in the trenches may be relatively large. In the present invention, the etching method
is illustrated in detail in hope of solving the etching difficulty in the SAC technique.
[0042] FIG. 5 provides the substrate 200, and the plurality of device structures 201 are
disposed on the surface of the substrate 200 (S1). The sidewall spacers 202 are formed
on side surfaces of the device structures 201, the mask layer 203 may be formed on
the top surface of the device structures 201, and the trenches are disposed between
adjacent device structures 201 and sidewall spacers 202 (S2).
[0043] In one embodiment, the device structures 201 disposed on the substrate 200 may be
gate electrode structures. In one embodiment, the sidewall spacers 202 may be used
to protect the side surfaces of the gate electrode structures 201. The mask layer
203 may be used to protect the top surface of the gate electrode structures 201.
[0044] To improve the integration degree of the semiconductor device, the aspect ratio of
the trenches may be relatively large. Specifically, in one embodiment, the aspect
ratio of the trenches may be greater than 7:1. The trench may have a width of less
than about 25 nm.
[0045] In one embodiment, the fabrication method may also include forming a source region
and a drain region on two sides of the gate electrode structures 201 on the substrate
200. In one embodiment, by ion injection, the two sides of the gate electrode structures
201 on the substrate 200 may be doped to form the source region and the drain region.
[0046] Further, referring to FIG. 5, the dielectric layer 204 is formed on the surface of
the substrate 200 and the surfaces of the sidewall spacers 202. That is, the dielectric
layer 204 is formed in the trenches (S3). The materials of the dielectric layer 204
and the sidewall spacers 202 are different. During the etching process, the materials
of the sidewall spacers 202 and the dielectric layer 204 are different. When etching
the dielectric layer 204, the loss of the sidewall spacers 202 may be relatively small.
[0047] According to the invention, the material of the sidewall spacers 202 is silicon nitride
or silicon oxynitride. According to the invention, the material of the dielectric
layer 204 is silicon oxide.
[0048] In step 4 of FIG. 10 and referring to FIG. 6, after forming the dielectric layer
204, the fabrication method may also include forming a patterned photoresist layer
210 on the semiconductor structure. More specifically, the photoresist layer 210 may
be disposed on the gate electrode structures 201 and have openings to expose the trenches.
The photoresist layer 210 may be used to protect the gate electrode structures 201
from being etched during the follow-up etching process.
[0049] In one embodiment, the distance between adjacent gate electrode structures 201 may
be relatively small. Due to the limit of the photolithography process, the photoresist
210 may only cover portions of top surface of the sidewall spacers 202, and expose
other portions of the top surface of the sidewall spacers 202. Accordingly, when etching
the dielectric layer 204, the sidewall spacers 202 exposed by the photoresist 210
may be easily etched.
[0050] Referring to FIG. 7 and FIG. 8, FIG. 8 illustrates a curve of etching temperature
varying with etching time during an etching process, where the horizontal-axis represents
the etching time, and the vertical-axis represents the etching temperature.
[0051] The dielectric layer 204 is etched (S5). The polymer is produced during the etching
process, and by varying the etching temperature, the etching process includes a deposition
stage and a removal stage of the polymer. During the deposition stage, the deposition
rate of the polymer 202 is greater than the etch rate of the polymer on the surface
of the sidewall spacers. In the removal stage, the deposition rate of the polymer
is smaller than the etch rate of the polymer on the surface of the sidewall spacers
202.
[0052] During the etching process, by varying the etching temperature, the deposition rate
of the polymer is greater than the etch rate of the polymer on the surface of the
sidewall spacers 202 in the deposition stage (S6). Accordingly, the polymer is deposited
on the surface of the sidewall spacers 202, thus protecting the sidewall spacers 202
from being etched in the follow-up removal stage. During the removal stage, the polymer
on the surface of the sidewall spacers 202 is etched and removed, thus reducing the
polymer deposited on the surface of the sidewall spacers 202, which further decreases
the possibility of the etching termination.
