FIELD OF THE INVENTION
[0001] This technology relates to water cooled boxes that are installed in a side wall of
a metal making furnace for the general purpose of housing and protecting various implements
used to affect the contents (i.e., a molten metal bath) of the furnace.
BACKGROUND OF THE INVENTION
[0002] Metal making furnaces operate under severe conditions. For example, high mechanical
stresses are exerted, particularly in furnace vessels, when large amounts of metal
scrap weighing many tons are dumped from above into the vessel. The mechanical stress
is further compounded by tilting of the vessel to pour the molten metal. Even more
significantly, metal making furnaces are exposed to extremely stressful thermal conditions.
The temperature around electrodes in an electric arc furnace ("EAF") can reach 6000
degrees Celsius ("°C"), or approximately 11,000 degree Fahrenheit ("°F"). Moreover,
the furnace must withstand frequent and vast temperature fluctuations as an EAF furnace
can be cycled (i.e., filled with scrap, drained of the melt, and filled, and prepare
for filling with scrap again) more than once per hour.
[0003] Until the early-1970's, manufacturers of industrial furnaces for metal making attempted
to protect the outer steel shell of the furnace from the extreme conditions by completely
lining the shell wall with refractory brick. Refractory brick by itself was subject
to considerable wear which resulted in periodic furnace outages that decreased production
and caused considerable expense. During the mid-1970's, water cooled box type panels,
and other panels of various designs, were introduced to replace refractory brick in
portions of the furnace vessel outside of the melt zone where molten metal is contained
in the furnace vessel. The present invention relates to improvements of these water
cooled boxes for metal making furnaces.
[0004] Numerous types of water cooled boxes are known. They typically comprise a metal enclosure
generally including, but not limited to, the shape of a truncated pyramid mostly of
rectangular cross section. The interior of the enclosure is typically arranged to
have an inlet and an outlet for cooling water that is circulated through the enclosure
for the purpose of cooling the box. In view of their general "box" shape and circulating
cooling water, these devices are commonly referred to as "cooling boxes."
[0005] Metal making furnaces of the prior art have openings in the vessel wall of the furnace
to accommodate these cooling boxes. The cooling boxes are mounted in the openings,
whereby the boxes generally extend inwardly toward the inner diameter of the vessel
wall. The boxes typically further comprise a nose that, when the box is mounted in
the wall, is typically provided in an orientation that faces and is proximal to the
molten metal in the vessel. Moreover, the nose of the box is generally located in
such a way as to house a device, such as a burner, a lance, or a material (i.e., carbon
or lime) injection device, closer to the metal bath to increase the efficiency of
the melting or injection process, as the case may be. The closer the injection is
to the bath, the deeper the heat, oxygen, or material penetrates into the bath. This
construction is advantageous because, for example, a closer location of the injection
device relative to the molten metal bath reduces the amount of injected material otherwise
lost to a draft out of a top exhaust hole of the furnace.
EP 3 480 543 A2 discloses a housing for an auxiliary burner used in metal melting, refining and processing,
for example, steel making in an electric arc furnace (EAF) or blast furnace, which
comprises an internal cartridge with a plurality of ports and made from a first material,
and an external housing made from a second material.
GB 1 451 601 A discloses a fuel-fired burner comprising a cooling air duct formed in a space between
an inner tube and an outer tube made of a high-temperature resisting materials,
US 7 824 604 B2 discloses a tapered furnace burner panel extending away from a furnace wall and having
a plurality of v-shaped grooves.
[0006] Some of the known cooling boxes are made from steel, such that they are easy to manufacture
and may be welded without substantial difficulty. Additionally, cooling boxes comprised
of steel are relatively inexpensive. However, the lifespan of steel boxes is short
because the low thermal conductivity of the steel, which allows it to overheat and
ultimately deteriorate by way of thermal cracking. A consequence of thermal cracking
is the possibility that cooling water will be permitted to leak into the melt, which
can result in an explosion.
[0007] Other prior art cooling boxes are made from copper or copper alloy, which benefit
from the high thermal conductivity of the metal. The principal disadvantage of the
all-copper box is the very high price due to the cost of the material. Many of these
boxes are plug-welded fabrications or cast monolithic blocks with frequent joints
between the exposed sides (i.e., facing the melt) and non-exposed sides. The copper
faces of the box that are exposed to the high heat of the furnace will expand significantly,
as compared to the copper faces that are otherwise not exposed to the furnace heat.
This thermal growth causes significant mechanical stress at joint locations in the
box. A consequence of the thermal stress is thermal cracking, which can permit leakage
of the cooling water in the molten metal batch of the furnace and result in an explosion.
[0008] Therefore, there exists a heretofore unmet need in the art for a novel and inventive
water cooled box that alleviates the aforementioned disadvantages of prior art cooling
boxes.
SUMMARY OF THE INVENTION
[0009] The present invention comprises a water cooled box for installation in a metal making
furnace, wherein the box can accommodate the thermal stresses inherent in the metal
making process without cracking, while also having a cost of manufacture that is significantly
less than that of a primarily copper box.
[0010] The present invention provides water-cooled boxes as defined by the appended claims.
