TECHNICAL FIELD
[0001] The present invention relates to a fuel pump for use in an internal combustion engine,
and more particularly to an improved pumping mechanism for a fuel pump having at least
one pumping element which is driven by an engine-driven cam or other appropriate drive
arrangement.
BACKGROUND OF THE INVENTION
[0002] A known pumping for fuel pump such as a diesel pump, as illustrated in cross-section
in Figure 1, comprises a pump housing comprising an inlet valve body and a cam box,
and a pumping mechanism comprising a pumping element such as a plunger, and a return
spring. The plunger is moveable within a plunger location bore provided in the inlet
valve body. The pump further comprises a roller and a driving mechanism comprising
a cam. During a pumping stroke, rotation of the cam applies a force to the plunger,
via the roller and a roller/shoe guide, thereby urging the plunger along the location
bore to pressurise fuel in a pumping chamber provided in the inlet valve body. A pumping
mechanism as shown in fig.1 is known e.g. from
EP-2657505-A1.
[0003] The return spring (also shown separately in Figure 2) comprises a cylindrical helical
compression spring having a constant external diameter along its length, and is provided
around the plunger, in a spring chamber provided in the cam box. The spring applies
a force to the roller, via the roller/shoe guide, thereby ensuring that roller is
in constant contact with the cam throughout the pump cycle. A known spring is produced
using EN 10270-3 1.4568 17/7 PH stainless steel wire.
[0004] The return spring must provide a sufficiently large force to maintain contact between
the cam and roller; accordingly the spring must be sufficiently compressed to provide
this force. As the spring is compressed, the force applied by the spring increases,
however the maximum stress incurred within the spring material during the pump cycle
also increases.
[0005] In prior art pump embodiments, stress in the return spring may be too high for the
force required to maintain contact between the cam and the roller. Furthermore, as
the force requirement is increased, due to increased speed demands, the stress within
the spring material will increase, leading to a reduction in fatigue strength of the
spring.
[0006] As the spring operates under dynamic conditions, it can be caused to resonate at
a natural frequency, or a harmonic, of the spring. Resonating of the spring also leads
to an increase in stress levels within the spring, and ultimately to failure of the
spring due to fatigue. Prior art springs therefore have a limited product life due
to stress levels during resonating being higher than the capability of the spring
material.
[0007] A known solution to the above problems of pump springs is to increase the size of
the spring chamber, thereby allowing a spring with a larger free length to be used.
This reduces stress induced in the spring, whilst maintaining the required force.
However, to enable a larger spring housing, the overall size of the pump is necessarily
increased; the resulting larger pump envelope represents a significant disadvantage
for pump applications having tight space requirements.
[0008] A known solution to the problems caused by resonating of the spring is to provide
a progressively wound spring (i.e. a variable pitched spring), as illustrated in Figure
2. Compression of the progressively wound spring causes a change in the natural frequency
of the spring, as end coils start to contact each other as the spring is compressed
thereby changing the spring rate during compression.
[0009] However, a progressively wound spring must have a larger free length in order to
produce the same required force. Therefore a larger pump envelope is again required
to provide more internal space for the spring, thereby also representing a disadvantage
in applications having tight space requirements.
SUMMARY OF THE INVENTION
[0010] It is an object of the present invention to provide an improved pumping mechanism
which at least mitigates the problems as described above.
[0011] Accordingly the present invention comprises a pumping mechanism for a fuel pump for
use in an internal combustion engine, the pumping mechanism comprising: an inlet valve
body comprising a pumping element location bore in which a pumping element is moveable
in a longitudinal axis; a cam box comprising a guide bore in which a roller/shoe guide
is moveable; wherein the roller/shoe guide is co-operable with a driving mechanism
via a roller; wherein the pumping element abuts the roller/shoe guide, and in a pumping
stroke, the driving means causes movement of the roller/shoe guide and pumping element,
and wherein movement of the pumping element within the pumping element location bore
causes fuel in within a pumping chamber provided in the inlet valve body to pressurise;
wherein the pumping mechanism further comprises a return spring, located around part
of the pumping element and within a spring chamber, wherein a first end of the return
spring abuts a first spring seat proximate to the inlet valve body, and a second end
of the return spring abuts a second spring seat proximate to the roller/shoe guide,
such that the return spring urges the roller into contact with the driving mechanism;
wherein the first and second ends of the spring each define an external diameter,
and wherein the external diameter of the first end of the spring is greater than the
external diameter of the second end of the spring.
