(19)
(11) EP 3 441 986 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Hinweis auf die Patenterteilung:
29.09.2021  Patentblatt  2021/39

(21) Anmeldenummer: 18191902.8

(22) Anmeldetag:  20.03.2017
(51) Internationale Patentklassifikation (IPC): 
H01B 13/00(2006.01)
H01B 3/30(2006.01)
H01B 7/02(2006.01)
H01B 13/14(2006.01)
H01B 3/42(2006.01)
(52) Gemeinsame Patentklassifikation (CPC) :
H01B 3/441; H01B 13/141; H01B 13/003; H01B 13/145; H01B 3/305; H01B 3/301; H01B 3/307; H01B 3/306; H01B 3/427

(54)

ISOLIERTER ELEKTRISCHER LEITER

INSULATED ELECTRICAL CONDUCTOR

CONDUCTEUR ÉLECTRIQUE ISOLÉ


(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Validierungsstaaten:
MA MD

(30) Priorität: 01.04.2016 EP 16163536

(43) Veröffentlichungstag der Anmeldung:
13.02.2019  Patentblatt  2019/07

(62) Anmeldenummer der früheren Anmeldung nach Art. 76 EPÜ:
17711216.6 / 3394861

(73) Patentinhaber: Gebauer & Griller Metallwerk GmbH
1190 Wien (AT)

(72) Erfinder:
  • Hochstöger, Jürgen
    4300 St. Valentin (AT)
  • Schrayvogel, Rudolf
    3243 St. Leonhard am Forst (AT)
  • Koppensteiner, Ewald
    4490 St. Florian (AT)

(74) Vertreter: KLIMENT & HENHAPEL 
Patentanwälte OG Gonzagagasse 15/2
1010 Wien
1010 Wien (AT)


(56) Entgegenhaltungen: : 
EP-A2- 0 188 369
WO-A1-2016/039350
JP-A- H03 222 210
US-A- 5 396 104
EP-A2- 1 498 910
DE-A1-102010 002 721
JP-A- 2003 031 061
   
  • P. KONARSKI ET AL: "Cold plasma cleaning of copper and aluminum tested by SIMS depth profile analysis", SURFACE AND INTERFACE ANALYSIS., Bd. 43, Nr. 1-2, 9. Juli 2010 (2010-07-09) , Seiten 612-617, XP055310132, GB ISSN: 0142-2421, DOI: 10.1002/sia.3655
   
Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


Beschreibung

GEBIET DER ERFINDUNG



[0001] Die Erfindung betrifft einen isolierten elektrischen Leiter umfassend einen elektrischen Leiter, vorzugsweise aus Kupfer oder Aluminium, mit einer isolierenden Beschichtung, wobei die isolierende Beschichtung zumindest eine äußere Isolationsschicht aus thermoplastischem Kunststoff umfasst, sowie auf ein Verfahren zur Herstellung eines solchen isolierten elektrischen Leiters.

STAND DER TECHNIK



[0002] Isolierte elektrische Leiter werden in nahezu jedem elektrischen Gerät verbaut, um elektrischen Strom zu leiten ohne dabei Kurzschlüsse zu verursachen, die durch den Kontakt von nicht elektrisch isolierten Leitern verursacht werden können.

[0003] Derartige isolierte elektrische Leiter umfassen einen elektrischen Leiter aus Kupfer und eine den elektrischen Leiter elektrisch isolierenden Beschichtung, die üblicher Weise eine oder mehrere Schichten aufweist. Um die Isolierung des elektrischen Leiters sicherzustellen umfasst die isolierende Beschichtung eine Isolationsschicht aus thermoplastischem Kunststoff.

[0004] Während es in vielen Anwendungsgebieten vorteilhaft ist, wenn die Haftung der isolierenden Beschichtung am elektrischen Leiter schwach ausgebildet ist, um ein leichtes Abisolieren des elektrischen Leiters zu ermöglichen, ist es in anderen Anwendungsgebieten erwünscht, eine möglichst große Haftung sicherzustellen. Solche Anwendungsgebiete finden sich beispielsweise im Elektromaschinenbau und insbesondere bei Elektromotoren oder Transformatoren, wo die isolierten elektrischen Leiter auch einer erhöhten Temperatur ausgesetzt sind. Die Verarbeitbarkeit der isolierten elektrischen Leiter erfordert dabei oftmals eine erhöhte Haftung der isolierenden Beschichtung am elektrischen Leiter, teilweise auch bei hohen Betriebstemperaturen.

[0005] Um die Haftung zu überprüfen wird üblicher Weise ein Rundumschnitt am isolierten elektrischen Leiter senkrecht zu einer Leiterachse durchgeführt, der elektrische Leiter um 20% gedehnt und danach die Ablösung der isolierenden Beschichtung vom elektrischen Leiter gemessen. Desto geringer die Ablösung der isolierenden Beschichtung vom elektrischen Leiter ist, desto besser ist die Haftung.

[0006] In herkömmlichen isolierten elektrischen Leiter die eine isolierende Beschichtung mit einer, vorzugsweise hochtemperaturbeständigen, Isolationsschicht aufweisen, ist die Haftung zwischen dem elektrischen Leiter, insbesondere aus Kupfer, und der isolierenden Beschichtung, insbesondere der Isolationsschicht, eher gering, da die Haftung eines Kunststoffs am elektrischen Leiter aufgrund der Oberflächeneigenschaften gering ist. JP2003031061A offenbart die Herstellung eines isolierten elektrischen Leiters umfassend einen elektrischen Leiter mit einer isolierenden Beschichtung, wobei die isolierende Beschichtung eine Isolationsschicht aus thermoplastischem Kunststoff (EVA oder PE) umfasst.

AUFGABE DER ERFINDUNG



[0007] Es ist daher eine Aufgabe der Erfindung einen isolierten elektrischen Leiter vorzuschlagen, welcher die Nachteile des Stands der Technik überwindet und eine gute Haftung zwischen der isolierenden Beschichtung und dem elektrischen Leiter gewährleistet.

DARSTELLUNG DER ERFINDUNG



[0008] Der elektrische Leiter gattungsgemäßer isolierter elektrischer Leiter besteht aus Kupfer oder einer Legierung mit einem hohen Kupferanteil oder Aluminium oder sonstigen elektrisch leitfähigen Materialien. Unter dem elektrischen Leiter wird dabei sowohl ein Einzelleiter als auch eine mehrere Einzelleiter enthaltende Litze verstanden. Die Querschnittsgeometrie des elektrischen Leiters, welche normal auf eine Leiterachse steht, kann dabei eine beliebige geometrische Form aufweisen: quadratisch, rechteckig, kreisrund oder elliptisch, wobei es üblich ist etwaige Kanten abzurunden, bzw. profiliert. Die Isolation des elektrischen Leiters wird durch die vorgesehene zumindest eine Isolationsschicht aus thermoplastischem Kunststoff sichergestellt, wobei die zumindest eine Isolationsschicht vorteilhafter Weise die äußerste Schicht der isolierenden Beschichtung ausbilden kann. Es ist aber auch denkbar, dass auf der zumindest einen Isolationsschicht eine oder mehrere weitere Isolationsschichten aufgetragen sind.

[0009] Durch den Kontakt mit Sauerstoff, der unausweichlich ist sofern der elektrische Leiter der Atmosphäre ausgesetzt ist, bildet sich eine Oxidschicht, beispielsweise aus Kupferoxid oder Aluminiumoxid, an der Oberfläche des elektrischen Leiters aus. Umfassende Versuchsreihen haben gezeigt, dass sich die Oxidschicht negativ auf die Haftungseigenschaften einer auf die Oberfläche des elektrischen Leiters aufgebrachten Schicht der isolierenden Beschichtung auswirkt.

[0010] Wenn jedoch die Oxidschicht entfernt wird, verbessert sich die Haftung der auf der von der Oxidschicht befreiten Oberfläche des elektrischen Leiters aufgebrachten Schicht der isolierenden Beschichtung maßgeblich. Es hat sich gezeigt, dass die Oxidschicht durch eine Plasmabehandlung unter einer - sauerstofffreien - Schutzgasatmosphäre vollständig entfernt werden kann, wobei auch sonstige Verunreinigungen durch die Plasmabehandlung entfernt werden können. Es ist sogar möglich, dass durch die Plasmabehandlung die obersten Atomschichten des elektrischen Leiters abgetragen werden.

[0011] Bei der Plasmabehandlung wird ein Gas-Plasma in der Schutzgasatmosphäre erzeugt und der elektrische Leiter im Plasma mit Ionen des Schutzgases beschossen, um zumindest die Oxidschicht durch den Ionenbeschuss abzutragen. Als Schutzgas bzw. Prozessgas eignen sich beispielsweise Stickstoff, Argon oder Wasserstoff. Die Plasmabehandlung hat neben der Entfernung der Oxidschicht noch weitere positive Effekte auf den isolierten elektrischen Leiter: einerseits wird der elektrische Leiter durch die Aufprallenergie der Ionen auf der Oberfläche erhitzt und kann während der Plasmabehandlung weichgeglüht werden, um das Gefüge des elektrischen Leiters zu rekristallisieren andererseits kann durch den Ionenbeschuss die Oberflächenenergie des elektrischen Leiters erhöht werden, was die Haftung der isolierenden Beschichtung an der Oberfläche des elektrischen Leiters zusätzlich verbessert. Man spricht in diesem Zusammenhang auch von einer Aktivierung der Oberfläche des elektrischen Leiters. Ein weiterer Effekt der Plasmabehandlung ist die Erhöhung der Mikrorauigkeit der Oberfläche des elektrischen Leiters, welches sich ebenfalls positiv auf die Haftung der isolierenden Beschichtung auswirkt.

