[0001] The present invention relates to an electrical pitch control system for controlling
at least one rotor blade for a wind turbine, said wind turbine comprising
a nacelle, as well as a hub both place on the top of a tower, said hub is adapted
to rotate around an axis, and at least one rotor blade is pivotable mounted on the
hub,
said system comprising at least one electrical pitch drive system, each drive system
is connected to a rotor blade and an electrical pitch motor; the electrical pitch
drive system(s) and the motor(s) are placed in the hub,
said electrical pitch drive system(s) is/are adapted to communicate with units comprising
the motor(s) for pitching the rotor blade it is attached to and in accordance with
inputs registered from a first sensor and a second sensor, and said electrical pitch
control system further comprises at least one gyroscope placed in the hub,
each electrical pitch drive system(s) and gyroscope rotate with the rotation of the
rotor blades and the rotation of the hub around the axis, and are placed in a fixed
distance to the axis of rotation of the hub,
said gyroscope is adapted to register an angle value of the longitudinal axis of the
rotor blade with respect to earth gravity,
and a processor is adapted to calculate an angular position of the rotor blade based
on said values.
[0002] The present invention also relates to a method for operating at least one rotor blade
for a wind turbine said wind turbine comprising an electrical pitch control system
a nacelle, as well as a hub both placed on the top of a tower, wherein
said hub is rotating around an axis and at least one rotor blade is rotatable mounted
on the hub;
said electrical pitch control system comprises at least one electrical pitch drive
system each connected to a rotor blade and an electrical pitch motor; wherein the
electrical pitch drive system(s) and the motor(s) are placed in the hub, and
said electrical pitch drive system(s) controls the motor(s) for pitching the rotor
blade and in accordance with inputs registered from a first sensor and a second sensor,
said electrical pitch control system further comprises at least one gyroscope placed
in the hub in a fixed distance to the axis of rotation of the hub and the electrical
pitch drive system(s) and the gyroscope(s) are rotating in a fixed distance to the
axis of rotation of the hub.
The invention also relates to use of the electrical pitch control system for performing
the method.
[0003] The rotor blades of a wind turbine is operated by an electrical pitch system, this
is also called pitch operation. An electrical motor is the actuator moving each individual
blade. A typical wind turbine has three rotor blades, whereas the numbers of individually
operated motors are three. The electrical pitch system is also interfacing to the
nacelle electrical system, wherefrom it receives a number of set points for the pitch
and the electrical power to operate the motors/blades.
There are two main features for the pitch system, one is the normal operation, where
the pitch is used to optimize the lift of the rotor blade in all wind situations,
and the other is the main brake of the wind turbine. This brake function is simple
as the rotor blade is moved from the operation point (from 0° to 30° depending on
the actual average wind speed) to vane position, this is 90°.
As the pitch system is the only brake for the wind turbine, the three motors have
to be controlled individually and independently from each other. This setup forms
a "two out of three redundant system", which is allowed due to the wind turbine design-specifications.
[0004] The case where the electrical power supply to the wind turbine is interrupted, called
black outs, or for shorter power cuts - where the grid is reestablish fast (<1 second)
- called brownouts, are critical for the electrical pitch system. To prevent the pitch
system from stopping during grid cutouts, a backup power is put into the pitch system.
Typically, this can be based on lead acid batteries, Lithium type batteries or the
newest technology: UltraCaps.
The demand for performance level (ISO 13849) is very high for pitch systems. The drives
need a very high level of internal surveillance but also an internal communication
between the three drives, as no sleeping errors are allowed. If an error appears in
one of the three pitch subsystems, the two subsystems have to move the motor until
the blade reaches vane position. This kind of redundancy is according to ISO13849
called; 2 out of three. For each of the three pitch drives, the pitch angle is measured
redundantly. In the known technology this is done by a resolver/encoder on the motor
shaft mentioned a second sensor, and an encoder on the blade rod - comprising a tooth
wheel - mentioned a first sensor.
One of the future issues that needs to be solved in order to optimize the wind turbine
operation is the position sensing of each individual blade. This position sensing
is the first obstacle to make a control system that can optimize the load of the total
turbine, hence reducing the mechanical structure. The position sensing here is used
for reducing the load of the blade on wake effect. The wake effect appears when the
blade passes the tower, as turbulence is making the aerodynamic life unstable. The
result of the wake is an additional load on the blade, which can be reduced by pitching
the blade as it passes the tower.
[0005] WO10139613 A2 discloses a technology for protecting a wind turbine tower from extreme loads, e.g.
during an emergency stop or to ensure safe operation in the event of a functional
failure of a nacelle-housed control system. The wind turbine comprises a hub-sited
control circuitry arranged in a hub section of the wind turbine, the hub section supporting
the rotor blades.
[0006] A measurement unit is provided in the hub section for determining at least one parameter,
such as an acceleration of a component of the wind turbine, a load of a component
of the wind turbine, or a rotational speed of the rotor or the turbine shaft. The
hub-sited control circuitry is configured to determine a load, acceleration, velocity
or deflection of the tower or a wind turbine blade based on the at least one parameter
measured by the measurement unit. Further, it is configured to control the wind turbine
based on the determined load, deflection, velocity, or acceleration of the tower or
blade and a desired value for said load, deflection, velocity or acceleration. However,
the control system is not able to determine the angle between the gravity vector and
the longitudinal axis of the blade.