[0012] The roller/shoe guide may comprise a recess comprising a first section, and a second
section which is closer to the driving mechanism than the first section and which
is of a smaller diameter than the first section, and wherein the second spring seat
is located within the second section of the recess.
[0013] The spring comprises at least partially a frustoconical section.
[0014] The spring may entirely comprise a frustoconical section. Alternatively, the spring
may comprise at frustoconical section and at least one cylindrical section which is
of a constant external diameter.
[0015] In one embodiment, the spring comprises one cylindrical section, which extends from
the second end of the spring, and wherein the frustoconical section extends from the
first end of the spring, wherein the cylindrical section and the frustoconical section
meet at a mid-point of the spring, and wherein the frustoconical section varies in
external diameter from a maximum external diameter at the first end of the spring,
to a minimum external diameter at the mid-point which is equal to the external diameter
of the cylindrical section. The spring May further comprise a second cylindrical section
extending from the second end of the spring, wherein the frustoconical section separates
the first cylindrical section and the second cylindrical section, and wherein a maximum
external diameter of the frustoconical section is equal to the external diameter of
the first cylindrical section, and wherein a minimum external diameter of the frustoconical
section is equal to the external diameter of the second cylindrical section.
[0016] In an alternative embodiment, the spring comprises a barrel shape.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] The present invention is now described by way of example with reference to the accompanying
drawings in which:
Figure 3 is a cross-sectional partial view of a fuel pump including a pumping mechanism
in accordance with the present invention;
Figure 4 is a side view of the spring of the pumping mechanism of Figure 3;
and
Figures 5 to 7 are side views of alternative springs for use in pumping mechanisms
in accordance with the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0018] The present invention is described below with reference to the orientation of the
figures. References to relative positioning of components, such as above, below, upper
and lower, are not intended to be limiting.
[0019] Referring to Figures 3 and 4, a fuel pump in accordance with a first embodiment of
the present invention comprises a pump housing 104, comprising a cam box 106 and an
inlet valve housing 108, and a pumping mechanism 110.
[0020] The pumping mechanism comprises a pumping element provided by a plunger 112, and
a return spring 114.
[0021] The inlet valve housing 108 is provided with a plunger location bore 116, in which
the plunger 112 is moveable in a reciprocating motion, along a longitudinal axis A
of the plunger location bore 116. A pumping chamber 118 is defined at an end of the
plunger location bore 116, above the plunger 112.
[0022] The cam box 106 is provided with a guide bore 122, in which a roller/shoe guide 124,
is moveable in a reciprocating motion. Above the roller/shoe guide 124, the guide
bore 122 also defines a spring chamber 126, in which the spring 114 is located. The
spring 114 surrounds a lower part 128 of the plunger 112 which protrudes into the
cam box 106.
[0023] The roller/shoe guide 124 is provided with an upper recess 130, adjacent the spring
chamber 126, and a lower recess 132, in which a roller 134 is located. A driving mechanism
comprising a cam 136, in contact with the roller 134, is located in a cam recess 138
below guide bore 122.
[0024] The upper recess 130 of the roller/shoe guide 124 comprises two sections; a first,
upper section 140 adjacent the spring chamber 126, and a second, lower section 142,
remote from the spring chamber 126, of smaller diameter and therefore smaller cross-sectional
area than the first, upper section 140.
[0025] The return spring 114 extends from a first spring seat 144 provided by a lower surface
of the inlet valve housing 108, to a second spring seat 146 provided in the second
section 142, i.e. the reduced cross-sectional area section, of the upper recess 130
of the roller/shoe guide 124. The second spring seat 146 is reduced in size compared
to prior art embodiments.