A preferred water cooled box according to the present invention comprises a water
cooled box for a metal making furnace, the water cooled box comprising: (i) a preferably
U-shaped copper outer shell; (ii) a preferably U-shaped steel inner shell liner; (iii)
the shell and the liner being welded together to form a chamber through which cooling
water passes; (iv) at least one inlet and one outlet water connection to the chamber;
(v) one or more conduit passages between the copper shell and the steel shell for
mounting devices used to access the metal bath; (vi) a flexible joint where the conduit
passage is attached to one of the shells; (vii) the copper shell further comprising
slag bars for slag retention on the copper shell; (viii) the steel shell further comprising
a flange for mounting the water cooled box into a wall of the furnace; and (ix) the
chamber between the copper shell and the steel shell comprising water baffles to direct
the water flow in the chamber in a serpentine path for consistent cooling of the outer
copper shell of the water cooled box that is exposed to the furnace heat.
[0011] The flexible joint may be comprised of a diaphragm flexible joint, which is preferably
one or more thin, high-strength metallic diaphragms that reduce restraint in both
the radial and axial direction of the conduit passageways.
[0012] The flexible joint may be comprised of one or more thin, high-strength cans that
allow deformation in the high-strength can that reduces restraint on the conduit passageways.
[0013] The flexible joint may be comprised of a bellows with one or more bellows convolutions
that reduce restraint in both the radial and axial directions between the copper shell
and the steel shell.
[0014] The flexible joint may be comprised of a thinned flange on either the bath facing
side of the outer shell or the inner shell facing side of the outer shell, the flexible
joint reducing radial restraint between the shells.
[0015] One of the benefits of the present invention is the ability to separate and replace
either of the outer or inner shell if one of the shells should become worn or damaged.
The preservation and reuse of the non-damaged shell provides a significant economic
benefit over traditional water cooled boxes.
[0016] Specifically, the present invention comprises:
a water cooled box for use in a metal making furnace, the water cooled box comprising:
an outer shell having a substantially U-shaped cross-section, an inner surface, and
at least one conduit passageway;
an inner shell having a substantially U-shaped cross-section, an inner surface, a
plurality of water baffles, at least one conduit passageway, and at least one mounting
flange;
wherein the outer shell is primarily comprised of a metal having a higher thermal
conductivity than that of a metal primarily comprising the inner shell;
wherein the outer shell and the inner shell are joined at the at least one mounting
flange, thereby defining a chamber through which water flows along a path defined
by the water baffles, the inner surface of outer shell, and inner surface of the inner
shell; and
wherein the at least one conduit passageway of the inner shell or the outer shell
comprises a flexible joint.
[0017] In another aspect, the present invention provides:
a water cooled box for use in a metal making furnace, the water cooled box comprising:
an outer shell having a substantially arcuate cross-section, an inner surface, and
at least one conduit passageway;
an inner shell having a substantially arcuate cross-section, an inner surface, a plurality
of water baffles, at least one conduit passageway, and at least one mounting flange;
wherein the outer shell is primarily comprised of a metal having a higher thermal
conductivity than that of a metal primarily comprising the inner shell;
wherein the outer shell and the inner shell are joined at the at least one mounting
flange, thereby defining a chamber through which water flows along a path defined
by the water baffles, the inner surface of outer shell, and inner surface of the inner
shell;
wherein the at least one conduit passageway of the outer shell comprises a flange
flexible joint formed of material that is thinner than the metal material comprising
the outer shell; and
wherein the at least one conduit passageway of the inner shell comprises a flexible
joint.
[0018] According to the present invention, there is thus provided a water cooled box for
use in a metal making furnace, the water cooled box comprising:
an outer shell having a substantially U-shaped cross-section, an inner surface, and
at least one conduit passageway;
an inner shell having a substantially U-shaped cross-section, an inner surface, a
plurality of water baffles, at least one conduit passageway, and at least one mounting
flange;
wherein the outer shell is primarily comprised of a metal having a higher thermal
conductivity than that of a metal primarily comprising the inner shell;
wherein the outer shell and the inner shell are joined at the at least one mounting
flange, thereby defining a chamber through which water flows along a path defined
by the water baffles, the inner surface of outer shell, and inner surface of the inner
shell; and
wherein the at least one conduit passageway of the inner shell or the outer shell
comprises a flexible joint.
[0019] Preferably, the outer shell is primarily comprised of copper.
[0020] Advantageously, the inner shell is primarily comprised of steel.
[0021] Conveniently, the outer shell further comprises one or more slag retention bars.
[0022] Preferably, the outer shell further comprises one or more slag retention grooves.
[0023] Conveniently, both of the at least one conduit passageway of the inner shell and
the at least one conduit passageway of the outer shell comprise a flexible joint.
[0024] Advantageously, the outer shell comprises at least two conduit passageways and the
inner shell comprises at least two conduit passageways, a water inlet, and a water
outlet.
[0025] Preferably, the outer shell and inner shell are also joined at the at least one conduit
passageway of the outer shell and the at least one conduit passageway of the inner
shell, the conduit passageways being complementary structures through which an implement
may be deployed.
[0026] Conveniently, the implement is selected from the group consisting of a burner, lance,
or material injector.
[0027] Advantageously, the metal making furnace may comprise an inner diameter defined by
the vessel wall of the furnace, and when the box is mounted at the vessel wall, the
box may extend within the inner diameter toward the center of the furnace.
[0028] Conveniently, the outer shell comprises a curved face defined by the curved portion
of the U-shaped cross-section, the curved face extending within the inner diameter
and facing the center of the furnace when the box is mounted at a vessel wall of the
furnace.
[0029] Preferably, the at least one flexible joint of the inner shell is a diaphragm flexible
joint.
