(19)
(11) EP 3 430 258 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
10.11.2021 Bulletin 2021/45

(21) Application number: 17710878.4

(22) Date of filing: 14.03.2017
(51) International Patent Classification (IPC): 
F03D 7/04(2006.01)
(52) Cooperative Patent Classification (CPC):
F05B 2270/602; F05B 2270/309; F05B 2220/30; F05B 2270/807; F05B 2260/74; F03D 7/0224; Y02E 10/72; F05B 2270/328; F05B 2270/326
(86) International application number:
PCT/EP2017/055949
(87) International publication number:
WO 2017/157912 (21.09.2017 Gazette 2017/38)

(54)

ELECTRICAL PITCH CONTROL SYSTEM AND A METHOD FOR OPERATING AT LEAST ONE ROTOR BLADE AND USE OF THE SYSTEM FOR PERFORMING THE METHOD

ELEKTRISCHES ANSTELLWINKELSTEUERUNGSSYSTEM UND VERFAHREN ZUM BETRIEB VON MINDESTENS EINEM ROTORBLATT UND VERWENDUNG DES SYSTEMS ZUR DURCHFÜHRUNG DES VERFAHRENS

SYSTÈME DE COMMANDE ÉLECTRIQUE DE PAS ET PROCÉDÉ D'EXPLOITATION D'AU MOINS UNE PALE DE ROTOR ET UTILISATION DU SYSTÈME POUR RÉALISER LE PROCÉDÉ


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 16.03.2016 DK 201600163

(43) Date of publication of application:
23.01.2019 Bulletin 2019/04

(73) Proprietor: DEIF Wind Power Technology (Shanghai) Co., Ltd.
201203, Shanghai (CN)

(72) Inventor:
  • THOMSEN, Jesper
    6855 Outrup (DK)

(74) Representative: Pedersen, Tenna Marian 
c/o IP Station AB Järnvägsgatan 2
683 30 Hagfors
683 30 Hagfors (SE)


(56) References cited: : 
EP-A1- 2 690 286
WO-A1-2011/134473
US-A1- 2015 118 047
EP-A2- 2 693 049
CN-U- 202 055 993
   
  • Dennis Horwitz: "Sensing the Motion", , 1 August 2010 (2010-08-01), pages 27-31, XP055378089, Retrieved from the Internet: URL:http://www.micronor.com/products/files /MICRONOR_ARTICLE Sensing The Motion-Rotary Positon Sensors-Electromechanical, Electronic aqnd Fiber Optic [PTE August-2010]Micronor pgs 26-31 - Copy.pdf [retrieved on 2017-06-01]
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to an electrical pitch control system for controlling at least one rotor blade for a wind turbine, said wind turbine comprising

a nacelle, as well as a hub both place on the top of a tower, said hub is adapted to rotate around an axis, and at least one rotor blade is pivotable mounted on the hub,

said system comprising at least one electrical pitch drive system, each drive system is connected to a rotor blade and an electrical pitch motor; the electrical pitch drive system(s) and the motor(s) are placed in the hub,

said electrical pitch drive system(s) is/are adapted to communicate with units comprising the motor(s) for pitching the rotor blade it is attached to and in accordance with inputs registered from a first sensor and a second sensor, and said electrical pitch control system further comprises at least one gyroscope placed in the hub,

each electrical pitch drive system(s) and gyroscope rotate with the rotation of the rotor blades and the rotation of the hub around the axis, and are placed in a fixed distance to the axis of rotation of the hub,

said gyroscope is adapted to register an angle value of the longitudinal axis of the rotor blade with respect to earth gravity,

and a processor is adapted to calculate an angular position of the rotor blade based on said values.



[0002] The present invention also relates to a method for operating at least one rotor blade for a wind turbine said wind turbine comprising an electrical pitch control system a nacelle, as well as a hub both placed on the top of a tower, wherein

said hub is rotating around an axis and at least one rotor blade is rotatable mounted on the hub;

said electrical pitch control system comprises at least one electrical pitch drive system each connected to a rotor blade and an electrical pitch motor; wherein the electrical pitch drive system(s) and the motor(s) are placed in the hub, and

said electrical pitch drive system(s) controls the motor(s) for pitching the rotor blade and in accordance with inputs registered from a first sensor and a second sensor,

said electrical pitch control system further comprises at least one gyroscope placed in the hub in a fixed distance to the axis of rotation of the hub and the electrical pitch drive system(s) and the gyroscope(s) are rotating in a fixed distance to the axis of rotation of the hub.

The invention also relates to use of the electrical pitch control system for performing the method.

[0003] The rotor blades of a wind turbine is operated by an electrical pitch system, this is also called pitch operation. An electrical motor is the actuator moving each individual blade. A typical wind turbine has three rotor blades, whereas the numbers of individually operated motors are three. The electrical pitch system is also interfacing to the nacelle electrical system, wherefrom it receives a number of set points for the pitch and the electrical power to operate the motors/blades.
There are two main features for the pitch system, one is the normal operation, where the pitch is used to optimize the lift of the rotor blade in all wind situations, and the other is the main brake of the wind turbine. This brake function is simple as the rotor blade is moved from the operation point (from 0° to 30° depending on the actual average wind speed) to vane position, this is 90°.
As the pitch system is the only brake for the wind turbine, the three motors have to be controlled individually and independently from each other. This setup forms a "two out of three redundant system", which is allowed due to the wind turbine design-specifications.

[0004] The case where the electrical power supply to the wind turbine is interrupted, called black outs, or for shorter power cuts - where the grid is reestablish fast (<1 second) - called brownouts, are critical for the electrical pitch system. To prevent the pitch system from stopping during grid cutouts, a backup power is put into the pitch system. Typically, this can be based on lead acid batteries, Lithium type batteries or the newest technology: UltraCaps.
The demand for performance level (ISO 13849) is very high for pitch systems. The drives need a very high level of internal surveillance but also an internal communication between the three drives, as no sleeping errors are allowed. If an error appears in one of the three pitch subsystems, the two subsystems have to move the motor until the blade reaches vane position. This kind of redundancy is according to ISO13849 called; 2 out of three. For each of the three pitch drives, the pitch angle is measured redundantly. In the known technology this is done by a resolver/encoder on the motor shaft mentioned a second sensor, and an encoder on the blade rod - comprising a tooth wheel - mentioned a first sensor.
One of the future issues that needs to be solved in order to optimize the wind turbine operation is the position sensing of each individual blade. This position sensing is the first obstacle to make a control system that can optimize the load of the total turbine, hence reducing the mechanical structure. The position sensing here is used for reducing the load of the blade on wake effect. The wake effect appears when the blade passes the tower, as turbulence is making the aerodynamic life unstable. The result of the wake is an additional load on the blade, which can be reduced by pitching the blade as it passes the tower.

[0005] WO10139613 A2 discloses a technology for protecting a wind turbine tower from extreme loads, e.g. during an emergency stop or to ensure safe operation in the event of a functional failure of a nacelle-housed control system. The wind turbine comprises a hub-sited control circuitry arranged in a hub section of the wind turbine, the hub section supporting the rotor blades.