[0007] EP2896827 describes a pitch control system for providing a measuring system for determining
at least the pitch angle of the blades relative to the turbine hub. It comprises gyroscopes
placed on each rotor blade. As the gyroscopes are located on the blades, they are
highly vulnerable to influences such as wind and negative pressure resulting from
tower wake effect. This will cause turbulence and will allow the registration of the
gyroscopes to be noise affected, thereby making the measuring inaccurate causing the
determination of the pitch angle to be inaccurate as well.
[0008] US 2015/118047 A1 describes a method for determining parameters of a wind turbine. The method may generally
include receiving signals from at least one Micro Inertial Measurement Unit (MIMU)
mounted on or within a component of the wind turbine and determining at least one
parameter of the wind turbine based on the signals received from one Micro Inertial
Measurement Unit.
[0009] It is an object with the present invention to provide a system and a method providing
an effective and clear specification of a rotor position or at least to provide a
useful alternative to the known technology.
[0010] According to a first aspect of the invention an electrical pitch control system as
described in the introduction is provided where that each electrical pitch drive system
comprises a gyroscope, said gyroscope is an integrated part of the electrical pitch
drive system, and the wind turbine comprises 3 rotor blades,
each rotor blade being connected to its own pitch drive system and each pitch drive
system includes its own gyroscope adapted to register the angle values of the connected
rotor blades in relation to earth gravity, said processor is adapted to calculate
the angular position of each of the rotor blades based on said values.
[0011] According to a further aspect of the invention a method for operating at least one
rotor blade as described in the introduction is provided where a gyroscope is placed
in each of the electrical pitch drive systems and each in a fixed distance to the
axis of rotation of the hub and thereby being an integrated part of each electrical
pitch drive system,
and when the rotor blades rotate, the hub is rotating, by which rotating the gyroscope(s)
indicates a direction of the rotor blade with respect to earth's gravity,
and whereby the electrical pitch control system is detecting a direction/angular position
of the center axis of the rotor blade with respect to the tower and parallel to the
gravitational vector
said wind turbine comprises three rotor blades, and that the gyroscope placed in each
electrical pitch drive system register an angle value of the connected rotor blades
in relation to gravity,
a communication bus system compares received values - a first position - of each angle
registered between gravity and the center axis of the rotor blade received from the
gyroscope connected to the rotor blade in question, and the difference between the
received values results in an orientation/ position of each rotor blade in relation
to the neighboring rotor blades,
and that a processor calculates an optimal pitching of each rotor blade in accordance
with the orientation/position.
Hereby is achieved that a rotor blade position with respect to the vertical is determined.
Thus, it is possible to control the blade pitch more accurate according to the wind/turbulence
situation since it is thus possible to take into account the tower wake effect, for
example. This situation gives turbulence, which is compensated by pitching the rotor
blade. The signal of a gyroscope is a very reliable signal.
[0012] By the expression that a detecting takes place is to understand that, a processor
based on angle values received from the gyroscopes calculates the position of the
rotor blade in question and in relation to the tower; that is in relation to the gravitational
vector.
By the expression that a rotor blade is pivotable mounted on the hub is to understand
that the rotor blade is pitchable/rotatable around the longitudinal axis of the rotor.
[0013] The gyroscope is an integral part of the electrical pitch drive system and immovable
in relation to this. The gyroscope rotates with the electrical pitch drive system
positioned immovably in the hub and rotates with the hub about its axis of rotation.
The electrical pitch drive system is NOT fixed to the rotor blade, so the blade movements
are not part of the gyroscope records.
The hub rotates, of course, together with the rotor blades as the rotor blades are
fixed to the hub, but the deflection of the blades due to wind load and the pitch
of the rotor blades will not be recorded by the gyroscopes. Because the gyroscope
is positioned as it is, a more accurate positioning of the rotor blades takes place.
There is less noise. The protected location makes the control of the rotor blades
more accurately. In the high-precision registration, it is possible to more accurately
pitch the blades and, inter alia, take into account the "tower wake effect". The three
rotor blades are placed 120º from each other.
[0014] According to another aspect of the invention, the electrical pitch control system
comprises a communication bus system adapted to gather values of each angle registered
between gravity and the center axis of the rotor blade received from the gyroscope
connected to the rotor blade in question,
and the difference between the received values is determined by an algorithm, and
a processor is adapted to calculate an angular position of each rotor blades in relation
to the neighboring rotor blades.
[0015] Thus, it is possible to filter disturbances like tower oscillations. Thereby a more
accurate position indication for each rotor blade position is achieved.
[0016] According to another aspect of the invention each electrical pitch drive system comprises
an accelerometer adapted to register the acceleration of the rotor blade it is connected
to.
[0017] A gyroscope is unfortunately constructed in such a way that it drives during the
use hereof whereby the measurement over time may be inaccurate. By incorporating an
accelerometer, it is possible to compensate for this during the interaction between
the accelerometer and the gyroscope.
[0018] According to another aspect of the invention, the first sensor comprises at least
one gyroscope attached immovably to each of the rotor blades.
Hereby it is achieved that the pitch position/angle of each rotor blade is determined
very exactly. Further, the interaction between the gyroscopes advantageously placed
at the rod of the blade and the gyroscope placed in the drive system makes it possible
to calibrate the gyroscopes and thereby calibrate the blade position.
Further, the gyroscope placed at the rotor blade makes it possible to eliminate the
encoder placed in relation to the pitch tooth wheel. Thereby the pitch measuring and
the regulating of the pitching is more precise as this mechanical element - the encoder
that comprises a minor tooth wheel that interacts with the pitch tooth wheel - is
avoided.