[0030] Advantageously, the at least one flexible joint of the inner shell is a can flexible
joint.
[0031] Conveniently, the at least one flexible joint of the outer shell is a bellows flexible
joint.
[0032] Preferably, the inner shell comprises both a diaphragm flexible joint and a can flexible
joint, and the at least one flexible joint of the outer shell comprises a bellows
flexible joint.
[0033] Advantageously, the at least one flexible joint of the outer shell comprises a flange
flexible joint formed of material that is thinner than the metal material comprising
the outer shell.
[0034] According to the present invention, there is further provided a water cooled box
for use in a metal making furnace, the water cooled box comprising:
an outer shell having a substantially arcuate cross-section, an inner surface, and
at least one conduit passageway;
an inner shell having a substantially arcuate cross-section, an inner surface, a plurality
of water baffles, at least one conduit passageway, and at least one mounting flange;
wherein the outer shell and the inner shell are joined at the at least one mounting
flange, thereby defining a chamber through which water flows along a path defined
by the water baffles, the inner surface of outer shell, and inner surface of the inner
shell;
wherein the outer shell is primarily comprised of a metal having a higher thermal
conductivity than that of a metal primarily comprising the inner shell;
wherein the at least one conduit passageway of the outer shell comprises a flange
flexible joint formed of material that is thinner than the metal material comprising
the outer shell; and
wherein the at least one conduit passageway of the inner shell comprises a flexible
joint.
[0035] Conveniently, the at least one flexible joint of the inner shell is a diaphragm flexible
joint.
[0036] Preferably, the at least one flexible joint of the inner shell is a can flexible
joint.
BRIEF DESCRIPTION OF THE FIGURES
[0037]
Fig. 1 is an elevated perspective view of a water cooled box provided in accordance
with a preferred embodiment of the present invention, the water cooled box being installed
in a vessel wall of a metal making furnace.
Fig. 2 is an elevated perspective view of an outer surface of an outer shell of a
water cooled box provided in accordance with a preferred embodiment of the present
invention.
Fig. 3 is a front perspective view (the surfaces facing toward the bath when mounted
in a furnace) of a water cooled box provided in accordance with a preferred embodiment
of the present invention.
Fig. 4 is an elevated perspective view of an inner surface of an inner steel shell
of a water cooled box provided in accordance with a preferred embodiment of the present
invention.
Fig. 5 is a back perspective view (the surfaces facing away from the bath when mounted
in a furnace) of a water cooled box provided in accordance with a preferred embodiment
of the present invention.
Fig. 6 is a cross-sectional view of a water cooled box provided in accordance with
a preferred embodiment of the present invention, the box comprising flexible joints.
Fig. 7 is a cross-sectional view of a water cooled box provided in accordance with
a preferred embodiment of the present invention, the box comprising alternative flexible
joints.
DETAILED DESCRIPTION OF THE INVENTION
[0038] Fig. 1 illustrates a water cooled box 1 provided in accordance with a preferred embodiment
of the present invention, the water cooled box 1 being installed in a metal making
furnace 2. As shown, the furnace 2 further comprises a vessel 3, a vessel wall 4,
and, during normal operation of the furnace 2, a molten metal bath 5 contained by
the vessel 3.
[0039] As shown in Fig. 1, the box 1 is preferably mounted on the vessel wall 4 of the metal
making furnace 2 using fasteners as will be appreciated by one of ordinary skill in
the art. As shown, the furnace 2 has an inner diameter defined by the vessel wall
4, wherein when the box 1 is mounted at a wall 4, the box 1 extends within the inner
diameter toward the bath 5. This allows the implements that are deployed through the
conduit passageways 14, 24 (see Figs. 3, 5-7) to affect the bath 5 at a closer distance
than that afforded by traditional boxes.
[0040] Figs. 2-7 illustrate the water cooled box 1 comprising an outer shell 10 and an inner
shell 20. The outer shell 10 comprises an inner surface 11, an outer surface 12, one
or more conduit passageways 14, and one or more slag retention bars 15. In some alternative
embodiments, the outer shell 10 may comprise slag retention grooves 16 instead of
bars 15 on the outer surface 12. In other alternative embodiments, the outer shell
10 may comprise a combination of grooves 16 and bars 15. The outer surface 12 further
comprises a plurality of faces, including bottom face 17a, side faces 17b, 17c, curved
face 17d, conduit face 17e, and top face 17f.
[0041] The outer shell 10 is preferably comprised primarily of copper and is formed to have
a substantially U-shaped or substantially arcuate profile in cross-section, wherein
the curved face 17d is directed toward the bath 5. More specifically, as best shown
in Fig. 2, the U-shaped profile of the outer shell 10 is substantially defined by
the shape of the top face 17f, which is typically oriented perpendicularly to the
vessel wall 4 when the box 1 is mounted thereon. As shown, the legs of the U-shaped
top face 17f are substantially linear and abut the respective top edges of side faces
17b, 17c, whereas the curved portion of the top face 17f abuts a top edge of the curved
face 17d. Thereby, the substantially U-shaped profile of the outer shell 10 is formed,
and it persists away from the top face 17f to a certain depth of the outer shell 10
until the U-shaped profile is truncated at the curved face 17d by the conduit face
17e toward the bottom face 17a.