[0006] A measurement unit is provided in the hub section for determining at least one parameter, such as an acceleration of a component of the wind turbine, a load of a component of the wind turbine, or a rotational speed of the rotor or the turbine shaft. The hub-sited control circuitry is configured to determine a load, acceleration, velocity or deflection of the tower or a wind turbine blade based on the at least one parameter measured by the measurement unit. Further, it is configured to control the wind turbine based on the determined load, deflection, velocity, or acceleration of the tower or blade and a desired value for said load, deflection, velocity or acceleration. However, the control system is not able to determine the angle between the gravity vector and the longitudinal axis of the blade.

[0007] EP2896827 describes a pitch control system for providing a measuring system for determining at least the pitch angle of the blades relative to the turbine hub. It comprises gyroscopes placed on each rotor blade. As the gyroscopes are located on the blades, they are highly vulnerable to influences such as wind and negative pressure resulting from tower wake effect. This will cause turbulence and will allow the registration of the gyroscopes to be noise affected, thereby making the measuring inaccurate causing the determination of the pitch angle to be inaccurate as well.

[0008] US 2015/118047 A1 describes a method for determining parameters of a wind turbine. The method may generally include receiving signals from at least one Micro Inertial Measurement Unit (MIMU) mounted on or within a component of the wind turbine and determining at least one parameter of the wind turbine based on the signals received from one Micro Inertial Measurement Unit.

[0009] It is an object with the present invention to provide a system and a method providing an effective and clear specification of a rotor position or at least to provide a useful alternative to the known technology.

[0010] According to a first aspect of the invention an electrical pitch control system as described in the introduction is provided where that each electrical pitch drive system comprises a gyroscope, said gyroscope is an integrated part of the electrical pitch drive system, and the wind turbine comprises 3 rotor blades,
each rotor blade being connected to its own pitch drive system and each pitch drive system includes its own gyroscope adapted to register the angle values of the connected rotor blades in relation to earth gravity, said processor is adapted to calculate the angular position of each of the rotor blades based on said values.

[0011] According to a further aspect of the invention a method for operating at least one rotor blade as described in the introduction is provided where a gyroscope is placed in each of the electrical pitch drive systems and each in a fixed distance to the axis of rotation of the hub and thereby being an integrated part of each electrical pitch drive system,

and when the rotor blades rotate, the hub is rotating, by which rotating the gyroscope(s) indicates a direction of the rotor blade with respect to earth's gravity,

and whereby the electrical pitch control system is detecting a direction/angular position of the center axis of the rotor blade with respect to the tower and parallel to the gravitational vector

said wind turbine comprises three rotor blades, and that the gyroscope placed in each electrical pitch drive system register an angle value of the connected rotor blades in relation to gravity,

a communication bus system compares received values - a first position - of each angle registered between gravity and the center axis of the rotor blade received from the gyroscope connected to the rotor blade in question, and the difference between the received values results in an orientation/ position of each rotor blade in relation to the neighboring rotor blades,

and that a processor calculates an optimal pitching of each rotor blade in accordance with the orientation/position.

Hereby is achieved that a rotor blade position with respect to the vertical is determined. Thus, it is possible to control the blade pitch more accurate according to the wind/turbulence situation since it is thus possible to take into account the tower wake effect, for example. This situation gives turbulence, which is compensated by pitching the rotor blade. The signal of a gyroscope is a very reliable signal.

[0012] By the expression that a detecting takes place is to understand that, a processor based on angle values received from the gyroscopes calculates the position of the rotor blade in question and in relation to the tower; that is in relation to the gravitational vector.
By the expression that a rotor blade is pivotable mounted on the hub is to understand that the rotor blade is pitchable/rotatable around the longitudinal axis of the rotor.

[0013] The gyroscope is an integral part of the electrical pitch drive system and immovable in relation to this. The gyroscope rotates with the electrical pitch drive system positioned immovably in the hub and rotates with the hub about its axis of rotation. The electrical pitch drive system is NOT fixed to the rotor blade, so the blade movements are not part of the gyroscope records.
The hub rotates, of course, together with the rotor blades as the rotor blades are fixed to the hub, but the deflection of the blades due to wind load and the pitch of the rotor blades will not be recorded by the gyroscopes. Because the gyroscope is positioned as it is, a more accurate positioning of the rotor blades takes place. There is less noise. The protected location makes the control of the rotor blades more accurately. In the high-precision registration, it is possible to more accurately pitch the blades and, inter alia, take into account the "tower wake effect". The three rotor blades are placed 120º from each other.

[0014] According to another aspect of the invention, the electrical pitch control system comprises a communication bus system adapted to gather values of each angle registered between gravity and the center axis of the rotor blade received from the gyroscope connected to the rotor blade in question,
and the difference between the received values is determined by an algorithm, and a processor is adapted to calculate an angular position of each rotor blades in relation to the neighboring rotor blades.

[0015] Thus, it is possible to filter disturbances like tower oscillations. Thereby a more accurate position indication for each rotor blade position is achieved.

[0016] According to another aspect of the invention each electrical pitch drive system comprises an accelerometer adapted to register the acceleration of the rotor blade it is connected to.

[0017] A gyroscope is unfortunately constructed in such a way that it drives during the use hereof whereby the measurement over time may be inaccurate. By incorporating an accelerometer, it is possible to compensate for this during the interaction between the accelerometer and the gyroscope.

[0018] According to another aspect of the invention, the first sensor comprises at least one gyroscope attached immovably to each of the rotor blades.
Hereby it is achieved that the pitch position/angle of each rotor blade is determined very exactly. Further, the interaction between the gyroscopes advantageously placed at the rod of the blade and the gyroscope placed in the drive system makes it possible to calibrate the gyroscopes and thereby calibrate the blade position.
Further, the gyroscope placed at the rotor blade makes it possible to eliminate the encoder placed in relation to the pitch tooth wheel. Thereby the pitch measuring and the regulating of the pitching is more precise as this mechanical element - the encoder that comprises a minor tooth wheel that interacts with the pitch tooth wheel - is avoided.
The encoder which is connected to the gear wheel is a relatively precise component but due to its construction and way of operation it must be placed fixed on an area of the nacelle. It detects the pitch angle by detecting a small tooth wheel engaging in the pitch tooth wheel, which is coupled to the rotor blade shaft in order to pitch that. This mechanical design leads to some backlash in the registration of pitch angel for each rotor blade. Thus, an inaccuracy in the correction of the pitch angle occurs, as this correction is a function of the measured pitch angle.

[0019] According to another aspect of the invention, the first sensor comprises at least one accelerometer attached immovably to each of the rotor blades. The gyroscope(s) placed on the blade may drift. The interaction between the accelerometer and the gyroscope(s) placed at the rotor blades makes it possible to compensate for this drift.

[0020] According to another aspect of the invention, the first sensor and the second sensor are each adapted to detect data of the pitch angel of the rotor blade to which they are connected,
and that the electrical pitch drive system is adapted to change the pitch angle by controlling the motor when the data from the first sensor is different from the data from the second sensor.