The encoder which is connected to the gear wheel is a relatively precise component
but due to its construction and way of operation it must be placed fixed on an area
of the nacelle. It detects the pitch angle by detecting a small tooth wheel engaging
in the pitch tooth wheel, which is coupled to the rotor blade shaft in order to pitch
that. This mechanical design leads to some backlash in the registration of pitch angel
for each rotor blade. Thus, an inaccuracy in the correction of the pitch angle occurs,
as this correction is a function of the measured pitch angle.
[0019] According to another aspect of the invention, the first sensor comprises at least
one accelerometer attached immovably to each of the rotor blades. The gyroscope(s)
placed on the blade may drift. The interaction between the accelerometer and the gyroscope(s)
placed at the rotor blades makes it possible to compensate for this drift.
[0020] According to another aspect of the invention, the first sensor and the second sensor
are each adapted to detect data of the pitch angel of the rotor blade to which they
are connected,
and that the electrical pitch drive system is adapted to change the pitch angle by
controlling the motor when the data from the first sensor is different from the data
from the second sensor.
[0021] According to another aspect of the invention, the first sensor is located on the
rotor blade shaft in the area near the hub.
[0022] According to another aspect of the invention, the electrical pitch control system
comprises a plurality of gyroscopes attached immovable to a rotor blade and placed
with a certain distance between them and in the entire length of the blade.
[0023] According to another aspect of the invention, a force vector of a first rotor blade
is 120º offset with respect to a force vector for a second rotor blade which is 120
° offset with respect to a force vector of a third rotor blade.
[0024] According to another aspect of the invention, each electrical pitch drive system
is placed stationary in the hub and the gyroscope is placed stationary in the electrical
pitch drive system and is an integrated part of the electrical pitch drive system.
The hub is rotating around an axis and the electrical pitch drive system and the gyroscope
placed in the electrical pitch drive system are rotating around the same axis together
with the hub.
By stationary is to understand that the electrical pitch drive system is immovable
in relation to the hub and the gyroscope is immovable in relation to the electrical
pitch drive system and thereby the hub.
[0025] As stated above the invention also relates to a method.
[0026] According to another aspect of the invention, the electrical pitch drive system further
comprises an accelerometer, and the accelerometer register the angular velocity of
the rotor blade attached to the electrical pitch drive system when it is rotating,
and a processor adapts the values of the velocity, and the electrical pitch drive
system pitches the rotor blades in accordance with the values in order to optimize
the velocity of the rotor blades.
[0027] According to another aspect of the invention, at least one gyroscope is attached
immovably to each of the rotor blades and that the gyroscopes in the electrical pitch
drive system communicates with the gyroscopes placed on the rotor blade the electrical
pitch drive system in question regulates whereby the gyroscopes are calibrated, and
making a calibration of the blade position possible without extensive geometrical
measurements.
[0028] According to another aspect of the invention, at least one accelerometer is placed
immovably to each rotor blade and the gyroscope placed on the rotor blade communicates
with the accelerometer placed on the same rotor blade, and by the communications,
an optimized pitch angle is obtained, as the accelerometer compensates the drift of
the gyroscope.
The amplitude of the gyroscope signal is drifting because of the technology. The gyroscope
signal is by far more stable than for instance an accelerometer signal, as the higher
frequencies are filtered out compared to the accelerometer signal. However, the amplitude
of the accelerometer is more stable than the amplitude signal of the gyroscope, giving
a unique combination.
Brief description of the drawings:
[0029]
Fig. 1 is a perspective view of an exemplary wind turbine
Fig. 2 shows an electrical pitch control system comprising three separate electrical
pitch drive systems and a number of units.
Fig. 3 shows 3 axes X-axis, Y-axis and Z-axis used in a gyroscope according to the
invention.
Fig. 4 shows placement of three gyroscopes in three electrical pitch drive systems
according to the invention.
Fig. 5 shows the position of the three gyroscopes in a wind turbine hub according
to the invention.
Fig. 6 shows a communication between the three separate electrical pitch drive systems
according to the invention.
Fig. 7 shows the position of a gyroscope in relation to a rotor blade.
Fig. 8 shows a vector-diagram for three vectors.
Fig. 9 shows the placement of a sensor on the pitch-able part of a rotor blade.
[0030] Fig. 1 is a perspective view of an exemplary wind turbine 14 that includes a nacelle
16 housing a generator (not shown in FIG. 1). The nacelle 16 is mounted on a top of
a tall tower 18, only a portion of which is shown in FIG. 1. The wind turbine 14 also
includes a rotor assembly that includes a plurality of rotor blades 17 attached to
a rotating hub 15. There are no specific limits on the number of rotor blades 17 required
by the present invention. Wind turbine 14 includes a main control system 7 - fig.
2 - that is configured to perform overall system monitoring and control including
pitch and speed regulation, high-speed shaft and yaw brake application, yaw and pump
motor application and fault monitoring. This is explained below with reference to
fig. 2.
[0031] Fig. 2 shows a pitch control system 1 comprising 3 separate electrical pitch drive
systems 3 and a number of units comprising a slip ring 4". The pitch control system
1 is adapted to a plant adapted to drive a wind turbine 14 comprising 3 rotor blades
17 as shown in fig. 1. Each electrical pitch drive systems 3 is connected to a pitch
motor 2 and an energy supply in the form of replaceable batteries 6. The electrical
pitch drive system is attached immovable to the hub 15.
The pitch control system 1 communicates with a slip ring 4", which is a unit that
transfers electrical signals from a fixed unit (the nacelle 16) to the rotating part
the hub 15. The nacelle comprises a main-controller 7 and a EL supply network 5.
Each electrical pitch motor 2 moves/pitches the rotor blade it is connected to.