[0012] Um die erneute Ausbildung einer Oxidschicht an der Oberfläche des elektrischen Leiters zu verhindern, wird zumindest ein Teil der isolierenden Beschichtung unter Schutzgasatmosphäre, vorzugsweise unter derselben Schutzgasatmosphäre unter der die Plasmabehandlung durchgeführt wird, auf die Oberfläche des elektrischen Leiters aufgebracht wird.

[0013] Um die eingangs gestellte Aufgabe zu lösen, ist in einem isolierten elektrischen Leiter umfassend einen elektrischen Leiter, vorzugsweise aus Kupfer oder Aluminium, mit einer isolierenden Beschichtung

wobei die isolierende Beschichtung entweder
zumindest eine Isolationsschicht aus thermoplastischem Kunststoff umfasst

oder
zumindest eine Isolationsschicht aus thermoplastischem Kunststoff und eine Kunststoff enthaltende Zwischenschicht, vorzugsweise eine Plasmapolymer-Schicht oder zumindest eine Fluoropolymer-Schicht, umfasst,

daher erfindungsgemäß vorgesehen, dass eine auf einer Oberfläche des elektrischen Leiters ausgebildete Oxidschicht, vorzugsweise durch Beschuss des elektrischen Leiters mit Ionen eines Schutzgases einer Schutzgasatmosphäre in einem Gas-Plasma, entfernt ist

und nachfolgend entweder
die zumindest eine Isolationsschicht unmittelbar auf die oxidschicht-freie Oberfläche des elektrischen Leiters aufgebracht ist

oder, im dem Fall, dass die Beschichtung die Kunststoff enthaltende Zwischenschicht umfasst,
zumindest die Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung unmittelbar auf die oxidschicht-freie Oberfläche des elektrischen Leiters aufgebracht ist.



[0014] Ein erfindungsgemäßer isolierter elektrischer Leiter weist durch die unmittelbare Aufbringung einer Kunststoff enthaltenden Zwischenschicht der isolierenden Beschichtung oder durch die unmittelbare Aufbringung der Isolationsschicht aus thermoplastischem Kunststoff auf die plasmabehandelte und dadurch oxidschichtfreie Oberfläche des elektrischen Leiters besonders gute Haftungseigenschaften auf: Wird ein Rundumschnitt am isolierten elektrischen Leiter senkrecht zu einer Leiterachse durchgeführt und der Leiter um 20% gedehnt so beträgt die Ablösung der isolierenden Beschichtung vom elektrischen Leiter in Richtung der Leiterachse gemessen lediglich maximal 3 mm, vorzugsweise maximal 2 mm, insbesondere maximal 1 mm.

[0015] Der Haftungseffekt wird also bei beiden Varianten dadurch erreicht, dass eine Kunststoffschicht, welche vorzugsweise aus Kunststoff besteht, unter Schutzgasatmosphäre unmittelbar auf die, vorzugsweise plasmagereinigte und dadurch, oxidschichtfreie Oberfläche des elektrischen Leiters aufgetragen wird. Einerseits kann es sich bei der Kunststoffschicht unmittelbar um die zumindest eine Isolationsschicht aus thermoplastischem Kunststoff handeln, wenn keine Zwischenschicht vorgesehen ist. Andererseits kann es sich bei der Kunststoffschicht auch um eine Kunststoff enthaltende Zwischenschicht, vorzugsweise eine Plasmapolymer-Schicht oder um zumindest eine Fluoropolymer-Schicht, handeln. Wenn die isolierende Beschichtung eine Kunststoff enthaltende Zwischenschicht aufweist, ist die zumindest eine Isolationsschicht bevorzugt unmittelbar auf die Kunststoff enthaltende Zwischenschicht aufgebracht. Es ist jedoch auch denkbar, dass eine oder mehrere weitere Zwischenschichten zwischen der Kunststoff enthaltenden Zwischenschicht und der zumindest einen Isolationsschicht vorgesehen sind.

[0016] Wenngleich eine Vielzahl von unterschiedlichen Kunststoffen denkbar ist, die als Material für die Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung geeignet sind, handelt es sich bei der Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung vorzugsweise um die Plasmapolymer-Schicht oder um die zumindest eine Fluoropolymer-Schicht.

[0017] Wenn keine Kunststoff enthaltende Zwischenschicht vorgesehen ist und die Isolationsschicht unmittelbar auf die Oberfläche des elektrischen Leiters aufgetragen ist, ist es besonders bevorzugt, wenn die isolierende Beschichtung aus der zumindest einen Isolationsschicht besteht, also keine weiteren Zwischenschichten aufweist.

[0018] Überraschenderweise hat sich im Rahmen von Testreihen herausgestellt, dass die Ablösung der isolierenden Beschichtung vom elektrischen Leiter üblicher Weise weit unter 1 mm bleibt, insbesondere maximal 0,2 mm, vorzugsweise maximal 0,1 mm, bevorzugt maximal 0,05 mm, besonders bevorzugt maximal 0,01 mm, beträgt, wenn die zumindest eine Isolationsschicht unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird. Besonders vorteilhafte Effekte können dadurch erreicht werden, dass die zumindest eine Isolationsschicht ein Polyaryletherketon [PAEK], insbesondere Polyetheretherketon [PEEK], umfasst oder aus Polyaryletherketon [PAEK], insbesondere Polyetheretherketon [PEEK], besteht.

[0019] Eine Ausführungsvariante der Erfindung sieht vor, dass der elektrische Leiter bis zum Aufbringen der isolierenden Beschichtung durchgehend unter Schutzgasatmosphäre angeordnet ist, um die Ausbildung einer neuen Oxidschicht auf der Oberfläche des elektrischen Leiters zu verhindern. Es können auch mehrere Schutzgasatmosphären hintereinander durchlaufen werden, solange der plasmabehandelte elektrische Leiter ununterbrochen unter einer der Schutzgasatmosphären angeordnet ist.

[0020] In einer weiteren Ausführungsvariante der Erfindung ist vorgesehen, dass es sich bei dem Gas-Plasma zum Beschießen des elektrischen Leiters um ein Niederdruckplasma, vorzugsweise mit einem Druck unter 80 mbar, handelt, welches sich in an sich bekannter Weise herstellen lässt. Beispielsweise sind Drücke unter 50 mbar oder sogar unter 20 mbar denkbar.

[0021] Um den Einsatz des isolierten elektrischen Leiters in einer Umgebung mit erhöhter Temperatur, beispielsweise in Elektromaschinen mit erhöhter Betriebstemperatur, zu ermöglichen, ist in einer weiteren Ausführungsvariante der Erfindung vorgesehen, dass die isolierende Beschichtung, insbesondere die zumindest eine Isolationsschicht, eine Temperaturbeständigkeit von zumindest 180°C, vorzugsweise von zumindest 200°C, insbesondere von zumindest 220°C, aufweist.

[0022] Besonders gute Eigenschaften hinsichtlich der Temperaturbeständigkeit und der Beständigkeit gegen eine Vielzahl an organischen und chemischen Lösungsmittel, insbesondere auch gegen Hydrolyse, werden in einer bevorzugten Ausführungsvariante des erfindungsgemäßen isolierten elektrischen Leiters und des erfindungsgemäßen Verfahrens dadurch erreicht, dass der thermoplastische Kunststoff der zumindest einen Isolationsschicht ausgewählt ist aus der Gruppe bestehend aus Polyaryletherketon [PAEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon. Es versteht sich dabei von selbst, dass der thermoplastische Kunststoff einen oder mehrere der oben genannten Kunststoffe sowie gegebenenfalls weitere Bestandteile, wie beispielsweise Fasermaterial, Füllstoffe oder weitere Kunststoffe, umfassen kann.

[0023] Polyaryletherketone setzen sich aus mittels Sauerstoffbrücken, also Ether- oder Ketongruppen, verbundenen Phenylgruppen zusammen, wobei die Anzahl und Abfolge der Ether- bzw. Ketongruppen innerhalb der Polyaryletherketone variabel ist. Polyimide sind Kunststoffe, deren wichtigstes Strukturmerkmal die Imidgruppe ist. Dazu gehören u. a. Polysuccinimid (PSI), Polybismaleinimid (PBMI) und Polyoxadiazobenzimidazol (PBO), Polyimidsulfon (PISO) und Polymethacrylimid (PMI).

[0024] Entsprechend ist in einer besonders bevorzugten Ausführungsvariante des erfindungsgemäßen isolierten elektrischen Leiters und des erfindungsgemäßen Verfahrens vorgesehen, dass der thermoplastische Kunststoff der zumindest einen Isolationsschicht ein Polyaryletherketon [PAEK] ausgewählt aus der Gruppe bestehend aus Polyetherketon [PEK], Polyetheretherketon [PEEK], Polyetherketonketon [PEKK], Polyetheretherketonketon [PEEKK], Polyetherketon-etherketonketon [PEKEKK] und Kombinationen davon ist. Als besonders gut geeignet für die zumindest eine Isolationsschicht hat sich Polyetheretherketon [PEEK] erwiesen.