[0021] According to another aspect of the invention, the first sensor is located on the rotor blade shaft in the area near the hub.

[0022] According to another aspect of the invention, the electrical pitch control system comprises a plurality of gyroscopes attached immovable to a rotor blade and placed with a certain distance between them and in the entire length of the blade.

[0023] According to another aspect of the invention, a force vector of a first rotor blade is 120º offset with respect to a force vector for a second rotor blade which is 120 ° offset with respect to a force vector of a third rotor blade.

[0024] According to another aspect of the invention, each electrical pitch drive system is placed stationary in the hub and the gyroscope is placed stationary in the electrical pitch drive system and is an integrated part of the electrical pitch drive system.
The hub is rotating around an axis and the electrical pitch drive system and the gyroscope placed in the electrical pitch drive system are rotating around the same axis together with the hub.
By stationary is to understand that the electrical pitch drive system is immovable in relation to the hub and the gyroscope is immovable in relation to the electrical pitch drive system and thereby the hub.

[0025] As stated above the invention also relates to a method.

[0026] According to another aspect of the invention, the electrical pitch drive system further comprises an accelerometer, and the accelerometer register the angular velocity of the rotor blade attached to the electrical pitch drive system when it is rotating, and a processor adapts the values of the velocity, and the electrical pitch drive system pitches the rotor blades in accordance with the values in order to optimize the velocity of the rotor blades.

[0027] According to another aspect of the invention, at least one gyroscope is attached immovably to each of the rotor blades and that the gyroscopes in the electrical pitch drive system communicates with the gyroscopes placed on the rotor blade the electrical pitch drive system in question regulates whereby the gyroscopes are calibrated, and making a calibration of the blade position possible without extensive geometrical measurements.

[0028] According to another aspect of the invention, at least one accelerometer is placed immovably to each rotor blade and the gyroscope placed on the rotor blade communicates with the accelerometer placed on the same rotor blade, and by the communications, an optimized pitch angle is obtained, as the accelerometer compensates the drift of the gyroscope.
The amplitude of the gyroscope signal is drifting because of the technology. The gyroscope signal is by far more stable than for instance an accelerometer signal, as the higher frequencies are filtered out compared to the accelerometer signal. However, the amplitude of the accelerometer is more stable than the amplitude signal of the gyroscope, giving a unique combination.

Brief description of the drawings:



[0029] 

Fig. 1 is a perspective view of an exemplary wind turbine

Fig. 2 shows an electrical pitch control system comprising three separate electrical pitch drive systems and a number of units.

Fig. 3 shows 3 axes X-axis, Y-axis and Z-axis used in a gyroscope according to the invention.

Fig. 4 shows placement of three gyroscopes in three electrical pitch drive systems according to the invention.

Fig. 5 shows the position of the three gyroscopes in a wind turbine hub according to the invention.

Fig. 6 shows a communication between the three separate electrical pitch drive systems according to the invention.

Fig. 7 shows the position of a gyroscope in relation to a rotor blade.

Fig. 8 shows a vector-diagram for three vectors.

Fig. 9 shows the placement of a sensor on the pitch-able part of a rotor blade.



[0030] Fig. 1 is a perspective view of an exemplary wind turbine 14 that includes a nacelle 16 housing a generator (not shown in FIG. 1). The nacelle 16 is mounted on a top of a tall tower 18, only a portion of which is shown in FIG. 1. The wind turbine 14 also includes a rotor assembly that includes a plurality of rotor blades 17 attached to a rotating hub 15. There are no specific limits on the number of rotor blades 17 required by the present invention. Wind turbine 14 includes a main control system 7 - fig. 2 - that is configured to perform overall system monitoring and control including pitch and speed regulation, high-speed shaft and yaw brake application, yaw and pump motor application and fault monitoring. This is explained below with reference to fig. 2.

[0031] Fig. 2 shows a pitch control system 1 comprising 3 separate electrical pitch drive systems 3 and a number of units comprising a slip ring 4". The pitch control system 1 is adapted to a plant adapted to drive a wind turbine 14 comprising 3 rotor blades 17 as shown in fig. 1. Each electrical pitch drive systems 3 is connected to a pitch motor 2 and an energy supply in the form of replaceable batteries 6. The electrical pitch drive system is attached immovable to the hub 15.
The pitch control system 1 communicates with a slip ring 4", which is a unit that transfers electrical signals from a fixed unit (the nacelle 16) to the rotating part the hub 15. The nacelle comprises a main-controller 7 and a EL supply network 5.
Each electrical pitch motor 2 moves/pitches the rotor blade it is connected to.

[0032] There are two main features for the pitch control system 1, one is the normal operation, where the pitch is used to optimize the lift of the rotor blade 17 in all wind situations, and the other is the main brake of the wind turbine 14. This brake function is simple as the turbine blade is moved/pitched from the operation point (from 0° to 30° depending on the actual average wind speed) to vane position, this is 90°.
As the pitching of the rotor blades is the only brake for the wind turbine the three pitch motors 2 have to be controlled individually and independent from each other. This is done by the electrical pitch drive system 3.
For each of the three pitch drives 3, the pitch angle is measured redundantly, as there is a second sensor 20 - a resolver/encoder - on the motor shaft of the electrical pitch motor, and a first sensor (not shown)- an encoder - on the rod of the rotor blade.
The invention provides a sensor comprising at least a gyroscope 22 (see fig. 4) placed in each electrical pitch drive system 3 and attached immovable to this.

[0033] A gyroscope 22 is a device that uses Earth's gravity to help determine orientation. Its design may comprise a freely rotating rotor, mounted onto a spinning axis in the center of a larger and more stable wheel. As the axis turns, the rotor remains stationary to indicate the central gravitational pull, and thus which way is "down."

[0034] Fig. 3 shows the three axes used in a gyroscope: the three axes are perpendicular to each other. The gyroscope is able to measure the rotation around each of the axes: the X- axe, the Y- axe and the Z-axe. The arrows are showing the rotation direction. When the gyroscope is placed in an electrical pitch drive systems 3 the orientation of the rotor blade in relation to the gravity vector is determined.

[0035] If the sensor comprises a gyroscope 22 combined with an accelerometer the accelerometer will measure the acceleration in the direction of the x, y and z vector. In this case, the sensor placed in the electrical pitch drive system 3 is a combined sensor.
An accelerometer is a device designed to measure non-gravitational acceleration. When the accelerometer is integrated into the gyroscope, it is thereby an integrated part of the electrical pitch drive system 3. When the system due to rotation of the hub goes from a standstill to any velocity, the accelerometer is designed to respond to the vibrations associated with such movement. It uses microscopic crystals that go under stress when vibrations occur, and from that stress, a voltage is generated to create a reading on any acceleration. The accelerometer then compensate for the drift of the gyroscope.