[0042] The inner shell 20 comprises an inner surface 21, an outer surface 22, water baffles
23, one or more conduit passageways 24, a water inlet 25, a water outlet 26, first
and second mounting flanges 13a, 13b, and a top flange 28. The inner shell 20 also
provides strength to hold the shape and position of the outer shell 10, and the use
of steel rather than copper in the inner shell 20 reduces the cost of the box 1. The
one or more conduit passageways 14, 24 of the outer shell 10 and the inner shell 20,
respectively, are complementary in shape as well. Various implements, such as a burner,
a lance, or a material (i.e., carbon or lime) injection device may be protected and
deployed through the body of the box 1 via the passageways 14, 24 and into the furnace
2.
[0043] The inner shell 20 is preferably formed of steel, and has a substantially U-shaped
or substantially arcuate profile in cross-section that is complementary to the shape
of the outer shell 10. The inner shell 20 may be formed of stainless steel. The inner
shell 20 further comprises a plurality of faces, including bottom face 27a, side faces
27b, 27c, curved face 27d, and conduit face 27e. More specifically, as best shown
in Fig. 4, U-shaped profile of the inner shell 20 is substantially defined by the
respective top edges of side faces 27b, 27c and curved face 27d. Thereby, the substantially
U-shaped profile of the inner shell 20 is formed, and it persists to a certain depth
of the inner shell 20 until the U-shaped profile is truncated at the curved face 27d
by the conduit face 27e toward the bottom face 27a.
[0044] Returning to Figs. 2 and 3, as shown, the slag retention bars 15 and/or grooves 16
of the outer shell 10 catch slag of the furnace 2 and cause slag buildup on the outer
surface 12 of the outer shell 10. The slag buildup acts as both a thermal and electrical
insulator for the water cooled box 1. This is because the thermal conductivity of
the slag buildup is fairly low, thereby reducing the amount of heat that is transferred
from the molten metal bath 5 to the outer surface 12 of the outer shell 10. The thermal
conductivity of the copper preferably comprising the outer shell 10, by contrast,
is very high, which allows heat that is transferred to the outer shell 10 to efficiently
and quickly pass through the outer shell 10 into water that is circulating through
a water chamber 30 (described further below), which carries the heat away from the
box 1.
[0045] As best shown in Figs. 6 and 7, the water cooled box 1 is formed by fitting the inner
shell 20 into the outer shell 10. More specifically, the inner surface 11 of the outer
shell 10 is married to the inner surface 21 of the inner shell 20 such that the shells
10, 20 are united to define the water chamber 30 between the inner surfaces 11, 21.
The outer shell 10 is cooled by water that enters the box 1 via the inlet 25, is directed
through the water chamber 30 by the baffles 23, and exits the box 1 via the outlet
26. The inlet 25 and the outlet 26 are preferably welded to the mounting flanges 13a,
13b, and inlet 25 and outlet 26 defining respective apertures that extend through
the flanges 13a, 13b into the chamber 30.
[0046] The shells 10, 20 are joined at lateral back edges 18 of the outer shell 10 to the
mounting flanges 13a, 13b, preferably by welding, at the inner surface 11 portion
of the top face 17f to the top flange 28, preferably by welding, and also at the complementary
conduit passageways 14, 24. The conduit passageways 14, 24 preferably have a flexible
connection at a joint to one of the shells 10, 20, or the conduit passageways 14,
24 have a flexible member comprising the conduit passageways 14, 24 themselves.
[0047] For example, in a preferred embodiment as shown in Fig. 6, the box 1 comprises conduit
passageways 14, 24 wherein the conduit passageway 14 of the outer shell 10 is preferably
formed of metal having a substantial thickness and comprising a flange flexible joint
40 that is joined to the outer shell 10, preferably by welding. The conduit passageway
24 of the inner shell 20, meanwhile, is preferably comprised of a diaphragm flexible
joint 50a and a can flexible joint 52a, wherein the joints 50a, 52a connect the conduit
passageway 14 of the outer shell 10 to the inner shell 20. The diaphragm flexible
joint 50a and a can flexible joint 52a are preferably ring-shaped devices that surround
the conduit passageway 14.
[0048] In an alternative embodiment as shown in Fig. 7, the box 1 comprises conduit passageways
14, 24 wherein the conduit passageway 14 of the outer shell 10 is preferably formed
of a bellows flexible joint 42. The bellows flexible joint 42 is substantially cylindrical.
The conduit passageway 24 of the inner shell 20, meanwhile, is preferably comprised
of a diaphragm flexible joint 50b and a can (or cup) flexible joint 52b. As shown
in Fig. 7, the bellows flexible joint 42 is connected at a first end to the outer
shell 10 and at a second to the diaphragm flexible joint 50b. The can flexible joint
52b is connected at a first end to the diaphragm flexible joint 50b and at a second
end to the inner shell 20.
[0049] As shown in Figs. 6 and 7, the water in the chamber 30 will flow between the flexible
joint mechanisms 40, 42 of the outer shell 10 and the flexible joint mechanisms 50a,b,
52a,b of the inner shell 20.
[0050] When the temperature of most objects is increased, the volume (length, width, and
height) of the object increases. As long as the object is not restrained, the stress
state of the object remains unchanged. When the temperature of an object is increased
and the object is restrained in one or more planes, the volume of the object cannot
increase in the direction of the restraint. This subjects the object to mechanical
stress.