[0032] There are two main features for the pitch control system 1, one is the normal operation,
where the pitch is used to optimize the lift of the rotor blade 17 in all wind situations,
and the other is the main brake of the wind turbine 14. This brake function is simple
as the turbine blade is moved/pitched from the operation point (from 0° to 30° depending
on the actual average wind speed) to vane position, this is 90°.
As the pitching of the rotor blades is the only brake for the wind turbine the three
pitch motors 2 have to be controlled individually and independent from each other.
This is done by the electrical pitch drive system 3.
For each of the three pitch drives 3, the pitch angle is measured redundantly, as
there is a second sensor 20 - a resolver/encoder - on the motor shaft of the electrical
pitch motor, and a first sensor (not shown)- an encoder - on the rod of the rotor
blade.
The invention provides a sensor comprising at least a gyroscope 22 (see fig. 4) placed
in each electrical pitch drive system 3 and attached immovable to this.
[0033] A gyroscope 22 is a device that uses Earth's gravity to help determine orientation.
Its design may comprise a freely rotating rotor, mounted onto a spinning axis in the
center of a larger and more stable wheel. As the axis turns, the rotor remains stationary
to indicate the central gravitational pull, and thus which way is "down."
[0034] Fig. 3 shows the three axes used in a gyroscope: the three axes are perpendicular
to each other. The gyroscope is able to measure the rotation around each of the axes:
the X- axe, the Y- axe and the Z-axe. The arrows are showing the rotation direction.
When the gyroscope is placed in an electrical pitch drive systems 3 the orientation
of the rotor blade in relation to the gravity vector is determined.
[0035] If the sensor comprises a gyroscope 22 combined with an accelerometer the accelerometer
will measure the acceleration in the direction of the x, y and z vector. In this case,
the sensor placed in the electrical pitch drive system 3 is a combined sensor.
An accelerometer is a device designed to measure non-gravitational acceleration. When
the accelerometer is integrated into the gyroscope, it is thereby an integrated part
of the electrical pitch drive system 3. When the system due to rotation of the hub
goes from a standstill to any velocity, the accelerometer is designed to respond to
the vibrations associated with such movement. It uses microscopic crystals that go
under stress when vibrations occur, and from that stress, a voltage is generated to
create a reading on any acceleration. The accelerometer then compensate for the drift
of the gyroscope.
[0036] Fig. 4 shows placement of 3 gyroscopes 22 in 3 electrical pitch drive systems 3 and
the orientation of the X,Y,Z vectors shown in fig. 3. The sensor may be a combined
sensor also comprising the accelerometer 25. As each of the electrical pitch drive
system 3 is connected to a rotor blade (not shown) the three electrical pitch rive
systems 3 and thereby the three gyroscopes (and perhaps the accelerometer 25) are
spaced 120º apart from each other.
[0037] In fig. 5 the position of the three gyroscopes in the wind turbine hub is shown.
Each of the gyroscopes gives the following result:
- Ya,Yb,Yc :
- Vector in the y-axis for an electrical pitch drive system
- Xa,Xb,Xc :
- Vector in the X-axis for an electrical pitch drive system
- Yag,Ybg,Ycg
- Vector component from gravitation
- Xag,Xbg,Xcg
- Vector component from gravitation
a,b,c represent each an electrical pitch drive system.
[0038] The arithmetic calculation gives the following result:
qa, qb, qc : Angles between the central axis of a rotor blade and the gravity vector
for each of the three gyroscopes which is equivalent to the angle of each of the three
blades. [°]
[0039] The arithmetic describing the transition from the physical properties and to the
angle is not described here.
Fig. 6 shows a communication between the 3 separate electrical pitch drive systems
3. The three rotor blades angle relative to gravity and are gathered via an internal
bus system 24 between the three electrical pitch drive systems 3. The bandwidth of
the bus 24 s lower than 50 ms, which gives a reliable position result. The three electrical
pitch drive systems 3 are placed in the hub in close vicinity of the rotor blades.
The bus communication 24 may be a part of the overall control system. This new communication
line may be used for other purposes as well, for instance the safety system.
By comparing the three angles of the three electrical pitch drive systems, a new angle
of the rotor blades can be calculated. This is shown below and with reference to fig.
8.
[0040] Fig. 7 shows the position of the gyroscope 22 in relation to a rotor blade 17 The
gyroscope 22 is placed in the electrical pitch drive system 3. Orientation measurement
of each electrical pitch drive system is based on the gyroscope signal shown with
an arrow 28. The electrical pitch drive system 3 is placed in a fixed distance from
the centerline of rotation 26 of the hub and near the rod 27 of the rotor blade 17.
The gyroscope 22 measurement is based on the gravitational force. Therefor the position
of the electrical pitch drive system 3 in relation to the rotational center of the
pitching of the rotor blade is not relevant.
[0041] The orientation measurement is based on the signal from the gyroscope 22. If an accelerometer
is incorporated, the signal from the accelerometer is used for correction of the amplitude
from the gyroscope. One of the disadvantages of the gyroscope is that the signal is
drifting and the accelerometer may compensate for that.
[0042] Fig. 8 shows a vector-diagram
Where:
Fa, Fb, Fc The measured vectors showing the orientation of each rotor blade, three
phase system, where all vectors can have any amplitude or phase angle.
[0043] Fal, Fbl, Fc1 :
The synchronous components, three-phase system where the amplitude for all three vectors
are displaced 120° and the amplitude is the same for all three vectors.
