CROSS REFERENCE TO RELATED APPLICATION
[0001] The present application claims priority to Korean Patent Application No.
10-2020-0046930 filed April 17, 2020, the entire contents of which is incorporated herein for all purposes by this reference.
BACKGROUND OF THE INVENTION
Field of the Invention
[0002] The present invention relates to an unmanned moving vehicle for monitoring and a
system including the same and, more particularly, to a method of controlling an unmanned
moving vehicle whose communication with a master unmanned device is disconnected.
Description of the Related Art
[0003] As interest in unmanned moving vehicles increases, the importance of developing related
systems has been highlighted, and many studies on a single unmanned system have been
conducted. Since the unmanned moving vehicles can advantageously reduce human injury
compared to manned vehicles and perform various tasks such as searching, reconnaissance,
and mapping of dangerous areas, studies on using the unmanned moving vehicles in related
fields has been actively progressing. The unmanned vehicles are used for searching,
reconnaissance, etc., in the military field, a delivery service using drones is being
developed in the transportation field by businesses such as Amazon, Google, Alibaba,
etc., and uses are being developed in various industrial fields. In addition, the
unmanned moving vehicles are actively used in fields of firefighting, photography,
agriculture, etc. and used in fields of submarine topography, mapping, and coastal
reconnaissance as unmanned floating boats, unmanned submarines, etc.
[0004] According to the five-year plan for unmanned vehicle development, the global market
is expected to grow at an annual average of 22% (24.8 billion dollars in 2015 → 67.3
billion dollars in 2020) in terms of market trends. Not only companies with existing
unmanned vehicle technology in advanced countries such as the United States and EU,
but also IT companies such as Google and Chinese companies are actively investing
in technology development and making results. In Korea, the investment is focused
on the development of medium and large UAVs, but the investment on the development
of small UAVs is inadequate, whereby the technology for core parts of autonomous vehicles
is inferior to advanced countries.
[0005] Currently, the unmanned moving vehicles are being used in various fields, and in
particular, are used for monitoring marine or terrestrial environments.
[Related Patent Document]
[0006]
[Patent Document 1] Korean Patent No. 10-1881396 (Title of the invention: Collaborative anti-drone system and drone collaboration
control method)
[Patent Document 1] Korean Patent No. 10-1895343 (Title of the invention: Drone control method for collision avoidance)
SUMMARY OF THE INVENTION
[0007] Accordingly, the present invention has been made keeping in mind the above problems
occurring in the related art, and an objective of the present invention is to provide
an unmanned moving vehicle system for monitoring the ocean or land while flying in
formation.
[0008] Another objective of the present invention is to provide a method by which unmanned
moving vehicles are capable of continuing monitoring when communication is disconnected
between a master unmanned device and the unmanned moving vehicles that are in formation.
[0009] Another objective of the present invention is to provide a method by which unmanned
moving vehicles return to a predetermined point when communication is disconnected
between a master unmanned device and the unmanned moving vehicles that are in formation.
[0010] Another objective of the present invention is to provide a method of calculating
the distances of the unmanned moving vehicle to other unmanned moving vehicles.
[0011] In order to achieve the objective, an unmanned moving vehicle system for monitoring
is provided according to the present invention, the system including a master unmanned
device performing communication with a ground control system located on the ground;
and an unmanned moving vehicle performing communication with the master unmanned device,
flying in formation around the master unmanned device, and calculating a distance
to other unmanned moving vehicle flying in formation when communication with the master
unmanned device is disconnected.
[0012] The effects according to the present invention are generated as follows.
[0013] The unmanned moving vehicle for monitoring according to the present invention can
monitor the environment while flying in formation, thereby increasing the scope of
use, and reduce the cost by using the camera used for the existing mission without
adding a separate sensor for collision avoidance.