[0051] During operation of the furnace 2, the temperature of the inner shell 20 formed of
steel is almost the same as the temperature of the cooling water circulating through
the water chamber 30. The cooling water temperature is much cooler than the temperature
of the outer shell 10 formed of copper, and therefore the temperature of the inner
shell 20 is much lower than that of the outer shell 10. Further, the coefficient of
thermal growth of steel is much lower than that of copper. Between the temperature
differential and dissimilar coefficients of thermal growth between the copper and
steel preferably comprising the outer shell 10 and the inner shell 20, respectively,
the outer shell 10 grows thermally much more than the inner shell 20. Accordingly,
points of restraint between the two shells 10, 20 may create a thermal mechanical
stress on the box 1.
[0052] To offset this potential mechanical stress, the curved U-shape of the box 1 allows
the outer shell 10 to move out of plane, thereby reducing the in-plane restraint experienced
by the outer shell 10, as compared to the in-plane restraint experienced by traditional
flat plate surfaces fixed between two side walls. This is one of the mechanical stress
reduction mechanisms of the present invention.
[0053] It is noted that the metal making processes in which furnaces such as furnace 2 are
employed are, by nature, a very violent processes that cause vibration in essentially
everything with a certain proximity to the process being performed. When an object
is vibrated at its natural frequency, the vibrational energy is amplified and the
energy from this amplification can create cracking in traditional furnace components.
This cracking can cause cooling water to leak into the furnace, which can result in
an explosion. The U-shaped surface of the outer shell 10 has a higher natural frequency
than a flat plate surface of traditional water cooled boxes. Higher frequency vibration
has less energy that low frequency vibration, which reduces energy available to create
cracks and thereby enhances the durability and integrity of the outer shell 10.
[0054] Additionally, the outer shell 10 and the inner shell 20 of the box 1 are joined at
the mounting flanges 13a, 13b and at the conduit passageways 14, 24 between shells
10, 20. The flanges 13a, 13b are the coldest parts of the box 1 and the thermal growth
difference between the outer shell 10 and the inner shell 20 at the mounting flanges
13, 13b is minimal. Consequently, the thermal mechanical stress at the connection
of the shells 10, 20 at the mounting flanges 13, 13b is low enough that it will not
cause cracking.
[0055] By contrast, the conduit passageways 14, 24 between shells 10, 20 are located at
the highest differential temperature between the shells 10, 20 and will experience
the high thermal mechanical stress sufficient to cause cracking in traditional water
cooled boxes. The conduit passageways 14, 24 of the present invention, however, have
one or more flexible joint mechanisms 40, 42, 50a,b, 52a,b either at the joint of
the passageway 14, 24 to its corresponding shell 10, 20 or a flexible member designed
into the conduit passageway 14, 24 itself. The flexible joint mechanisms 40, 42, 50a,b,
52a,b are preferably formed of a copper alloy, such as a copper-nickel alloy.
[0056] This flexible joint mechanism reduces the restraint between shells 10, 20 due to
thermal growth and thereby reduces the thermal mechanical stress experienced by the
box 1. Some flexible joint mechanisms for this invention, such as diaphragm flexible
joints 50a, 50b, include the use of a plurality of thin high-strength metallic diaphragms
that reduce restraint in both the radial and axial direction of the conduit passageways
14, 24. Alternative flexible joint mechanisms, such as can flexible joints 52a, 52b,
include the use of thin metallic high strength cans that allow deformation in the
can that reduces restraint of the conduit passageways 14, 24. Other alternative flexible
joint mechanisms, such as flexible bellows joint 42, are designed into the conduit
passageway, particularly conduit passageway 14. The flexible bellows joint 42 is formed
like a bellows with a plurality of bellows convolutions to reduce both axial and radial
restraint between the outer shell 10 and inner shell 20. As the box 1 heats up and
experiences thermal growth, the bellows joint 42 will tend to straighten out, thereby
absorbing mechanical stress of the box 1. Yet another alternative flexible joint mechanism,
such as flange flexible joint 40, comprises a separate article that is preferably
thinner than the surrounding metal of the outer shell 10, and welded onto the outer
shell 10 at either the inner surface 11 or the outer surface 12. One or more flange
flexible joints 40 may be used. For example, if two flange flexible joints 40 are
used, one may be connected to the inner surface 11 and another may be connected to
the outer surface 12. The flange flexible joint 40 reduces radial restraint between
the shells 10, 20. The flexible joint mechanisms 40, 42, 50a, 50b, 52a, 52b may be
used independently (i.e., without other flexible joint mechanisms in the box 1) or
in combination with one or more flexible joint mechanisms 40, 42, 50a, 50b, 52a, 52b.
1. A water cooled box (1) for use in a metal making furnace (2), the water cooled box
(1) comprising:
an outer shell (10) having a substantially U-shaped cross-section, an inner surface
(11), and at least one conduit passageway (14);
an inner shell (20) having a substantially U-shaped cross-section, an inner surface
(21), a plurality of water baffles (23), at least one conduit passageway (24), and
at least one mounting flange (13a, 13b);
wherein the outer shell (10) is primarily comprised of a metal having a higher thermal
conductivity than that of a metal primarily comprising the inner shell (20);
wherein the outer shell (10) and the inner shell (20) are joined at the at least one
mounting flange (13a, 13b), thereby defining a chamber (30) through which water flows
along a path defined by the water baffles (23), the inner surface of outer shell (11),
and inner surface of the inner shell (21); and
wherein the at least one conduit passageway of the inner shell (24) or the outer shell
(14) comprises a flexible joint (40, 42, 50a, 52a).
2. The water cooled box of claim 1, wherein the outer shell (10) is primarily comprised
of copper, and/or
wherein the inner shell (20) is primarily comprised of steel.