[0044] Fa2, Fb2, Fc2 : The asymmetrical vectors three-phase system with the same properties
as the synchronous components, but with an opposite rotational direction. The asymmetrical
vectors are relevant when the rotor blades are not displaced 120º (that is optimal
position) in relation to each other.
F0: The zero component, a constant that has no rotation and a constant amplitude.
[0045] The equations are as follows:

The vector components are when recalculated:

This is the same for all three phases.
a: The vector length is a unity length and have a 120° displacement clockwise.
a
2: The vector length is a unity length and have a 240° displacement clockwise.
The mathematical theory can be used as a filter; the synchronous component is the
component that gives the exact value for all three acceleration components.
The inverse component is a description of the minor differences between the axes.
The zero component is a number of structural movements/acceleration that is the same
for all three axes. As the three sensors are in the same hub, this could be a tower
vibration. The equation shows the filtering that may take place by using an accelerometer
in combination with the gyroscope.
[0046] The synchronous vector components are recalculated with a fixed time interval in
the interval from 1 to 100 ms. This has to be done with a fixed time interval. Thereby
it is possible to analyze on tower vibration and other physical issues.
[0047] With this data, the structural movement of the hub can be calculated, the structural
movements is the 0-component, this is a component that is the same for all three vectors
Fa, Fb and Fc that is for each of the rotor blades. The structural measurements could
be: Tower vibration, tower bending and asymmetrical loads for the rotor.
Fig. 9 shows placement of a sensor on the pitchable part of a rotor blade. The blade
is seen from the bottom side.
Prior art discloses that each of the three pitch drives measure the pitch angle as
there is a second sensor - a resolver - placed on the motor shaft, and a first sensor
- an encoder - placed on the blade rod. The encoder is placed on a fixed part and
comprises a small tooth wheel rotating with the pitch tooth wheel. The encoder hereby
gives a redundant measurement of the pitch angle.
Typical the encoder is very precise, but the mechanical construction of the wheel
and the material chosen, gives a slack of approximately 0,5°.
[0048] The blade rod 27 has a fixed 27' and a rotational part 27", which is moved and controlled
by the pitch system 3.
The encoder is according to the present invention exchanged with another sensor namely
a gyroscope 22' and advantageously an accelerometer 25' is combined with the gyroscope
22'. This sensor is placed at the rod 27 of the rotor blade and immovable in relation
to the rod. Several sensors according to the invention may be placed at the rod and/or
along with the longitudinal direction of the rotor blade. As the pitch angle is variating,
the sensor 22',25' placed on the blade is moved relative to the electrical pitch drive
system 3 and the gyroscope 22 and advantageously the accelerometer 25 placed in the
electrical pitch drive system 3. The sensors shall be calibrated to the exact value
of the 0-position.
Placing a gyroscope 22' at the rod of the rotor blade makes it possible to eliminate
the encoder placed in relation to the pitch tooth wheel. This part of the invention
introduces an additional sensor that is replacing the redundant encoder.
The new sensor is mounted on the rotor blade and is fixed in the orientation of the
blade.
The sensor will indicate a pitch angle directly. Each blade has this new sensor, and
the three units are operating individually, as the three blades have to operate individually.
The measured angle is transmitted via a bus system - for instance SSI- to the electrical
pitch drive system 3 where the value is evaluated and compared with angle measured
on the motor shaft by the second sensor 20 shown in fig 2 and 9.
A clear advantage of the new sensor 22',25' is that the sensor is attached to the
blade and the absolute position of the blade can be measured.
Another advantage is that the sensor comprising a gyroscope and an accelerometer has
no movable parts; hence, the wear of this is limited.
1. Electrical pitch control system (1) for controlling at least one rotor blade (17)
for a wind turbine (14), said wind turbine (14) comprising
a nacelle (16), as well as a hub (15) both place on the top of a tower (18), said
hub (15) is adapted to rotate around an axis, and at least one rotor blade (17) is
pivotable mounted on the hub (15),
said system comprising at least one electrical pitch drive system (3), each drive
system (3) is connected to a rotor blade (17) and an electrical pitch motor (2); the
electrical pitch drive system(s) (3) and the motor(s) (2) are placed in the hub (15),
said electrical pitch drive system(s) (3) is/are adapted to communicate with units
comprising the motor(s) (2) for pitching the rotor blade (17) it is attached to and
in accordance with inputs registered from a first sensor and a second sensor (20)
and said electrical pitch control system (1) further comprises at least one gyroscope
placed in the hub (15),
each electrical pitch drive system(s) (3) and gyroscope (22) rotate with the rotation
of the rotor blades (17) and the rotation of the hub (15) around the axis, and are
placed in a fixed distance to the axis of rotation of the hub (15),
said gyroscope (22) is adapted to register an angle value of the longitudinal axis
of the rotor blade (17) with respect to earth gravity, and a processor is adapted
to calculate an angular position of the rotor blade (17) based on said values characterized in
that each electrical pitch drive system (3) comprises a gyroscope (22), said gyroscope
(22) is an integrated part of the electrical pitch drive system (3), and the wind
turbine (14) comprises 3 rotor blades (17),
each rotor blade (17) being connected to its own pitch drive system (3) and each pitch
drive system (3) includes its own gyroscope (22) adapted to register the angle values
of the connected rotor blade (17) in relation to earth gravity, said processor is
adapted to calculate the angular position of each of the rotor blades (17) based on
said values.
2. Electrical pitch control system (1) according to claim 1 characterized in that the electrical pitch control system (1) comprises a communication bus system (24)
adapted to gather received values of each angle registered between gravity and the
center axis of the rotor blade (17) received from the gyroscope (22) connected to
the rotor blade (17) in question,
and the difference between the received values is determined by an algorithm, and
a processor is adapted to calculate an angular position of each rotor blade (17) in
relation to the neighboring rotor blades (17).