[0036] Fig. 4 shows placement of 3 gyroscopes 22 in 3 electrical pitch drive systems 3 and the orientation of the X,Y,Z vectors shown in fig. 3. The sensor may be a combined sensor also comprising the accelerometer 25. As each of the electrical pitch drive system 3 is connected to a rotor blade (not shown) the three electrical pitch rive systems 3 and thereby the three gyroscopes (and perhaps the accelerometer 25) are spaced 120º apart from each other.

[0037] In fig. 5 the position of the three gyroscopes in the wind turbine hub is shown. Each of the gyroscopes gives the following result:
Ya,Yb,Yc :
Vector in the y-axis for an electrical pitch drive system
Xa,Xb,Xc :
Vector in the X-axis for an electrical pitch drive system
Yag,Ybg,Ycg
Vector component from gravitation
Xag,Xbg,Xcg
Vector component from gravitation
a,b,c represent each an electrical pitch drive system.

[0038] The arithmetic calculation gives the following result:
qa, qb, qc : Angles between the central axis of a rotor blade and the gravity vector for each of the three gyroscopes which is equivalent to the angle of each of the three blades. [°]

[0039] The arithmetic describing the transition from the physical properties and to the angle is not described here.
Fig. 6 shows a communication between the 3 separate electrical pitch drive systems 3. The three rotor blades angle relative to gravity and are gathered via an internal bus system 24 between the three electrical pitch drive systems 3. The bandwidth of the bus 24 s lower than 50 ms, which gives a reliable position result. The three electrical pitch drive systems 3 are placed in the hub in close vicinity of the rotor blades. The bus communication 24 may be a part of the overall control system. This new communication line may be used for other purposes as well, for instance the safety system.
By comparing the three angles of the three electrical pitch drive systems, a new angle of the rotor blades can be calculated. This is shown below and with reference to fig. 8.

[0040] Fig. 7 shows the position of the gyroscope 22 in relation to a rotor blade 17 The gyroscope 22 is placed in the electrical pitch drive system 3. Orientation measurement of each electrical pitch drive system is based on the gyroscope signal shown with an arrow 28. The electrical pitch drive system 3 is placed in a fixed distance from the centerline of rotation 26 of the hub and near the rod 27 of the rotor blade 17. The gyroscope 22 measurement is based on the gravitational force. Therefor the position of the electrical pitch drive system 3 in relation to the rotational center of the pitching of the rotor blade is not relevant.

[0041] The orientation measurement is based on the signal from the gyroscope 22. If an accelerometer is incorporated, the signal from the accelerometer is used for correction of the amplitude from the gyroscope. One of the disadvantages of the gyroscope is that the signal is drifting and the accelerometer may compensate for that.

[0042] Fig. 8 shows a vector-diagram
Where:
Fa, Fb, Fc The measured vectors showing the orientation of each rotor blade, three phase system, where all vectors can have any amplitude or phase angle.

[0043] Fal, Fbl, Fc1 :
The synchronous components, three-phase system where the amplitude for all three vectors are displaced 120° and the amplitude is the same for all three vectors.

[0044] Fa2, Fb2, Fc2 : The asymmetrical vectors three-phase system with the same properties as the synchronous components, but with an opposite rotational direction. The asymmetrical vectors are relevant when the rotor blades are not displaced 120º (that is optimal position) in relation to each other.
F0: The zero component, a constant that has no rotation and a constant amplitude.

[0045] The equations are as follows:





The vector components are when recalculated:





This is the same for all three phases.
a: The vector length is a unity length and have a 120° displacement clockwise.
a2: The vector length is a unity length and have a 240° displacement clockwise.
The mathematical theory can be used as a filter; the synchronous component is the component that gives the exact value for all three acceleration components.
The inverse component is a description of the minor differences between the axes. The zero component is a number of structural movements/acceleration that is the same for all three axes. As the three sensors are in the same hub, this could be a tower vibration. The equation shows the filtering that may take place by using an accelerometer in combination with the gyroscope.

[0046] The synchronous vector components are recalculated with a fixed time interval in the interval from 1 to 100 ms. This has to be done with a fixed time interval. Thereby it is possible to analyze on tower vibration and other physical issues.

[0047] With this data, the structural movement of the hub can be calculated, the structural movements is the 0-component, this is a component that is the same for all three vectors Fa, Fb and Fc that is for each of the rotor blades. The structural measurements could be: Tower vibration, tower bending and asymmetrical loads for the rotor.
Fig. 9 shows placement of a sensor on the pitchable part of a rotor blade. The blade is seen from the bottom side.
Prior art discloses that each of the three pitch drives measure the pitch angle as there is a second sensor - a resolver - placed on the motor shaft, and a first sensor - an encoder - placed on the blade rod. The encoder is placed on a fixed part and comprises a small tooth wheel rotating with the pitch tooth wheel. The encoder hereby gives a redundant measurement of the pitch angle.
Typical the encoder is very precise, but the mechanical construction of the wheel and the material chosen, gives a slack of approximately 0,5°.

[0048] The blade rod 27 has a fixed 27' and a rotational part 27", which is moved and controlled by the pitch system 3.
The encoder is according to the present invention exchanged with another sensor namely a gyroscope 22' and advantageously an accelerometer 25' is combined with the gyroscope 22'. This sensor is placed at the rod 27 of the rotor blade and immovable in relation to the rod. Several sensors according to the invention may be placed at the rod and/or along with the longitudinal direction of the rotor blade. As the pitch angle is variating, the sensor 22',25' placed on the blade is moved relative to the electrical pitch drive system 3 and the gyroscope 22 and advantageously the accelerometer 25 placed in the electrical pitch drive system 3. The sensors shall be calibrated to the exact value of the 0-position.
Placing a gyroscope 22' at the rod of the rotor blade makes it possible to eliminate the encoder placed in relation to the pitch tooth wheel. This part of the invention introduces an additional sensor that is replacing the redundant encoder.
The new sensor is mounted on the rotor blade and is fixed in the orientation of the blade.
The sensor will indicate a pitch angle directly. Each blade has this new sensor, and the three units are operating individually, as the three blades have to operate individually.
The measured angle is transmitted via a bus system - for instance SSI- to the electrical pitch drive system 3 where the value is evaluated and compared with angle measured on the motor shaft by the second sensor 20 shown in fig 2 and 9.
A clear advantage of the new sensor 22',25' is that the sensor is attached to the blade and the absolute position of the blade can be measured.
Another advantage is that the sensor comprising a gyroscope and an accelerometer has no movable parts; hence, the wear of this is limited.