3. The water cooled box of claim 1 or claim 2, wherein the outer shell (10) further comprises
one or more slag retention bars (15).
4. The water cooled box of any preceding claim, wherein the outer shell (10) further
comprises one or more slag retention grooves (16).
5. The water cooled box of any preceding claim, wherein both of the at least one conduit
passageway of the inner shell (21) and the at least one conduit passageway of the
outer shell (11) comprise a flexible joint (40, 42, 50a, 52a).
6. The water cooled box of any preceding claim, wherein the outer shell (10) comprises
at least two conduit passageways (14) and the inner shell (20) comprises at least
two conduit passageways (24), a water inlet (25), and a water outlet (26).
7. The water cooled box of any preceding claim, wherein outer shell (10) and inner shell
(20) are also joined at the at least one conduit passageway of the outer shell (14)
and the at least one conduit passageway of the inner shell (24), the conduit passageways
being complementary structures through which an implement may be deployed, and preferably
wherein the implement is selected from the group consisting of a burner, lance, or
material injector.
8. The water cooled box of any preceding claim, wherein the outer shell (10) comprises
a curved face (17d) defined by the curved portion of the U-shaped cross-section, the
curved face (17d) being configured to extend within the inner diameter and facing
the center of the furnace when the box is mounted at a vessel wall (4) of the furnace.
9. The water cooled box of any preceding claim, wherein the at least one flexible joint
of the inner shell (20) is a diaphragm flexible joint (50a), and/or
is a can flexible joint (52a).
10. The water cooled box (1) of any preceding claim, wherein the at least one flexible
joint of the outer shell (10) is a bellows flexible joint (42).
11. The water cooled box of any preceding claim, wherein the inner shell (20) comprises
both a diaphragm flexible joint (50a) and a can flexible joint (52a), and the at least
one flexible joint of the outer shell (10) comprises a bellows flexible joint (42).
12. The water cooled box of any preceding claim, wherein the at least one flexible joint
of the outer shell (10) comprises a flange flexible joint (40) formed of material
that is thinner than the metal material comprising the outer shell (10).
13. A water cooled box (1) for use in a metal making furnace (2), the water cooled box
(1) comprising:
an outer shell (10) having a substantially arcuate cross-section, an inner surface
(11), and at least one conduit passageway (14);
an inner shell (20) having a substantially arcuate cross-section, an inner surface
(21), a plurality of water baffles (23), at least one conduit passageway (24), and
at least one mounting flange (13a, 13b);
wherein the outer shell (10) is primarily comprised of a metal having a higher thermal
conductivity than that of a metal primarily comprising the inner shell (20);
wherein the outer shell (10) and the inner shell (20) are joined at the at least one
mounting flange (13a, 13b), thereby defining a chamber (30) through which water flows
along a path defined by the water baffles (23), the inner surface of outer shell (21),
and inner surface of the inner shell (21);
wherein the at least one conduit passageway of the outer shell (14) comprises a flange
flexible joint (40) formed of material that is thinner than the metal material comprising
the outer shell (10); and
wherein the at least one conduit passageway of the inner shell (24) comprises a flexible
joint (42, 50a, 52a).
14. The water cooled box (1) of claim 13, wherein the at least one flexible joint of the
inner shell (20) is a diaphragm flexible joint (50a), and/or
is a can flexible joint (52a).
1. Wassergekühlter Kasten (1) zur Verwendung in einem Metallherstellungsofen (2), wobei
der wassergekühlte Kasten (1) Folgendes umfasst:
eine Außenhülle (10), die einen im Wesentlichen U-förmigen Querschnitt, eine Innenoberfläche
(11) und wenigstens einen Leitungsdurchgang (14) aufweist;
eine Innenhülle (20), die einen im Wesentlichen U-förmigen Querschnitt, eine Innenoberfläche
(21), mehrere Wasserleitbleche (23), wenigstens einen Leitungsdurchgang (24) und wenigstens
einen Montageflansch (13a, 13b) aufweist;
wobei die Außenhülle (10) hauptsächlich aus einem Metall besteht, das eine höhere
Wärmeleitfähigkeit aufweist als die eines Metalls, das hauptsächlich die Innenhülle
(20) umfasst;
wobei die Außenhülle (10) und die Innenhülle (20) an dem wenigstens einen Montageflansch
(13a, 13b) verbunden sind, wobei dadurch eine Kammer (30) definiert wird, durch die
Wasser entlang eines Weges fließt, der durch die Wasserleitbleche (23), die Innenoberfläche
der Außenhülle (11) und die Innenoberfläche der Innenhülle (21) definiert ist; und
wobei der wenigstens eine Leitungsdurchgang der Innenhülle (24) oder der Außenhülle
(14) eine flexible Verbindung (40, 42, 50a, 52a) umfasst.
2. Wassergekühlter Kasten nach Anspruch 1, wobei die Außenhülle (10) hauptsächlich aus
Kupfer besteht und/oder
wobei die Innenhülle (20) hauptsächlich aus Stahl besteht.
3. Wassergekühlter Kasten nach Anspruch 1 oder 2, wobei die Außenhülle (10) ferner einen
oder mehrere Schlackenrückhaltestäbe (15) umfasst.
4. Wassergekühlter Kasten nach einem der vorhergehenden Ansprüche, wobei die Außenhülle
(10) ferner eine oder mehrere Schlackenrückhalterillen (16) umfasst.