[0025] In einer weiteren Ausführungsvariante der Erfindung ist vorgesehen, dass die zumindest eine Isolationsschicht eine Dicke zwischen 10 und bis 1000 µm, vorzugsweise zwischen 25 µm und 750 µm, besonders bevorzugt zwischen 30 µm und 500 µm, insbesondere zwischen 50 µm und 250 µm, aufweist. Es versteht sich von selbst, dass auch andere Schichtdicken denkbar sind, beispielsweise 40 µm, 60 µm, 80 µm, 100 µm oder 200 µm, um einige Möglichkeiten zu nennen. Es versteht sich von selbst, dass sich die angegebenen Werte sowohl auf die Dicke einer einzelnen Schicht der Isolationsschicht als auch auf die Gesamtdicke der Isolationsschicht beziehen kann, wenn die Isolationsschicht mehr als eine Schicht umfasst.

[0026] Die zumindest eine Isolationsschicht lässt sich kostengünstig und schnell herstellen, wenn sie durch ein Extrusionsverfahren aufgebracht wird also aufextrudiert ist. Daher ist in einer weiteren bevorzugten Ausführungsvariante der Erfindung vorgesehen, dass die, vorzugsweise äußere, Isolationsschicht mittels eines Extrusions-Verfahrens herstellbar ist.

[0027] Wenn die isolierende Beschichtung aus der zumindest einen Isolationsschicht besteht und die zumindest eine Isolationsschicht unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird, wird eine besonders einfache und kostengünstige Herstellung eines erfindungsgemäßen isolierten elektrischen Leiters ermöglicht, da die Haftung der zumindest einen Isolationsschicht an der Oberfläche des elektrischen Leiters durch die Plasmabehandlung bereits so gut ist, dass keine Zwischenschichten notwendig sind.

[0028] Daher ist in einer weiteren besonders bevorzugten Ausführungsvariante der Erfindung vorgesehen, dass die isolierende Beschichtung aus der zumindest einen Isolationsschicht besteht und dass es sich bei der unmittelbar auf die Oberfläche des elektrischen Leiters aufgebrachten, Kunststoff enthaltenden Zwischenschicht um die zumindest eine Isolationsschicht handelt.

[0029] Somit betrifft die besonders bevorzugte Ausführungsvariante einen isolierten elektrischen Leiter umfassend einen elektrischen Leiter, vorzugsweise aus Kupfer oder Aluminium, mit einer isolierenden Beschichtung, wobei die isolierende Beschichtung aus zumindest einer Isolationsschicht aus thermoplastischem Kunststoff besteht, erhältlich durch ein Verfahren, in dem der elektrische Leiter unter einer Schutzgasatmosphäre in einem Gas-Plasma mit Ionen des Schutzgases beschossen wird, um eine auf einer Oberfläche des elektrischen Leiters ausgebildete Oxidschicht zu entfernen und/oder die Oberflächenenergie des elektrischen Leiters zu erhöhen, und die zumindest eine Isolationsschicht unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird, die zumindest eine Isolationsschicht unter Schutzgasatmosphäre auf den elektrischen Leiter aufgebracht wird.

[0030] In gleiche Art und Weise betrifft die besonders bevorzugte Ausführungsvariante auch einen isolierte elektrischer Leiter umfassend einen elektrischen Leiter, vorzugsweise aus Kupfer oder Aluminium, mit einer isolierenden Beschichtung, wobei die isolierende Beschichtung aus zumindest einer Isolationsschicht aus thermoplastischem Kunststoff besteht, wobei erfindungsgemäß vorgesehen ist, dass eine auf einer Oberfläche des elektrischen Leiters ausgebildete Oxidschicht durch Beschuss des elektrischen Leiters mit Ionen eines Schutzgases einer Schutzgasatmosphäre in einem Gas-Plasma entfernt ist und nachfolgend die zumindest eine Isolationsschicht unmittelbar auf die oxidschicht-freie Oberfläche des elektrischen Leiters aufgebracht ist.

[0031] Die isolierende Beschichtung kann beispielsweise nur aus einer einzigen Isolationsschicht bestehen, welche unmittelbar auf der Oberfläche des elektrischen Leiters aufgebracht ist, um eine besonders einfache Herstellung zu ermöglichen.

[0032] Um jedoch die Wahrscheinlichkeit eines Fehlers in der isolierenden Beschichtung, beispielsweise einen nicht mit der isolierenden Beschichtung versehenen Abschnitt des elektrischen Leiters bedingt durch einen Fehler im Herstellungsverfahren einer Isolationsschicht, drastisch zu verringern, ist in einer weiteren besonders bevorzugten Ausführungsvariante der Erfindung vorgesehen, dass die isolierende Beschichtung aus genau zwei oder aus mehr als zwei, beispielsweise aus drei oder vier, Isolationsschichten besteht. Dabei ist jedenfalls eine unterste Isolationsschicht unmittelbar auf der Oberfläche des elektrischen Leiters aufgebracht, wobei die weiteren Isolationsschichten jeweils auf einer der vorhergehenden Isolationsschichten aufgebracht sind. Sollte in der untersten Isolationsschicht ein Fehler aufgetreten sein, also ein Abschnitt des elektrischen Leiters nicht von der untersten Isolationsschicht abgedeckt sein, so wird durch die nachfolgenden Isolationsschichten die Wahrscheinlichkeit, dass genau der fehlerhafte Abschnitt der untersten Isolationsschicht auch von den nachfolgenden Isolationsschichten nicht abgedeckt wird, einer Exponentialfunktion folgend reduziert. Desto höher die Anzahl der Isolationsschichten, desto geringer die Wahrscheinlichkeit, dass ein Abschnitt des elektrischen Leiters gar keine isolierende Beschichtung aufweist. Um die verbesserte Haftung der nachfolgenden Isolationsschichten am elektrischen Leiter zu erreichen, werden alle Isolationsschichten unter Schutzgasatmosphäre aufgebracht, sodass die Haftung nachfolgender Isolationsschichten im Bereich von fehlerhaften Abschnitten der vorhergehenden Isolationsschichten verbessert ist.

[0033] Grundsätzlich kann auf der isolierenden Beschichtung bzw. auf der aus der zumindest einen Isolationsschicht bestehenden isolierenden Beschichtung zumindest eine, also beispielsweise eine, zwei, drei oder vier, weitere Isolationsschicht aus thermoplastischem Kunststoff aufgebracht werden. Die zumindest eine weitere Isolationsschicht ist dabei vorzugsweise analog zur zumindest einen Isolationsschicht aufgebaut, sodass der thermoplastische Kunststoff der zumindest einen weiteren Isolationsschicht ausgewählt ist aus der Gruppe bestehend aus Polyaryletherketon [PAEK], insbesondere Polyetheretherketon [PEEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon.

[0034] Da es sich bei den fehlerhaften Abschnitten der zumindest einen Isolationsschicht in der Regel um verhältnismäßig kleine Flächen handelt, ist es auch denkbar, dass zumindest eine weitere Isolationsschicht außerhalb der Schutzgasatmosphäre auf die isolierende Beschichtung aufgebracht werden, um etwaige fehlerhafte Abschnitte der isolierenden Beschichtung abzudecken, sodass im Bereich der fehlerhaften Abschnitte der isolierenden Beschichtung die Haftung der weiteren Isolationsschicht nicht verbessert ist. Natürlich können auch weitere Isolationsschichten aufgebracht werden, wenn eine größere Dicke der Isolierung erforderlich ist. Daher ist in einer weiteren Ausführungsvariante der Erfindung vorgesehen, dass zumindest eine, vorzugsweise eine, zwei oder drei, weitere Isolationsschicht auf der isolierenden Beschichtung aufgebracht ist, wobei die zumindest eine weitere Isolationsschicht nicht unter Schutzgasatmosphäre aufgebracht wird.

[0035] In einer ersten alternativen Ausführungsvariante der Erfindung ist zur Verbesserung der Haftung der isolierenden Beschichtung an der Oberfläche des elektrischen Leiters vorgesehen, dass die isolierende Beschichtung eine unmittelbar auf die Oberfläche des elektrischen Leiters aufgebrachte Plasmapolymer-Schicht aus vernetzten Makromolekülen uneinheitlicher Kettenlänge aufweist, welche Plasmapolymer-Schicht durch Polymerisation eines gasförmigen Monomers in einem Gas-Plasma, vorzugsweise im Gas-Plasma zum Beschießen des elektrischen Leiters, herstellbar ist. In anderen Worten handelt es sich bei der unmittelbar auf die Oberfläche des elektrischen Leiters aufgebrachten, Kunststoff enthaltenden Zwischenschicht der isolierenden Beschichtung in diesem Ausführungsbeispiel um die Plasmapolymer-Schicht. Die Plasmapolymer-Schicht dient als Zwischenschicht und haftet einerseits ausgezeichnet an der Oberfläche des elektrischen Leiters und ermöglich andererseits eine erhöhte Haftung der auf die Plasmapolymer-Schicht aufgetragenen Schicht der isolierenden Beschichtung, beispielsweise der zumindest einen Isolationsschicht.

[0036] Eine weitere Ausführungsvariante der ersten alternativen Ausführungsvariante sieht vor, dass die Plasmapolymer-Schicht eine Dicke von 1 µm oder weniger aufweist. Denkbar sind dabei Dicken bis zu einem Hundertstel eines Mikrometers als Untergrenze. Durch die geringe Schichtdicke wirkt sich die Plasmapolymer-Schicht nur unwesentlich auf die gesamte Dicke des isolierten elektrischen Leiters aus.