[0053] According to the invention, the deposition stage and the removal stage forms an etching
circle. The etching process may include a plurality of etching circles. In other embodiments,
the etching process may also include one etching circle.
[0054] Specifically, the number of the etching circles may be selected according to the
thickness of the dielectric layer 204. The thickness of the dielectric layer 204 may
refer to the distance from the top surface of the dielectric layer 204 to the bottom
of the trenches. In one embodiment, the thickness of the dielectric layer may be approximately
100 Å ~300 Å. The etching circles included in the etching process may be greater than
4.
[0055] In one embodiment, during the etching process of the dielectric layer 204, the plurality
of etching circles may be the same. In other embodiments, the plurality of etching
circles may be different.
[0056] In one embodiment, the dielectric layer 204 may be etched by anisotropic dry etching,
and the vertical etch rate of the anisotropic dry etching may be greater than the
horizontal etch rate. Accordingly, during the etching process, the loss of the sidewall
spacers 202 may be relatively small. The etching may be the anisotropic etching, and
the vertical etch rate may be relatively large. That is, the etch rate of the dielectric
layer 204 may be relatively large. During the whole etching process, the vertical
deposition rate of the polymer may be smaller than the etch rate of the polymer. Accordingly,
the etching of the dielectric layer 204 may not be terminated easily.
[0057] According to the invention, the etching gas is one or more selected from CF
4, C
3F
8, and C
4F
8.
[0058] By varying the etching temperature, the etching process is changed, and the etching
process includes the deposition stage of the polymer and the removal stage of the
polymer. Specifically, in one embodiment, the deposition stage and the removal stage
may appear alternatingly and repeatedly, resulting in the alternating occurrence of
polymer deposition and polymer removal. Accordingly, the loss of the sidewall spacers
202 may be reduced, and the etching may not be terminated easily.
[0059] According to the invention, the etching temperature varying with the etching time
is illustrated in FIG. 8.
[0060] The temperature at which the deposition rate of the polymer is equal to the etch
rate of the polymer on the surface of the sidewall spacers 202 (as shown in FIGS.
5-7) is the equilibrium temperature. According to the invention, the etching temperature
includes the first temperature higher than the equilibrium temperature and the second
temperature lower than the equilibrium temperature.
[0061] According to the invention, the etching temperature is a sine function of the time.
T represents the etching temperature, and t represents the etching time. The relationship
between the etching temperature T and the etching time t is shown as follows:

wherein T
0 is the equilibrium temperature, T
1 is the amplitude of variation of the etching temperature indicating the maximum value
of the etching temperature deviating from the equilibrium temperature T
0, and t
0 is the duration of the etching circle.
[0062] The first time when the etching temperature is the equilibrium temperature is t
1. In one embodiment, t
1 may be greater than the time when the etching begins.
[0063] In one embodiment, the polymer may be a material produced by reaction between the
etching gas and the sidewall spacers. The equilibrium temperature T
0 may be within the range of approximately 60°C~80°C.
[0064] In one embodiment, if the amplitude of variation of the etching temperature is too
small, the deposition stage and the removal stage may not be easily controlled. Specifically,
the amplitude of variation of the etching temperature may be greater than 30°C.
[0065] If the time for the etching circle t
0 is too small, the requirements of the device may easily increase. In one embodiment,
the time for the etching circle t
0 may be longer than 10 seconds.
[0066] In one embodiment, as the etching temperature increases, the etch rate of the polymer
may be increased and the deposition rate of the polymer may be reduced. That is, when
the etching temperature is the second temperature, the etching process may be in the
deposition stage. When the etching temperature is the first temperature, the etching
process may be in the removal stage. The first temperature and the second temperature
may occur alternatingly, and the polymer may be deposited or etched, resulting in
a reduction in the loss of the sidewall spacers 202, which may prevent the etching
from being terminated.