3. Electrical pitch control system (1) according to any of the preceding claims characterized in that each electrical pitch drive system (3) comprises an accelerometer (25) adapted to
register the acceleration of the rotor blade (17) it is connected to.
4. Electrical pitch control system (1) according to any of the preceding claims characterized in that the first sensor comprises at least one gyroscope (22') attached immovably to each
of the rotor blades (17).
5. Electrical pitch control system (1) according to any of the preceding claims characterized in that the first sensor comprises at least one accelerometer (25') attached immovably to
each of the rotor blades (17).
6. Electrical pitch control system (1) according to any of the preceding claims characterized in the first sensor and the second sensor (20) are each adapted to detect data of the
pitch angel of the rotor blade (17) to which they are connected,
and that the electrical pitch drive system (3) is adapted to change the pitch angle
by controlling the motor (2) when the data from the first sensor is different from
the data from the second sensor (20).
7. Electrical pitch control system (1) according to any of the preceding claims characterized in that the first sensor is located on the rotor blade shaft in the area near the hub (15).
8. Electrical pitch control system (1) according to any of the preceding claims characterized in the electrical control system (1) comprises a plurality of gyroscopes (22') placed
on a rotor blade (17) and placed with a certain distance between them and in the entire
length of the rotor blade (17).
9. Electrical pitch control system (1) according to any of the preceding claims characterized in that a force vector of a first rotor blade is 120º offset with respect to a force vector
of a second rotor blade which is 120 ° offset with respect to a force vector of a
third rotor blade.
10. Electrical pitch control system (1) according to any of the preceding claims characterized in each electrical pitch drive system (3) is placed stationary in the hub (15) and the
gyroscope (22) is placed stationary in the electrical pitch drive system (3) and is
an integrated part of the electrical pitch drive system (3).
11. A method for operating at least one rotor blade (17) for a wind turbine (14) said
wind turbine (14) comprising an electrical pitch control system (1), a nacelle (16),
as well as a hub (15) both placed on the top of a tower (18), wherein
said hub (15) is rotating around an axis and at least one rotor blade (17) is rotatable
mounted on the hub (15);
said electrical pitch control system (1) comprises at least one electrical pitch drive
system (3) each connected to a rotor blade (17) and an electrical pitch motor (2);
wherein the electrical pitch drive system(s) (3) and the motor(s) (2) are placed in
the hub (15), and
said electrical pitch drive system(s) (3) controls the motor(s) (2) for pitching the
rotor blade (17) and in accordance with inputs registered from a first sensor and
a second sensor (20),
said electrical pitch control system (1) further comprises at least one gyroscope
placed in the hub (15) in a fixed distance to the axis of rotation of the hub (15)
and the electrical pitch drive system(s) (3) and the gyroscope(s) (22) are rotating
in a fixed distance to the axis of rotation of the hub (15) characterized in
that each rotor blade is connected to its own electrical pitch drive system (3), Z a gyroscope
(22) is placed in each of the electrical pitch drive systems (3) and each in a fixed
distance to the axis of rotation of the hub (15) and thereby being an integrated part
of each electrical pitch drive system (3),
and when the rotor blades (17) rotate, the hub (15) is rotating, by which rotating
the gyroscope(s) indicates a direction of the rotor blade (17) with respect to earth's
gravity,
and whereby the electrical pitch control system (1) is detecting a direction/angular
position of the center axis of the rotor blade (17) with respect to the tower (18)
and parallel to the gravitational vector,
said wind turbine comprises three rotor blades (17), and that the gyroscope (22) placed
in each electrical pitch drive system (3) register an angle value of the connected
rotor blade in relation to gravity,
a communication bus system (24) compares received values - a first position - of each
angle registered between gravity and the center axis of the rotor blade (17) received
from the gyroscope (22) connected to the rotor blade (17) in question,
and the difference between the received values results in an orientation/ position
of each rotor blade (17) in relation to the neighboring rotor blades,
and that a processor calculates an optimal pitching of each rotor blade (17) in accordance
with the orientation/position.
12. A method for operating at least one rotor blade (17) according to claim 11 characterized in that the electrical pitch drive system (3) further comprises an accelerometer (25) and
that the accelerometer (25) register the angular velocity of the rotor blade (17)
attached to the electrical pitch drive system (3) when it is rotating
and that a processor adapts the values of the velocity and that the electrical pitch
drive system (3) pitches the rotor blades (17) in accordance with the values in order
to optimize the velocity of the rotor blades (17).
13. A method for operating at least one rotor blade according to claim 11 or 12 characterized in that at least one gyroscope (22') is attached immovably to each of the rotor blades (17)
and that the gyroscope(s) (22) in the electrical pitch drive system (3) communicates
with the gyroscopes (22') placed on the rotor blade (17) that the electrical pitch
drive system (3) in question regulates, whereby the gyroscopes (22) are calibrated
and making a calibrating of the blade position possible without extensive geometrical
measurements.
14. A method for operating at least one rotor blade (17) according to claim 13 characterized in that at least one accelerometer (25') is placed immovably to each rotor blade (17) and
that the gyroscope (22') placed on the rotor blade (17) communicates with the accelerometer
(25') placed on the same rotor blade (17)
and by the communications an optimized pitch angle is obtained and the accelerometer
compensates the drift of the gyroscope (22').
15. Use of the electrical pitch control system (1) according to any of the claims 1-10
for performing the method according to any of the claims 11-14.