Claims

1. Electrical pitch control system (1) for controlling at least one rotor blade (17) for a wind turbine (14), said wind turbine (14) comprising

a nacelle (16), as well as a hub (15) both place on the top of a tower (18), said hub (15) is adapted to rotate around an axis, and at least one rotor blade (17) is pivotable mounted on the hub (15),

said system comprising at least one electrical pitch drive system (3), each drive system (3) is connected to a rotor blade (17) and an electrical pitch motor (2); the electrical pitch drive system(s) (3) and the motor(s) (2) are placed in the hub (15),

said electrical pitch drive system(s) (3) is/are adapted to communicate with units comprising the motor(s) (2) for pitching the rotor blade (17) it is attached to and in accordance with inputs registered from a first sensor and a second sensor (20)

and said electrical pitch control system (1) further comprises at least one gyroscope placed in the hub (15),

each electrical pitch drive system(s) (3) and gyroscope (22) rotate with the rotation of the rotor blades (17) and the rotation of the hub (15) around the axis, and are placed in a fixed distance to the axis of rotation of the hub (15),

said gyroscope (22) is adapted to register an angle value of the longitudinal axis of the rotor blade (17) with respect to earth gravity, and a processor is adapted to calculate an angular position of the rotor blade (17) based on said values characterized in

that each electrical pitch drive system (3) comprises a gyroscope (22), said gyroscope (22) is an integrated part of the electrical pitch drive system (3), and the wind turbine (14) comprises 3 rotor blades (17),

each rotor blade (17) being connected to its own pitch drive system (3) and each pitch drive system (3) includes its own gyroscope (22) adapted to register the angle values of the connected rotor blade (17) in relation to earth gravity, said processor is adapted to calculate the angular position of each of the rotor blades (17) based on said values.


 
2. Electrical pitch control system (1) according to claim 1 characterized in that the electrical pitch control system (1) comprises a communication bus system (24) adapted to gather received values of each angle registered between gravity and the center axis of the rotor blade (17) received from the gyroscope (22) connected to the rotor blade (17) in question,
and the difference between the received values is determined by an algorithm, and a processor is adapted to calculate an angular position of each rotor blade (17) in relation to the neighboring rotor blades (17).
 
3. Electrical pitch control system (1) according to any of the preceding claims characterized in that each electrical pitch drive system (3) comprises an accelerometer (25) adapted to register the acceleration of the rotor blade (17) it is connected to.
 
4. Electrical pitch control system (1) according to any of the preceding claims characterized in that the first sensor comprises at least one gyroscope (22') attached immovably to each of the rotor blades (17).
 
5. Electrical pitch control system (1) according to any of the preceding claims characterized in that the first sensor comprises at least one accelerometer (25') attached immovably to each of the rotor blades (17).
 
6. Electrical pitch control system (1) according to any of the preceding claims characterized in the first sensor and the second sensor (20) are each adapted to detect data of the pitch angel of the rotor blade (17) to which they are connected,
and that the electrical pitch drive system (3) is adapted to change the pitch angle by controlling the motor (2) when the data from the first sensor is different from the data from the second sensor (20).
 
7. Electrical pitch control system (1) according to any of the preceding claims characterized in that the first sensor is located on the rotor blade shaft in the area near the hub (15).
 
8. Electrical pitch control system (1) according to any of the preceding claims characterized in the electrical control system (1) comprises a plurality of gyroscopes (22') placed on a rotor blade (17) and placed with a certain distance between them and in the entire length of the rotor blade (17).
 
9. Electrical pitch control system (1) according to any of the preceding claims characterized in that a force vector of a first rotor blade is 120º offset with respect to a force vector of a second rotor blade which is 120 ° offset with respect to a force vector of a third rotor blade.
 
10. Electrical pitch control system (1) according to any of the preceding claims characterized in each electrical pitch drive system (3) is placed stationary in the hub (15) and the gyroscope (22) is placed stationary in the electrical pitch drive system (3) and is an integrated part of the electrical pitch drive system (3).
 
11. A method for operating at least one rotor blade (17) for a wind turbine (14) said wind turbine (14) comprising an electrical pitch control system (1), a nacelle (16), as well as a hub (15) both placed on the top of a tower (18), wherein

said hub (15) is rotating around an axis and at least one rotor blade (17) is rotatable mounted on the hub (15);

said electrical pitch control system (1) comprises at least one electrical pitch drive system (3) each connected to a rotor blade (17) and an electrical pitch motor (2); wherein the electrical pitch drive system(s) (3) and the motor(s) (2) are placed in the hub (15), and

said electrical pitch drive system(s) (3) controls the motor(s) (2) for pitching the rotor blade (17) and in accordance with inputs registered from a first sensor and a second sensor (20),

said electrical pitch control system (1) further comprises at least one gyroscope placed in the hub (15) in a fixed distance to the axis of rotation of the hub (15) and the electrical pitch drive system(s) (3) and the gyroscope(s) (22) are rotating in a fixed distance to the axis of rotation of the hub (15) characterized in

that each rotor blade is connected to its own electrical pitch drive system (3), Z a gyroscope (22) is placed in each of the electrical pitch drive systems (3) and each in a fixed distance to the axis of rotation of the hub (15) and thereby being an integrated part of each electrical pitch drive system (3),

and when the rotor blades (17) rotate, the hub (15) is rotating, by which rotating the gyroscope(s) indicates a direction of the rotor blade (17) with respect to earth's gravity,

and whereby the electrical pitch control system (1) is detecting a direction/angular position of the center axis of the rotor blade (17) with respect to the tower (18) and parallel to the gravitational vector,

said wind turbine comprises three rotor blades (17), and that the gyroscope (22) placed in each electrical pitch drive system (3) register an angle value of the connected rotor blade in relation to gravity,

a communication bus system (24) compares received values - a first position - of each angle registered between gravity and the center axis of the rotor blade (17) received from the gyroscope (22) connected to the rotor blade (17) in question,

and the difference between the received values results in an orientation/ position of each rotor blade (17) in relation to the neighboring rotor blades,

and that a processor calculates an optimal pitching of each rotor blade (17) in accordance with the orientation/position.


 
12. A method for operating at least one rotor blade (17) according to claim 11 characterized in that the electrical pitch drive system (3) further comprises an accelerometer (25) and that the accelerometer (25) register the angular velocity of the rotor blade (17) attached to the electrical pitch drive system (3) when it is rotating
and that a processor adapts the values of the velocity and that the electrical pitch drive system (3) pitches the rotor blades (17) in accordance with the values in order to optimize the velocity of the rotor blades (17).
 
13. A method for operating at least one rotor blade according to claim 11 or 12 characterized in that at least one gyroscope (22') is attached immovably to each of the rotor blades (17)
and that the gyroscope(s) (22) in the electrical pitch drive system (3) communicates with the gyroscopes (22') placed on the rotor blade (17) that the electrical pitch drive system (3) in question regulates, whereby the gyroscopes (22) are calibrated and making a calibrating of the blade position possible without extensive geometrical measurements.
 
14. A method for operating at least one rotor blade (17) according to claim 13 characterized in that at least one accelerometer (25') is placed immovably to each rotor blade (17) and that the gyroscope (22') placed on the rotor blade (17) communicates with the accelerometer (25') placed on the same rotor blade (17)
and by the communications an optimized pitch angle is obtained and the accelerometer compensates the drift of the gyroscope (22').
 
15. Use of the electrical pitch control system (1) according to any of the claims 1-10 for performing the method according to any of the claims 11-14.
 