[0026] As illustrated most clearly in Figure 4, the spring 114 is of a varying diameter,
and therefore varying cross-sectional area, along its length. Specifically, the spring
114 has a maximum external diameter D1 at a first end 148 of the spring 114 which
abuts the first spring seat 114 provided by a surface of the inlet valve housing 108,
and has a minimum external diameter D2 a second end 150 which abuts the second spring
seat 146 provided in the roller/shoe guide 124. In the embodiment of Figures 3 and
4, the external diameter of the spring 114 decreases from the first end 148 to the
second end 150 in a linear manner (as indicated by line L in Figure 4), such that
the spring 114 has a frustoconical form.
[0027] The diameter of the second, lower section 142 of the upper recess 130 of the roller/shoe
guide 124 is less than the maximum external diameter of the spring 114. Therefore,
if the spring 114 was of equal external diameter along its length, as in prior art
embodiments, it would be necessary for the spring 114 to end in the first, increased
diameter section 140 of the upper recess 130 of the roller/shoe guide 124. However,
as the spring 114 decreases in diameter along its length towards to the roller/shoe
guide 124, to a minimum external diameter D2 which is smaller than the diameter of
the second, lower section 142 of the upper recess 130, it is possible for the spring
114 to extend into this second, lower section 142. Accordingly, a spring 114 having
a longer free length than prior art embodiments can be used.
[0028] The reduced cross-sectional area at the second end 150 of the spring 114 enables
the second spring seat 146 to be located in the reduced cross-sectional area section
142 of the upper recess 130 of the roller/shoe guide 124.
[0029] During operation of the pump, the rotation of the cam 136 causes drive to be imparted
to the plunger 112, via the roller 134 and the roller/shoe guide 124, thereby causing
the plunger 112 to move upwardly along the plunger location bore 116 and into the
pumping chamber 118, thereby causing fuel in the pumping chamber 118 to pressurise.
[0030] During a return stroke of the pump, the spring 114, which is constrained at its first
end 148 by the first spring seat 144, provides a force to the roller 134, via the
second spring seat 146 and the roller/shoe guide 124, thereby ensuring contact is
maintained between the roller 134 and the cam 136.
[0031] The present invention provides a fuel pump in which the space within the cam box
106 is more effectively used, by enabling the extension of the spring 114 into the
roller/shoe guide 124. The free length of the spring 114 is thereby increased in comparison
to prior art embodiments, and lower stresses are encountered for the same force requirements
as prior art embodiments.
[0032] In a second embodiment of the present invention, the pumping mechanism 110 comprises
an alternative spring 214. Figure 5 illustrates the alternative spring 214 in accordance
with the second embodiment.
[0033] In common with the first embodiment, the alternative spring 214 of Figure 5 has an
external diameter D1 at the first end 148 which is larger than the external diameter
D2 at the second end 150, and the external diameter D2 at the second end 150 is less
than the diameter of the second section 142 of the upper recess 130 of the roller/shoe
guide 124, such that the second end 150 of the spring 214 extends into the second
section 142 of the upper recess 130. However the form of the spring 214 varies along
its length such that the spring 214 comprises a first, frustoconical section 152,
extending from the first end 148 of the spring 214, and a second, cylindrical section
154 of uniform diameter extending from the second end 150 of the spring. The external
diameter of the frustoconical section 152 reduces from a maximum external diameter
D1 at the first end 148 of the spring 214, to a minimum external diameter, which is
equal to the external diameter D2 of the cylindrical section, where the frustoconical
section 152 meets the cylindrical section 154 at a mid-point 156 of the spring 214.
The mid-point 156 may be at or near a central longitudinal point of the spring 214,
or could be off-centre.
[0034] A third embodiment of the present invention comprises a spring 314 as illustrated
in Figure 6. This alternative spring 314 comprises three sections. A first cylindrical
section 158, having a uniform diameter, extends from the first end 148 of the spring
314, and a second cylindrical section 162, having a uniform diameter which is less
than that of the first cylindrical section 158 and less than the diameter of the second
section 142 of the roller/shoe guide upper recess 130, extends from the second end
150 of the spring 314. The first and second cylindrical sections 158, 162 are separated
by a frustoconical mid-section 160, which has a maximum external diameter equal to
the external diameter D1 of the first cylindrical section 158, and a minimum external
diameter equal to the external diameter D2 of the second cylindrical section 162.