[0014] In addition, according to the present invention, when communication with the master
unmanned device is disconnected, the distance to the approaching unmanned moving vehicle
can be calculated and the altitude of the unmanned moving vehicle can be changed when
the calculated distance is within the predetermined distance, whereby there is an
effect that can avoid collision with other unmanned moving vehicles.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] The above and other objectives, features, and other advantages of the present invention
will be more clearly understood from the following detailed description when taken
in conjunction with the accompanying drawings, in which:
FIG. 1 is a view illustrating an unmanned moving vehicle system for monitoring surroundings
according to an embodiment of the present invention;
FIG. 2 is a view illustrating an operation that the unmanned moving vehicle performs
when communication between a master unmanned device and unmanned moving vehicles is
disconnected according to an embodiment of the present invention;
FIG. 3 is a flowchart illustrating an operation that an unmanned moving vehicle performs
according to an embodiment of the present invention; and
FIG. 4 is a diagram illustrating a process in which an unmanned moving vehicle performs
a mission according to the number of mission points according to an embodiment of
the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0016] The foregoing and additional aspects of the present invention will become more apparent
through preferred embodiments described with reference to the accompanying drawings.
Hereinafter, it will be described in detail so that those skilled in the art can easily
understand and reproduce the present invention through the embodiments.
[0017] FIG. 1 is a view illustrating an unmanned moving vehicle system for monitoring surroundings
according to an embodiment of the present invention. Hereinafter, an unmanned moving
vehicle system for monitoring an environment according to an embodiment of the present
invention will be described in detail with reference to FIG. 1.
[0018] Referring to FIG. 1, the unmanned moving vehicle system 100 includes a master unmanned
device 110 and multiple unmanned moving vehicles 120. In addition, the unmanned moving
vehicle system 100 includes a ground control system.
[0019] The master unmanned device 110 performs communication with the ground control system,
and transmits and receives information necessary for environmental monitoring. The
master unmanned device 110 performs communication with multiple unmanned moving vehicles
120 and performs control so that the unmanned moving vehicles perform environmental
monitoring while flying in a predetermined area.
[0020] In connection with the present invention, the master unmanned device 110 performs
control so that the unmanned moving vehicles 120 maintain the same altitude while
flying in formation.
[0021] The unmanned moving vehicles 120 maintain a certain distance interval on the basis
of the master unmanned device 110. Each unmanned moving vehicle 120 has a safety radius
in order to avoid collision with other unmanned moving vehicles flying in formation.
When an obstacle or another unmanned moving vehicle approaches within a certain distance
on the basis of the unmanned moving vehicle, the safety radius means the distance
required to avoid collision with the unmanned moving vehicle. Thus, the unmanned moving
vehicle 120 moves to an altitude that is set to avoid collision when another unmanned
moving vehicle approaches within the safe radius.
[0022] The present invention is shown that monitors the surrounding environment using four
unmanned moving vehicles, but is not limited thereto.
[0023] The unmanned moving vehicle 120 is equipped with a camera to identify specific issues
using image information captured from the camera. For example, it is possible to obtain
an image of an illegal fishing boat from the captured image information. According
to the present invention, the unmanned moving vehicle 120 performs communication with
the master unmanned device 110 and, if necessary, performs communication with other
unmanned moving vehicles.
[0024] According to present invention, the unmanned moving vehicles 120 monitor the surrounding
environment through collaboration. In this regard, specific details will be described
below.
- 1. The unmanned moving vehicles receive a command to switch to a mission mode from
the master unmanned device.
- 2. The unmanned moving vehicles start monitoring while flying in formation around
the master unmanned device.
- 3. When the unmanned moving vehicles detect a suspect object during monitoring, the
unmanned moving vehicles turn around and monitor the corresponding object.
- 4. A size of the monitored object (for example, illegal fishing boat) is identified,
so that it is determined whether a help request signal is generated by other unmanned
moving vehicles.