1. Elektrisches Pitch-Steuerungssystem (1) zum Steuern von mindestens einem Rotorblatt
(17) für eine Windturbine (14), wobei die Windturbine (14) das Folgende aufweist:
eine Gondel (16) sowie eine Nabe (15), die beide an der Spitze eines Turms (18) angeordnet
sind, wobei die Nabe (15) um eine Achse drehbar ist und mindestens ein Rotorblatt
(17) schwenkbar an der Nabe (15) angebracht ist,
wobei das System mindestens ein elektrisches Pitch-Antriebssystem (3) umfasst, wobei
jedes Antriebssystem (3) mit einem Rotorblatt (17) und einem elektrischen Pitch-Motor
(2) verbunden ist; wobei das (die) elektrische(n) Pitch-Antriebssystem(e) (3) und
der (die) Motor(en) (2) in der Nabe (15) angeordnet sind,
wobei das (die) elektrische(n) Blattverstellungs-Antriebssystem(e) (3) so ausgelegt
ist (sind), dass es (sie) mit Einheiten, die den (die) Motor(en) (2) zum Verstellen
des Rotorblatts (17) umfassen, an dem es (sie) befestigt ist (sind),
und in Übereinstimmung mit Eingaben, die von einem ersten Sensor und einem zweiten
Sensor (20) registriert werden, kommuniziert (kommunizieren) und wobei das elektrische
Blattverstellantriebssystem (1) außerdem mindestens ein in der Nabe (15) angeordnetes
Gyroskop umfasst,
wobei jedes elektrische Pitch-Antriebssystem(e) (3) und Gyroskop (22) sich mit der
Drehung der Rotorblätter (17) und der Drehung der Nabe (15) um die Achse drehen und
in einem festen Abstand zur Drehachse der Nabe (15) angeordnet sind,
wobei das Gyroskop (22) dazu ausgelegt ist, einen Winkelwert der Längsachse des Rotorblatts
(17) in Bezug auf die Erdanziehung zu registrieren, und ein Prozessor dazu ausgelegt
ist, eine Winkelposition des Rotorblatts (17) auf der Grundlage der Werte zu berechnen,
dadurch gekennzeichnet dass jedes elektrische Pitch-Antriebssystem (3) ein Gyroskop (22) umfasst,
wobei das Gyroskop (22) ein integrierter Teil des elektrischen Pitch-Antriebssystems
(3) ist, und die Windturbine (14) 3 Rotorblätter (17) umfasst, und
jedes Rotorblatt (17) mit seinem eigenen Pitch-Antriebssystem (3) verbunden ist und
jedes Pitch-Antriebssystem (3) sein eigenes Gyroskop (22) enthält, das dazu ausgelegt
ist, die Winkelwerte des verbundenen Rotorblatts (17) in Bezug auf die Erdanziehung
zu registrieren, wobei der Prozessor dazu ausgelegt ist, die Winkelposition jedes
der Rotorblätter (17) auf der Grundlage dieser Werte zu berechnen.
2. Elektrisches Blattverstellsystem (1) nach Anspruch 1, dadurch gekennzeichnet, dass das elektrische Blattverstellsystem (1) ein Kommunikationsbussystem (24) umfasst,
das dazu ausgelegt ist, empfangene Werte jedes zwischen der Schwerkraft und der Mittelachse
des Rotorblatts (17) registrierten Winkels zu sammeln, die von dem mit dem betreffenden
Rotorblatt (17) verbundenen Gyroskop (22) empfangen werden,
und dass die Differenz zwischen den empfangenen Werten durch einen Algorithmus bestimmt
wird und ein Prozessor angepasst ist, um eine Winkelposition jedes Rotorblatts (17)
in Bezug auf die benachbarten Rotorblätter (17) zu berechnen.
3. Elektrisches Pitch-Steuerungssystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedes elektrische Pitch-Antriebssystem (3) einen Beschleunigungsmesser (25) umfasst,
der dazu ausgelegt ist, die Beschleunigung des Rotorblatts (17), mit dem er verbunden
ist, zu registrieren.
4. Elektrisches Pitch-Steuerungssystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Sensor mindestens ein Gyroskop (22') umfasst, das unbeweglich relativ zu
jedem der Rotorblätter (17) angebracht ist.
5. Elektrisches Blattverstellsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Sensor mindestens einen Beschleunigungsmesser (25') umfasst, der unbeweglich
relativ zu jedem der Rotorblätter (17) angebracht ist.
6. Elektrisches Pitch-Steuerungssystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Sensor und der zweite Sensor (20) jeweils dazu ausgebildet sind, Daten
des Pitchwinkels des Rotorblatts (17) zu erfassen, mit dem sie verbunden sind,
und dass das elektrische Pitch-Antriebssystem (3) dazu eingerichtet ist, den Pitch-Winkel
durch Steuerung des Motors (2) zu ändern, wenn die Daten des ersten Sensors sich von
den Daten des zweiten Sensors (20) unterscheiden.
7. Elektrisches Pitch-Steuerungssystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Sensor auf der Rotorblattwelle im Bereich der Nabe (15) angeordnet ist.
8. Elektrisches Blattverstellsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrische Steuersystem (1) eine Vielzahl von Gyroskopen (22') umfasst, die
auf einem Rotorblatt (17) angeordnet sind und mit einem bestimmten Abstand zwischen
einander und über die gesamten Länge des Rotorblatts (17) angeordnet sind.