[0035] An alternative spring 414 in accordance with a fourth embodiment of the present invention
is illustrated in Figure 7. The spring 414 of Figure 7 comprises a barrel shape, having
a maximum external diameter at a mid-point 164 may be at or close to a central longitudinal
point of the spring 414, or could be off centre. In common with the first to third
embodiments, the external diameter D1 of the spring 414 at the first end 148 is greater
than the external diameter D2 at the second end 150.
[0036] Examples of forms of the spring are provided above. The spring could also comprise
other combinations of cylindrical, frustoconical, and/or curved profile sections.
[0037] All embodiments of the present invention provide a spring which is of varying diameter
along its length, i.e. is not of a purely cylindrical form as in prior art embodiments.
All embodiments have a reduced external diameter at one end, which allows the spring
to extend further into the roller/shoe guide than prior art embodiments, thereby enabling
a spring with a larger free length than prior art embodiments to be used. Accordingly,
the present invention allows a spring to be used which provides the necessary force,
whilst reducing the maximum stress which is encountered in the spring in use of the
pump, thereby improving efficiency of the pump.
[0038] Furthermore, springs in accordance with the present invention have a variable spring
rate along the length of the spring, due to the varying diameter. Accordingly, springs
in accordance with the present invention do not have a single resonant frequency,
thereby eliminating resonance of the spring within an application. This again prevents
overstressing of the spring at certain engine speeds, thereby further increasing the
reliability of the spring and the pump.
REFERENCES
Prior art:
[0039]
fuel pump 2
pump housing 4
cam box 6
inlet valve body 8
pumping mechanism 10
pumping element 12
return spring 14
plunger location bore 16
pumping chamber 18
roller/shoe guide 24
spring chamber 26
roller 34
cam 36
spring external diameter D
Invention:
[0040]
pump housing 104
cam box 106
inlet valve housing 108
pumping mechanism 110
plunger 112
return spring 114, 214, 314, 414
plunger location bore 116
plunger location bore longitudinal axis A
pumping chamber 118
guide bore 122
roller/shoe guide 124
spring chamber 126
plunger lower part 128
roller/shoe guide upper recess 130
roller/shoe guide lower recess 132
roller 134
cam 136
cam recess 138
roller/shoe guide upper recess first, upper section 140
roller/shoe guide upper recess second, lower section 142
first spring seat (inlet valve housing lower surface) 144
second spring seat 146
spring first end 148
spring second end 150
first end spring diameter D1
second end spring diameter D2
second embodiment (Fig. 5):
[0041]
frustoconical section 152
cylindrical section 154
spring mid-point 156
third embodiment (Fig. 6):
[0042]
first cylindrical section 158
frustoconical mid-section 160
second cylindrical section 162
fourth embodiment (Fig. 7):
[0043] spring mid-point 164
1. A pumping mechanism for a fuel pump for use in an internal combustion engine, the
pumping mechanism comprising:
an inlet valve body (108) comprising a pumping element location bore (116) in which
a pumping element (112) is moveable in a longitudinal axis;
a cam box (106) comprising a guide bore (122) in which a roller/shoe guide (124) is
moveable;
wherein the roller/shoe guide (124) is co-operable with a driving mechanism via a
roller (134);
wherein the pumping element (112) abuts the roller/shoe guide (124), and in a pumping
stroke, the driving mechanism causes movement of the roller/shoe guide (124) and pumping
element (112), and wherein movement of the pumping element (112) within the pumping
element location bore (116) causes fuel in within a pumping chamber (118) provided
in the inlet valve body (108) to pressurise;
wherein the pumping mechanism further comprises a return spring (114, 214, 314, 414),
located around part of the pumping element (112) and within a spring chamber (126);
and
wherein a first end (148) of the return spring (114, 214, 314, 414) abuts a first
spring seat (144) proximate to the inlet valve body (108), and a second end (150)
of the return spring (114, 214, 314, 414) abuts a second spring seat (146) proximate
to the roller/shoe guide (124), such that the return spring (114, 214, 314,414) urges
the roller (134) into contact with the driving mechanism;
characterized in that:
the first and second ends (148, 150) of the return spring (114, 214, 314, 414) each
define an external diameter, wherein the external diameter of the first end (148)
of the return spring (114, 214, 314, 414) is greater than the external diameter of
the second end (150) of the return spring (114, 214, 314, 414) and,
wherein the roller/shoe guide (124) comprises a recess (130, 132) comprising a first
section (130), and a second section (132) which is closer to the driving mechanism
than the first section and which is of a smaller diameter than the first section (130),
and wherein the second spring seat (146) is located within the second section (132)
of the recess (130, 132).