[0037] Gemäß einer weiteren Ausführungsvariante der ersten alternativen Ausführungsvariante handelt es sich bei dem Monomer zur Herstellung der Plasmapolymer-Schicht um Ethylen, Buthenol, Aceton oder Tetrafluormethan [CF4]. Die durch diese Monomere im Plasma gebildeten Plasmapolymer-Schichten zeichnen sich durch besonders gute Haftungseigenschaften aus. Insbesondere wenn die Plasmapolymer-Schicht ähnliche Eigenschaften wie Polytetrafluorethylen [PTFE] oder Perfluorethylenpropylen [FEP] aufweisen soll, bietet sich CF4 als Monomer an.

[0038] In einer zweiten alternativen Ausführungsvariante ist vorgesehen, dass die isolierende Beschichtung zumindest eine unmittelbar auf die Oberfläche des elektrischen Leiters aufgebrachte, vorzugsweise Polytetrafluorethylen [PTFE] oder Perfluorethylenpropylen [FEP] umfassende, Fluoropolymer-Schicht aufweist. Auch die Fluoropolymer-Schicht zeichnet sich durch hervorragende Haftungseigenschaften, sowohl am elektrischen Leiter als auch an der auf der Fluoropolymer-Schicht aufgetragenen Schicht, aus und dient als Zwischenschicht der isolierenden Beschichtung. Es ist auch denkbar, dass mehrere Fluoropolymer-Schichten, beispielsweise zwei drei oder vier, übereinander auf den elektrischen Leiter aufgebracht werden. Besonders vorteilhafte Haftungseigenschaften werden dadurch erreicht, dass die die Dicke der zumindest einen Fluoropolymer-Schicht zwischen 1 µm und 120 µm, vorzugsweise zwischen 5 µm und 100 µm, besonders bevorzugt zwischen 10 µm und 80 µm, insbesondere zwischen 20 µm und 50 µm, beträgt.

[0039] Um die zuvor beschrieben verbesserten Haftungseigenschaften für auf die Plasmapolymer-Schicht oder die zumindest eine Fluoropolymer-Schicht aufgetragenen Schichten der isolierenden Beschichtung, insbesondere für die zumindest eine Isolationsschicht, am elektrischen Leiter zu erreichen, sodass die Haftung nachfolgender Schichten im Bereich von fehlerhaften Abschnitten der vorhergehenden auf dem elektrischen Leiter aufgetragenen Schichten erhöht ist, wird die gesamte isolierende Beschichtung in einer bevorzugten Ausführungsvariante der Erfindung unter Schutzgasatmosphäre aufgebracht.

[0040] Um die Anzahl an unterschiedlichen Schichten in der isolierenden Beschichtung zu reduzieren und die damit verbundenen Herstellungskosten gering zu halten ist in einer weiteren Ausführungsvariante der Erfindung vorgesehen, dass die zumindest eine Isolationsschicht unmittelbar auf die Plasmapolymer-Schicht oder die zumindest eine Fluoropolymer-Schicht aufgebracht ist. In anderen Worten besteht die isolierende Beschichtung aus zumindest zwei Schichten: die erste untere, unmittelbar auf dem elektrischen Leiter aufgebrachte Schicht entsprechend der ersten oder zweiten alternativen Ausführungsvariante und die zweite obere Schicht in Form der zumindest einen Isolationsschicht aus thermoplastischem Kunststoff. Die äußerste Schicht der isolierenden Beschichtung kann dabei entweder durch die zumindest eine Isolationsschicht selbst ausgebildet sein oder aber durch eine oder mehrere weitere Schichten.

[0041] Ein erfindungsgemäßer isolierter elektrischer Leiter kann durch ein Verfahren zur Herstellung eines isolierten elektrischen Leiters hergestellt werden, welches folgende Verfahrensschritte aufweist:
  • Beschießen eines unter einer Schutzgasatmosphäre angeordneten elektrischen Leiters, vorzugsweise aus Kupfer oder Aluminium, mit Ionen des Schutzgases in einem Gas-Plasma, vorzugsweise einem Niederdruckplasma, um eine auf der Oberfläche des elektrischen Leiters ausgebildete Oxidschicht zu entfernen und/oder die Oberflächenenergie des elektrischen Leiters zu erhöhen;
  • Aufbringen einer isolierenden Beschichtung auf die Oberfläche des elektrischen Leiters, wobei die isolierende Beschichtung entweder

    zumindest eine Isolationsschicht aus thermoplastischem Kunststoff umfasst,
    oder

    zumindest eine Isolationsschicht aus thermoplastischem Kunststoff und

    eine Kunststoff enthaltende Zwischenschicht, vorzugsweise eine Plasmapolymer-Schicht oder zumindest eine

    Fluoropolymer-Schicht, umfasst wobei entweder

    die zumindest eine Isolationsschicht unter

    Schutzgasatmosphäre unmittelbar auf die Oberfläche des

    elektrischen Leiters aufgebracht wird oder, im dem Fall, dass die Beschichtung die Kunststoff enthaltende Zwischenschicht umfasst,

    zumindest die Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung unter Schutzgasatmosphäre unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird.



[0042] Der elektrische Leiter, vorzugsweise aus Kuper oder Aluminium, wird in Form eines Bandes oder eines Drahts dem Verfahren unterzogen. Dabei wird der elektrische Leiter entweder "inline", also direkt anschließend an die Herstellung des elektrischen Leiters (etwa durch Kaltumformung oder Extrusion), entsprechend dem erfindungsgemäßen Verfahren behandelt oder aber der elektrische Leiter wird in aufgewickelter Form über einen Spulenablauf zur Verfügung gestellt. In der Regel wird der elektrische Leiter vor der Plasmabehandlung noch einer mechanischen und/oder chemischen Vorreinigung unterzogen. Die Plasmabehandlung wird analog zu den vorhergegangen Ausführungen durchgeführt, wobei der elektrische Leiter kontinuierlich durch die die Plasmabehandlung durchführende Plasmabehandlungs-Einheit gefördert wird. Durch die geeignete Wahl der Prozessparameter lässt sich die Dicke der durch die Plasmabehandlung vom elektrischen Leiter abgetragenen Schicht genau einstellen. Zusätzlich dazu lässt sich auch die Temperatur für das Weichglühen und die damit verbundene Rekristallisation des Gefüges des elektrischen Leiters definieren.

[0043] Nach der Plasmabehandlung, also dem Abtragen der Oxidschicht und jedweden Verunreinigungen von der Oberfläche des elektrischen Leiters, wobei auch dünne Schichten der Oberfläche des elektrischen Leiters selbst (kleiner als 1 µm, vorzugsweise kleiner 0,1 µm) abgetragen werden können, durch Beschuss mit Ionen im Gas-Plasma bzw. der Aktivierung der Oberfläche des elektrischen Leiters, wird die isolierende Beschichtung auf die behandelte Oberfläche des elektrischen Leiters aufgebracht. Die isolierende Beschichtung haftet aufgrund der Entfernung der Oxidschicht bzw. durch die Aktivierung der Oberfläche durch Erhöhung der Oberflächenenergie des elektrischen Leiters besonders gut auf der Oberfläche des elektrischen Leiters. Um die Ausbildung einer neuen Oxidschicht auf der Oberfläche des elektrischen Leiters zu verhindern, welche den erfindungsgemäßen Effekt unterbinden oder zumindest entscheidend abschwächen würde, wird entweder die zumindest eine Isolationsschicht oder zumindest die Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung, also insbesondere die Plasmapolymer-Schicht oder die zumindest eine Fluoropolymer-Schicht, unter Schutzgasatmosphäre unmittelbar auf die oxidschicht-frei Oberfläche des elektrischen Leiters aufgebracht. Insbesondere von Vorteil ist es dabei, wenn der elektrische Leiter bis zum Aufbringen der isolierenden Beschichtung durchgehend unter Schutzgasatmosphäre angeordnet ist. Es versteht sich dabei von selbst, dass, sofern zwei, drei oder mehr Isolationsschichten aus thermoplastischem Kunststoff vorgesehen sind, jedenfalls die erste der Isolationsschichten unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird und die nachfolgenden Isolationsschichten zumindest teilweise auf die darunterliegenden Isolationsschichten aufgebracht werden.

[0044] Derart hergestellte isolierte elektrische Leiter weisen durch die unmittelbare Aufbringung einer Kunststoff enthaltenden Zwischenschicht der isolierenden Beschichtung oder durch die unmittelbare Aufbringung der zumindest einen Isolationsschicht aus thermoplastischem Kunststoff auf die plasmabehandelte, oxidfreie Oberfläche des elektrischen Leiters besonders gute Haftungseigenschaften auf: Wird ein Rundumschnitt am isolierten elektrischen Leiter senkrecht zu einer Leiterachse durchgeführt und der Leiter um 20% gedehnt so beträgt die Ablösung der isolierenden Beschichtung vom elektrischen Leiter in Richtung der Leiterachse gemessen lediglich maximal 3 mm, vorzugsweise maximal 2 mm, insbesondere maximal 1 mm.