[0067] By adjusting the etching temperature, the deposition and etching of the polymer may
be controlled, the etching process may be carried out continuously, and the etching
efficiency may be increased. Accordingly, by controlling the etching temperature,
the operation may be relatively simple.
[0068] According to the invention, the deposition stage and the removal stage of the polymer
forms an etching circle. The etching stage may vary periodically using the etching
circle as a period. Accordingly, the process that the polymer is deposited on the
side surfaces of the sidewall spacers 202 and then etched may be continuously repeated
during the etching process of the dielectric layer 204. Thus, the loss of the sidewall
spacers 202 may be reduced, and the etching termination may be prevented.
[0069] In one embodiment, in a step where the dielectric layer 204 is etched, the etching
process may not be terminated until the source region or the drain region is exposed,
thus forming contact holes 220 (as shown in FIG. 7). Referring to FIG. 9, in one embodiment,
after forming the contact holes 220, plugs 221 may be formed in the contact holes
220.
[0070] The plugs 221 may be formed by any suitable materials. In one embodiment, the material
of the plugs 221 may be copper. In other embodiments, the material of the plugs 221
may be tungsten.
[0071] As such, in the fabrication method of the semiconductor structure, by varying the
etching temperature, the etching process is controlled and changed, and the etching
process of the dielectric layer includes the deposition stage and the removal stage
of the polymer. During the deposition stage, the deposition rate of the polymer is
greater than the etch rate of the polymer on the surface of the sidewall spacers.
During the removal stage, the deposition rate of the polymer is smaller than the etch
rate of the polymer on the surface of the sidewall spacers. In the deposition stage,
the polymer is deposited on the surface of the sidewall spacers, thus protecting the
sidewall spacers in the follow-up removal stage and reducing the loss of the sidewall
spacers. In the removal stage, the polymer deposited on the surface of the sidewall
spacers is etched, thus preventing the termination of the etching process caused by
accumulation of too much polymer on the surface of the sidewall spacers.
1. An etching method, comprising:
forming trenches in a to-be-etched structure (10);
forming (S3) a dielectric layer (11; 204) in the trenches;
etching (S5) the dielectric layer (11; 204) in the trenches by an etching process;
and
controlling (S6) at least an etching temperature of the etching process by continuously
varying said temperature while a polymer is formed on side surface of the to-be-etched
structure,
wherein during the etching process of the dielectric layer (11; 204), the polymer
undergoes:
a deposition stage, having a deposition rate of the polymer greater than an etch rate
of the polymer; and
a removal stage, having the deposition rate less than the etch rate,
wherein the material of the to-be etched structure is silicon nitride or silicon oxynitride
and the material of the dielectric layer (11; 204) is silicon oxide and an etching
gas for etching the dielectric layer (11; 204) includes one or more gases selected
form CF
4, C
3F
8 and C
4F
8, and wherein a relationship between an etching temperature T and an etching time
t is:
wherein T0 is an equilibrium temperature, T1 is a maximum value of the etching temperature deviating from the equilibrium temperature
T0, and t0 is a duration of an etching circle, the equilibrium temperature being the temperature
at which the deposition rate of the polymer and the etch rate of said polymer are
equal, the deposition stage and the removal stage forming an etching circle.
2. The etching method according to claim 1, wherein:
the etching process of the dielectric layer includes one or more etching circles.
3. The etching method according to claim 1, wherein:
a duration of one etching circle is longer than 10 seconds.
4. The etching method according to claim 1 or 3, wherein:
the maximum value of the etching temperature deviating from the equilibrium temperature
is greater than 30°C.
5. The etching method according to any one of the claims 1-4, wherein:
the equilibrium temperature is in a range of approximately 60 °C ∼80 °C.
6. The etching method according to any one of the claims 1-5, wherein:
the etching process of the dielectric layer (11; 204) includes an anisotropic dry
etching.