- 5. When the unmanned moving vehicle receiving the help request signal are currently
on a mission, the unmanned moving vehicle first performs the current mission and then
proceeds with collaboration with other unmanned moving vehicles.
- 6. The unmanned moving vehicle returns to formation on the basis of the master unmanned
device after finishing the mission.
[0025] Multiple unmanned moving vehicles communicate via Wi-Fi, and each unmanned moving
vehicle includes a separate telemetry for the purpose of emergency return in the case
of emergency. Since the unmanned moving vehicles has a possibility of being shot down
or falling during a mission, economic feasibility should also be considered. Therefore,
according to the present invention, minimum mission equipment is mounted in the unmanned
moving vehicles, and for example, a camera is used when performing the mission. In
a normal case, the camera is used for monitoring illegal fishing boats. In the case
of communication disconnection with the master unmanned device, the unmanned moving
vehicles may collide and fall due to confusion with each other. Herein, it is possible
to measure the distance between the unmanned moving vehicles through machine learning
using the camera without a need for additional sensors such as Lidar.
[0026] Hereinafter, a machine learning method using a camera according to the present invention
will be described.
[0027] The distance between an unmanned moving vehicle and other unmanned moving vehicle
is measured by perform learning using a vector such as
v = [1/
Bh 1/
Bw 1/
Bd Ch Cw Cb]. Herein,
Bh,
Bw, and
Bd indicate a height, width, and diagonal in the bounding box, respectively; and
Ch,
Cw, and
Cb indicate average height, average width, and average breadth, respectively. The average
height, average width, and average breadth mean average values for the object. For
example, the unmanned moving vehicle stores average values for various objects, and
in particular, the average height, average width, and average breadth for the objects.
The unmanned moving vehicles use the stored average values to identify what the object
is.
[0028] In addition, the present invention is configured to estimate the exact distance to
the object by performing learning to reduce an error through
v = [1/
Bh 1/
Bw 1/
Bd Ch Cw Cb, Eh, Ew, Eb r], in which Eh, Ew, and Eb indicate a height error, width error, and
breadth error, respectively, which represent the difference between the estimated
value and the actual distance, and r indicates a compensation value for the error.
[0029] The actual distance is a value measured by a sensor such as a Lidar, etc. The actual
distance of the object is input together with a photograph of the object, so that
the unmanned moving vehicle repeatedly performs learning on the received actual distance
and photograph.
[0030] The estimated value means the distance to the object determined from the image of
the object captured through the camera after the learning is completed. The error
means a difference between the actual distance and the estimated value. In addition,
since the estimated value and the actual distance have three factors of height, width,
and breadth, the compensation value for the error is set each for three factors.
[0031] Herein, r is 1 when the error is within 10 cm, and r is -1 when the error exceeds
10 cm, whereby learning is performed to have a higher value as r accumulates. The
reason for setting the standard to 10cm is because an error within a minimum of several
centimeters is desirable when performing estimation with a camera in order to avoid
collision between the unmanned moving vehicles. Therefore, the standard is set to
10 cm, and r is set to a positive value of 1 when the error is estimated to be within
10 cm and to a negative value of -1 when the error exceeds 10 cm, with respect to
the estimated value after initial learning to represent the error. Accordingly, it
is determined whether the distance is properly estimated. Herein, as r is accumulated,
the learning is performed so that the accumulated value increases to a positive value.
[0032] To further explain, the present invention uses
v = [1/
Bh 1/
Bw 1/
Bd Ch Cw Cb]. When determining the object in the image, a bounding box is put around the detected
object. Herein, Bh, Bw, and Bd indicate the height, width, and diagonal length of
the bounding box, respectively. Ch, Cw, and Cb indicate average height, average width,
and average breadth, as described above, and are used when determining what the corresponding
detected object is. For example, it is assumed that when the detected object is a
human, Ch = 175 cm, width = 55 cm, and breadth = 30 cm, and when the object is a car,
Ch = 160 cm, Cw = 180 cm, and Cb = 400 cm. When performing learning, learning on distance
estimation is performed through the corresponding vector and the actual distance (value).