[0045] Wenn die zumindest eine Isolationsschicht aus thermoplastischem Kunststoff unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird, wurde festgestellt, dass die Ablösung der isolierenden Beschichtung vom elektrischen Leiter üblicher Weise weit unter 1 mm bleibt, insbesondere maximal 0,2 mm, vorzugsweise maximal 0,1 mm, bevorzugt maximal 0,05 mm, besonders bevorzugt maximal 0,01 mm, beträgt. Besonders vorteilhafte Effekte werden dann erreicht, wenn der thermoplastische Kunststoff der zumindest einen Isolationsschicht ausgewählt ist aus der Gruppe bestehend aus Polyaryletherketon [PAEK], insbesondere Polyetheretherketon [PEEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon.

[0046] Eine Ausführungsvariante des Verfahrens sieht vor, dass die zumindest eine Isolationsschicht aufextrudiert wird. Die Extrusion stellt ein kostengünstiges Verfahren zum Aufbringen der Isolationsschicht dar und eignet sich insbesondere auch für PAEK, insbesondere PEEK, und PPS. Die zumindest eine Isolationsschicht lässt sich somit auch in einfacher Art und Weise als äußerste Schicht der isolierenden Beschichtung aufbringen.

[0047] Durch eine Vorwärmung des elektrischen Leiters, die vor allem vorteilhaft ist, wenn die zumindest eine Isolationsschicht bzw. die isolierende Beschichtung direkt auf die Oberfläche des elektrischen Leiters aufextrudiert wird, wird eine ruckartige Abkühlung der Kunststoff enthaltenden Zwischenschicht bei Kontakt mit dem elektrischen Leiter reduziert und damit negative Einflüsse auf die Haftung minimiert. Gleichfalls kann vorgesehen sein, das der elektrische Leiter vor dem Aufbringen der isolierenden Beschichtung abgekühlt wird, um eine zu starke Erhitzung, etwa eine Schmelze, der Kunststoff enthaltenden Zwischenschicht bei Kontakt mit dem elektrischen Leiter zu verhindern. Daher ist in einer weiteren bevorzugten Ausführungsvariante des Verfahrens vorgesehen, dass der elektrische Leiter vor dem Aufbringen der isolierenden Beschichtung auf eine Temperatur von zumindest 200 °C, vorzugsweise zumindest 400 °C, gebracht wird.

[0048] In einer weiteren Ausführungsvariante des Verfahrens ist vorgesehen, dass der isolierte elektrische Leiter nach dem Aufextrudieren der zumindest einen Isolationsschicht in Abhängigkeit der zu erreichenden Festigkeit der zumindest einen Isolationsschicht abgekühlt wird. Die Einstellung der mechanischen Eigenschaften der zumindest einen Isolationsschicht, insbesondere der mechanischen Festigkeit, erfolgt unter anderem durch die definierte Abkühlung des isolierten elektrischen Leiters und die dadurch bedingte Einstellung des Kristallisationsgrades und ist besonders wichtig, wenn es sich bei der zumindest einen Isolationsschicht um die äußerste Schicht der isolierenden Beschichtung handelt. Wird der isolierte elektrische Leiter beispielsweise langsam abgekühlt, etwa durch Abkühlen an der Luft, ergibt sich eine hohe Kristallinität der zumindest einen Isolationsschicht. Denkbar ist auch ein Abschrecken in einem Wasserbad, also eine abrupte Abkühlung, oder eine Kombination aus abrupter und langsamer Abkühlung.

[0049] Um die Haftung der isolierenden Beschichtung am elektrischen Leiter weiter zu verbessern, insbesondere wenn die zumindest eine Isolationsschicht direkt auf die Oberfläche des elektrischen Leiters aufgebracht wird, ist in einer bevorzugten Ausführungsvariante des Verfahrens vorgesehen, dass der isolierte elektrische Leiter nach dem Aufextrudieren der zumindest einen Isolationsschicht über Rollen, vorzugsweise Anpressrollen, geführt wird. Besonders vorteilhaft ist es dabei, wenn die zumindest eine Isolationsschicht die äußerste Schicht der isolierenden Beschichtung bildet. Ein enges Führen des isolierten elektrischen Leiters über die Anpressrollen unter Beaufschlagung des isolierten elektrischen Leiters mit Druck führt zu einer besonders guten Haftung der isolierenden Beschichtung bzw. insbesondere der zumindest einen Isolationsschicht auf der Oberfläche des elektrischen Leiters. Dabei werden die Grenzflächen der isolierenden Beschichtung zwischen den einzelnen Schichten, sofern mehrere vorhanden sind, und/oder die Grenzfläche der untersten Schicht der isolierenden Beschichtung und die Oberfläche des elektrischen Leiters aneinander gepresst und so die Adhäsionseffekte verstärkt.

[0050] In einer besonders bevorzugten Ausführungsvariante der Erfindung, welche sich durch besonders gute Haftungseigenschaften auszeichnet, ist vorgesehen, dass die isolierende Beschichtung aus der zumindest einen Isolationsschicht besteht und dass die zumindest eine Isolationsschicht als Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung unter Schutzgasatmosphäre unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird. Entsprechend wird folgender Verfahrensschritt durchgeführt:

Aufbringen einer isolierenden Beschichtung auf die Oberfläche des elektrischen Leiters, wobei die isolierende Beschichtung aus zumindest einer Isolationsschicht aus thermoplastischem Kunststoff besteht und wobei die zumindest eine

Isolationsschicht unter Schutzgasatmosphäre unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird.



[0051] Dadurch wird ebenfalls die zuvor erwähnte besonders geringe Ablösung von weniger als 1 mm erreicht.

[0052] Um, wie zuvor erwähnt, die Wahrscheinlichkeit eines Fehlers in der isolierenden Beschichtung drastisch zu verringern, ist in einer weiteren Ausführungsvariante vorgesehen, dass die isolierende Beschichtung aus zumindest zwei, vorzugsweise genau zwei, Isolationsschichten besteht und die isolierende Beschichtung mittels Tandemextrusion unter Schutzgasatmosphäre hergestellt wird. Durch die Tandemextrusion werden die zumindest zwei Isolationsschichten unabhängig voneinander hergestellt, sodass eine Verstopfung eines Extrusionswerkzeugs nur einen Fehler in einer der Isolationsschichten hervorruft. Dadurch wird der fehlerhafte Abschnitt durch die nachfolgenden Extrusionsschritte mit hoher Wahrscheinlichkeit abgedeckt.

[0053] Wenn, wie zuvor ausgeführt, aufgrund der verhältnismäßig kleinen Fläche der Fehler, auf eine verbesserte Haftung verzichtet werden kann oder eine dickere isolierende Beschichtung erforderlich ist, sieht eine weitere Ausführungsvariante der Erfindung vor, dass zumindest eine weitere Isolationsschicht aus thermoplastischem Kunststoff mittels Tandemextrusion auf die isolierende Beschichtung aufextrudiert wird, wobei die Extrusion der weiteren Isolationsschicht nicht unter Schutzgasatmosphäre stattfindet.

[0054] Vorzugsweise ist der thermoplastische Kunststoff der zumindest einen weiteren Isolationsschicht ausgewählt aus der Gruppe bestehend aus Polyaryletherketon [PAEK], insbesondere Polyetheretherketon [PEEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon.

[0055] Wenn die isolierende Beschichtung zumindest eine Fluoropolymer-Schicht umfasst, die als Kunststoff enthaltende Zwischenschicht unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht ist, lassen sich die zur Herstellung der isolierenden Beschichtung benötigten Schritte dadurch reduzieren, dass die zumindest eine Isolationsschicht und die zumindest eine Fluoropolymer-Schicht mittels Ko- oder Tandemextrusion hergestellt werden. So können beide Schichten in nur einem einzigen Herstellungsschritt und mit einer Extrusions-Einheit hergestellt werden.

[0056] Zur Verbesserung der Haftung der isolierenden Beschichtung am elektrischen Leiter ist in einer weiteren Ausführungsvariante vorgesehen, dass unmittelbar auf der Oberfläche des elektrischen Leiters mittels Polymerisation eines gasförmigen Monomers in einem Gas-Plasma eine Plasmapolymer-Schicht als Kunststoff enthaltende Zwischenschicht aufgebracht wird.

[0057] Da eine hohe Temperaturbeständigkeit und eine hohe Haftung der isolierenden Beschichtung am elektrischen Leiter insbesondere im Elektromaschinenbau von Bedeutung ist, ist vorgesehen, dass ein erfindungsgemäßer isolierter elektrischer Leiter als Wickeldraht für Elektromaschinen, vorzugsweise Elektromotoren oder Transformatoren, verwendet wird.

KURZE BESCHREIBUNG DER FIGUREN



[0058] Die Erfindung wird nun anhand von Ausführungsbeispielen näher erläutert. Die Zeichnungen sind beispielhaft und sollen den Erfindungsgedanken zwar darlegen, ihn aber keinesfalls einengen oder gar abschließend wiedergeben.