2. A pumping mechanism as claimed in claim 1 wherein the spring (114, 214, 314, 414)
comprises at least partially a frustoconical section (152, 150).
3. A pumping mechanism as claimed in claim 2 wherein the spring (114) comprises entirely
a frustoconical section.
4. A pumping mechanism as claimed in claim 2 wherein the spring (214, 314) further comprises
at least one cylindrical section (154, 158, 162) which is of a constant external diameter.
5. A pumping mechanism as claimed in claim 4 wherein the spring (214) comprises one cylindrical
section (154), which extends from the second end (150) of the spring, and one frustoconical
section (152) which extends from the first end of the spring (214);
wherein the cylindrical section (154) and the frustoconical section (152) meet at
a mid-point (156) of the spring (214);
and wherein the frustoconical section (152) varies in external diameter from a maximum
external diameter at the first end (148) of the spring (214), to a minimum external
diameter at the mid-point (156) which is equal to the external diameter of the cylindrical
section (154).
6. A pumping mechanism as claimed in claim 4 wherein the spring (314) comprises a first
cylindrical section (158) extending from the first end (148) of the spring (314),
and a second cylindrical section (162) extending from the second end (150) of the
spring (314);
and wherein the frustoconical section (160) separates the first cylindrical section
(158) and the second cylindrical section (162);
and wherein a maximum external diameter of the frustoconical section (160) is equal
to the external diameter of the first cylindrical section (158), and wherein a minimum
external diameter of the frustoconical section (160) is equal to the external diameter
of the second cylindrical section (162).
7. A pumping mechanism as claimed in claim 2 wherein the spring (414) comprises a barrel
shape, wherein the spring (414) has a maximum external diameter at a mid-point (164),
wherein the mid-point (164) is at or close to a central longitudinal point of the
spring (414) or is off-centre.
1. Pumpmechanismus für eine Kraftstoffpumpe zur Verwendung in einem Verbrennungsmotor,
wobei der Pumpmechanismus aufweist:
einen Einlassventilkörper (108), der eine Pumpelement-Positionsbohrung (116) aufweist,
in der ein Pumpelement (112) in einer Längsachse bewegbar ist;
einen Nockenkasten (106), der eine Führungsbohrung (122) aufweist, in der eine Rollen/Schuhführung
(124) bewegbar ist;
wobei die Rollen/Schuhführung (124) mit einem Antriebsmechanismus über eine Rolle
(134) zusammenwirken kann;
wobei das Pumpelement (112) an der Rollen/Schuhführung (124) anliegt und der Antriebsmechanismus
bei einem Pumphub eine Bewegung der Rollen/Schuhführung (124) und des Pumpelements
(112) bewirkt, und wobei eine Bewegung des Pumpelements (112) in der Pumpelement-Positionsbohrung
(116) bewirkt, dass Kraftstoff in einer Pumpkammer (118), die in dem Einlassventilkörper
(108) vorgesehen ist, unter Druck gesetzt wird;
wobei der Pumpmechanismus weiter eine Rückstellfeder (114, 214, 314, 414) aufweist,
die um einen Teil des Pumpelements (112) herum und innerhalb einer Federkammer (126)
angeordnet ist; und
wobei ein erstes Ende (148) der Rückstellfeder (114, 214, 314, 414) an einem ersten
Federsitz (144) nahe des Einlassventilkörpers (108) anliegt und ein zweites Ende (150)
der Rückstellfeder (114, 214, 314, 414) an einem zweiten Federsitz (146) nahe der
Rollen/Schuhführung (124) anliegt, so dass die Rückstellfeder (114, 214, 314, 414)
die Rolle (134) in Kontakt mit dem Antriebsmechanismus drückt;
dadurch gekennzeichnet, dass: das erste und das zweite Ende (148, 150) der Rückstellfeder (114, 214, 314, 414)
jeweils einen Außendurchmesser definieren, wobei der Außendurchmesser des ersten Endes
(148) der Rückstellfeder (114, 214, 314, 414) größer ist als der Außendurchmesser
des zweiten Endes (150) der Rückstellfeder (114, 214, 314,414), und
wobei die Rollen/Schuhführung (124) eine Aussparung (130, 132) aufweist, die einen
ersten Abschnitt (130) und einen zweiten Abschnitt (132) aufweist, der näher an dem
Antriebsmechanismus liegt als der erste Abschnitt und der einen kleineren Durchmesser
hat als der erste Abschnitt (130), und wobei sich der zweite Federsitz (146) in dem
zweiten Abschnitt (132) der Aussparung (130, 132) befindet.