5. Wassergekühlter Kasten nach einem der vorhergehenden Ansprüche, wobei sowohl der wenigstens
eine Leitungsdurchgang der Innenhülle (21) als auch der wenigstens eine Leitungsdurchgang
der Außenhülle (11) eine flexible Verbindung (40, 42, 50a, 52a) umfasst.
6. Wassergekühlter Kasten nach einem der vorhergehenden Ansprüche, wobei die Außenhülle
(10) wenigstens zwei Leitungsdurchgänge (14) umfasst und die Innenhülle (20) wenigstens
zwei Leitungsdurchgänge (24), einen Wassereinlass (25) und einen Wasserauslass (26)
umfasst.
7. Wassergekühlter Kasten nach einem der vorhergehenden Ansprüche, wobei die Außenhülle
(10) und die Innenhülle (20) ebenso an dem wenigstens einen Leitungsdurchgang der
Außenhülle (14) und dem wenigstens einen Leitungsdurchgang der Innenhülle (24) verbunden
sind, wobei die Leitungsdurchgänge komplementäre Strukturen sind, durch die ein Gerät
eingesetzt werden kann, und vorzugsweise
wobei das Gerät aus der Gruppe ausgewählt ist, die aus einem Brenner, einer Lanze
oder einem Materialinjektor besteht.
8. Wassergekühlter Kasten nach einem der vorhergehenden Ansprüche, wobei die Außenhülle
(10) eine gekrümmte Fläche (17d) umfasst, die durch den gekrümmten Abschnitt des U-förmigen
Querschnitts definiert ist, wobei die gekrümmte Fläche (17d) konfiguriert ist, um
sich innerhalb des Innendurchmessers und der Ofenmitte zugewandt zu erstrecken, wenn
der Kasten an einer Gefäßwand (4) des Ofens montiert ist.
9. Wassergekühlter Kasten nach einem der vorhergehenden Ansprüche, wobei die wenigstens
eine flexible Verbindung der Innenhülle (20) eine flexible Membranverbindung (50a)
ist und/oder
eine flexible Dosenverbindung (52a) ist.
10. Wassergekühlter Kasten (1) nach einem der vorhergehenden Ansprüche, wobei die wenigstens
eine flexible Verbindung der Außenhülle (10) eine flexible Balgverbindung (42) ist.
11. Wassergekühlter Kasten nach einem der vorhergehenden Ansprüche, wobei die Innenhülle
(20) sowohl eine flexible Membranverbindung (50a) als auch eine flexible Dosenverbindung
(52a) umfasst und die wenigstens eine flexible Verbindung der Außenhülle (10) eine
flexible Balgverbindung (42) umfasst.
12. Wassergekühlter Kasten nach einem der vorhergehenden Ansprüche, wobei die wenigstens
eine flexible Verbindung der Außenhülle (10) eine flexible Flanschverbindung (40)
umfasst, die aus einem Material ausgebildet ist, das dünner ist als das Metallmaterial,
das die Außenhülle (10) umfasst.
13. Wassergekühlter Kasten (1) zur Verwendung in einem Metallherstellungsofen (2), wobei
der wassergekühlte Kasten (1) Folgendes umfasst:
eine Außenhülle (10), die einen im Wesentlichen bogenförmigen Querschnitt, eine Innenoberfläche
(11) und wenigstens einen Leitungsdurchgang (14) aufweist;
eine Innenhülle (20), die einen im Wesentlichen bogenförmigen Querschnitt, eine Innenoberfläche
(21), mehrere Wasserleitbleche (23), wenigstens einen Leitungsdurchgang (24) und wenigstens
einen Montageflansch (13a, 13b) aufweist;
wobei die Außenhülle (10) hauptsächlich aus einem Metall besteht, das eine höhere
Wärmeleitfähigkeit aufweist als die eines Metalls, das hauptsächlich die Innenhülle
(20) umfasst;
wobei die Außenhülle (10) und die Innenhülle (20) an dem wenigstens einen Montageflansch
(13a, 13b) verbunden sind, wobei dadurch eine Kammer (30) definiert wird, durch die
Wasser entlang eines Weges fließt, der durch die Wasserleitbleche (23), die Innenoberfläche
der Außenhülle (21) und die Innenoberfläche der Innenhülle (21) definiert ist;
wobei der wenigstens eine Leitungsdurchgang der Außenhülle (14) eine flexible Flanschverbindung
(40) umfasst, die aus einem Material ausgebildet ist, das dünner ist als das Metallmaterial,
das die Außenhülle (10) umfasst; und
wobei der wenigstens eine Leitungsdurchgang der Innenhülle (24) eine flexible Verbindung
(42, 50a, 52a) umfasst.
14. Wassergekühlter Kasten (1) nach Anspruch 13, wobei die wenigstens eine flexible Verbindung
der Innenhülle (20) eine flexible Membranverbindung (50a) ist und/oder
eine flexible Dosenverbindung (52a) ist.