Herein, it is difficult to determine whether the distance is accurately estimated
with only the corresponding vector because there is no feedback.
[0033] Therefore, according to the present invention, ten factors are used such as in [1/
Bh 1/
Bw 1/
Bd Ch Cw Cb, Eh, Ew, Eb r], in which the error values between the actual values and the estimated
values and the compensation values for the error values are used. Accordingly, it
is possible to accurately determine the distance by performing double learning, in
such a manner as to compensate the error value for the estimated value and feedback
the same.
[0034] Considering the above vector as an input layer, the learning is performed through
hidden layers. Through such a configuration, the unmanned moving vehicle measures
the distance to an object and creates a route that is capable of avoiding collision,
whereby the unmanned moving vehicle may avoid collision and return to the home safely.
The input layer and hidden layers are used for learning. The input layer means an
input value, and in the present invention, means a vector. The learning is performed
through the hidden layers, the photograph is determined through the corresponding
layer, and the learning is performed to estimate the distance. As the number of layers
increases, the intensity of learning increases.
[0035] FIG. 2 is a view illustrating an operation that the unmanned moving vehicle performs
when communication between a master unmanned device and unmanned moving vehicles is
disconnected according to an embodiment of the present invention. Hereinafter, when
communication between the master unmanned device and the unmanned moving vehicles
is disconnected according to an embodiment of the present invention, an operation
performed in the unmanned moving vehicle will be described in detail with reference
to FIG. 2.
[0036] In step S200, when communication between the master unmanned device and the unmanned
moving vehicles is disconnected, the unmanned moving vehicles share information with
each other using Wi-Fi, and change from a decentralized type in which each unmanned
moving vehicle individually calculates position commands and states, to a centralized
type in which the ground control system controls the unmanned moving vehicles.
[0037] In step S202, the ground control system measures the position of each unmanned moving
vehicle using GPS information provided from the unmanned moving vehicles.
[0038] In step S204, the unmanned moving vehicles move to an altitude that is set before
control information is received from the ground control system. That is, the unmanned
moving vehicles are located at different altitudes to avoid collision with each other.
[0039] In step S206, the ground control system requests unmanned moving vehicles to move
to the calculated location of each unmanned moving vehicle and fly in formation, thereby
performing environmental monitoring while avoiding collision with each other on the
basis of the calculated location information. The unmanned moving vehicles maintain
a certain distance while flying in formation.
[0040] In step S208, the unmanned moving vehicles flying in formation have an altitude matched
to each other. In other words, when the unmanned moving vehicles receive a request
to perform monitoring while flying in formation from the ground control system, the
unmanned moving vehicles move to have the same altitude.
[0041] In step S210, the ground control system creates a virtual point in the center of
the flight formation to replace the master unmanned device, calculates the position
command in real time on the basis of the created virtual point, and controls the unmanned
moving vehicles to perform monitoring in the calculated position.
[0042] As described above, according to the present invention, when the unmanned moving
vehicles are disconnected from the master unmanned device, the unmanned moving vehicles
move to have different altitudes from each other to avoid collision with each other,
and move to have the same altitude to each other when receiving a request to fly in
formation from the ground control system.
[0043] In addition, the present invention creates a virtual point instead of the master
unmanned device located at the center of the flight formation and controls the movements
of unmanned moving vehicles on the basis of the created virtual point. To this end,
the ground control system creates the final position of the master unmanned device
as the virtual point, or creates the virtual point using unmanned moving vehicle GPS
information provided from the unmanned moving vehicles. The unmanned moving vehicles
return to home when receiving a request to return from the ground control system.
[0044] According to the present invention, when communication between the unmanned moving
vehicles and the master unmanned device is disconnected, flight formation is controlled
to change from a decentralized-type control method to a centralized-type control method.