7. A fabrication method for semiconductor structures, comprising:
an etching method according to any one of the claims 1-6,
wherein, in the step of forming trenches in a to-be-etched structure, a plurality
of device structures (201) is formed (S1) on a substrate (200), and sidewall spacers
(202) are formed (S2) on side surfaces (201) of each device structure to provide the
trenches on the substrate (200) between sidewall spacers (202) of adjacent device
structures (201).
8. The fabrication method according to claim 7, wherein:
the device structures (201) include gate electrode structures, and the fabrication
method further includes:
forming a source region and a drain region on two sides of each gate electrode structure
on the substrate.
9. The fabrication method according to claim 8, wherein:
the steps of etching (S5) the dielectric layer (204) in the trenches includes etching
the dielectric layer (204) till the source region or the drain region is exposed,
and forming contact holes (220); and
the fabrication method further includes: forming plugs (221) in the contact holes
(220).
10. The fabrication method according to any one of the claims 7-9, wherein:
the etching temperature for etching the dielectric layer (204) includes a first temperature
higher than the equilibrium temperature and a second temperature lower than the equilibrium
temperature,
the etching temperature of the dielectric layer (204) in the removal stage of the
polymer is the first temperature, and
the etching temperature of the dielectric layer (204) in the deposition stage of the
polymer is the second temperature.
11. The fabrication method according to any one of the claim 7-10, wherein:
an aspect ratio of the trenches is greater than 7:1.
12. The fabrication method according to any one of the claims 7-11, wherein:
the trench has a width of less than 25 nm.
13. The fabrication method according to any one of the claims 7-12, wherein:
the sidewall spacers (202) are formed of a material being silicon nitride.
1. Ätzverfahren, mit:
Bilden von Gräben in einer zu ätzenden Struktur (10);
Bilden (S3) einer dielektrischen Schicht (11; 204) in den Gräben;
Ätzen (S5) der dielektrischen Schicht (11; 204) in den Gräben durch einen Ätzprozess;
und
Steuern (S6) mindestens einer Ätztemperatur des Ätzprozesses durch kontinuierliches
Variieren der Temperatur, während ein Polymer auf der Seitenoberfläche der zu ätzenden
Struktur gebildet wird,
wobei während des Ätzprozesses der dielektrischen Schicht (11; 204) das Polymer unterzogen
wird:
einer Abscheidungsphase mit einer Abscheidungsrate des Polymers, die größer ist als
eine Ätzrate des Polymers; und
eine Entfernungsphase, bei der die Abscheidungsrate geringer als die Ätzrate ist,
wobei das Material der zu ätzenden Struktur Siliziumnitrid oder Siliziumoxynitrid
ist und das Material der dielektrischen Schicht (11; 204) Siliziumoxid ist und ein
Ätzgas zum Ätzen der dielektrischen Schicht (11; 204) ein oder mehrere Gase enthält,
die aus CF4, C3F8 und C4F8 ausgewählt sind, und
wobei eine Beziehung zwischen einer Ätztemperatur T und einer Ätzzeit t ist:

wobei T0 eine Gleichgewichtstemperatur ist, T1 ein Maximalwert der Ätztemperatur ist, der von der Gleichgewichtstemperatur T0 abweicht, und t0 eine Dauer eines Ätzzyklus ist, wobei die Gleichgewichtstemperatur die Temperatur
ist, bei der die Abscheidungsrate des Polymers und die Ätzrate des Polymers gleich
sind, wobei die Abscheidungsrate und die Entfernungsphase einen Ätzzyklus bilden.
2. Ätzverfahren nach Anspruch 1, wobei:
der Ätzprozess der dielektrischen Schicht einen oder mehrere Ätzzyklen aufweist.
3. Ätzverfahren nach Anspruch 1, wobei:
eine Dauer eines Ätzzyklus länger als 10 Sekunden ist.
4. Ätzverfahren nach Anspruch 1 oder 3, wobei:
der Maximalwert der von der Gleichgewichtstemperatur abweichenden Ätztemperatur größer
als 30°C ist.