2. Pumpmechanismus gemäß Anspruch 1, wobei die Feder (114, 214, 314, 414) zumindest teilweise
einen kegelstumpfförmigen Abschnitt (152, 150) aufweist.
3. Pumpmechanismus gemäß Anspruch 2, wobei die Feder (114) vollständig einen kegelstumpfförmigen
Abschnitt aufweist.
4. Pumpmechanismus gemäß Anspruch 2, wobei die Feder (214, 314) weiter zumindest einen
zylindrischen Abschnitt (154, 158, 162) aufweist, der einen konstanten Außendurchmesser
hat.
5. Pumpmechanismus gemäß Anspruch 4, wobei die Feder (214) einen zylindrischen Abschnitt
(154), der sich von dem zweiten Ende (150) der Feder erstreckt, und einen kegelstumpfförmigen
Abschnitt (152) aufweist, der sich von dem ersten Ende der Feder (214) erstreckt;
wobei sich der zylindrische Abschnitt (154) und der kegelstumpfförmige Abschnitt (152)
an einem Mittelpunkt (156) der Feder (214) treffen;
und wobei der Außendurchmesser des kegelstumpfförmigen Abschnitts (152) von einem
maximalen Außendurchmesser an dem ersten Ende (148) der Feder (214) zu einem minimalen
Außendurchmesser an dem Mittelpunkt (156) variiert, der gleich dem Außendurchmesser
des zylindrischen Abschnitts (154) ist.
6. Pumpmechanismus gemäß Anspruch 4, wobei die Feder (314) einen ersten zylindrischen
Abschnitt (158), der sich von dem ersten Ende (148) der Feder (314) erstreckt, und
einen zweiten zylindrischen Abschnitt (162) aufweist, der sich von dem zweiten Ende
(150) der Feder (314) erstreckt;
und wobei der kegelstumpfförmige Abschnitt (160) den ersten zylindrischen Abschnitt
(158) und den zweiten zylindrischen Abschnitt (162) trennt;
und wobei ein maximaler Außendurchmesser des kegelstumpfförmigen Abschnitts (160)
gleich dem Außendurchmesser des ersten zylindrischen Abschnitts (158) ist, und wobei
ein minimaler Außendurchmesser des kegelstumpfförmigen Abschnitts (160) gleich dem
Außendurchmesser des zweiten zylindrischen Abschnitts (162) ist.
7. Pumpmechanismus gemäß Anspruch 2, wobei die Feder (414) eine Trommelform aufweist,
wobei die Feder (414) einen maximalen Außendurchmesser an einem Mittelpunkt (164)
hat, wobei der Mittelpunkt (164) bei oder nahe einem zentralen Längspunkt der Feder
(414) oder außermittig ist.
1. Mécanisme de pompage pour une pompe à carburant pour l'utilisation dans un moteur
à combustion interne, le mécanisme de pompage comprenant :
un corps de soupape d'entrée (108) comprenant un alésage de positionnement d'élément
de pompage (116) dans lequel un élément de pompage (112) est mobile dans un axe longitudinal
;
une boîte à came (106) comprenant un alésage de guidage (122) dans lequel un guidage
de galet/sabot (124) est mobile ;
dans lequel le guidage de galet/sabot (124) peut coopérer avec un mécanisme d'entraînement
par l'intermédiaire d'un galet (134) ;
dans lequel l'élément de pompage (112) est contigu au guidage de galet/sabot (124),
et dans une course de pompage, le mécanisme d'entraînement cause le mouvement du guidage
de galet/sabot (124) et de l'élément de pompage (112), et dans lequel le mouvement
de l'élément de pompage (112) à l'intérieur de l'alésage de positionnement d'élément
de pompage (116) fait en sorte que du carburant à l'intérieur d'une chambre de pompage
(118) prévue dans le corps de soupape d'entrée (108) soit mis sous pression ;
dans lequel le mécanisme de pompage comprend en outre un ressort de rappel (114, 214,
314, 414), situé autour d'une partie de l'élément de pompage (112) et à l'intérieur
d'une chambre de ressort (126) ; et
dans lequel une première extrémité (148) du ressort de rappel (114, 214, 314, 414)
est contiguë à un premier siège de ressort (144) à proximité du corps de soupape d'entrée
(108), et une seconde extrémité (150) du ressort de rappel (114, 214, 314, 414) est
contiguë à un second siège de ressort (146) à proximité du guidage de galet/sabot
(124), de telle sorte que le ressort de rappel (114, 214, 314, 414) pousse le galet
(134) en contact avec le mécanisme d'entraînement ;
caractérisé en ce que :
les première et seconde extrémités (148, 150) du ressort de rappel (114, 214, 314,
414) définissent chacune un diamètre externe, dans lequel le diamètre externe de la
première extrémité (148) du ressort de rappel (114, 214, 314, 414) est supérieur au
diamètre externe de la seconde extrémité (150) du ressort de rappel (114, 214, 314,
414) et,
dans lequel le guidage de galet/sabot (124) comprend un évidement (130, 132) comprenant
une première section (130), et une seconde section (132) qui est plus près du mécanisme
d'entraînement que la première section et qui est de diamètre inférieur à celui de
la première section (130), et dans lequel le second siège de ressort (146) est situé
à l'intérieur de la seconde section (132) de l'évidement (130, 132).
2. Mécanisme de pompage selon la revendication 1, dans lequel le ressort (114, 214, 314,
414) comprend au moins partiellement une section tronconique (152, 150).
3. Mécanisme de pompage selon la revendication 2, dans lequel le ressort (114) comprend
entièrement une section tronconique.
4. Mécanisme de pompage selon la revendication 2, dans lequel le ressort (214, 314) comprend
en outre au moins une section cylindrique (154, 158, 162) qui est d'un diamètre externe
constant.
5. Mécanisme de pompage selon la revendication 4, dans lequel le ressort (214) comprend
une section cylindrique (154), qui s'étend depuis la seconde extrémité (150) du ressort,
et une section tronconique (152) qui s'étend depuis la première extrémité du ressort
(214) ;
dans lequel la section cylindrique (154) et la section tronconique (152) se rencontrent
à un point médian (156) du ressort (214) ;
et dans lequel la section tronconique (152) varie en diamètre externe, d'un diamètre
externe maximum à la première extrémité (148) du ressort (214) à un diamètre externe
minimum au point médian (156) qui est égal au diamètre externe de la section cylindrique
(154).
6. Mécanisme de pompage selon la revendication 4, dans lequel le ressort (314) comprend
une première section cylindrique (158) s'étendant depuis la première extrémité (148)
du ressort (314), et une seconde section cylindrique (162) s'étendant depuis la seconde
extrémité (150) du ressort (314) ;
et dans lequel la section tronconique (160) sépare la première section cylindrique
(158) et la seconde section cylindrique (162) ;
et dans lequel un diamètre externe maximum de la section tronconique (160) est égal
au diamètre externe de la première section cylindrique (158), et
dans lequel un diamètre externe minimum de la section tronconique (160) est égal au
diamètre externe de la seconde section cylindrique (162).
7. Mécanisme de pompage selon la revendication 2, dans lequel le ressort (414) comprend
une forme de tonneau, dans lequel le ressort (414) a un diamètre externe maximum à
un point médian (164), dans lequel le point médian (164) est à un point longitudinal
central du ressort (414), ou près dudit point, ou est excentré.