According to the decentralized-type control method, each entity (unmanned moving vehicle)
performs independent duties without a master transmitting control commands, whereas
according to the centralized-type control method, the master generates and transmits
all control commands and other entities perform their duties through the received
commands.
[0045] According to an initial control method configured through Wi-Fi, although a master
unmanned device is the center point of an unmanned moving vehicle formation, the master
unmanned device simply transmits its own position, and position commands for each
unmanned moving vehicle and the master unmanned device are calculated individually.
Accordingly, when Wi-Fi is cut off due to bad weather, which is the most common at
sea, the master unmanned device may return smoothly, but four unmanned moving vehicles
flying in formation may undergo collision and falling-down during returning.
[0046] Therefore, the present invention proposes an algorithm to safely return to home and
minimize loss due to fall. Herein, the algorithm is controlled in such a way to generate
and transmit all position commands by not each unmanned moving vehicle, but the ground
control system (centralized type).
[0047] Therefore, a role of the master unmanned device and a role of the ground control
system acting in an emergency case are clearly different from each other. In other
words, in a normal case, the master unmanned device performs control on movement of
unmanned moving vehicles in order to minimize the load on the ground control system.
Therefore, according to the present invention, a decentralized-type control method
is selected in order to efficiently drive all processors as much as possible, and
change to a centralized control method occurs only in the case of emergency. In addition,
the ground control system using a relatively high-performance computer is set as the
master in the case of emergency.
[0048] More specifically, in a normal case, the master unmanned device does not generate
a command and shares only the location information with the unmanned moving vehicles,
and the unmanned moving vehicles independently generate the command. On the contrary,
in case of emergency, the ground control system generates command values and transmits
the generated command values to the unmanned moving vehicles. Therefore, the role
of the ground control system in the case of emergency is different from that of the
master unmanned device in a normal case.
[0049] FIG. 3 is a flowchart illustrating an operation that an unmanned moving vehicle performs
according to an embodiment of the present invention. Hereinafter, an operation performed
by an unmanned moving vehicle according to an embodiment of the present invention
will be described in detail with reference to FIG. 3.
[0050] In step S300, the unmanned moving vehicle follows the position of the master unmanned
device and moves according to a movement of the master unmanned device. Specifically,
the unmanned moving vehicle moves according to the movement of the master unmanned
device in a state that maintains a constant distance from the master unmanned device.
[0051] In step S302, the unmanned moving vehicle switches to a mission mode to perform a
mission.
[0052] In step S304, the unmanned moving vehicle determines whether a target to be monitored
is detected. When the target is captured, the operation moves to the next step.
[0053] In step S306, the unmanned moving vehicle determines whether a risk occurs when monitoring
the target. Whether the risk occurs is determined by determining whether the target
is a floating object or a legal fishing boat (risk level 0), the target is a small
illegal fishing boat (risk level 1), and the target is a large illegal fishing boat
(risk level 2). To this end, the unmanned moving vehicle may receive information on
the legal fishing boats from the ground control system or the master unmanned device.
[0054] In step S308, the unmanned moving vehicles continue to monitor the target when the
target monitoring is at low risk. In other words, in the case of risk level 0 or risk
level 1, the unmanned moving vehicle alone monitors the target.
[0055] In step S310, when the target monitoring is at high risk, the unmanned moving vehicles
generate a signal to attempt a collaboration request and transmit the same to other
unmanned moving vehicle.
[0056] In step S312, when the unmanned moving vehicles receive a collaboration response
signal from the other unmanned moving vehicle, the unmanned moving vehicle performs
the mission in collaboration with the other unmanned moving vehicle, whereas when
the unmanned moving vehicle does not receive the collaboration response signal from
the other unmanned moving vehicle, the unmanned moving vehicle performs the mission
alone.
