TECHNICAL FIELD
[0002] Exemplary embodiments of the present invention relate to an input sensing device
and a display device including the same.
DISCUSSION OF THE RELATED ART
[0003] Commonly used types of display devices include liquid crystal display (LCD) devices
and organic light emitting diode (OLED) display devices.
[0004] LCD devices are among the most widely used types of flat panel display devices. An
LCD device includes two substrates including electric field generating electrodes
such as a pixel electrode and a common electrode, and a liquid crystal layer disposed
therebetween. In the LCD device, a voltage is applied to the electric field generating
electrodes to form an electric field in the liquid crystal layer. As a result, the
alignment of liquid crystal molecules in the liquid crystal layer is determined, and
the polarization of incident light is controlled, thereby displaying an image.
[0005] OLED display devices display an image using an organic light emitting element that
generates light by recombination of electrons and holes. OLED display devices have
advantageous characteristics such as, for example, high response speed, high luminance,
a wide viewing angle, and low power consumption.
US 2015/115254 A1 discloses a portable electronic device with a touch display, comprising four pluralities
of electrodes, arranged on two separate layers.
US 2018/095582 A1 discloses a touch panel, measuring touch position and force by means of a variation
in capacitance (or resistance) between the electrodes.
SUMMARY
[0006] The present invention is defined by independent claim 1 .Additional embodiments are
set out in the dependent claims 2 - 12.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The above and other features of the present invention will become more apparent by
describing in detail exemplary embodiments thereof with reference to the accompanying
drawings, in which:
FIG. 1 is a cross-sectional view of a display device according to an exemplary embodiment
of the present invention.
FIG. 2 is a plan view schematically illustrating a first substrate of the input sensing
panel shown in FIG. 1.
FIG. 3 is a plan view schematically illustrating a second substrate of the input sensing
panel shown in FIG. 1.
FIG. 4 is a plan view showing a touch area between the first substrate and the second
substrate shown in FIGs. 2 and 3.
FIG. 5A is a cross-sectional view taken along line l1-l1' in FIG. 4 according to an
exemplary embodiment of the present invention.
FIGs. 5B to 5D are cross-sectional views showing different arrangement relationships
of the sensing electrodes and signal lines shown in FIG. 5A according to exemplary
embodiments of the present invention.
FIG. 6 is a cross-sectional view for describing a method of sensing a touch position
in a display device according to an exemplary embodiment of the present invention.
FIG. 7 is a view for describing a method of sensing a touch pressure in a display
device according to an exemplary embodiment of the present invention.
FIG. 8 is a view for describing a timing of sensing a touch position and a touch pressure
according to an exemplary embodiment of the present invention.
FIG. 9 is a plan view showing an exemplary embodiment of the first substrate from
among components of the input sensing panel shown in FIG. 1.
FIG. 10 is a view for describing a method of sensing a touch pressure through a resistance
change in an input sensing panel including the first substrate shown in FIG. 9.
FIG. 11 is a view for describing an exemplary embodiment of the method of sensing
a touch pressure through a resistance change in an input sensing panel including the
first substrate shown in FIG. 9.
FIG. 12 is a plan view showing an exemplary embodiment of the first substrate from
among components of the input sensing panel shown in FIG. 1.
DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS
[0008] Exemplary embodiments of the present invention will be described more fully hereinafter
with reference to the accompanying drawings. Like reference numerals may refer to
like elements throughout the accompanying drawings.
[0009] As used herein, the singular forms "a", "an" and "the" are intended to include the
plural forms as well, unless the context clearly indicates otherwise.
[0010] It will be understood that when an element or layer is referred to as being "on",
"connected to" or "coupled to" another element or layer, it can be directly on, connected,
or coupled to the other element or layer, or intervening elements or layers may be
present. In addition, it will also be understood that when an element or layer is
referred to as being "between" two elements or layers, it can be the only element
or layer between the two elements or layers, or one or more intervening elements or
layers may also be present.
[0011] Although the terms "first", "second", etc. may be used herein to describe various
elements, these elements are not limited by these terms. These terms may be used to
distinguish one element from another element. Thus, a first element discussed below
may be termed a second element without departing from teachings of one or more exemplary
embodiments. The description of an element as a "first" element may not require or
imply the presence of a second element or other elements. The terms "first", "second",
etc. may also be used herein to differentiate different categories or sets of elements.
[0012] Spatially relative terms, such as "beneath", "below", "lower", "under", "above",
"upper", etc., may be used herein for ease of description to describe one element
or feature's relationship to another element(s) or feature(s) as illustrated in the
figures. It will be understood that the spatially relative terms are intended to encompass
different orientations of the device in use or operation in addition to the orientation
depicted in the figures. For example, if the device in the figures is turned over,
elements described as "below" or "beneath" or "under" other elements or features would
then be oriented "above" the other elements or features. Thus, the exemplary terms
"below" and "under" can encompass both an orientation of above and below.
[0013] FIG. 1 is a cross-sectional view of a display device according to an exemplary embodiment
of the present invention.
[0014] Referring to FIG. 1, in an exemplary embodiment, a display device includes a display
panel 100, an input sensing panel 200, an anti-reflective panel 300, and a window
panel 400. The input sensing panel 200 may also be referred to herein as a pressure
sensing panel. Herein, the configuration combined with another component through an
adhesive member will be expressed by a "panel". Further, the configuration combined
with another component through a continuous process will be expressed by a "layer".
The panel includes a base layer providing a base surface. In contrast, in exemplary
embodiments, the layer does not include the base layer. That is, the expression "layer"
refers to a structure disposed on the base surface provided by another component.
In an exemplary embodiment, the base layer may include, for example, a synthetic resin
film, a composite material film, a glass substrate, etc.
[0015] The display panel 100 is defined as a panel for displaying an image. In an exemplary
embodiment, the display panel 100 may be, for example, an organic light emitting display
panel, a liquid crystal display panel, a quantum dot display panel, etc.
[0016] In an exemplary embodiment, the input sensing panel 200 is disposed over the display
panel 100. In an exemplary embodiment, the display panel 100 and the input sensing
panel 200 are coupled to each other through a first adhesive member 510. The input
sensing panel 200 may sense the position and pressure of, for example, a user's finger
or a touch pen. That is, the input sensing panel 200 may sense both the position and
pressure of a touch, as described in further detail below. The input sensing panel
200 may be referred to as an input sensing device before it is attached to the display
panel 100.
[0017] In an exemplary embodiment, the anti-reflective panel 300 is disposed over the input
sensing panel 200. In an exemplary embodiment, the anti-reflective panel 300 and the
input sensing panel 200 are coupled to each other through a second adhesive member
520. The anti-reflective panel 300 may reduce the reflectance of external light incident
from above the window panel 400. In an exemplary embodiment, the anti-reflective panel
300 may include a retarder and a polarizer. Further, the anti-reflective panel 300
may include a black matrix and a color filter. Further, in an exemplary embodiment,
the anti-reflective panel 300 may be omitted.
[0018] In an exemplary embodiment, the window panel 400 is disposed over the anti-reflective
panel 300. In an exemplary embodiment, the window panel 400 and the anti-reflective
panel 300 are coupled to each other through a third adhesive member 530. The window
panel 400 may protect the display panel 100 and/or the input sensing panel 200 from
damage such as, for example, external scratches.
[0019] In an exemplary embodiment, each of the first to third adhesive members 510 to 530
may be a pressure-sensitive adhesive (PSA) member, an optical clear adhesive (OCA)
member, or an optical clear resin (OCR) film. Unlike as described above, in an exemplary
embodiment, at least one of the input sensing panel 200, the anti-reflective panel
300, and the window panel 400 may be formed in the form of a "layer" having an upper
surface of another component as a base layer. For example, the input sensing panel
200 may be formed as an input sensing layer having an upper surface of the display
panel 100 as a base surface. That is, the input sensing layer may be formed together
with the display panel 100 through a continuous process.
[0020] Hereinafter, the input sensing panel 200 will be described in more detail.
[0021] FIG. 2 is a plan view schematically illustrating a first substrate of the input sensing
panel shown in FIG. 1. FIG. 3 is a plan view schematically illustrating a second substrate
of the input sensing panel shown in FIG. 1. FIG. 4 is a plan view showing a touch
area disposed between the first substrate and the second substrate shown in FIGs.
2 and 3. FIG. 5A is a cross-sectional view taken along line l1-l1' in FIG. 4. For
convenience of explanation, although it is shown in FIG. 4 that the size of a sensing
electrode provided in a second substrate 220 is smaller than the size of a sensing
electrode provided in a first substrate 210, the size of a sensing electrode according
to exemplary embodiments of the present invention is not limited thereto.
[0022] Referring to FIGs. 2 to 5A, in an exemplary embodiment, the input sensing panel 200
includes a first substrate 210 and a second substrate 220.
[0023] Hereinafter, the first substrate 210 will be described first with reference to FIGs.
1, 2 and 5A.
[0024] In an exemplary embodiment, the first substrate 210 is disposed on the display panel
100, and is coupled to the upper surface of the display panel 100 through the first
adhesive member 510 (refer to FIG. 1). In an exemplary embodiment, the first substrate
210 includes a first base layer 211, a plurality of first sensing electrodes IE1-1
to IE1-6, a plurality of second sensing electrodes IE2-1 to IE2-6, a plurality of
first signal lines IL1-1 to IL1-6, a plurality of second signal lines IL2-1 to IL2-6,
a first touch pad unit DP1, and a first insulating layer 212. Reference numerals of
the plurality of first sensing electrodes IE1-1 to IE1-6 and the plurality of second
sensing electrodes IE2-1 to IE2-6 are expressed based on the row in which they are
disposed.
[0025] The first base layer 211 provides a base surface to the plurality of first sensing
electrodes IE1-1 to IE1-6, the plurality of second sensing electrodes IE2-1 to IE2-6,
the plurality of first signal lines IL1-1 to IL1-6, and the plurality of second signal
lines IL2-1 to IL2-6. For example, in an exemplary embodiment, the plurality of first
sensing electrodes IE1-1 to IE1-6, the plurality of second sensing electrodes IE2-1
to IE2-6, the plurality of first signal lines IL1-1 to IL1-6, and the plurality of
second signal lines IL2-1 to IL2-6 are formed on the same layer (e.g., the first base
layer 211). In an exemplary embodiment, the first base layer 211 may be a synthetic
resin film, a glass substrate, an organic/inorganic composite material substrate,
etc. The base layer 211 is not limited to a single layer, and may have a form in which
a plurality of layers is attached to one another through, for example, an adhesive
member. In an exemplary embodiment, the input sensing panel 200 is an input sensing
layer directly formed on the display panel 100, and the first base layer 211 is omitted.
[0026] In an exemplary embodiment, the first base layer 211 is divided into a first display
area TP1 and a first non-display area NTP1. The first display area TP1 is defined
as an area overlapping an area in which an image is displayed in the display panel
100 (refer to FIG. 1). Further, the first non-display area NTP1 is defined as an area
disposed on the outer periphery of the first display area TP1 and overlapping an area
in which an image is not displayed in the display panel 100. For convenience of illustration,
a plurality of lines arranged in the first non-display area NTP1 is shown in the form
of a 'line' in the figures.
[0027] In an exemplary embodiment, the plurality of first sensing electrodes IE1-1 to IE1-6
is arranged on the first base layer 211, and is arranged in the display area TP1 along
a first direction d1. Referring to FIG. 2, in an exemplary embodiment, the first sensing
electrodes IE1-1 to IE1-6 are spaced apart from one another and arranged in different
rows. In an exemplary embodiment, each of the plurality of first sensing electrodes
IE1-1 to IE1-6 includes a plurality of first sensing units SE1 and a plurality of
first connection units cp1. In an exemplary embodiment, the first sensing units SE1
are arranged along a second direction d2 intersecting the first direction d1, and
are connected to one another through the plurality of first connection units cp1.
That is, the plurality of first connection units cp1 is disposed between the plurality
of first sensing units SE1 to electrically and physically connect the plurality of
adjacent first sensing units SE1 to each other. Referring to FIG. 2, the first direction
d1 is exemplified as a column direction, and the second direction d2 is exemplified
as a row direction.
[0028] In an exemplary embodiment, the plurality of first sensing electrodes IE1-1 to IE1-6
is connected to the first touch pad unit DP1 through the plurality of first signal
lines IL1-1 to IL1-6, respectively. The first touch pad unit DP1 is electrically connected
to a touch driving circuit through a first flexible substrate. The plurality of first
sensing electrodes IE1-1 to IE1-6 may receive a driving signal from the touch driving
circuit through the first touch pad unit DP1 connected to the plurality of first signal
lines IL1-1 to IL1-6.
[0029] In an exemplary embodiment, the plurality of second sensing electrodes IE2-1 to IE2-6
is arranged on the first base layer 211, and is arranged in the first display area
TP1 along the first direction d1. That is, the plurality of second sensing electrodes
IE2-1 to IE2-6 is arranged on the same layer as the plurality of first sensing electrodes
IE1-1 to IE1-6, and are insulated from each other. In an exemplary embodiment, the
plurality of first sensing electrodes IE1-1 to IE1-6 and the plurality of second sensing
electrodes IE2-1 to IE2-6 are staggered along the first direction d1. For example,
in an exemplary embodiment, the plurality of first sensing electrodes IE1-1 to IE1-6
and the plurality of second sensing electrodes IE2-1 to IE2-6 are arranged in different
rows from each other.
[0030] In an exemplary embodiment, each of the plurality of second sensing electrodes IE2-1
to IE2-6 includes a plurality of second sensing units SE2 and a plurality of second
connection units cp2. In an exemplary embodiment, the second sensing units SE2 are
arranged along the second direction d2, and are connected to each other through the
plurality of second connection units cp2. For example, the plurality of second connection
units cp2 is disposed between the plurality of second sensing units SE2 to electrically
and physically connect the plurality of adjacent second sensing units SE2 to each
other.
[0031] In an exemplary embodiment, the plurality of second sensing electrodes IE2-1 to IE2-6
is connected to the first touch pad unit DP1 through the plurality of second signal
lines IL2-1 to IL2-6, respectively. The first touch pad unit DP1 is electrically connected
to a touch driving circuit through a first flexible substrate. The plurality of second
sensing electrodes IE2-1 to IE2-6 may receive a driving signal from the touch driving
circuit through the first touch pad unit DP1 connected to the plurality of second
signal lines IL2-1 to IL2-6.
[0032] In an exemplary embodiment, each of the plurality of first sensing units SE1 and
the plurality of second sensing units SE2 has, for example, a rhombic shape. According
to exemplary embodiments, the rhombic shape includes not only a rhombic shape, but
also a polygonal shape close to a rhombus in consideration of, for example, process
conditions. However, the present invention is not limited thereto. For example, according
to exemplary embodiments, each of the plurality of first sensing units SE1 and the
plurality of second sensing units SE2 may have, for example, any polygonal shapes,
or may have, for example, a shape without distinction between a sensor unit and a
connection unit (for example, a bar shape).
[0033] In an exemplary embodiment, the plurality of first sensing electrodes IE1-1 to IE1-6
and the plurality of second sensing electrodes IE2-1 to IE2-6 may be formed of a transparent
or translucent conductive material. The transparent or translucent conductive material
may include at least one of, for example, indium tin oxide (ITO), indium zinc oxide
(IZO), zinc oxide (ZnO), indium oxide (In
2O
3), indium gallium oxide (IGO), and aluminum zinc oxide (AZO).
[0034] In an exemplary embodiment, the plurality of first signal lines IL1-1 to IL1-6 and
the plurality of second signal lines IL2-1 to IL2-6 are arranged in the first non-display
area NTP1. In an exemplary embodiment, one end of each of the plurality of first signal
lines IL1-1 to IL1-6 is connected to one end or the other end of the plurality of
first sensing electrodes IE1-1 to IE1-6. In an exemplary embodiment, the other end
of each of the plurality of first signal lines IL1-1 to IL1-6 is connected to a plurality
of pad portions disposed on the first touch pad unit DP1. In an exemplary embodiment,
one end of each of the plurality of second signal lines IL2-1 to IL2-6 is connected
to one end or the other end of the plurality of second sensing electrodes IE2-1 to
IE2-6. In an exemplary embodiment, the other end of each of the plurality of second
signal lines IL2-1 to IL2-6 is connected to a plurality of pad portions disposed on
the first touch pad unit DP1.
[0035] Unlike the exemplary embodiment shown in FIG. 2, in an exemplary embodiment, all
of the plurality of first signal lines IL1-1 to IL1-6 and the plurality of second
signal lines IL2-1 to IL2-6 may also be arranged on the same side surface in the first
non-display area NTP1. Further, at least one of the plurality of first sensing electrodes
IE1-1 to IE1-6 and the plurality of second sensing electrodes IE2-1 to IE2-6 is connected
to the plurality of signal lines at both ends thereof to receive driving signals from
the first touch pad unit DP1. In this case, sensing sensitivity may be prevented from
being decreased due to a voltage drop of the driving signals provided through the
first touch pad unit DP1.
[0036] In an exemplary embodiment, each of the plurality of first signal lines IL1-1 to
IL1-6 and the plurality of second signal lines IL2-1 to IL2-6 may be formed of a single-layer
film made of one conductive metal selected from aluminum (AI), copper (Cu), molybdenum
(Mo), chromium (Cr), titanium (Ti), tungsten (W), molybdenum tungsten (MoW), titanium
molybdenum (MoTi), and copper/ titanium molybdenum (Cu/MoTi), a double-layer film
made of two conductive metals selected therefrom, or a triple-layer film made of three
conductive metals selected therefrom. However, the present invention is not limited
thereto, and the plurality of first signal lines IL1-1 to IL1-6 and the plurality
of second signal lines IL2-1 to IL2-6 may be made of various metals or conductors.
[0037] In an exemplary embodiment, the plurality of first sensing electrodes IE1-1 to IE1-6
and the plurality of second sensing electrodes IE2-1 to IE2-6 are arranged on different
layers from the plurality of first signal lines IL1-1 to IL1-6 and the plurality of
second signal lines IL2-1 to IL2-6. Thus, contact holes for electrically connecting
two conductors disposed on different layers and connection electrodes may be additionally
provided. In an exemplary embodiment, the plurality of first signal lines IL1-1 to
IL1-6 and the plurality of second signal lines IL2-1 to IL2-6 may be replaced by,
for example, circuit boards that are separately formed and coupled.
[0038] The first touch pad unit DP1 may be electrically connected to the touch driving circuit
through a separate first flexible substrate. Thus, the plurality of first sensing
electrodes IE1-1 to IE1-6 may receive a driving signal from the touch driving circuit
through the plurality of first signal lines IL1-1 to IL1-6 and the first touch pad
unit DP1, and the plurality of second sensing electrodes IE2-1 to IE2-6 may receive
a driving signal from the touch driving circuit through the plurality of second signal
lines IL2-1 to IL2-6 and the first touch pad unit DP1.
[0039] In an exemplary embodiment, the first insulating layer 212 is disposed on the plurality
of first sensing electrodes IE1-1 to IE1-6, the plurality of second sensing electrodes
IE2-1 to IE2-6, the plurality of first signal lines IL1-1 to IL1-6, and the plurality
of second signal lines IL2-1 to IL2-6. In an exemplary embodiment, the first insulating
layer 212 may be a single-layer structure or a multi-layer structure. The first insulating
layer 212 may be formed of a material having a high dielectric constant while having
an elastic force. In an exemplary embodiment, the first insulating layer 212 may be
formed of, for example, acrylic, polyurethane, or polydimethylsiloxane (PDMS).
[0040] In an exemplary embodiment, the first insulating layer 212 may be formed of another
material having a high dielectric constant while having an elastic force. Further,
the first insulating layer 212 may be formed of a material having adhesiveness. In
this case, the first substrate 210 and the second substrate 220 may be coupled to
each other through the first insulating layer 212. In an exemplary embodiment, a separate
adhesive layer may be formed between the first substrate 210 and the second substrate
220.
[0041] Next, the second substrate 220 will be described with reference to FIGs. 1, 3 and
5A.
[0042] In an exemplary embodiment, the second substrate 220 includes a second base layer
221, a plurality of third sensing electrodes IE3-1 to IE3-5, a plurality of fourth
sensing electrodes IE4-1 to IE4-5, a plurality of third signal lines IL3-1 to IL3-5,
a second touch pad unit DP2, and a second insulating layer 222. Reference numerals
of the plurality of third sensing electrodes IE3-1 to IE3-5 and the plurality of fourth
sensing electrodes IE4-1 to IE4-5 are expressed based on the column to be disposed.
[0043] The second base layer 221 provides a base surface to the plurality of third sensing
electrodes IE3-1 to IE3-5, the plurality of fourth sensing electrodes IE4-1 to IE4-5,
and the plurality of third signal lines IL3-1 to IL3-5. In an exemplary embodiment,
the second base layer 221 may be formed of the same material as that of the first
base layer 211. In an exemplary embodiment, the second base layer 221 is disposed
on the first insulating layer 212. As described above, in an exemplary embodiment,
when the first insulating layer 212 has an adhesive component, the second base layer
221 may be directly coupled to the first insulating layer 212. In an exemplary embodiment,
when there is a separate adhesive layer disposed between the second base layer 221
and the first insulating layer 212, the second base layer 221 may be disposed on the
separate adhesive layer.
[0044] In an exemplary embodiment, the second base layer 221 is divided into a second display
area TP2 and a second non-display area NTP2. The second display area TP2 overlaps
the above-described first display area TP1, and also overlaps a display area in which
an image is displayed by the display panel 100. The second non-display area NTP2 is
defined as an area disposed on the outer periphery of the second display area TP2
and overlapping an area in which an image is not displayed in the display panel 100.
The area of the second display area TP2 may be the same as or different from the area
of the first display area TP1.
[0045] In an exemplary embodiment, the plurality of third sensing electrodes IE3-1 to IE3-5
is arranged on the second base layer 221 along the second direction d2. For example,
in an exemplary embodiment, the plurality of third sensing electrodes IE3-1 to IE
3-5 is arranged in different columns. In an exemplary embodiment, each of the plurality
of third sensing electrodes IE3-1 to IE3-5 includes a plurality of third sensing units
SE3 and a plurality of third connection units cp3. The third sensing units SE3 are
arranged along the first direction d1, and are connected to one another through the
plurality of third connection units cp3. For example, the plurality of third connection
units cp3 is disposed between the plurality of third sensing units SE3 to electrically
and physically connect the plurality of adjacent third sensing units SE3 to each other.
[0046] In an exemplary embodiment, the plurality of third sensing electrodes IE3-1 to IE3-5
is connected to the second touch pad unit DP2 through the plurality of third signal
lines IL3-1 to IL3-5, respectively. In an exemplary embodiment, the second touch pad
unit DP2 includes a plurality of pad units arranged along the second direction d2.
The plurality of pad units may be connected to the plurality of third signal lines
IL3-1 to IL3-5, respectively. The second touch pad unit DP2 may receive a driving
signal from a touch driving circuit through a second flexible substrate. For example,
the plurality of third sensing electrodes IE3-1 to IE3-5 may receive a driving signal
from the touch driving circuit through the third signal lines IL3-1 to IL3-5 and the
second touch pad unit DP2.
[0047] In an exemplary embodiment, the plurality of fourth sensing electrodes IE4-1 to IE4-5
is arranged on the second base layer 221 along the first direction d1. The plurality
of fourth sensing electrodes IE4-1 to IE4-5 is insulated from the plurality of third
sensing electrodes IE3-1 to IE3-5. In an exemplary embodiment, the plurality of fourth
sensing electrodes IE4-1 to IE4-5 includes a plurality of fourth sensing units SE4,
respectively. However, the plurality of fourth sensing electrodes IE4-1 to IE4-5 does
not include connection units for connecting the sensing units SE4 to each other. For
example, each of the plurality of fourth sensing units SE4 has an island shape in
which the plurality of fourth sensing units SE4 are not connected to one another.
Accordingly, at least one of the plurality of fourth sensing units SE4 may be in a
floating state, and, in some exemplary embodiments, all of the plurality of fourth
sensing units may be in a floating state.
[0048] In an exemplary embodiment, each of the plurality of third sensing units SE3 and
the plurality of fourth sensing units SE4 has a rhombic shape. According to exemplary
embodiments, the rhombic shape includes not only a substantially rhombic shape, but
also a polygonal shape close to a rhombus in consideration of, for example, process
conditions. However, the present invention is not limited thereto. For example, according
to exemplary embodiments, the first to fourth sensing units SE1 to SE4 may be different
from one another in shape, and may also be different from one another in size.
[0049] In an exemplary embodiment, the plurality of third sensing electrodes IE3-1 to IE3-5
and the plurality of fourth sensing electrodes IE4-1 to IE4-5 may be formed of a transparent
or translucent conductive material. The transparent or translucent conductive material
may include at least one of, for example, indium tin oxide (ITO), indium zinc oxide
(IZO), zinc oxide (ZnO), indium oxide (In
2O
3), indium gallium oxide (IGO), and aluminum zinc oxide (AZO).
[0050] In an exemplary embodiment, the plurality of third signal lines IL3-1 to IL3-5 is
arranged in the second non-display area NTP2. One end of each of the third signal
lines IL3-1 to IL3-5 may be connected to one end or the other end of the plurality
of third sensing electrodes IE3-1 to IE3-5. The other end of each of the plurality
of third signal lines IL3-1 to IL3-5 may be connected to a plurality of pad portions
disposed on the second touch pad unit DP2. Unlike the exemplary embodiment shown in
FIG. 3, in an exemplary embodiment, one end and the other end of the plurality of
third sensing electrodes IE3-1 to IE3-5 are connected to the plurality of signal lines
to receive driving signals.
[0051] In an exemplary embodiment, each of the plurality of third signal lines IL3-1 to
IL3-5 may be formed of a single-layer film made of one conductive metal selected from,
for example, aluminum (AI), copper (Cu), molybdenum (Mo), chromium (Cr), titanium
(Ti), tungsten (W), molybdenum tungsten (MoW), titanium molybdenum (MoTi), and copper/
titanium molybdenum (Cu/MoTi), a double-layer film made of two conductive metals selected
therefrom, or a triple-layer film made of three conductive metals selected therefrom.
However, the present invention is not limited thereto, and the plurality of third
signal lines IL3-1 to IL3-5 may be made of various metals or conductors.
[0052] In an exemplary embodiment, the plurality of third sensing electrodes IE3-1 to IE3-5
and the plurality of fourth sensing electrodes IE4-1 to IE4-5 are arranged on different
layers from the plurality of third signal lines IL3-1 to IL3-5. Thus, according to
exemplary embodiments, contact holes for electrically connecting two conductors disposed
on different layers and connection electrodes may be additionally provided. In an
exemplary embodiment, the plurality of third signal lines IL3-1 to IL3-5 may be replaced
by, for example, circuit boards that are separately formed and coupled.
[0053] The second touch pad unit DP2 may be electrically connected to the touch driving
circuit through a separate second flexible substrate. Thus, the plurality of third
sensing electrodes IE3-1 to IE3-5 may receive a driving signal from the touch driving
circuit through the plurality of second signal lines IL2-1 to IL2-6 and the first
touch pad unit DP1.
[0054] In an exemplary embodiment, the second insulating layer 222 is disposed on the plurality
of third sensing electrodes IE3-1 to IE3-5, the plurality of fourth sensing electrodes
IE4-1 to IE4-5, and the plurality of third signal lines IL3-1 to IL3-5. The second
insulating layer 222 may be, for example, a single-layer structure or a multi-layer
structure. In an exemplary embodiment, the second insulating layer 222 may be formed
of, for example, an inorganic material, an organic material, or a composite material.
In an exemplary embodiment, the second adhesive member 520 is disposed on the second
insulating layer 222. In an exemplary embodiment, the second insulating layer 222
is formed of the same material as the first insulating layer 212. In an exemplary
embodiment, the second adhesive member 520 may be omitted. For example, in an exemplary
embodiment in which the second insulating layer 222 includes an adhesive material,
the second adhesive member 520 may be omitted.
[0055] Next, an overlapping relationship between the sensing electrodes will be described.
Herein, the term "overlapping" may mean that two components overlap each other in
the vertical direction.
[0056] In an exemplary embodiment, the plurality of third sensing electrodes IE3-1 to IE3-5
overlaps the plurality of second sensing electrodes IE2-1 to IE2-6, and the plurality
of fourth sensing electrodes IE4-1 to IE4-5 overlaps the plurality of first sensing
electrodes IE1-1 to IE1-6.
[0057] Herein, an example will be described with reference to FIG. 5A. The first sensing
unit SE1a and the first sensing unit SE1b illustrate two sensing units adjacent to
each other from among the plurality of first sensing electrodes IE1-1 to IE1-6. The
second sensing unit SE2a and the second sensing unit SE2b illustrate two sensing units
adjacent to each other from among the plurality of second sensing electrodes IE2-1
to IE2-6. Further, the third sensing unit SE3a and the third sensing unit SE3b illustrate
two sensing units adjacent to each other from among the plurality of third sensing
electrodes IE3-1 to IE3-5, and the fourth sensing unit SE4a and the fourth sensing
unit SE4b illustrate two adjacent sensing units from among the plurality of fourth
sensing electrodes IE4-1 to IE4-5.
[0058] The first sensing unit SE1a and the first sensing unit SE1b overlap the fourth sensing
unit SE4a and the fourth sensing unit SE4b, respectively. Further, the second sensing
unit SE2a and the second sensing units SE2b overlap the third sensing unit SE3a and
the third sensing unit SE3b, respectively.
[0059] According to exemplary embodiments, the size of each sensing unit is not particularly
limited. For example, in an exemplary embodiment, the sizes of the third sensing unit
SE3a, the third sensing unit SE3b, the fourth sensing unit SE4a, and the fourth sensing
unit SE4b are larger than the sizes of the first sensing unit SE1a, the first sensing
unit SE1b, the second sensing unit SE2a, and the second sensing unit SE2b. Thus, according
to exemplary embodiments, the sizes of the sensing units located at relatively upper
positions may be increased to secure a predetermined tolerance. Accordingly, the misalignment
that may occur when the fist substrate 210 and the second substrate 220 are attached
together may be reduced.
[0060] It is to be understood that the arrangement relationship of each sensing electrode
and each signal line is not limited to that shown in FIG. 5A, as described below with
reference to FIGs. 5B to 5D.
[0061] FIGs. 5B to 5D are cross-sectional views showing different arrangement relationships
of the sensing electrodes and signal lines shown in FIG. 5A according to exemplary
embodiments of the present invention. For convenience of explanation, a further description
of elements previously described with reference to FIG. 5A may be omitted.
[0062] Referring to FIG. 5B, in an exemplary embodiment, an input sensing panel 200_2 does
not include the second base layer 221 as compared with the input sensing panel 200
shown in FIG. 5A. Accordingly, the plurality of third sensing electrodes IE3-1 to
IE3-5, the plurality of fourth sensing electrodes IE4-1 to IE4-5, and the plurality
of third signal lines IL3-1 to IL3-5 may be formed directly on the insulating layer
212.
[0063] Referring to FIG. 5C, in an exemplary embodiment, an input sensing panel 200_3 does
not include the first base layer 211 as compared with the input sensing panel 200
shown in FIG. 5A. Accordingly, the plurality of first sensing electrodes IE1-1 to
IE1-6, the plurality of second sensing electrodes IE2-1 to IE2-6, the plurality of
first signal lines IL1-1 to IL1-6, and the plurality of second signal lines IL2-1
to IL2-6 may be formed directly on the upper surface of the display panel 100 (refer
to FIG. 1). In this case, the first adhesive member 510 having been described with
reference to FIG. 1 may be omitted. In FIG. 5C, a second substrate 220_3 includes
the first insulating layer 212, the second base layer 221, and the second insulating
layer 222.
[0064] Referring to FIG. 5D, in an exemplary embodiment, an input sensing panel 200_4 does
not include the first base layer 211 as compared with the input sensing panel 200
shown in FIG. 5A. Accordingly, the plurality of first sensing electrodes IE1-1 to
IE1-6, the plurality of second sensing electrodes IE2-1 to IE2-6, the plurality of
first signal lines IL1-1 to IL1-6, and the plurality of second signal lines IL2-1
to IL2-6 may be formed directly on the upper surface of the display panel 100 (refer
to FIG. 1). In FIG. 5D, a second substrate 220_4 includes the first insulating layer
212 and the second insulating layer 222.
[0065] Hereinafter, a method of sensing a touch position and a touch pressure in a display
device according to an exemplary embodiment of the present invention will be described
with reference to FIGs. 6 to 8.
[0066] First, a method of sensing a touch position will be described with reference to FIG.
6.
[0067] FIG. 6 is a cross-sectional view for describing a method of sensing a touch position
in a display device according to an exemplary embodiment of the present invention.
For convenience of explanation, in FIG. 6, the method will be described with reference
to a cross-section taken along line l1-l1' shown in FIG. 4.
[0068] The plurality of first sensing electrodes IE1-1 to IE1-6 may operate as sensing electrodes
Rx when sensing a touch position of, for example, a user's finger fg, and the plurality
of third sensing electrodes IE3-1 to IE3-5 may operate as driving electrodes Tx when
sensing the touch position. Instead of a user's finger fg, the sensing electrodes
Rx may also sense a touch position of, for example, a touch pen. Referring to FIG.
6, when sensing the touch position, the first sensing unit SE1a and the first sensing
unit SE1b may operate as sensing electrodes, and the third sensing unit SE3a and the
third sensing unit SE3b may operate as driving electrodes.
[0069] Further, the plurality of fourth sensing electrodes IE4-1 to IE4-5 may operate as
floating electrodes when sensing the touch position. However, the plurality of second
sensing electrodes IE2-1 to IE2-6 is not utilized for sensing the touch position.
That is, when sensing the touch position, the fourth sensing unit SE4a and the fourth
sensing unit SE4b operate as floating electrodes, whereas the second sensing unit
SE2a and the second sensing unit SE2b are not utilized for sensing the touch position.
The plurality of second sensing electrodes IE2-1 to IE2-6 including the second sensing
unit SE2a and the second sensing unit SE2b operate as dummy electrodes which are not
utilized for sensing the touch position. That is, the plurality of second sensing
electrodes IE2-1 to IE2-6 may be in a floating state in which driving signals are
not provided at the time of sensing the touch position.
[0070] An example will be described herein. In an exemplary embodiment, a first capacitor
C1 is formed between the first sensing unit SE1a operating as a sensing electrode
and the fourth sensing unit SE4a operating as a floating electrode. Further, a second
capacitor C2 is formed between the first sensing unit SE1a and the third sensing unit
SE3a, and a third capacitor C3 is formed between the first sensing unit SE1a and the
third sensing unit SE3b.
[0071] The capacitances of the first to third capacitors C1 to C3 may be changed according
to a touch by a conductive object such as, for example, a touch by a user's finger
fg or a capacitive touch pen. For example, the distance between the third sensing
unit SE3a and the fourth sensing unit SE4a and the distance between the fourth sensing
unit SE4a and the first sensing unit SE1a may be changed by the touch of a user's
finger fg. The capacitances of the first to third capacitors C1 to C3 are changed
by the distance change. The display device according to an exemplary embodiment of
the present invention may sense the position of the user's touch by detecting the
capacitance change amount.
[0072] The plurality of second sensing electrodes IE2-1 to IE2-6 overlap the plurality of
third sensing electrodes IE3-1 to IE3-5, and the plurality of fourth sensing electrodes
IE4-1 to IE4-5 overlap the plurality of first sensing electrodes IE1-1 to IE1-6. Accordingly,
when sensing the touch position, the plurality of second sensing electrodes IE2-1
to IE2-6 and the plurality of fourth sensing electrodes IE4-1 to IE4-5 can prevent
the pattern shapes of the plurality of first sensing electrodes IE1-1 to IE1-6 and
the plurality of third sensing electrodes IE3-1 to IE3-5 from being visually recognized.
[0073] Next, a method of sensing a touch position will be described with reference to FIGs.
3 and 7. Herein, a process in which touch pressure sensing is performed may be referred
to as a touch pressure sensing operation, and a process in which touch position sensing
is performed may be referred to as a touch position sensing operation.
[0074] FIG. 7 is a view for describing a method of sensing a touch pressure in a display
device according to an exemplary embodiment of the present invention.
[0075] The display device according to an exemplary embodiment of the present invention
can measure the user's touch pressure F through a resistance sensing method, as described
in more detail below.
[0076] The plurality of second sensing electrodes IE2-1 to IE2-6 and the plurality of third
sensing electrodes IE3-1 to IE3-5 may operate as pressure electrodes at the time of
detecting the user's touch pressure F. A driving signal for detecting a touch pressure
may be transmitted to the plurality of second sensing electrodes IE2-1 to IE2-6, and
a constant voltage, for example, a ground (GND) voltage, is applied to the plurality
of third sensing electrodes IE3-1 to IE3-5.
[0077] Accordingly, in an exemplary embodiment, a fourth capacitor C4 is formed between
the plurality of second sensing electrodes IE2-1 to IE2-6 and the plurality of third
sensing electrodes IE3-1 to IE3-5. The capacitance of the fourth capacitor C4 is changed
when the user's touch pressure F is applied. For example, the display device according
to an exemplary embodiment detects the user's touch pressure F by measuring the change
in the capacitance of the fourth capacitor C4. The user's touch pressure F may be
applied by, for example, the user's finger fg or a touch pen.
[0078] The plurality of first sensing electrodes IE1-1 to IE1-6 and the plurality of fourth
sensing electrodes IE4-1 to IE4-5 are not utilized for detecting the user's touch
pressure F. That is, the plurality of first sensing electrodes IE1-1 to IE1-6 and
the plurality of fourth sensing electrodes IE4-1 to IE4-5 operate as dummy electrodes
which are not utilized for sensing the touch pressure.
[0079] Next, timing of sensing a touch position and a touch pressure will be described with
reference to FIG. 8.
[0080] FIG. 8 is a view for describing a timing of sensing a touch position and a touch
pressure according to an exemplary embodiment of the present invention. For convenience
of explanation, driving signals for touch position sensing are referred to as Tx1
to Txn (n is a natural number equal to 2 or more), and driving signals for touch pressure
sensing are referred to as Fx1 to Fxm (m is a natural number equal to 2 or more).
[0081] Referring to FIG. 8, in an exemplary embodiment, the driving signals Tx1 to Txn for
touch position sensing may be provided to the plurality of third sensing electrodes
IE3-1 to IE3-5 operating as driving electrodes Tx at the time of sensing a touch position.
Further, the driving signals Fx1 to Fxm for touch pressure sensing may be provided
to the plurality of second sensing electrodes IE2-1 to IE2-6 at the time of sensing
a touch pressure. As described above, a ground voltage may be provided to the plurality
of third sensing electrodes IE3-1 to IE3-5 at the time of sensing a touch pressure.
[0082] That is, in an exemplary embodiment, the driving signals Tx1 to Txn for touch position
sensing are temporally spaced from the driving signals Fx1 to Fxm for touch pressure
sensing. In an exemplary embodiment, first, the driving signals Tx1 to Txn for touch
position sensing are provided, and then the driving signals Fx1 to Fxm for touch pressure
sensing are provided. That is, the driving signals Tx1 to Txn for touch position sensing
and the driving signals Fx1 to Fxm for touch pressure sensing are temporally spaced
from each other, thereby minimizing mutual noises, and preventing the deterioration
of sensing sensitivity. Since the accuracy of the touch position sensing is typically
of higher importance than the accuracy of the touch pressure sensing, the driving
frequencies of the driving signals Fx1 to Fxm for touch pressure sensing may be lower
than the driving frequencies of the driving signals Tx1 to Txn for touch position
sensing. Accordingly, the load of a touch driving circuit for providing the driving
signals can be reduced.
[0083] In an exemplary embodiment, the driving signals Tx1 to Txn for touch position sensing
and the driving signals Fx1 to Fxm for touch pressure sensing may be provided from
different touch pads from each other. For example, the driving signals Tx1 to Txn
for touch position sensing may be provided to the plurality of third sensing electrodes
IE3-1 to IE3-5 through the second touch pad unit DP2, and the driving signals Fx1
to Fxm for touch pressure sensing may be provided to the plurality of second sensing
electrodes IE2-1 to IE2-6 through the first touch pad unit DP1.
[0084] Unlike the exemplary embodiment shown in FIG. 8, in an exemplary embodiment, the
drive signals Fx1 to Fxm for touch pressure sensing may be provided, and then the
drive signals Tx1 to Txn for touch position sensing may be subsequently provided.
Alternatively, in an exemplary embodiment, the driving signals Tx1 to Txn for touch
position sensing and the driving signals Fx1 to Fxm for touch pressure sensing may
at least partially overlap each other.
[0085] That is, the display device according to an exemplary embodiment of the present invention
may detect both the user's touch position and touch pressure through the input sensing
panel 200. Accordingly, in exemplary embodiments, the display device does not include
a separate, dedicated sensor module for detecting a touch pressure. Thus, the thickness
of the input sensing panel 200 and the entire thickness of the display device including
the input sensing panel 200 can be reduced according to exemplary embodiments of the
present invention.
[0086] Hereinafter, a display device according to an exemplary embodiment of the present
invention will be described. For convenience of explanation, a further description
of elements previously described with reference to FIGs. 1 to 8 may be omitted.
[0087] FIG. 9 is a plan view showing an exemplary embodiment of the first substrate from
among components of the input sensing panel shown in FIG. 1 according to an exemplary
embodiment of the present invention.
[0088] In an exemplary embodiment, at least two sensing electrodes from among the plurality
of second sensing electrodes IE2-1 to IE2-6 are connected to each other through a
connection electrode. In an exemplary embodiment, the two sensing electrodes connected
to each other through the connection electrode form one strain gauge.
[0089] An example will be described. In an exemplary embodiment, the second sensing electrode
IE2-1 and the second sensing electrode IE2-2 disposed in different rows are directly
connected to each other through the first connection electrode CE1. The second sensing
electrode IE2-1 and the second sensing electrode IE2-2 may be directly connected through
a first connection electrode CE1 to form a first strain gauge.
[0090] Further, in an exemplary embodiment, the second sensing electrode IE2-3 and the second
sensing electrode IE2-4 are directly connected to each other through a second connection
electrode CE2. The second sensing electrode IE2-3 and the second sensing electrode
IE2-4 may be directly connected through the second connection electrode CE2 to form
a second strain gauge. In an exemplary embodiment, the second sensing electrode IE2-5
and the second sensing electrode IE2-6 are directly connected to each other through
the third connection electrode CE3. The second sensing electrode IE2-5 and the second
sensing electrode IE2-6 may be directly connected through the third connection electrode
CE3 to form a third strain gauge. These strain gauges may be connected to a wheat
stone bridge, as described in further detail below.
[0091] The positions of the connecting electrodes are not particularly limited. For example,
although it is shown in FIG. 9 that the first connection electrode CE1 and the second
connection electrode CE2 are disposed on different side surfaces from the third connection
electrode CE3, exemplary embodiments of the present invention are not limited thereto.
Further, unlike the exemplary embodiment illustrated in FIG. 9, in an exemplary embodiment,
the second sensing electrodes that are not adjacent to each other may be directly
connected to each other to form a strain gauge. In this specification, it will be
described that the adjacent second sensing electrodes are directly connected to each
other to form a strain gauge.
[0092] Further, although three strain gauges are shown in FIG. 9, exemplary embodiments
of the present invention are not limited thereto. For example, in an exemplary embodiment,
the display device is configured such that a plurality of strain gauges are arranged
in an area in which a touch pressure is required to be sensed, and thus, the touch
pressure can be sensed. An example will be described with reference to FIG. 10.
[0093] FIG. 10 is a view for describing a method of sensing a touch pressure through a resistance
change in an input sensing panel including the first substrate shown in FIG. 9 according
to an exemplary embodiment of the present invention.
[0094] Referring to FIG. 10, in an exemplary embodiment, an input sensing panel 200_5 includes
first to fourth strain gauges ST1 to ST4. In an exemplary embodiment, the first and
second strain gauges ST1 and ST2 are disposed at the upper side of a first base layer
211_5, and the third and fourth strain gauges ST3 and ST4 are disposed at the lower
side of the first base layer 211_5. Each of the first to fourth strain gauges ST1
to ST4 corresponds to one resistor constituting a first Wheatstone bridge circuit
unit WS1.
[0095] For example, in an exemplary embodiment, the first strain gauge ST1 serving as a
fourth resistor R4, the second strain gauge ST2 serving as a second resistor R2, the
third strain gauge ST3 serving as a first resistor R1, and the fourth strain gauge
ST4 serving as a third resistor R3 constitute the first Wheatstone bridge circuit
unit WS1. Further, each of the first power source P1 and the second power source P2
of the first Wheatstone bridge circuit unit WS1 may receive a voltage from the outside.
In an exemplary embodiment, the second power source P2 may receive a constant voltage.
In exemplary embodiments, the constant voltage may be a reference voltage such as,
for example, a ground voltage.
[0096] In an exemplary embodiment, one end of the first resistor R1 is connected to the
first power source P1, and the other end thereof is connected to a second terminal
N2. Further, one end of the second resistor R2 is connected to the first power source
P1, and the other end thereof is connected to the first terminal N1. Further, one
end of the third resistor R3 is connected to the first terminal N1, and the other
end thereof is connected to the second power source P2. Further, one end of the fourth
resistor R4 is connected to the second power source P2, and the other end thereof
is connected to the second terminal N2.
[0097] The voltage level applied to each resistance element and the first power source P1
and the second power source P2 may be adjusted such that the potential difference
between the first terminal N1 and the second terminal N2 is about 0 V. As a result,
no current flows between the first terminal N1 and the second terminal N2.
[0098] Thereafter, when a user applies a touch pressure to a part of an area in which the
first to fourth strain gauges ST1 to ST4 are arranged, resistance values of some of
the resistors R1 to R4 corresponding to the first to fourth strain gauges ST1 to ST4
are changed. For example, from among the first to fourth strain gauges ST1 to ST4,
the length of the strain gauge to which the touch pressure is applied may be increased
by the touch pressure, and thus, the corresponding resistance value may be changed.
[0099] Due to the change in resistance, a voltage difference is generated between the first
terminal N1 and the second terminal N2, and thus, the current corresponding to the
voltage difference flows. The touch pressure of a user may be detected by the measurement
of the voltage difference or the amount of current flowing. In an exemplary embodiment,
the touch driving circuit may detect the touch pressure of the user based on the measurement
of the voltage difference or the amount of current.
[0100] The position of the first Wheatstone bridge circuit unit WS1 is not particularly
limited. For example, in an exemplary embodiment, the first Wheatstone bridge circuit
unit WS1 is formed by adjusting the arrangement position of lines constituting each
resistance in the first non-display area NTP1. In an exemplary embodiment, the first
Wheatstone bridge circuit unit WS1 is formed on a flexible substrate electrically
connected to the first touch pad unit DP1.
[0101] Unlike the exemplary embodiment shown in FIG. 10, in the input sensing panel 200_5,
a plurality of Wheatstone bridge circuit units may be formed. For example, according
to exemplary embodiments, the number of Wheatstone bridge circuit units, the number
of strain gauges constituting each Wheatstone bridge circuit unit, the position of
the strain gauges, the number of fixed resistors, etc. may be varied depending on
the area in which the touch pressure of the user is required to be detected.
[0102] FIG. 11 is a view for describing an exemplary embodiment of the method of sensing
a touch pressure through a resistance change in an input sensing panel including the
first substrate shown in FIG. 9 according to an exemplary embodiment of the present
invention.
[0103] Referring to FIG. 11, in an exemplary embodiment, each of the third and fourth strain
gauges ST3 and ST4 corresponds to one resistor constituting a second Wheatstone bridge
circuit unit WS2.
[0104] For example, in an exemplary embodiment, the third strain gauge ST3 serving as the
first resistor R1 and the fourth strain gauge ST4 serving as the third resistor R3
constitute the second Wheatstone bridge circuit unit WS2. Further, in an exemplary
embodiment, the fourth resistor R4 has a fixed resistance value, and the second resistor
R2 is formed as a variable resistor. The resistance value of the second resistor R2
and the voltage level applied to the first power source P1 and the second power source
P2 may be adjusted such that the potential difference between the first terminal N1
and the second terminal N2 is about 0 V. Therefore, no current flows between the first
terminal N1 and the second terminal N2.
[0105] Thereafter, when a user applies a touch pressure to a part of an area in which the
third and fourth strain gauges ST3 and ST4 are arranged, resistance values of at least
some of the resistors R3 and R4 corresponding to the third and fourth strain gauges
ST3 and ST4 are changed. For example, the lengths of the third and fourth strain gauges
ST3 and ST4 may be increased by the external touch pressure, and thus, the corresponding
resistance values may be changed.
[0106] In an exemplary embodiment, the first and second strain gauges ST1 and ST2 are connected
to a separate Wheatstone bridge circuit unit. Accordingly, a pressure sensor may be
formed in one input sensing panel 200_6 in a multi-channel manner.
[0107] In an exemplary embodiment, the first and second strain gauges ST1 and ST2 are disposed
at the upper side of a first base layer 211_6, and the third and fourth strain gauges
ST3 and ST4 are disposed at the lower side of the first base layer 211_6.
[0108] FIG. 12 is a plan view showing an exemplary embodiment of the first substrate from
among components of the input sensing panel shown in FIG. 1 according to an exemplary
embodiment of the present invention.
[0109] Referring to FIG. 12, in an exemplary embodiment, an input sensing panel 200_7 is
different from the input sensing panel 200_5 and 200_6 shown in FIGs. 9 and 10 in
that the input sensing panel 200_7 does not include the first connection electrode
CE1 for connecting the second sensing electrode IE2-1 and the second sensing electrode
IE2-2 to each other.
[0110] Accordingly, the input sensing panel 200_7 may measure a touch pressure through capacitance
sensing in an area in which the second sensing electrode IE2-1 and the second sensing
electrode IE2-2 are disposed. In contrast, the input sensing panel 200_7 may measure
the touch pressure through a resistance change in an area in which the second sensing
electrode IE2-5 and the second sensing electrode IE2-6 connected through the third
connection electrode CE3 are disposed and an area in which the second sensing electrode
IE2-3 and the second sensing electrode IE2-4 connected through the second connection
electrode CE2 are disposed.
[0111] That is, in an exemplary embodiment, the input sensing panel 200_7 measures the touch
pressure using both the capacitance and the resistance change.
[0112] As described above, according to exemplary embodiments of the present invention,
both touch position and touch pressure may be detected by a single module of an input
sensing device and a display including the input sensing device.