1. Boîte refroidie par eau (1) destinée à être utilisée dans un fourneau de fabrication
de métaux (2), la boîte refroidie par l'eau (1) comprenant :
une coque externe (10) ayant une section transversale sensiblement en forme de U,
une surface interne (11) et au moins un passage de conduit (14) ;
une coque interne (20) ayant une section transversale sensiblement en forme de U,
une surface interne (21), une pluralité de déflecteurs d'eau (23), au moins un passage
de conduit (24) et au moins une bride de montage (13a, 13b) ;
dans lequel la coque externe (10) est principalement constituée d'un métal ayant une
conductivité thermique plus élevée que celle d'un métal comprenant principalement
la coque interne (20) ;
dans lequel la coque externe (10) et la coque interne (20) sont jointes au niveau
de l'au moins une bride de montage (13a, 13b), définissant ainsi une chambre (30)
à travers laquelle l'eau s'écoule le long d'un chemin défini par les déflecteurs d'eau
(23), la surface interne de la coque externe (11) et la surface interne de la coque
interne (21) ; et
dans lequel l'au moins un passage de conduit de la coque interne (24) ou de la coque
externe (14) comprend un joint flexible (40, 42, 50a, 52a).
2. Boîte refroidie par eau selon la revendication 1, dans laquelle la coque externe (10)
est principalement constituée de cuivre, et/ou
dans lequel la coque interne (20) est principalement constituée d'acier.
3. Boîte refroidie par eau selon la revendication 1 ou la revendication 2, dans laquelle
la coque externe (10) comprend en outre une ou plusieurs barres de rétention de laitier
(15).
4. Boîte refroidie par eau selon l'une quelconque des revendications précédentes, dans
laquelle la coque externe (10) comprend en outre une ou plusieurs rainures de rétention
de laitier (16).
5. Boîte refroidie par eau selon l'une quelconque des revendications précédentes, dans
laquelle à la fois l'au moins un passage de conduit de la coque interne (21) et l'au
moins un passage de conduit de la coque externe (11) comprennent un joint flexible
(40, 42, 50a, 52a).
6. Boîte refroidie par eau selon l'une quelconque des revendications précédentes, dans
laquelle la coque externe (10) comprend au moins deux passages de conduit (14) et
la coque interne (20) comprend au moins deux passages de conduit (24), une entrée
d'eau (25), et une sortie d'eau (26).
7. Boîte refroidie par eau selon l'une quelconque des revendications précédentes, dans
laquelle la coque externe (10) et la coque interne (20) sont également jointes à l'au
moins un passage de conduit de la coque externe (14) et l'au moins un passage de conduit
de la coque interne (24), les passages de conduit étant des structures complémentaires
à travers lesquelles un outil peut être déployé, et de préférence
dans lequel l'outil est sélectionné dans le groupe constitué d'un brûleur, d'une lance
ou d'un injecteur de matériau.
8. Boîte refroidie par eau selon l'une quelconque des revendications précédentes, dans
laquelle la coque externe (10) comprend une face incurvée (17d) définie par la partie
incurvée de la section transversale en forme de U, la face incurvée (17d) étant conçue
pour s'étendre à l'intérieur du diamètre interne et tourné vers le centre du fourneau
lorsque le boîtier est monté sur une paroi de cuve (4) du fourneau.
9. Boîte refroidie par eau selon l'une quelconque des revendications précédentes, dans
laquelle l'au moins un joint flexible de la coque interne (20) est un joint flexible
à diaphragme (50a), et/ou
est un joint flexible de boîte (52a).
10. Boîte refroidie par eau (1) selon l'une quelconque des revendications précédentes,
dans laquelle l'au moins un joint flexible de la coque externe (10) est un joint flexible
à soufflet (42).
11. Boîte refroidie par eau selon l'une quelconque des revendications précédentes, dans
laquelle la coque interne (20) comprend à la fois un joint flexible à diaphragme (50a)
et un joint flexible de boîte (52a), et l'au moins un joint flexible de la coque externe
(10) comprend un joint flexible à soufflet (42).
12. Boîte refroidie par eau selon l'une quelconque des revendications précédentes, dans
laquelle l'au moins un joint flexible de la coque externe (10) comprend un joint flexible
à bride (40) formé d'un matériau qui est plus mince que le matériau métallique comprenant
la coque externe (10).
13. Boîte refroidie par eau (1) destinée à être utilisée dans un fourneau de fabrication
de métauxl (2), la boîte refroidie par eau (1) comprenant :
une coque externe (10) ayant une section transversale sensiblement arquée, une surface
interne (11) et au moins un passage de conduit (14) ;
une coque interne (20) ayant une section transversale sensiblement arquée, une surface
interne (21), une pluralité de déflecteurs d'eau (23), au moins un passage de conduit
(24) et au moins une bride de montage (13a, 13b) ;
dans laquelle la coque externe (10) est principalement constituée d'un métal ayant
une conductivité thermique plus élevée que celle d'un métal comprenant principalement
la coque interne (20) ;
dans laquelle la coque externe (10) et la coque interne (20) sont jointes au niveau
de l'au moins une bride de montage (13a, 13b), définissant ainsi une chambre (30)
à travers laquelle l'eau s'écoule le long d'un chemin défini par les déflecteurs d'eau
(23), la surface interne de la coque externe (21) et la surface interne de la coque
interne (21) ;
dans laquelle l'au moins un passage de conduit de la coque externe (14) comprend un
joint flexible à bride (40) formé d'un matériau qui est plus mince que le matériau
métallique comprenant la coque externe (10) ; et
dans laquelle l'au moins un passage de conduit de la coque interne (24) comprend un
joint flexible (42, 50a, 52a).
14. Boîte refroidie par eau (1) selon la revendication 13, dans laquelle l'au moins un
joint flexible de la coque interne (20) est un joint flexible à diaphragme (50a),
et/ou
est un joint flexible de boîte (52a).