[0059] Dabei zeigt:
Fig. 1
eine schematische Darstellung eines erfindungsgemäßen Verfahrens;
Fig. 2a
eine erste Ausführungsvariante eines isolierten elektrischen Leiters mit rechteckigem Querschnitt;
Fig. 2b
eine zweite Ausführungsvariante eines isolierten elektrischen Leiters mit rechteckigem Querschnitt;
Fig. 2c
eine dritte Ausführungsvariante eines isolierten elektrischen Leiters mit rechteckigem Querschnitt;
Fig. 3a-3c
die erste bis dritte Ausführungsvariante mit rundem Querschnitt.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNG



[0060] Fig. 1 zeigt eine schematische Darstellung eines Verfahrens zur Herstellung eines isolierten elektrischen Leiters, wie er in den Figuren 2a bis 2d bzw. 3a bis 3d dargestellt ist. Der isolierte elektrische Leiter umfasst einen elektrischen Leiter 1 aus Kupfer, wobei auch andere Materialien wie etwa Aluminium denkbar sind, und eine isolierende Beschichtung 2, welche zumindest eine Isolationsschicht 3 aus thermoplastischem, vorzugsweise hochtemperaturbeständigem, Kunststoff aufweist. In den nachfolgenden Ausführungsbeispielen ist die zumindest eine Isolationsschicht 3 als eine äußere Isolationsschicht 3 ausgebildet und bildet somit die äußerste Schicht der isolierenden Beschichtung 2. Es versteht sich jedoch von selbst, dass in alternativen Ausführungsvarianten auf der Isolationsschicht 3 noch eine oder mehrere weitere Schichten, vorzugsweise Isolationsschichten, aufgebracht sein können, die dann die äußerste Schicht der isolierenden Beschichtung 2 ausbilden können.

[0061] Der elektrische Leiter 1 wird im dargestellten Ausführungsbeispiel als Band oder Draht über einen Spulenablauf 7 stetig dem Verfahren zugeführt und kann etwa mittels Kaltumformungsverfahren, wie Ziehen oder Walzen, oder Extrusion, beispielsweise mittels Conform® - Technologie, hergestellt sein. Es versteht sich von selbst, dass das erfindungsgemäße Verfahren auch "in-line" durchgeführt werden kann, also direkt an den Herstellungsprozess anschließt. In einem ersten Schritt wird der elektrische Leiter 1 in einer Vorreinigungs-Einheit 8 mechanisch, etwa mittels eines Schleifverfahrens, oder chemisch, etwa mittels geeigneter Lösungsmittel oder Säuren, vorgereinigt, um grobe Verschmutzungen vom elektrischen Leiter 1 zu entfernen.

[0062] Im nächsten Verfahrensschritt gelangt der vorgereinigte elektrische Leiter 1 in eine Plasmabehandlungs-Einheit 9 in der eine Schutzgasatmosphäre aus Stickstoff, Argon oder Wasserstoff vorherrscht und ein Gas-Plasma in Form eines Niederdruckplasmas mit weniger als 20 mbar Druck hergestellt ist. Ein Niederdruckplasma kann jedoch auch schon bei einem Druck von weniger als 80 mbar hergestellt werden. In diesem Niederdruckplasma wird die Oberfläche des elektrischen Leiters 1 mit Ionen des Schutzgases beschossen, um eine auf einer Oberfläche des elektrischen Leiters 1 gebildete Oxidschicht abzutragen bzw. zu entfernen. Gleichzeitig wird der elektrische Leiter 1 durch die Plasmabehandlung weich geglüht und die Oberflächenenergie des elektrischen Leiters 1 erhöht also die Oberfläche aktiviert.

[0063] Durch das Abtragen der Oxidschicht und jedweden Verunreinigungen von der Oberfläche des elektrischen Leiters 1, wobei sogar vorgesehen sein kann, dass sehr dünne Schichten des elektrischen Leiters 1 selbst von der Oberfläche abgetragen werden, und die Erhöhung der Oberflächenenergie kann die Haftung zwischen dem elektrischen Leiter 1 aus Kupfer und der auf dem elektrischen Leiter 1 aufgebrachten isolierenden Beschichtung 2 entscheidend verbessert werden.

[0064] In der ersten Ausführungsvariante des erfindungsgemäßen isolierten elektrischen Leiters, dargestellt in Figur 2a als Flachleiter mit rechteckigem Querschnitt und in Fig. 3a mit rundem Querschnitt, besteht die isolierende Beschichtung 2 nur aus einer Isolationsschicht 3. Die Isolationsschicht 3 weist dabei eine Temperaturbeständigkeit von über 180°C, vorzugsweise von über 220°C, auf, sodass der isolierte elektrische Leiter auch bei hohen Betriebstemperaturen eingesetzt werden kann. Die äußere Isolationsschicht 3 besteht dabei aus Polyetheretherketon [PEEK], welches sowohl die hohe Temperaturbeständigkeit als auch eine hohe Beständigkeit gegenüber einer großen Anzahl an organischen und anorganischen Substanzen aufweist. Alternativ dazu kann die äußere Isolationsschicht 3 auch aus Polyphenylensulfid [PPS] bestehen oder PEEK und/oder PPS umfassen.

[0065] Um die erhöhte Haftung zwischen dem elektrischen Leiter 1 und der äußeren Isolationsschicht 3 zu erreichen, gelangt der elektrische Leiter 1 nach dem Durchlaufen der Plasmabehandlungs-Einheit 9 in die Extrusions-Einheit 11 in der die äußere Isolationsschicht 3 auf den elektrische Leiter 1 aufextrudiert wird. Dabei wird der elektrische Leiter 1 auf eine Temperatur von zumindest 200°C, vorzugsweise zumindest 300°C, vorgeheizt. Um die erneute Ausbildung einer Oxidschicht zu verhindern, erfolgt sowohl die Extrusion als auch der Transport des Leiters 1 in die Extrusions-Einheit 11 unter Schutzgasatmosphäre. Ein derart hergestellter isolierter elektrischer Leiter kann beispielsweise als Wickeldraht, im Englischen auch als "magnet wire" geläufig, in einer Elektromaschine, wie einem Elektromotor oder einem Transformator, eingesetzt werden. Die Dicke der äußeren Isolationsschicht 3 beträgt im vorliegenden Ausführungsbeispiel etwa 30 µm.

[0066] Insbesondere wenn die Isolationsschicht 3 aus einem Polyaryletherketon [PAEK] wie Polyetheretherketon [PEEK] besteht, werden dadurch besonders gute Haftungseingenschaften erreicht. So bleibt die Ablösung der Isolationsschicht 3 vom elektrischen Leiter 1 üblicher Weise weit unter 1 mm, und beträgt insbesondere maximal 0,2 mm, vorzugsweise maximal 0,1 mm, bevorzugt maximal 0,05 mm, besonders bevorzugt maximal 0,01 mm. Auch wenn es sich bei dem thermoplastischen Kunststoff der Isolationsschicht 3 um Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] handelt, lassen sich gesteigerte Haftungseigenschaften erreichen.

[0067] Im Allgemeinen kann die zumindest eine Isolationsschicht 3 auch zwei, drei vier oder mehr einzelne Isolationsschichten 3 umfassen, welche allesamt unter Schutzgasatmosphäre in der Extrusions-Einheit 11 hergestellt werden. Dadurch lässt sich die Wahrscheinlichkeit von Fehlern in der isolierenden Beschichtung 2 drastisch reduzieren, da Fehler in der untersten der Isolationsschichten 3 durch nachfolgende Isolationsschichten 3 ausgeglichen werden. Für eine solche Herstellung eignen sich insbesondere Tandemextrusionsverfahren.

[0068] Zusätzlich oder stattdessen kann auch vorgesehen sein, dass weitere Isolationsschichten, die vorzugsweise analog zu der zumindest einen Isolationsschicht 3 aufgebaut sind, also insbesondere aus einem Polyaryletherketon [PAEK] wie Polyetheretherketon [PEEK] oder einem anderen der zuvor genannten Kunststoffe bestehen, außerhalb der Schutzgasatmosphäre in einer weiteren Extrusions-Einheit 12 auf die isolierende Beschichtung 2 aufgebracht werden.

[0069] Um die Haftung zwischen der isolierenden Beschichtung 2 und dem elektrischen Leiter 1 alternativ zur ersten Ausführungsvariante zu erhöhen, umfasst die isolierende Beschichtung 2 in der in den Figuren 2b und 3b dargestellten zweiten Ausführungsvariante neben der äußeren Isolationsschicht 3 aus PEEK oder PPS eine Kunststoff enthaltende Zwischenschicht in Form einer Plasmapolymer-Schicht 4. Diese Plasmapolymer-Schicht 4 wird im erfindungsgemäßen Verfahren in einer Plasmapolymerisations-Einheit 10 hergestellt, die nach der Plasmabehandlungs-Einheit 9 und vor der Extrusions-Einheit 11 angeordnet ist. Es ist auch denkbar, dass die Plasmabehandlung und die Plasmapolymerisation in einer kombinierten Einrichtung durchgeführt werden. Nachdem die Oxidschicht entfernt und die Oberflächenenergie erhöht wurde, siehe oben, bildet sich in der Plasmapolymerisations-Einheit 10 die Plasmapolymer-Schicht 4 auf der Oberfläche des elektrischen Leiters 1 aus, indem ein gasförmiges Monomer, wie Ethylen, Buthenol, Aceton oder Tetrafluormethan [CF4] mittels des Plasmas aktiviert wird und sich dadurch hochvernetzte Makromoleküle unterschiedlicher Kettenlänge und einem Anteil an freien Radikalen ausbilden, welche sich als Plasmapolymer-Schicht 4 auf der Oberfläche des elektrischen Leiters 1 ablagern. Die so entstandene Plasmapolymer-Schicht 4 ist im vorliegenden Ausführungsbeispiel weniger als 1 µm dick und haftet besonders gut an der aktivierten und oxidfreien Oberfläche des elektrischen Leiters 1.