Ansprüche

1. Elektrisches Pitch-Steuerungssystem (1) zum Steuern von mindestens einem Rotorblatt (17) für eine Windturbine (14), wobei die Windturbine (14) das Folgende aufweist:

eine Gondel (16) sowie eine Nabe (15), die beide an der Spitze eines Turms (18) angeordnet sind, wobei die Nabe (15) um eine Achse drehbar ist und mindestens ein Rotorblatt (17) schwenkbar an der Nabe (15) angebracht ist,

wobei das System mindestens ein elektrisches Pitch-Antriebssystem (3) umfasst, wobei jedes Antriebssystem (3) mit einem Rotorblatt (17) und einem elektrischen Pitch-Motor (2) verbunden ist; wobei das (die) elektrische(n) Pitch-Antriebssystem(e) (3) und der (die) Motor(en) (2) in der Nabe (15) angeordnet sind,

wobei das (die) elektrische(n) Blattverstellungs-Antriebssystem(e) (3) so ausgelegt ist (sind), dass es (sie) mit Einheiten, die den (die) Motor(en) (2) zum Verstellen des Rotorblatts (17) umfassen, an dem es (sie) befestigt ist (sind),

und in Übereinstimmung mit Eingaben, die von einem ersten Sensor und einem zweiten Sensor (20) registriert werden, kommuniziert (kommunizieren) und wobei das elektrische Blattverstellantriebssystem (1) außerdem mindestens ein in der Nabe (15) angeordnetes Gyroskop umfasst,

wobei jedes elektrische Pitch-Antriebssystem(e) (3) und Gyroskop (22) sich mit der Drehung der Rotorblätter (17) und der Drehung der Nabe (15) um die Achse drehen und in einem festen Abstand zur Drehachse der Nabe (15) angeordnet sind,

wobei das Gyroskop (22) dazu ausgelegt ist, einen Winkelwert der Längsachse des Rotorblatts (17) in Bezug auf die Erdanziehung zu registrieren, und ein Prozessor dazu ausgelegt ist, eine Winkelposition des Rotorblatts (17) auf der Grundlage der Werte zu berechnen, dadurch gekennzeichnet dass jedes elektrische Pitch-Antriebssystem (3) ein Gyroskop (22) umfasst,

wobei das Gyroskop (22) ein integrierter Teil des elektrischen Pitch-Antriebssystems (3) ist, und die Windturbine (14) 3 Rotorblätter (17) umfasst, und

jedes Rotorblatt (17) mit seinem eigenen Pitch-Antriebssystem (3) verbunden ist und jedes Pitch-Antriebssystem (3) sein eigenes Gyroskop (22) enthält, das dazu ausgelegt ist, die Winkelwerte des verbundenen Rotorblatts (17) in Bezug auf die Erdanziehung zu registrieren, wobei der Prozessor dazu ausgelegt ist, die Winkelposition jedes der Rotorblätter (17) auf der Grundlage dieser Werte zu berechnen.


 
2. Elektrisches Blattverstellsystem (1) nach Anspruch 1, dadurch gekennzeichnet, dass das elektrische Blattverstellsystem (1) ein Kommunikationsbussystem (24) umfasst, das dazu ausgelegt ist, empfangene Werte jedes zwischen der Schwerkraft und der Mittelachse des Rotorblatts (17) registrierten Winkels zu sammeln, die von dem mit dem betreffenden Rotorblatt (17) verbundenen Gyroskop (22) empfangen werden,
und dass die Differenz zwischen den empfangenen Werten durch einen Algorithmus bestimmt wird und ein Prozessor angepasst ist, um eine Winkelposition jedes Rotorblatts (17) in Bezug auf die benachbarten Rotorblätter (17) zu berechnen.
 
3. Elektrisches Pitch-Steuerungssystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedes elektrische Pitch-Antriebssystem (3) einen Beschleunigungsmesser (25) umfasst, der dazu ausgelegt ist, die Beschleunigung des Rotorblatts (17), mit dem er verbunden ist, zu registrieren.
 
4. Elektrisches Pitch-Steuerungssystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Sensor mindestens ein Gyroskop (22') umfasst, das unbeweglich relativ zu jedem der Rotorblätter (17) angebracht ist.
 
5. Elektrisches Blattverstellsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Sensor mindestens einen Beschleunigungsmesser (25') umfasst, der unbeweglich relativ zu jedem der Rotorblätter (17) angebracht ist.
 
6. Elektrisches Pitch-Steuerungssystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Sensor und der zweite Sensor (20) jeweils dazu ausgebildet sind, Daten des Pitchwinkels des Rotorblatts (17) zu erfassen, mit dem sie verbunden sind,
und dass das elektrische Pitch-Antriebssystem (3) dazu eingerichtet ist, den Pitch-Winkel durch Steuerung des Motors (2) zu ändern, wenn die Daten des ersten Sensors sich von den Daten des zweiten Sensors (20) unterscheiden.
 
7. Elektrisches Pitch-Steuerungssystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Sensor auf der Rotorblattwelle im Bereich der Nabe (15) angeordnet ist.
 
8. Elektrisches Blattverstellsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrische Steuersystem (1) eine Vielzahl von Gyroskopen (22') umfasst, die auf einem Rotorblatt (17) angeordnet sind und mit einem bestimmten Abstand zwischen einander und über die gesamten Länge des Rotorblatts (17) angeordnet sind.
 
9. Elektrisches Blattverstellsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Kraftvektor eines ersten Rotorblattes um 120° versetzt ist relativ zu einem Kraftvektor eines zweiten Rotorblattes, der wiederum um 120° versetzt ist relativ zu einem Kraftvektor eines dritten Rotorblattes.
 
10. Elektrisches Blattverstellsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedes elektrische Blattverstellantriebssystem (3) stationär in der Nabe (15) angeordnet ist und das Gyroskop (22) stationär in dem elektrischen Blattverstellantriebssystem (3) angeordnet ist und ein integrierter Teil des elektrischen Blattverstellantriebssystems (3) ist.
 
11. Verfahren zum Betreiben mindestens eines Rotorblatts (17) für eine Windturbine (14), wobei die Windturbine (14) ein elektrisches Pitch-Steuerungssystem (1), eine Gondel (16) sowie eine Nabe (15) aufweist, die beide an der Spitze eines Turms (18) angeordnet sind, wobei die Nabe (15) sich um eine Achse dreht und mindestens ein Rotorblatt (17) drehbar an der Nabe (15) angebracht ist;

das elektrische Blattverstellsystem (1) mindestens ein elektrisches Blattverstellantriebssystem (3), das jeweils mit einem Rotorblatt (17) verbunden ist und einen elektrischen Blattverstellmotor (2) umfasst; wobei das/die elektrische(n) Blattverstellantriebssystem(e) (3) und der/die Motor(en) (2) in der Nabe (15) angeordnet sind, und

dass (die) elektrische(n) Anstellantriebsystem(e) (3) den (die) Motor(en) (2) zum Anstellen des Rotorblatts (17) und in Übereinstimmung mit Eingängen steuert, die von einem ersten Sensor und einem zweiten Sensor (20) registriert werden, das elektrische Blattverstellsteuersystem (1) ferner mindestens ein Gyroskop umfasst, das in der Nabe (15) in einem festen Abstand zur Drehachse der Nabe (15) angeordnet ist, und wobei das (die) elektrische(n) Blattverstellantriebssystem(e) (3) und das (die) Gyroskop(e) (22) sich in einem festen Abstand zur Drehachse der Nabe (15) drehen, dadurch gekennzeichnet