5. Ätzverfahren nach einem der Ansprüche 1-4, wobei:
die Gleichgewichtstemperatur in einem Bereich von etwa 60°C bis 80°C liegt.
6. Ätzverfahren nach einem der Ansprüche 1-5, wobei:
der Ätzprozess der dielektrischen Schicht (11; 204) ein anisotropes Trockenätzen aufweist.
7. Verfahren zur Herstellung von Halbleiterstrukturen, mit:
einem Ätzverfahren nach einem der Ansprüche 1-6,
wobei in dem Schritt des Bildens von Gräben in einer zu ätzenden Struktur eine Vielzahl
von Vorrichtungsstrukturen (201) auf einem Substrat (200) gebildet wird (S1) und Seitenwandabstandshalter
(202) auf Seitenflächen (201) jeder Vorrichtungsstruktur gebildet werden (S2), um
die Gräben auf dem Substrat (200) zwischen Seitenwandabstandshaltern (202) von benachbarten
Vorrichtungsstrukturen (201) bereitzustellen.
8. Herstellungsverfahren nach Anspruch 7, wobei:
die Vorrichtungsstrukturen (201) Gate-Elektroden-Strukturen aufweisen, und das Herstellungsverfahren
ferner aufweist:
Bilden eines Source-Bereichs und eines Drain-Bereichs auf zwei Seiten jeder Gate-Elektrodenstruktur
auf dem Substrat.
9. Herstellungsverfahren nach Anspruch 8, wobei:
die Schritte des Ätzens (S5) der dielektrischen Schicht (204) in den Gräben das Ätzen
der dielektrischen Schicht (204), bis der Source-Bereich oder der Drain-Bereich freigelegt
ist, und das Bilden von Kontaktlöchern (220) aufweisen; und
das Herstellungsverfahren ferner aufweist: Bilden von Stopfen (221) in den Kontaktlöchern
(220).
10. Herstellungsverfahren nach einem der Ansprüche 7 bis 9, wobei:
die Ätztemperatur zum Ätzen der dielektrischen Schicht (204) eine erste Temperatur
höher als die Gleichgewichtstemperatur und eine zweite Temperatur niedriger als die
Gleichgewichtstemperatur aufweist,
die Ätztemperatur der dielektrischen Schicht (204) in der Entfernungsphase des Polymers
die erste Temperatur ist, und
die Ätztemperatur der dielektrischen Schicht (204) in der Abscheidungsphase des Polymers
die zweite Temperatur ist.
11. Herstellungsverfahren nach einem der Ansprüche 7-10, wobei:
ein Seitenverhältnis der Gräben größer als 7:1 ist.
12. Herstellungsverfahren nach einem der Ansprüche 7-11, wobei:
der Graben eine Breite von weniger als 25 nm aufweist.
13. Herstellungsverfahren nach einem der Ansprüche 7-12, wobei:
die Seitenwandabstandshalter (202) aus einem Material gebildet werden, das Siliziumnitrid
ist.
1. Procédé de gravure, comprenant :
la formation de tranchées dans une structure à graver (10) ;
la formation (S3) d'une couche diélectrique (11 ; 204) dans les tranchées ;
la gravure (S5) de la couche diélectrique (11 ; 204) dans les tranchées au moyen d'un
processus de gravure ; et
la régulation (S6) d'au moins une température de gravure du processus de gravure en
faisant varier en continu ladite température tandis qu'un polymère est formé sur une
surface latérale de la structure à graver ;
dans lequel, pendant le processus de gravure de la couche diélectrique (11 ; 204),
le polymère subit :
une étape de dépôt, qui présente une vitesse de dépôt du polymère qui est supérieure
à une vitesse de gravure du polymère ; et
une étape d'enlèvement, qui présente la vitesse de dépôt qui est inférieure à la vitesse
de gravure ;
dans lequel le matériau de la structure à graver est le nitrure de silicium ou l'oxynitrure
de silicium et le matériau de la couche diélectrique (11 ; 204) est l'oxyde de silicium
et un gaz de gravure pour la gravure de la couche diélectrique (11 ; 204) inclut un
ou plusieurs gaz qui est/sont sélectionné(s) parmi le CF4, le C3F8 et le C4F8, et dans lequel une relation entre une température de gravure T et un temps de gravure
t est :

dans laquelle T0 est une température d'équilibre, T1 est une valeur maximum dont la température de gravure s'écarte de la température
d'équilibre T0 et t0 est une durée d'un cercle de gravure, la température d'équilibre étant la température
à laquelle la vitesse de dépôt du polymère et la vitesse de gravure dudit polymère
sont égales, l'étape de dépôt et l'étape d'enlèvement formant un cercle de gravure.
2. Procédé de gravure selon la revendication 1, dans lequel :
le processus de gravure de la couche diélectrique inclut un ou plusieurs cercle(s)
de gravure.
3. Procédé de gravure selon la revendication 1, dans lequel :
une durée d'un cercle de gravure est supérieure à 10 secondes.
4. Procédé de gravure selon la revendication 1 ou 3, dans lequel :
la valeur maximum dont la température de gravure s'écarte de la température d'équilibre
est supérieure à 30 °C.
5. Procédé de gravure selon l'une quelconque des revendications 1 à 4, dans lequel :
la température d'équilibre s'inscrit à l'intérieur d'une plage qui va d'approximativement
60 °C à 80 °C.
6. Procédé de gravure selon l'une quelconque des revendications 1 à 5, dans lequel :
le processus de gravure de la couche diélectrique (11 ; 204) inclut une gravure anisotrope
par voie sèche.
7. Procédé de fabrication pour les structures à semiconducteurs, comprenant :
un procédé de gravure selon l'une quelconque des revendications 1 à 6;
dans lequel, au niveau de l'étape de formation de tranchées dans une structure à graver,
les structures d'une pluralité de structures de dispositif (201) sont formées (S1)
sur un substrat (200), et des espaceurs de paroi latérale (202) sont formés (S2) sur
des surfaces latérales (201) de chaque structure de dispositif afin de constituer
les tranchées sur le substrat (200) entre des espaceurs de paroi latérale (202) de
structures de dispositif adjacentes (201).
8. Procédé de fabrication selon la revendication 7, dans lequel :
les structures de dispositif (201) incluent des structures d'électrode de grille,
et le procédé de fabrication inclut en outre :
la formation d'une région de source et d'une région de drain sur deux côtés de chaque
structure d'électrode de grille sur le substrat.
9. Procédé de fabrication selon la revendication 8, dans lequel :
l'étape de gravure (S5) de la couche diélectrique (204) dans les tranchées inclut
la gravure de la couche diélectrique (204) jusqu'à ce que la région de source ou la
région de drain soit exposée, et la formation de trous de contact (220) ; et
le procédé de fabrication inclut en outre : la formation de bouchons (221) dans les
trous de contact (220).
10. Procédé de fabrication selon l'une quelconque des revendications 7 à 9, dans lequel
:
la température de gravure pour graver la couche diélectrique (204) inclut une première
température qui est supérieure à la température d'équilibre et une seconde température
qui est inférieure à la température d'équilibre ;
la température de gravure de la couche diélectrique (204) lors de l'étape d'enlèvement
du polymère est la première température ; et
la température de gravure de la couche diélectrique (204) lors de l'étape de dépôt
du polymère est la seconde température.
11. Procédé de fabrication selon l'une quelconque des revendications 7 à 10, dans lequel
:
un rapport d'aspect des tranchées est supérieur à 7:1.
12. Procédé de fabrication selon l'une quelconque des revendications 7 à 11, dans lequel
:
la tranchée présente une largeur inférieure à 25 nm.
13. Procédé de fabrication selon l'une quelconque des revendications 7 à 12, dans lequel
:
les espaceurs de paroi latérale (202) sont formés en un matériau qui est le nitrure
de silicium.