[0070] Die äußere Isolationsschicht 3 wird wiederum in der Extrusions-Einheit 11 wie oben beschrieben auf die Plasmapolymer-Schicht 4 aufextrudiert, wobei auch die Haftung zwischen Plasmapolymer-Schicht 4 und äußerer Isolationsschicht 3 hoch ist.

[0071] In der dritten Ausführungsvariante, abgebildet in den Figuren 2c und 3c, umfasst die isolierende Beschichtung 2 neben der äußeren Isolationsschicht 3 aus PEEK eine als Fluoropolymer-Schicht 5 aus Polytetrafluorethylen [PTFE] oder Perfluorethylenpropylen [FEP] ausgebildete Kunststoff enthaltende Zwischenschicht, die unmittelbar auf die Oberfläche des elektrischen Leiters 1 aufgebracht ist und die Haftung zwischen dem elektrischen Leiter 1 und der äußeren Isolationsschicht 3 weiter verbessert. Hergestellt wird die Fluoropolymer-Schicht 5 gemeinsam mit der äußeren Isolationsschicht 3 in der Extrusions-Einheit 11 mittels eines Ko- oder Tandemextrusions-Verfahrens. Die Dicke der Fluoropolymer-Schicht 5 beträgt dabei im vorliegenden Ausführungsbeispiel etwa 30 µm.

[0072] Nach dem Aufextrudieren der äußeren Isolationsschicht 3 wird der isolierte elektrische Leiter kontrolliert abgekühlt, beispielsweise durch Luftkühlung, und über eine Reihe von Anpressrollen geführt, die durch Ausüben von Druck auf den isolierte elektrische Leiter die Haftung weiter verbessern. Abschließend wird der isolierte elektrische Leiter auf einem Spulenaufwickler 13 aufgewickelt.

[0073] Bei den dargestellten Einrichtungen in Fig. 1 handelt es sich über eine Übersicht, in der alle Einrichtungen gezeigt sind, die zur Herstellung der einzelnen Ausführungsvarianten notwendig sind. Während die Reihenfolge, von rechts nach links, der durchlaufenen Einrichtungen von der Ausführungsvariante unabhängig sind und jedenfalls die Plasmabehandlungs-Einheit 9 und die Extrusions-Einheit 11 durchlaufen werden müssen, handelt es sich bei der Plasmapolymerisations-Einheit 9 und der weiteren Extrusions-Einheit 12 um optionale Einrichtungen, die nur bei der Herstellung spezifischer Ausführungsvarianten zum Einsatz kommen. Es versteht sich von selbst, dass statt eines Ko- oder Tandemextrusions-Verfahrens auch mehrere einzelne Extrusionen sequentiell durchgeführt werden können.

BEZUGSZEICHENLISTE



[0074] 
1
elektrischer Leiter
2
isolierende Beschichtung
3
Isolationsschicht
4
Plasmapolymer-Schicht
5
Fluoropolymer-Schicht
6
Metallschicht
7
Spulenablauf
8
Vorreinigungs-Einheit
9
Plasmabehandlungs-Einheit
10
Plasmapolymerisations-Einheit
11
Extrusions-Einheit
12
weitere Extrusionseinheit
13
Spulenaufwickler



Ansprüche

1. Isolierter elektrischer Leiter umfassend

einen elektrischen Leiter (1), vorzugsweise aus Kupfer oder Aluminium, mit einer isolierenden Beschichtung (2),

wobei die isolierende Beschichtung (2) entweder
zumindest eine Isolationsschicht (3) aus thermoplastischem Kunststoff umfasst

oder
zumindest eine Isolationsschicht (3) aus thermoplastischem Kunststoff und eine Kunststoff enthaltende Zwischenschicht (4,5), vorzugsweise eine Plasmapolymer-Schicht (4) oder zumindest eine Fluoropolymer-Schicht (5), umfasst,

dadurch gekennzeichnet, dass eine auf einer Oberfläche des elektrischen Leiters (1) ausgebildete Oxidschicht, vorzugsweise durch Beschuss des elektrischen Leiters (1) mit Ionen eines Schutzgases einer Schutzgasatmosphäre in einem Gas-Plasma, entfernt ist

und nachfolgend entweder
die zumindest eine Isolationsschicht (3) unmittelbar auf die oxidschicht-freie Oberfläche des elektrischen Leiters (1) aufgebracht ist

oder, in dem Fall, dass die Beschichtung (2) die Kunststoff enthaltende Zwischenschicht (4,5) umfasst,
zumindest die Kunststoff enthaltende Zwischenschicht (4,5) unmittelbar auf die oxidschicht-freie Oberfläche des elektrischen Leiters (1) aufgebracht ist.


 
2. Isolierter elektrischer Leiter nach Anspruch 1, dadurch gekennzeichnet, dass die auf der Oberfläche des elektrischen Leiters (1) ausgebildete Oxidschicht durch Beschuss des elektrischen Leiters mit Ionen eines Schutzgases einer Schutzgasatmosphäre in einem Gas-Plasma entfernt ist.
 
3. Isolierter elektrischer Leiter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die isolierende Beschichtung (2), insbesondere die zumindest eine Isolationsschicht (3), eine Temperaturbeständigkeit von zumindest 180°C, vorzugsweise von zumindest 200°C, insbesondere von zumindest 220°C, aufweist.
 
4. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der thermoplastische Kunststoff der zumindest einen Isolationsschicht (3) ausgewählt ist aus der Gruppe bestehend aus Polyaryletherketon [PAEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon.
 
5. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der thermoplastische Kunststoff der zumindest einen Isolationsschicht (3) ein Polyaryletherketon [PAEK] ausgewählt aus der Gruppe bestehend aus Polyetherketon [PEK], Polyetheretherketon [PEEK], Polyetherketonketon [PEKK], Polyetheretherketonketon [PEEKK], Polyetherketon-etherketonketon [PEKEKK] und Kombinationen davon ist.
 
6. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zumindest eine Isolationsschicht (3) eine Dicke zwischen 10 und bis 1000 µm, vorzugsweise zwischen 25 µm und 750 µm, besonders bevorzugt zwischen 30 µm und 500 µm, insbesondere zwischen 50 µm und 250 µm, aufweist.
 
7. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die zumindest eine Isolationsschicht (3) mittels eines Extrusions-Verfahrens herstellbar ist.
 
8. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die isolierende Beschichtung (2) aus der zumindest einen Isolationsschicht (3) besteht.
 
9. Isolierter elektrischer Leiter nach Anspruch 8, dadurch gekennzeichnet, dass die isolierende Beschichtung (2) aus einer Isolationsschicht (3) besteht.
 
10. Isolierter elektrischer Leiter nach Anspruch 8, dadurch gekennzeichnet, dass die isolierende Beschichtung (2) aus zumindest zwei, vorzugsweise genau zwei, Isolationsschichten (3) besteht.
 
11. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zumindest eine weitere Isolationsschicht aus thermoplastischem Kunststoff auf der isolierenden Beschichtung (2) aufgebracht ist, wobei die zumindest eine weitere Isolationsschicht nicht unter Schutzgasatmosphäre aufgebracht wird.
 
12. Isolierter elektrischer Leiter nach Anspruch 11, dadurch gekennzeichnet, dass der thermoplastische Kunststoff der zumindest einen weiteren Isolationsschicht ausgewählt ist aus der Gruppe bestehend aus Polyaryletherketon [PAEK], vorzugsweise Polyetheretherketon [PEEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon.
 
13. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die isolierende Beschichtung (2) zumindest eine Fluoropolymer-Schicht (5) aufweist
und dass es sich bei der unmittelbar auf die Oberfläche des elektrischen Leiters (1) aufgebrachten, Kunststoff enthaltenden Zwischenschicht um die Fluoropolymer-Schicht (5) handelt.
 
14. Isolierter elektrischer Leiter nach Anspruch 13, dadurch gekennzeichnet, dass die Fluoropolymer-Schicht (5) Polytetrafluorethylen [PTFE] oder Perfluorethylenpropylen [FEP] umfasst.
 
15. Isolierter elektrischer Leiter einem der Ansprüche 13 bis 14, dadurch gekennzeichnet, dass die Dicke der zumindest einen Fluoropolymer-Schicht (5) zwischen 1 µm und 120 µm, vorzugsweise zwischen 5 µm und 100 µm, besonders bevorzugt zwischen 10 µm und 80 µm, insbesondere zwischen 20 µm und 50 µm, beträgt.
 
16. Isolierter elektrischer Leiter nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die gesamte isolierende Beschichtung (2) unter Schutzgasatmosphäre auf den elektrischen Leiter (1) aufgebracht ist.
 


Claims

1. Insulated electric conductor, comprising an electric conductor (1), preferably made of copper or aluminum, having an insulating coating (2), wherein the insulating coating (2) either comprises

at least one insulating layer (3) made of

thermoplastic material,
or

at least one insulating layer (3) made of

thermoplastic material and

a plastic-containing intermediate layer (4, 5), preferably a plasma polymer layer (4) or at least one fluoropolymer layer (5),

characterized in that that an oxide layer formed on a surface of the electric conductor (1) is removed, preferably by bombardment of the electric conductor with ions of a protective gas of a protective gas atmosphere in a gas plasma,

and subsequently either
the at least one insulating layer (3) is applied directly to the oxide-layer-free surface of the electric conductor (1)

or, in the case that the coating (2) comprises the plastic-containing intermediate layer (4, 5),
at least the plastic-containing intermediate layer (4, 5) is applied directly to the oxide-layer-free surface of the electric conductor (1).