dass jedes Rotorblatt an sein eigenes elektrisches Pitch-Antriebssystem (3) angeschlossen ist,

ein Gyroskop (22) in jedem der elektrischen Pitch-Antriebssysteme (3) und jeweils in einem festen Abstand zur Drehachse der Nabe (15) angeordnet ist und dadurch ein integrierter Teil jedes elektrischen Pitch-Antriebssystems (3) ist und dass, wenn sich die Rotorblätter (17) drehen, sich die Nabe (15) dreht, wodurch das/die Gyroskop(e) eine Richtung des Rotorblatts (17) in Bezug auf die Erdanziehungskraftrichtung anzeigen,

und dass das elektrische Pitch-Steuerungssystem (1) eine Richtung/Winkelposition der Mittelachse des Rotorblatts (17) in Bezug auf den Turm (18) und parallel zum Gravitationsvektor erfasst und dass das in jedem elektrischen Pitch-Antriebssystem (3) angeordnete Gyroskop (22) einen Winkelwert des angeschlossenen Rotorblatts in Bezug auf die Schwerkraft registriert,

wobei ein Kommunikationsbussystem (24) die empfangenen Werte - eine erste Position - jedes zwischen der Schwerkraft und der Mittelachse des Rotorblatts (17) registrierten Winkels vergleicht, die von dem mit dem betreffenden Rotorblatt (17) verbundenen Gyroskop (22) empfangen werden,

und dass die Differenz zwischen den empfangenen Werten eine Orientierung/Position jedes Rotorblattes (17) in Bezug auf die benachbarten Rotorblätter ergibt,

und dass ein Prozessor ein optimales Einstellen des Pitchwinkels jedes Rotorblatts (17) in Übereinstimmung mit der Orientierung/Position errechnet.


 
12. Verfahren zum Betreiben mindestens eines Rotorblatts (17) nach Anspruch 11, dadurch gekennzeichnet, dass das elektrische Pitch-Antriebssystem (3) ferner einen Beschleunigungsmesser (25) umfasst und dass der Beschleunigungsmesser (25) die Winkelgeschwindigkeit des am elektrischen Pitch-Antriebssystem (3) angebrachten Rotorblatts (17) erfasst, wenn es sich dreht,
und dass ein Prozessor die Werte der Geschwindigkeit anpasst und dass das elektrische Pitch-Antriebssystem (3) die Rotorblätter (17) in Übereinstimmung mit den Werten dreht, um die Geschwindigkeit der Rotorblätter (17) zu optimieren.
 
13. Verfahren zum Betreiben mindestens eines Rotorblatts nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass an jedem der Rotorblätter (17) mindestens ein Gyroskop (22') unbeweglich angebracht ist
und dass das/die Gyroskop(e) (22) im elektrischen Pitch-Antriebssystem (3) mit den auf dem Rotorblatt (17), das das betreffende elektrische Pitch-Antriebssystem (3) regelt, angebrachten Gyroskopen (22') kommuniziert, wodurch die Gyroskope (22) kalibriert werden und eine Kalibrierung der Blattposition ohne aufwändige geometrische Messungen möglich wird.
 
14. Verfahren zum Betreiben mindestens eines Rotorblatts (17) nach Anspruch 13, dadurch gekennzeichnet, dass an jedem Rotorblatt (17) mindestens ein Beschleunigungsmesser (25') unbeweglich angebracht ist und dass das am Rotorblatt (17) angebrachte Gyroskop (22') mit dem am selben Rotorblatt (17) angebrachten Beschleunigungsmesser (25') kommuniziert
und durch die Kommunikation ein optimierter Anstellwinkel erhalten wird und der Beschleunigungsmesser die Drift des Gyroskops (22') kompensiert.
 
15. Verwendung des elektrischen Pitchregelungssystems (1) nach einem der Ansprüche 1-10 zur Durchführung des Verfahrens nach einem der Ansprüche 11-14.
 


Revendications

1. Système de contrôle d'inclinaison électrique (1) pour le contrôle d'au moins une pale de rotor (17) d'une éolienne (14), ladite éolienne (14) comprenant

une nacelle (16) ainsi qu'un moyeu (15), tous les deux placés en haut d'une tour (18), ledit moyeu (15) étant conçu pour tourner autour d'un axe, et au moins une pale de rotor (17) étant montée de manière pivotante sur le moyeu (15),

ledit système comprenant au moins un système d'entraînement électronique d'inclinaison (3), chaque système d'entraînement (3) étant connecté à une pale de rotor (17) et un moteur électrique d'inclinaison (2) ; le(s) système(s) d'entraînement d'inclinaison électrique (3) et le(s) moteur(s) (2) sont placés dans le moyeu (15),

ledit/lesdits système(s) d'entraînement d'inclinaison électrique (3) est/sont conçu(s) pour communiquer avec des unités comprenant le(s) moteur(s) (2) pour l'inclinaison de la pale du rotor (17) à laquelle il(s) est/sont fixé(s) et conformément à des entrées enregistrées par un premier capteur et un deuxième capteur (20)

et ledit système de contrôle d'inclinaison électrique (1) comprend en outre au moins un gyroscope placé dans le moyeu (15),

chaque système d'entraînement d'inclinaison électrique (3) et chaque gyroscope (22) tournent avec la rotation des pales du rotor (17) et la rotation du moyeu (15) autour de l'axe et sont placés à une distance fixe de l'axe de rotation du moyeu (15),

ledit gyroscope (22) est conçu pour enregistrer une valeur d'angle de l'axe longitudinal de la pale du rotor (17) par rapport à la gravité terrestre,

et un processeur est conçu pour calculer une position angulaire de la pale du rotor (17) sur la base desdites valeurs, caractérisé en ce que

chaque système d'entraînement d'inclinaison électrique (3) comprend un gyroscope (22), ledit gyroscope (22) étant une partie intégrante du système d'entraînement d'inclinaison électrique (3) et l'éolienne (14) comprenant 3 pales de rotor (17),

chaque pale de rotor (17) étant connectée à son propre système d'entraînement d'inclinaison (3) et chaque système d'entraînement d'inclinaison (3) comprenant son propre gyroscope (22) conçu pour enregistrer les valeurs d'angles de la pale de rotor (17) connectée par rapport à la gravité terrestre, ledit processeur étant conçu pour calculer la position angulaire de chacune des pales du rotor (17) sur la base desdites valeurs.


 
2. Système de contrôle d'inclinaison électrique (1) selon la revendication 1, caractérisé en ce que le système de contrôle d'inclinaison électrique (1) comprend un système de bus de communication (24) conçu pour collecter les valeurs reçues de chaque angle enregistré entre la gravité et l'axe central de la pale du rotor (17), reçu du gyroscope (22) connecté à la pale du rotor (17) concerné,
et la différence entre les valeurs reçues est déterminée par un algorithme et un processeur est conçu pour calculer une position angulaire de chaque pale de rotor (17) par rapport aux pales de rotor (17) voisines.
 
3. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes, caractérisé en ce que chaque système d'entraînement d'inclinaison électrique (3) comprend un accéléromètre (25) conçu pour enregistrer l'accélération de la pale du rotor (17) à laquelle il est connecté.
 
4. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes, caractérisé en ce que le premier capteur comprend au moins un gyroscope (22') fixé de manière inamovible à chacune des pales du rotor (17).
 
5. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes, caractérisé en ce que le premier capteur comprend au moins un accéléromètre (25') fixé de manière inamovible à chacune des pales du rotor (17) .
 
6. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes, caractérisé en ce que le premier capteur et le deuxième capteur (20) sont conçus chacun pour détecter les données de l'angle d'inclinaison de la pale du rotor (17) à laquelle ils sont connectés,
et en ce que le système d'entraînement d'inclinaison électrique (3) est conçu pour modifier l'angle d'inclinaison en contrôlant le moteur (2) lorsque les données provenant du premier capteur sont différentes des données provenant du deuxième capteur (20) .
 
7. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes, caractérisé en ce que le premier capteur est situé sur l'arbre de la pale de rotor à proximité du moyeu (15).
 
8. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes, caractérisé en ce que le système de contrôle électrique (1) comprend une pluralité de gyroscopes (22') placés sur une pale de rotor (17) et placés avec une certaine distance entre eux et sur toute la longueur de la pale de rotor (17).
 
9. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes, caractérisé en ce qu'un vecteur de force d'une première pale de rotor est décalé de 120° par rapport à un vecteur de force d'une deuxième pale de rotor qui est décalé de 120° par rapport à un vecteur de force d'une troisième pale de rotor.
 
10. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes, caractérisé en ce que chaque système d'entraînement d'inclinaison électrique (3) est placé de manière stationnaire dans le moyeu (15) et le gyroscope (22) est placé de manière stationnaire dans le système d'entraînement d'inclinaison électrique (3) et fait partie intégrante du système d'entraînement d'inclinaison électrique (3).
 
11. Procédé de fonctionnement d'au moins une pale de rotor (17) pour une éolienne (14), ladite éolienne (14) comprenant un système de contrôle d'inclinaison électrique (1), une nacelle (16) ainsi qu'un moyeu (15), tous les deux placés en haut d'une tour (18), dans lequel

ledit moyeu (15) tourne autour d'un axe et au moins une pale de rotor (17) est montée de manière rotative sur le moyeu (15) ;

ledit système de contrôle d'inclinaison électrique (1) comprend au moins un système d'entraînement d'inclinaison électrique (3), chacun connecté à une pale de rotor (17) et un moteur d'inclinaison électrique (2) ; dans lequel le(s) système(s) d'entraînement d'inclinaison électrique (3) et le(s) moteur(s) (2) sont placés dans le moyeu (15) et

ledit/lesdits système(s) d'entraînement d'inclinaison électrique (3) contrôle le(s) moteur(s) (2) pour faire tanguer la pale du rotor (17) et conformément à des entrées enregistrées par un premier capteur et un deuxième capteur (20) ,

ledit système de contrôle d'inclinaison électrique (1) comprend en outre au moins un gyroscope placé dans le moyeu (15) à une distance fixe de l'axe de rotation du moyeu (15) et le(s) système(s) d'entraînement d'inclinaison électrique (3) et le(s) gyroscope(s) (22) tournent à une distance fixe de l'axe de rotation du moyeu (15), caractérisé en ce que

chaque pale de rotor est connectée à son propre système d'entraînement d'inclinaison électrique (3),

un gyroscope (22) est placé dans chacun des systèmes d'entraînement d'inclinaison électrique (3) et chacun à une distance fixe de l'axe de rotation du moyeu (15) et faisant partie intégrante de chaque système d'entraînement d'inclinaison électrique (3),

et, lorsque les pales du rotor (17) tournent, le moyeu (15) tournant, ce qui fait tourner le(s) gyroscope(s) qui indiquent une direction de la pale du rotor (17),par rapport à la gravité terrestre,

et le système de contrôle d'inclinaison électrique (1) détecte une position de direction/angulaire de l'axe central de la pale du rotor (17) par rapport à la tour (18) et parallèle au vecteur gravitationnel,

ladite éolienne comprend trois pales de rotor (17) et le gyroscope (22) placé dans chaque système d'entraînement d'inclinaison électrique (3) enregistre une valeur d'angle de la pale de rotor connectée par rapport à la gravité,

un système de bus de communication (24) compare les valeurs reçues - une première position - de chaque valeur d'angle enregistrée entre la gravité et l'axe central de la pale du rotor (17), reçu du gyroscope (22) connecté à la pale de rotor (17) concernée,

et la différence entre les valeurs reçues indique une orientation/position de chaque pale de rotor (17) par rapport aux pales de rotor voisines,

et un processeur calcule une inclinaison optimale de chaque pale de rotor (17) en fonction de l'orientation/position.


 
12. Procédé de fonctionnement d'au moins une pale de rotor (17) selon la revendication 11, caractérisé en ce que le système d'entraînement d'inclinaison électrique (3) comprend en outre un accéléromètre (25) et en ce que l'accéléromètre (25) enregistre la vélocité angulaire de la pale du rotor (17) fixée au système d'entraînement d'inclinaison électrique (3) lorsqu'elle tourne
et en ce qu'un processeur adapte les valeurs de la vélocité et en ce que le système d'entraînement d'inclinaison électrique (3) incline les pales du rotor (17) en fonction des valeurs afin d'optimiser la vélocité des pales du rotor (17) .
 
13. Procédé de fonctionnement d'au moins une pale de rotor (17) selon la revendication 11 ou 12, caractérisé en ce qu'au moins un gyroscope (22') est fixé de manière inamovible à chacune des pales du rotor (17)
et en ce que le (s) gyroscope (s) (22) dans le système d'entraînement d'inclinaison électrique (3) communique avec les gyroscopes (22') placés sur la pale du rotor (17) que le système d'entraînement d'inclinaison électrique (3) concerné régulé, les gyroscopes (22) étant calibrés et effectuant un calibrage de la position de pale possible sans mesures géométriques extensives.
 
14. Procédé de fonctionnement d'au moins une pale de rotor (17) selon la revendication 13, caractérisé en ce qu'au moins un accéléromètre (25') est placé de manière inamovible sur chaque pale de rotor (17) et en ce que le gyroscope (22') placé sur la pale du rotor (17) communique avec l'accéléromètre (25') placé sur la même pale de rotor (17),
et, grâce aux communications, un angle d'inclinaison optimisé est obtenu et l'accéléromètre compense la dérive du gyroscope (22').
 
15. Utilisation du système de contrôle d'inclinaison électrique (1) selon l'une des revendications 1 à 10 pour l'exécution du procédé selon l'une des revendications 11 à 14.
 




Drawing























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description