[0057] Of course, in the case that the unmanned moving vehicle receive a request for mission
collaboration from other unmanned moving vehicle, when the unmanned moving vehicle
is currently performing the mission, the unmanned moving vehicle completes the mission
and then moves to the vicinity of the other unmanned moving vehicle, thereby performing
the mission in collaboration. Of course, when the unmanned moving vehicle is not currently
performing the mission, the unmanned moving vehicle moves near the other unmanned
moving vehicle and performs the mission in collaboration. In other words, the unmanned
moving vehicle currently performing its mission first completes the mission and then
moves near the other unmanned moving vehicle, and then performs the mission requested
from the other unmanned moving vehicle or returns to the base formation which is the
original position.
[0058] FIG. 4 is a diagram illustrating a process in which an unmanned moving vehicle performs
a mission according to the number of mission points according to an embodiment of
the present invention.
[0059] When there is only one mission point, one of the unmanned moving vehicles flying
in formation performs the mission, and when there are two mission points, two unmanned
moving vehicles of the unmanned moving vehicles flying in formation perform the mission.
When there are three mission points, three unmanned moving vehicles of the unmanned
moving vehicles flying in formation perform the mission, and when there are four mission
points, all of the unmanned moving vehicles flying in formation perform the mission.
Of course, when there is no mission point, the unmanned moving vehicles fly in formation
on the basis of the master unmanned device, and when communication with the master
unmanned device is disconnected, the unmanned moving vehicles fly in formation on
the basis of a virtual point.
[0060] The present invention has been described with reference to one embodiment shown in
the drawings, but this is merely exemplary, and those skilled in the art will understand
that various modifications and other equivalent embodiments are possible therefrom.
1. An unmanned moving vehicle system for monitoring, the system comprising:
a master unmanned device performing communication with a ground control system located
on the ground; and
an unmanned moving vehicle performing communication with the master unmanned device,
flying in formation around the master unmanned device, and calculating a distance
to other unmanned moving vehicle flying in formation when communication with the master
unmanned device is disconnected.
2. The system of claim 1, wherein the unmanned moving vehicle is configured in such a
manner as to maintain a same altitude as the other unmanned moving vehicle in a state
in which communication with the master unmanned device is connected, and to move to
have an altitude different from the other unmanned moving vehicle until receiving
a request to fly in formation with the other unmanned moving vehicle from the ground
control system in a state in which communication with the master unmanned device is
disconnected.
3. The system of claim 2, wherein the unmanned moving vehicle
extracts a bounding box surrounding an object photographed through a camera, and
uses a height, horizontal width, and diagonal length of the extracted bounding box,
an average height, an average width, and an average breadth of the input object, a
height error between an actual distance and an estimated value, a width error between
the actual distance and the estimated value, and a breadth error between the actual
distance and the estimated value, and a compensation value of each of the errors,
in order to calculate the distance to the other unmanned moving vehicle.
4. The system of claim 3, wherein the actual distance is a value measured using a sensor
and input to the unmanned moving vehicle together with a photograph of the object,
and the estimated value is a value calculated from an image of the object photographed
through the camera.
5. The system of claim 4, wherein the compensation value of the error is calculated in
such a manner as to be increased by 1 when the error is within a predetermined value
and to be decreased by 1 when the error exceeds the predetermined value.
6. The system of claim 5, wherein the unmanned moving vehicle rejects a request for collaboration,
which is transmitted from the other unmanned moving vehicle, when the unmanned moving
vehicle is currently monitoring a target.
7. The system of claim 6, wherein the unmanned moving vehicle makes a request for collaboration
to the other unmanned moving vehicle, depending on a risk level of the target being
monitored, the risk level for the target being determined according to whether the
target is a floating object or depending on a size of the target.
8. The system of claim 2, wherein the unmanned moving vehicle
receives a request to fly in formation with the other unmanned moving vehicle from
the ground control system, and
flies in formation with the other unmanned moving vehicle on the basis of a virtual
point provided from the ground control system.