 
2. Insulated electric conductor according to claim 1, characterized in that the oxide layer formed on the surface of the electric conductor (1) is removed by bombardment of the electric conductor with ions of a protective gas of a protective gas atmosphere in a gas plasma
 
3. Insulated electric conductor according to claim 1 or 2, characterized in that the insulating coating (2), in particular the at least one insulating layer (3), has a temperature resistance of at least 180°C, preferably of at least 200°C, in particular of at least 220°C.
 
4. Insulated electric conductor according to one of the claims 1 to 3, characterized in that the thermoplastic material of the at least one insulating layer (3) is selected from the group consisting of polyaryletherketone [PAEK], polyimide [PI], polyamideimide [PAI], polyetherimide [PEI], polyphenylene sulfide [PPS] and combinations thereof.
 
5. Insulated electric conductor according to one of the claims 1 to 4, characterized in that the thermoplastic material of the at least one insulating layer (3) is a polyaryletherketone [PAEK] selected from the group consisting of polyetherketone [PEK], polyetheretherketone [PEEK], polyetherketoneketone [PEKK], polyetheretherketoneketone [PEEKK], polyetherketoneetherketoneketone [PEKEKK], and combinations thereof.
 
6. Insulated electric conductor according to one of the claims 1 to 5, characterized in that the at least one insulating layer (3) has a thickness between 10 and 1000 µm, preferably between 25 µm and 750 µm, particularly preferably between 30 µm and 500 µm, in particular between 50 µm and 250 µm.
 
7. Insulated electric conductor according to one of the claims 1 to 6, characterized in that the at least one insulating layer (3) can be produced by means of an extrusion process.
 
8. Insulated electric conductor according to one of the claims 1 to 7, characterized in that the insulating coating (2) consists of the at least one insulating layer (3).
 
9. Insulated electric conductor according to claim 8, characterized in that the insulating coating (2) consists of one insulating layer (3).
 
10. Insulated electric conductor according to claim 8, characterized in that the insulating coating (2) consists of at least two, preferably exactly two, insulating layers (3).
 
11. Insulated electric conductor according to one of the claims 1 to 10, characterized in that at least one further insulating layer of thermoplastic material is applied to the insulating coating (2), wherein the at least one further insulating layer is not applied under protective gas atmosphere.
 
12. Insulated electric conductor according to claim 11, characterized in that the thermoplastic material of the at least one further insulating layer is selected from the group consisting of polyaryletherketone [PAEK], preferably polyetheretherketone [PEEK], polyimide [PI], polyamideimide [PAI], polyetherimide [PEI], polyphenylene sulfide [PPS] and combinations thereof.
 
13. Insulated electric conductor according to one of the claims 1 to 7, characterized in that the insulating coating (2) has at least one fluoropolymer layer (5)
and that the plastic-containing intermediate layer which is applied directly to the surface of the electric conductor (1) consists of the at least one fluoropolymer layer (5).
 
14. Insulated electric conductor according to claim 13, characterized in that the fluoropolymer layer (5) comprises polytetrafluoroethylene [PTFE] or perfluoroethylenepropylene [FEP].
 
15. Insulated electric conductor according to one of the claims 13 to 14, characterized in that the thickness of the at least one fluoropolymer layer (5) is between 1 µm and 120 µm, preferably between 5 µm and 100 µm, particularly preferably between 10 µm and 80 µm, in particular between 20 µm and 50 µm.
 
16. Insulated electric conductor according to one of the claims 13 to 15, characterized in that the entire insulating coating (2) is applied to the electric conductor (1) under protective gas atmosphere.
 


Revendications

1. Conducteur électrique isolé comprenant

un conducteur électrique (1), de préférence en cuivre ou en aluminium, avec un revêtement isolant (2),

lequel revêtement isolant (2) contient soit
au moins une couche d'isolation (3) en matière thermoplastique,

soit
au moins une couche d'isolation (3) en matière thermoplastique et une couche intermédiaire (4, 5) contenant une matière plastique, de préférence une couche de polymère déposé par plasma (4) ou au moins une couche de fluoropolymère (5),

caractérisé en ce qu'une couche d'oxyde formée sur une surface du conducteur électrique (1) est éliminée, de préférence par bombardement du conducteur électrique (1) avec des ions d'un gaz protecteur d'une atmosphère de gaz protecteur dans un plasma de gaz,

après quoi, soit
l'au moins une couche d'isolation (3) est appliquée directement sur la surface débarrassée de la couche d'oxyde du conducteur électrique (1),

soit, si le revêtement (2) comprend la couche intermédiaire contenant une matière plastique (4, 5),
la couche intermédiaire contenant une matière plastique (4, 5), au moins, est appliquée directement sur la surface du conducteur électrique (1) débarrassée de la couche d'oxyde.


 
2. Conducteur électrique isolé selon la revendication 1, caractérisé en ce que la couche d'oxyde formée à la surface du conducteur électrique (1) est éliminée par bombardement du conducteur électrique avec des ions d'un gaz protecteur d'une atmosphère de gaz protecteur dans un plasma de gaz.
 
3. Conducteur électrique isolé selon la revendication 1 ou 2, caractérisé en ce que le revêtement isolant (2), en particulier l'au moins une couche d'isolation (3), présente une résistance aux hautes températures d'au moins 180 °C, de préférence au moins 200 °C, en particulier au moins 220 °C.
 
4. Conducteur électrique isolé selon l'une des revendications 1 à 3, caractérisé en ce que la matière thermoplastique de l'au moins une couche d'isolation (3) est choisie parmi le groupe comprenant la polyaryléthercétone [PAEK], le polyimide [PI], le polyamide-imide [PAI], le polyéther-imide [PEI], le sulfure de polyphénylène [PPS] et des combinaisons de ceux-ci.
 
5. Conducteur électrique isolé selon l'une des revendications 1 à 4, caractérisé en ce que la matière thermoplastique de l'au moins une couche d'isolation (3) est une polyaryléthercétone [PAEK] choisie dans le groupe comprenant la polyéthercétone [PEK], la polyétheréthercétone [PEEK], la polyéthercétonecétone [PEKK], la polyétheréthercétonecétone [PEEKK], la polyéthercétone-éthercétonecétone [PEKEKK] et des combinaisons de celles-ci.
 
6. Conducteur électrique isolé selon l'une des revendications 1 à 5, caractérisé en ce que l'au moins une couche d'isolation (3) présente une épaisseur comprise entre 10 et jusqu'à 1000 µm, de préférence entre 25 µm et 750 µm, en particulier entre 30 µm et 500 µm, tout particulièrement entre 50 µm et 250 µm.
 
7. Conducteur électrique isolé selon l'une des revendications 1 à 6, caractérisé en ce que l'au moins une couche d'isolation (3) peut être fabriquée au moyen d'un procédé d'extrusion.
 
8. Conducteur électrique isolé selon l'une des revendications 1 à 7, caractérisé en ce que le revêtement isolant (2) se compose de l'au moins une couche d'isolation (3).
 
9. Conducteur électrique isolé selon la revendication 8, caractérisé en ce que le revêtement isolant (2) se compose d'une couche d'isolation (3).
 
10. Conducteur électrique isolé selon la revendication 8, caractérisé en ce que le revêtement isolant (2) se compose d'au moins deux, de préférence d'exactement deux, couches d'isolation (3).
 
11. Conducteur électrique isolé selon l'une des revendications 1 à 10, caractérisé en ce qu'au moins une autre couche d'isolation en matière thermoplastique est appliquée sur le revêtement isolant (2), l'au moins une autre couche d'isolation n'étant pas appliquée sous atmosphère de gaz protecteur.
 
12. Conducteur électrique isolé selon la revendication 11, caractérisé en ce que la matière thermoplastique de l'au moins une autre couche d'isolation est choisie dans le groupe comprenant la polyaryléthercétone [PAEK], de préférence la polyétheréthercétone [PEEK], le polyimide [PI], le polyamide-imide [PAI], le polyéther-imide [PEI], le sulfure de polyphénylène [PPS] et des combinaisons de ceux-ci.
 
13. Conducteur électrique isolé selon l'une des revendications 1 à 7, caractérisé en ce que le revêtement isolant (2) comporte au moins une couche de fluoropolymère (5) et en ce que la couche intermédiaire contenant une matière plastique appliquée directement sur la surface du conducteur électrique (1) est la couche de fluoropolymère (5).
 
14. Conducteur électrique isolé selon la revendication 13, caractérisé en ce que la couche de fluoropolymère (5) contient du polytétrafluoroéthylène [PTFE] ou du perfluoroéthylènepropylène [FEP].
 
15. Conducteur électrique isolé selon l'une des revendications 13 à 14, caractérisé en ce que l'épaisseur de l'au moins une couche de fluoropolymère (5) est comprise entre 1 µm et 120 µm, de préférence entre 5 µm et 100 µm, en particulier entre 10 µm et 80 µm, tout particulièrement entre 20 µm et 50 µm.
 
16. Conducteur électrique isolé selon l'une des revendications 13 à 15, caractérisé en ce que l'ensemble du revêtement isolant (2) est appliqué sur le conducteur électrique (1) sous atmosphère de gaz protecteur.
 




Zeichnung











Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente