(19)
(11) EP 3 191 711 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
06.10.2021 Bulletin 2021/40

(21) Application number: 15745220.2

(22) Date of filing: 04.08.2015
(51) International Patent Classification (IPC): 
F04B 1/04(2020.01)
F04B 9/04(2006.01)
F02M 59/44(2006.01)
F04B 1/053(2020.01)
F02M 59/10(2006.01)
(52) Cooperative Patent Classification (CPC):
F02M 59/44; F04B 1/0426; F02M 59/102; F04B 1/053; F04B 9/042
(86) International application number:
PCT/EP2015/067955
(87) International publication number:
WO 2016/037769 (17.03.2016 Gazette 2016/11)

(54)

PUMPING MECHANISM

PUMPMECHANISMUS

MÉCANISME DE POMPAGE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 10.09.2014 GB 201416001

(43) Date of publication of application:
19.07.2017 Bulletin 2017/29

(73) Proprietor: Delphi Technologies IP Limited
St. Michael (BB)

(72) Inventors:
  • FULLER, Trevor
    Maidstone, Kent ME14 4BH (GB)
  • GARLAND, Paul
    Gillingham, Kent ME7 4BQ (GB)
  • PEDLEY, Toby
    London SE12 8OX (GB)
  • FAIRBAIRN, Matthew
    Longfield, Kent DA3 8JG (GB)
  • BUCKLEY, Paul
    Rainham, Kent ME8 9ES (GB)

(74) Representative: Allain, Michel Jean Camille 
BorgWarner France SAS Campus Saint Christophe Bâtiment Galilée 2 10, avenue de l'Entreprise
95863 Cergy Pontoise Cedex
95863 Cergy Pontoise Cedex (FR)


(56) References cited: : 
EP-A1- 2 657 505
FR-A- 1 537 827
US-A1- 2007 116 585
CN-U- 201 757 042
GB-A- 533 709
US-A1- 2013 084 198
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a fuel pump for use in an internal combustion engine, and more particularly to an improved pumping mechanism for a fuel pump having at least one pumping element which is driven by an engine-driven cam or other appropriate drive arrangement.

    BACKGROUND OF THE INVENTION



    [0002] A known pumping for fuel pump such as a diesel pump, as illustrated in cross-section in Figure 1, comprises a pump housing comprising an inlet valve body and a cam box, and a pumping mechanism comprising a pumping element such as a plunger, and a return spring. The plunger is moveable within a plunger location bore provided in the inlet valve body. The pump further comprises a roller and a driving mechanism comprising a cam. During a pumping stroke, rotation of the cam applies a force to the plunger, via the roller and a roller/shoe guide, thereby urging the plunger along the location bore to pressurise fuel in a pumping chamber provided in the inlet valve body. A pumping mechanism as shown in fig.1 is known e.g. from EP-2657505-A1.

    [0003] The return spring (also shown separately in Figure 2) comprises a cylindrical helical compression spring having a constant external diameter along its length, and is provided around the plunger, in a spring chamber provided in the cam box. The spring applies a force to the roller, via the roller/shoe guide, thereby ensuring that roller is in constant contact with the cam throughout the pump cycle. A known spring is produced using EN 10270-3 1.4568 17/7 PH stainless steel wire.

    [0004] The return spring must provide a sufficiently large force to maintain contact between the cam and roller; accordingly the spring must be sufficiently compressed to provide this force. As the spring is compressed, the force applied by the spring increases, however the maximum stress incurred within the spring material during the pump cycle also increases.

    [0005] In prior art pump embodiments, stress in the return spring may be too high for the force required to maintain contact between the cam and the roller. Furthermore, as the force requirement is increased, due to increased speed demands, the stress within the spring material will increase, leading to a reduction in fatigue strength of the spring.

    [0006] As the spring operates under dynamic conditions, it can be caused to resonate at a natural frequency, or a harmonic, of the spring. Resonating of the spring also leads to an increase in stress levels within the spring, and ultimately to failure of the spring due to fatigue. Prior art springs therefore have a limited product life due to stress levels during resonating being higher than the capability of the spring material.

    [0007] A known solution to the above problems of pump springs is to increase the size of the spring chamber, thereby allowing a spring with a larger free length to be used. This reduces stress induced in the spring, whilst maintaining the required force. However, to enable a larger spring housing, the overall size of the pump is necessarily increased; the resulting larger pump envelope represents a significant disadvantage for pump applications having tight space requirements.

    [0008] A known solution to the problems caused by resonating of the spring is to provide a progressively wound spring (i.e. a variable pitched spring), as illustrated in Figure 2. Compression of the progressively wound spring causes a change in the natural frequency of the spring, as end coils start to contact each other as the spring is compressed thereby changing the spring rate during compression.

    [0009] However, a progressively wound spring must have a larger free length in order to produce the same required force. Therefore a larger pump envelope is again required to provide more internal space for the spring, thereby also representing a disadvantage in applications having tight space requirements.

    SUMMARY OF THE INVENTION



    [0010] It is an object of the present invention to provide an improved pumping mechanism which at least mitigates the problems as described above.

    [0011] Accordingly the present invention comprises a pumping mechanism for a fuel pump for use in an internal combustion engine, the pumping mechanism comprising: an inlet valve body comprising a pumping element location bore in which a pumping element is moveable in a longitudinal axis; a cam box comprising a guide bore in which a roller/shoe guide is moveable; wherein the roller/shoe guide is co-operable with a driving mechanism via a roller; wherein the pumping element abuts the roller/shoe guide, and in a pumping stroke, the driving means causes movement of the roller/shoe guide and pumping element, and wherein movement of the pumping element within the pumping element location bore causes fuel in within a pumping chamber provided in the inlet valve body to pressurise; wherein the pumping mechanism further comprises a return spring, located around part of the pumping element and within a spring chamber, wherein a first end of the return spring abuts a first spring seat proximate to the inlet valve body, and a second end of the return spring abuts a second spring seat proximate to the roller/shoe guide, such that the return spring urges the roller into contact with the driving mechanism; wherein the first and second ends of the spring each define an external diameter, and wherein the external diameter of the first end of the spring is greater than the external diameter of the second end of the spring.

    [0012] The roller/shoe guide may comprise a recess comprising a first section, and a second section which is closer to the driving mechanism than the first section and which is of a smaller diameter than the first section, and wherein the second spring seat is located within the second section of the recess.

    [0013] The spring comprises at least partially a frustoconical section.

    [0014] The spring may entirely comprise a frustoconical section. Alternatively, the spring may comprise at frustoconical section and at least one cylindrical section which is of a constant external diameter.

    [0015] In one embodiment, the spring comprises one cylindrical section, which extends from the second end of the spring, and wherein the frustoconical section extends from the first end of the spring, wherein the cylindrical section and the frustoconical section meet at a mid-point of the spring, and wherein the frustoconical section varies in external diameter from a maximum external diameter at the first end of the spring, to a minimum external diameter at the mid-point which is equal to the external diameter of the cylindrical section. The spring May further comprise a second cylindrical section extending from the second end of the spring, wherein the frustoconical section separates the first cylindrical section and the second cylindrical section, and wherein a maximum external diameter of the frustoconical section is equal to the external diameter of the first cylindrical section, and wherein a minimum external diameter of the frustoconical section is equal to the external diameter of the second cylindrical section.

    [0016] In an alternative embodiment, the spring comprises a barrel shape.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0017] The present invention is now described by way of example with reference to the accompanying drawings in which:

    Figure 3 is a cross-sectional partial view of a fuel pump including a pumping mechanism in accordance with the present invention;

    Figure 4 is a side view of the spring of the pumping mechanism of Figure 3;
    and

    Figures 5 to 7 are side views of alternative springs for use in pumping mechanisms in accordance with the present invention.


    DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0018] The present invention is described below with reference to the orientation of the figures. References to relative positioning of components, such as above, below, upper and lower, are not intended to be limiting.

    [0019] Referring to Figures 3 and 4, a fuel pump in accordance with a first embodiment of the present invention comprises a pump housing 104, comprising a cam box 106 and an inlet valve housing 108, and a pumping mechanism 110.

    [0020] The pumping mechanism comprises a pumping element provided by a plunger 112, and a return spring 114.

    [0021] The inlet valve housing 108 is provided with a plunger location bore 116, in which the plunger 112 is moveable in a reciprocating motion, along a longitudinal axis A of the plunger location bore 116. A pumping chamber 118 is defined at an end of the plunger location bore 116, above the plunger 112.

    [0022] The cam box 106 is provided with a guide bore 122, in which a roller/shoe guide 124, is moveable in a reciprocating motion. Above the roller/shoe guide 124, the guide bore 122 also defines a spring chamber 126, in which the spring 114 is located. The spring 114 surrounds a lower part 128 of the plunger 112 which protrudes into the cam box 106.

    [0023] The roller/shoe guide 124 is provided with an upper recess 130, adjacent the spring chamber 126, and a lower recess 132, in which a roller 134 is located. A driving mechanism comprising a cam 136, in contact with the roller 134, is located in a cam recess 138 below guide bore 122.

    [0024] The upper recess 130 of the roller/shoe guide 124 comprises two sections; a first, upper section 140 adjacent the spring chamber 126, and a second, lower section 142, remote from the spring chamber 126, of smaller diameter and therefore smaller cross-sectional area than the first, upper section 140.

    [0025] The return spring 114 extends from a first spring seat 144 provided by a lower surface of the inlet valve housing 108, to a second spring seat 146 provided in the second section 142, i.e. the reduced cross-sectional area section, of the upper recess 130 of the roller/shoe guide 124. The second spring seat 146 is reduced in size compared to prior art embodiments.

    [0026] As illustrated most clearly in Figure 4, the spring 114 is of a varying diameter, and therefore varying cross-sectional area, along its length. Specifically, the spring 114 has a maximum external diameter D1 at a first end 148 of the spring 114 which abuts the first spring seat 114 provided by a surface of the inlet valve housing 108, and has a minimum external diameter D2 a second end 150 which abuts the second spring seat 146 provided in the roller/shoe guide 124. In the embodiment of Figures 3 and 4, the external diameter of the spring 114 decreases from the first end 148 to the second end 150 in a linear manner (as indicated by line L in Figure 4), such that the spring 114 has a frustoconical form.

    [0027] The diameter of the second, lower section 142 of the upper recess 130 of the roller/shoe guide 124 is less than the maximum external diameter of the spring 114. Therefore, if the spring 114 was of equal external diameter along its length, as in prior art embodiments, it would be necessary for the spring 114 to end in the first, increased diameter section 140 of the upper recess 130 of the roller/shoe guide 124. However, as the spring 114 decreases in diameter along its length towards to the roller/shoe guide 124, to a minimum external diameter D2 which is smaller than the diameter of the second, lower section 142 of the upper recess 130, it is possible for the spring 114 to extend into this second, lower section 142. Accordingly, a spring 114 having a longer free length than prior art embodiments can be used.

    [0028] The reduced cross-sectional area at the second end 150 of the spring 114 enables the second spring seat 146 to be located in the reduced cross-sectional area section 142 of the upper recess 130 of the roller/shoe guide 124.

    [0029] During operation of the pump, the rotation of the cam 136 causes drive to be imparted to the plunger 112, via the roller 134 and the roller/shoe guide 124, thereby causing the plunger 112 to move upwardly along the plunger location bore 116 and into the pumping chamber 118, thereby causing fuel in the pumping chamber 118 to pressurise.

    [0030] During a return stroke of the pump, the spring 114, which is constrained at its first end 148 by the first spring seat 144, provides a force to the roller 134, via the second spring seat 146 and the roller/shoe guide 124, thereby ensuring contact is maintained between the roller 134 and the cam 136.

    [0031] The present invention provides a fuel pump in which the space within the cam box 106 is more effectively used, by enabling the extension of the spring 114 into the roller/shoe guide 124. The free length of the spring 114 is thereby increased in comparison to prior art embodiments, and lower stresses are encountered for the same force requirements as prior art embodiments.

    [0032] In a second embodiment of the present invention, the pumping mechanism 110 comprises an alternative spring 214. Figure 5 illustrates the alternative spring 214 in accordance with the second embodiment.

    [0033] In common with the first embodiment, the alternative spring 214 of Figure 5 has an external diameter D1 at the first end 148 which is larger than the external diameter D2 at the second end 150, and the external diameter D2 at the second end 150 is less than the diameter of the second section 142 of the upper recess 130 of the roller/shoe guide 124, such that the second end 150 of the spring 214 extends into the second section 142 of the upper recess 130. However the form of the spring 214 varies along its length such that the spring 214 comprises a first, frustoconical section 152, extending from the first end 148 of the spring 214, and a second, cylindrical section 154 of uniform diameter extending from the second end 150 of the spring. The external diameter of the frustoconical section 152 reduces from a maximum external diameter D1 at the first end 148 of the spring 214, to a minimum external diameter, which is equal to the external diameter D2 of the cylindrical section, where the frustoconical section 152 meets the cylindrical section 154 at a mid-point 156 of the spring 214. The mid-point 156 may be at or near a central longitudinal point of the spring 214, or could be off-centre.

    [0034] A third embodiment of the present invention comprises a spring 314 as illustrated in Figure 6. This alternative spring 314 comprises three sections. A first cylindrical section 158, having a uniform diameter, extends from the first end 148 of the spring 314, and a second cylindrical section 162, having a uniform diameter which is less than that of the first cylindrical section 158 and less than the diameter of the second section 142 of the roller/shoe guide upper recess 130, extends from the second end 150 of the spring 314. The first and second cylindrical sections 158, 162 are separated by a frustoconical mid-section 160, which has a maximum external diameter equal to the external diameter D1 of the first cylindrical section 158, and a minimum external diameter equal to the external diameter D2 of the second cylindrical section 162.

    [0035] An alternative spring 414 in accordance with a fourth embodiment of the present invention is illustrated in Figure 7. The spring 414 of Figure 7 comprises a barrel shape, having a maximum external diameter at a mid-point 164 may be at or close to a central longitudinal point of the spring 414, or could be off centre. In common with the first to third embodiments, the external diameter D1 of the spring 414 at the first end 148 is greater than the external diameter D2 at the second end 150.

    [0036] Examples of forms of the spring are provided above. The spring could also comprise other combinations of cylindrical, frustoconical, and/or curved profile sections.

    [0037] All embodiments of the present invention provide a spring which is of varying diameter along its length, i.e. is not of a purely cylindrical form as in prior art embodiments. All embodiments have a reduced external diameter at one end, which allows the spring to extend further into the roller/shoe guide than prior art embodiments, thereby enabling a spring with a larger free length than prior art embodiments to be used. Accordingly, the present invention allows a spring to be used which provides the necessary force, whilst reducing the maximum stress which is encountered in the spring in use of the pump, thereby improving efficiency of the pump.

    [0038] Furthermore, springs in accordance with the present invention have a variable spring rate along the length of the spring, due to the varying diameter. Accordingly, springs in accordance with the present invention do not have a single resonant frequency, thereby eliminating resonance of the spring within an application. This again prevents overstressing of the spring at certain engine speeds, thereby further increasing the reliability of the spring and the pump.

    REFERENCES


    Prior art:



    [0039] 

    fuel pump 2

    pump housing 4

    cam box 6

    inlet valve body 8

    pumping mechanism 10

    pumping element 12

    return spring 14

    plunger location bore 16

    pumping chamber 18

    roller/shoe guide 24

    spring chamber 26

    roller 34

    cam 36

    spring external diameter D


    Invention:



    [0040] 

    pump housing 104

    cam box 106

    inlet valve housing 108

    pumping mechanism 110

    plunger 112

    return spring 114, 214, 314, 414

    plunger location bore 116

    plunger location bore longitudinal axis A

    pumping chamber 118

    guide bore 122

    roller/shoe guide 124

    spring chamber 126

    plunger lower part 128

    roller/shoe guide upper recess 130

    roller/shoe guide lower recess 132

    roller 134

    cam 136

    cam recess 138

    roller/shoe guide upper recess first, upper section 140

    roller/shoe guide upper recess second, lower section 142

    first spring seat (inlet valve housing lower surface) 144

    second spring seat 146

    spring first end 148

    spring second end 150

    first end spring diameter D1

    second end spring diameter D2


    second embodiment (Fig. 5):



    [0041] 

    frustoconical section 152

    cylindrical section 154

    spring mid-point 156


    third embodiment (Fig. 6):



    [0042] 

    first cylindrical section 158

    frustoconical mid-section 160

    second cylindrical section 162


    fourth embodiment (Fig. 7):



    [0043] spring mid-point 164


    Claims

    1. A pumping mechanism for a fuel pump for use in an internal combustion engine, the pumping mechanism comprising:

    an inlet valve body (108) comprising a pumping element location bore (116) in which a pumping element (112) is moveable in a longitudinal axis;

    a cam box (106) comprising a guide bore (122) in which a roller/shoe guide (124) is moveable;

    wherein the roller/shoe guide (124) is co-operable with a driving mechanism via a roller (134);

    wherein the pumping element (112) abuts the roller/shoe guide (124), and in a pumping stroke, the driving mechanism causes movement of the roller/shoe guide (124) and pumping element (112), and wherein movement of the pumping element (112) within the pumping element location bore (116) causes fuel in within a pumping chamber (118) provided in the inlet valve body (108) to pressurise;

    wherein the pumping mechanism further comprises a return spring (114, 214, 314, 414), located around part of the pumping element (112) and within a spring chamber (126); and

    wherein a first end (148) of the return spring (114, 214, 314, 414) abuts a first spring seat (144) proximate to the inlet valve body (108), and a second end (150) of the return spring (114, 214, 314, 414) abuts a second spring seat (146) proximate to the roller/shoe guide (124), such that the return spring (114, 214, 314,414) urges the roller (134) into contact with the driving mechanism;

    characterized in that:
    the first and second ends (148, 150) of the return spring (114, 214, 314, 414) each define an external diameter, wherein the external diameter of the first end (148) of the return spring (114, 214, 314, 414) is greater than the external diameter of the second end (150) of the return spring (114, 214, 314, 414) and,

    wherein the roller/shoe guide (124) comprises a recess (130, 132) comprising a first section (130), and a second section (132) which is closer to the driving mechanism than the first section and which is of a smaller diameter than the first section (130), and wherein the second spring seat (146) is located within the second section (132) of the recess (130, 132).


     
    2. A pumping mechanism as claimed in claim 1 wherein the spring (114, 214, 314, 414) comprises at least partially a frustoconical section (152, 150).
     
    3. A pumping mechanism as claimed in claim 2 wherein the spring (114) comprises entirely a frustoconical section.
     
    4. A pumping mechanism as claimed in claim 2 wherein the spring (214, 314) further comprises at least one cylindrical section (154, 158, 162) which is of a constant external diameter.
     
    5. A pumping mechanism as claimed in claim 4 wherein the spring (214) comprises one cylindrical section (154), which extends from the second end (150) of the spring, and one frustoconical section (152) which extends from the first end of the spring (214);

    wherein the cylindrical section (154) and the frustoconical section (152) meet at a mid-point (156) of the spring (214);

    and wherein the frustoconical section (152) varies in external diameter from a maximum external diameter at the first end (148) of the spring (214), to a minimum external diameter at the mid-point (156) which is equal to the external diameter of the cylindrical section (154).


     
    6. A pumping mechanism as claimed in claim 4 wherein the spring (314) comprises a first cylindrical section (158) extending from the first end (148) of the spring (314), and a second cylindrical section (162) extending from the second end (150) of the spring (314);

    and wherein the frustoconical section (160) separates the first cylindrical section (158) and the second cylindrical section (162);

    and wherein a maximum external diameter of the frustoconical section (160) is equal to the external diameter of the first cylindrical section (158), and wherein a minimum external diameter of the frustoconical section (160) is equal to the external diameter of the second cylindrical section (162).


     
    7. A pumping mechanism as claimed in claim 2 wherein the spring (414) comprises a barrel shape, wherein the spring (414) has a maximum external diameter at a mid-point (164), wherein the mid-point (164) is at or close to a central longitudinal point of the spring (414) or is off-centre.
     


    Ansprüche

    1. Pumpmechanismus für eine Kraftstoffpumpe zur Verwendung in einem Verbrennungsmotor, wobei der Pumpmechanismus aufweist:

    einen Einlassventilkörper (108), der eine Pumpelement-Positionsbohrung (116) aufweist, in der ein Pumpelement (112) in einer Längsachse bewegbar ist;

    einen Nockenkasten (106), der eine Führungsbohrung (122) aufweist, in der eine Rollen/Schuhführung (124) bewegbar ist;

    wobei die Rollen/Schuhführung (124) mit einem Antriebsmechanismus über eine Rolle (134) zusammenwirken kann;

    wobei das Pumpelement (112) an der Rollen/Schuhführung (124) anliegt und der Antriebsmechanismus bei einem Pumphub eine Bewegung der Rollen/Schuhführung (124) und des Pumpelements (112) bewirkt, und wobei eine Bewegung des Pumpelements (112) in der Pumpelement-Positionsbohrung (116) bewirkt, dass Kraftstoff in einer Pumpkammer (118), die in dem Einlassventilkörper (108) vorgesehen ist, unter Druck gesetzt wird;

    wobei der Pumpmechanismus weiter eine Rückstellfeder (114, 214, 314, 414) aufweist, die um einen Teil des Pumpelements (112) herum und innerhalb einer Federkammer (126) angeordnet ist; und

    wobei ein erstes Ende (148) der Rückstellfeder (114, 214, 314, 414) an einem ersten Federsitz (144) nahe des Einlassventilkörpers (108) anliegt und ein zweites Ende (150) der Rückstellfeder (114, 214, 314, 414) an einem zweiten Federsitz (146) nahe der Rollen/Schuhführung (124) anliegt, so dass die Rückstellfeder (114, 214, 314, 414) die Rolle (134) in Kontakt mit dem Antriebsmechanismus drückt;

    dadurch gekennzeichnet, dass: das erste und das zweite Ende (148, 150) der Rückstellfeder (114, 214, 314, 414) jeweils einen Außendurchmesser definieren, wobei der Außendurchmesser des ersten Endes (148) der Rückstellfeder (114, 214, 314, 414) größer ist als der Außendurchmesser des zweiten Endes (150) der Rückstellfeder (114, 214, 314,414), und

    wobei die Rollen/Schuhführung (124) eine Aussparung (130, 132) aufweist, die einen ersten Abschnitt (130) und einen zweiten Abschnitt (132) aufweist, der näher an dem Antriebsmechanismus liegt als der erste Abschnitt und der einen kleineren Durchmesser hat als der erste Abschnitt (130), und wobei sich der zweite Federsitz (146) in dem zweiten Abschnitt (132) der Aussparung (130, 132) befindet.


     
    2. Pumpmechanismus gemäß Anspruch 1, wobei die Feder (114, 214, 314, 414) zumindest teilweise einen kegelstumpfförmigen Abschnitt (152, 150) aufweist.
     
    3. Pumpmechanismus gemäß Anspruch 2, wobei die Feder (114) vollständig einen kegelstumpfförmigen Abschnitt aufweist.
     
    4. Pumpmechanismus gemäß Anspruch 2, wobei die Feder (214, 314) weiter zumindest einen zylindrischen Abschnitt (154, 158, 162) aufweist, der einen konstanten Außendurchmesser hat.
     
    5. Pumpmechanismus gemäß Anspruch 4, wobei die Feder (214) einen zylindrischen Abschnitt (154), der sich von dem zweiten Ende (150) der Feder erstreckt, und einen kegelstumpfförmigen Abschnitt (152) aufweist, der sich von dem ersten Ende der Feder (214) erstreckt;

    wobei sich der zylindrische Abschnitt (154) und der kegelstumpfförmige Abschnitt (152) an einem Mittelpunkt (156) der Feder (214) treffen;

    und wobei der Außendurchmesser des kegelstumpfförmigen Abschnitts (152) von einem maximalen Außendurchmesser an dem ersten Ende (148) der Feder (214) zu einem minimalen Außendurchmesser an dem Mittelpunkt (156) variiert, der gleich dem Außendurchmesser des zylindrischen Abschnitts (154) ist.


     
    6. Pumpmechanismus gemäß Anspruch 4, wobei die Feder (314) einen ersten zylindrischen Abschnitt (158), der sich von dem ersten Ende (148) der Feder (314) erstreckt, und einen zweiten zylindrischen Abschnitt (162) aufweist, der sich von dem zweiten Ende (150) der Feder (314) erstreckt;

    und wobei der kegelstumpfförmige Abschnitt (160) den ersten zylindrischen Abschnitt (158) und den zweiten zylindrischen Abschnitt (162) trennt;

    und wobei ein maximaler Außendurchmesser des kegelstumpfförmigen Abschnitts (160) gleich dem Außendurchmesser des ersten zylindrischen Abschnitts (158) ist, und wobei ein minimaler Außendurchmesser des kegelstumpfförmigen Abschnitts (160) gleich dem Außendurchmesser des zweiten zylindrischen Abschnitts (162) ist.


     
    7. Pumpmechanismus gemäß Anspruch 2, wobei die Feder (414) eine Trommelform aufweist, wobei die Feder (414) einen maximalen Außendurchmesser an einem Mittelpunkt (164) hat, wobei der Mittelpunkt (164) bei oder nahe einem zentralen Längspunkt der Feder (414) oder außermittig ist.
     


    Revendications

    1. Mécanisme de pompage pour une pompe à carburant pour l'utilisation dans un moteur à combustion interne, le mécanisme de pompage comprenant :

    un corps de soupape d'entrée (108) comprenant un alésage de positionnement d'élément de pompage (116) dans lequel un élément de pompage (112) est mobile dans un axe longitudinal ;

    une boîte à came (106) comprenant un alésage de guidage (122) dans lequel un guidage de galet/sabot (124) est mobile ;

    dans lequel le guidage de galet/sabot (124) peut coopérer avec un mécanisme d'entraînement par l'intermédiaire d'un galet (134) ;

    dans lequel l'élément de pompage (112) est contigu au guidage de galet/sabot (124), et dans une course de pompage, le mécanisme d'entraînement cause le mouvement du guidage de galet/sabot (124) et de l'élément de pompage (112), et dans lequel le mouvement de l'élément de pompage (112) à l'intérieur de l'alésage de positionnement d'élément de pompage (116) fait en sorte que du carburant à l'intérieur d'une chambre de pompage (118) prévue dans le corps de soupape d'entrée (108) soit mis sous pression ;

    dans lequel le mécanisme de pompage comprend en outre un ressort de rappel (114, 214, 314, 414), situé autour d'une partie de l'élément de pompage (112) et à l'intérieur d'une chambre de ressort (126) ; et

    dans lequel une première extrémité (148) du ressort de rappel (114, 214, 314, 414) est contiguë à un premier siège de ressort (144) à proximité du corps de soupape d'entrée (108), et une seconde extrémité (150) du ressort de rappel (114, 214, 314, 414) est contiguë à un second siège de ressort (146) à proximité du guidage de galet/sabot (124), de telle sorte que le ressort de rappel (114, 214, 314, 414) pousse le galet (134) en contact avec le mécanisme d'entraînement ;

    caractérisé en ce que :

    les première et seconde extrémités (148, 150) du ressort de rappel (114, 214, 314, 414) définissent chacune un diamètre externe, dans lequel le diamètre externe de la première extrémité (148) du ressort de rappel (114, 214, 314, 414) est supérieur au diamètre externe de la seconde extrémité (150) du ressort de rappel (114, 214, 314, 414) et,

    dans lequel le guidage de galet/sabot (124) comprend un évidement (130, 132) comprenant une première section (130), et une seconde section (132) qui est plus près du mécanisme d'entraînement que la première section et qui est de diamètre inférieur à celui de la première section (130), et dans lequel le second siège de ressort (146) est situé à l'intérieur de la seconde section (132) de l'évidement (130, 132).


     
    2. Mécanisme de pompage selon la revendication 1, dans lequel le ressort (114, 214, 314, 414) comprend au moins partiellement une section tronconique (152, 150).
     
    3. Mécanisme de pompage selon la revendication 2, dans lequel le ressort (114) comprend entièrement une section tronconique.
     
    4. Mécanisme de pompage selon la revendication 2, dans lequel le ressort (214, 314) comprend en outre au moins une section cylindrique (154, 158, 162) qui est d'un diamètre externe constant.
     
    5. Mécanisme de pompage selon la revendication 4, dans lequel le ressort (214) comprend une section cylindrique (154), qui s'étend depuis la seconde extrémité (150) du ressort, et une section tronconique (152) qui s'étend depuis la première extrémité du ressort (214) ;

    dans lequel la section cylindrique (154) et la section tronconique (152) se rencontrent à un point médian (156) du ressort (214) ;

    et dans lequel la section tronconique (152) varie en diamètre externe, d'un diamètre externe maximum à la première extrémité (148) du ressort (214) à un diamètre externe minimum au point médian (156) qui est égal au diamètre externe de la section cylindrique (154).


     
    6. Mécanisme de pompage selon la revendication 4, dans lequel le ressort (314) comprend une première section cylindrique (158) s'étendant depuis la première extrémité (148) du ressort (314), et une seconde section cylindrique (162) s'étendant depuis la seconde extrémité (150) du ressort (314) ;

    et dans lequel la section tronconique (160) sépare la première section cylindrique (158) et la seconde section cylindrique (162) ;

    et dans lequel un diamètre externe maximum de la section tronconique (160) est égal au diamètre externe de la première section cylindrique (158), et

    dans lequel un diamètre externe minimum de la section tronconique (160) est égal au diamètre externe de la seconde section cylindrique (162).


     
    7. Mécanisme de pompage selon la revendication 2, dans lequel le ressort (414) comprend une forme de tonneau, dans lequel le ressort (414) a un diamètre externe maximum à un point médian (164), dans lequel le point médian (164) est à un point longitudinal central du ressort (414), ou près dudit point, ou est excentré.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description