9. Elektrisches Blattverstellsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Kraftvektor eines ersten Rotorblattes um 120° versetzt ist relativ zu einem Kraftvektor
eines zweiten Rotorblattes, der wiederum um 120° versetzt ist relativ zu einem Kraftvektor
eines dritten Rotorblattes.
10. Elektrisches Blattverstellsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedes elektrische Blattverstellantriebssystem (3) stationär in der Nabe (15) angeordnet
ist und das Gyroskop (22) stationär in dem elektrischen Blattverstellantriebssystem
(3) angeordnet ist und ein integrierter Teil des elektrischen Blattverstellantriebssystems
(3) ist.
11. Verfahren zum Betreiben mindestens eines Rotorblatts (17) für eine Windturbine (14),
wobei die Windturbine (14) ein elektrisches Pitch-Steuerungssystem (1), eine Gondel
(16) sowie eine Nabe (15) aufweist, die beide an der Spitze eines Turms (18) angeordnet
sind, wobei die Nabe (15) sich um eine Achse dreht und mindestens ein Rotorblatt (17)
drehbar an der Nabe (15) angebracht ist;
das elektrische Blattverstellsystem (1) mindestens ein elektrisches Blattverstellantriebssystem
(3), das jeweils mit einem Rotorblatt (17) verbunden ist und einen elektrischen Blattverstellmotor
(2) umfasst; wobei das/die elektrische(n) Blattverstellantriebssystem(e) (3) und der/die
Motor(en) (2) in der Nabe (15) angeordnet sind, und
dass (die) elektrische(n) Anstellantriebsystem(e) (3) den (die) Motor(en) (2) zum
Anstellen des Rotorblatts (17) und in Übereinstimmung mit Eingängen steuert, die von
einem ersten Sensor und einem zweiten Sensor (20) registriert werden, das elektrische
Blattverstellsteuersystem (1) ferner mindestens ein Gyroskop umfasst, das in der Nabe
(15) in einem festen Abstand zur Drehachse der Nabe (15) angeordnet ist, und wobei
das (die) elektrische(n) Blattverstellantriebssystem(e) (3) und das (die) Gyroskop(e)
(22) sich in einem festen Abstand zur Drehachse der Nabe (15) drehen, dadurch gekennzeichnet
dass jedes Rotorblatt an sein eigenes elektrisches Pitch-Antriebssystem (3) angeschlossen
ist,
ein Gyroskop (22) in jedem der elektrischen Pitch-Antriebssysteme (3) und jeweils
in einem festen Abstand zur Drehachse der Nabe (15) angeordnet ist und dadurch ein
integrierter Teil jedes elektrischen Pitch-Antriebssystems (3) ist und dass, wenn
sich die Rotorblätter (17) drehen, sich die Nabe (15) dreht, wodurch das/die Gyroskop(e)
eine Richtung des Rotorblatts (17) in Bezug auf die Erdanziehungskraftrichtung anzeigen,
und dass das elektrische Pitch-Steuerungssystem (1) eine Richtung/Winkelposition der Mittelachse
des Rotorblatts (17) in Bezug auf den Turm (18) und parallel zum Gravitationsvektor
erfasst und dass das in jedem elektrischen Pitch-Antriebssystem (3) angeordnete Gyroskop
(22) einen Winkelwert des angeschlossenen Rotorblatts in Bezug auf die Schwerkraft
registriert,
wobei ein Kommunikationsbussystem (24) die empfangenen Werte - eine erste Position
- jedes zwischen der Schwerkraft und der Mittelachse des Rotorblatts (17) registrierten
Winkels vergleicht, die von dem mit dem betreffenden Rotorblatt (17) verbundenen Gyroskop
(22) empfangen werden,
und dass die Differenz zwischen den empfangenen Werten eine Orientierung/Position jedes Rotorblattes
(17) in Bezug auf die benachbarten Rotorblätter ergibt,
und dass ein Prozessor ein optimales Einstellen des Pitchwinkels jedes Rotorblatts (17) in
Übereinstimmung mit der Orientierung/Position errechnet.
12. Verfahren zum Betreiben mindestens eines Rotorblatts (17) nach Anspruch 11, dadurch gekennzeichnet, dass das elektrische Pitch-Antriebssystem (3) ferner einen Beschleunigungsmesser (25)
umfasst und dass der Beschleunigungsmesser (25) die Winkelgeschwindigkeit des am elektrischen
Pitch-Antriebssystem (3) angebrachten Rotorblatts (17) erfasst, wenn es sich dreht,
und dass ein Prozessor die Werte der Geschwindigkeit anpasst und dass das elektrische
Pitch-Antriebssystem (3) die Rotorblätter (17) in Übereinstimmung mit den Werten dreht,
um die Geschwindigkeit der Rotorblätter (17) zu optimieren.
13. Verfahren zum Betreiben mindestens eines Rotorblatts nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass an jedem der Rotorblätter (17) mindestens ein Gyroskop (22') unbeweglich angebracht
ist
und dass das/die Gyroskop(e) (22) im elektrischen Pitch-Antriebssystem (3) mit den
auf dem Rotorblatt (17), das das betreffende elektrische Pitch-Antriebssystem (3)
regelt, angebrachten Gyroskopen (22') kommuniziert, wodurch die Gyroskope (22) kalibriert
werden und eine Kalibrierung der Blattposition ohne aufwändige geometrische Messungen
möglich wird.
14. Verfahren zum Betreiben mindestens eines Rotorblatts (17) nach Anspruch 13, dadurch gekennzeichnet, dass an jedem Rotorblatt (17) mindestens ein Beschleunigungsmesser (25') unbeweglich angebracht
ist und dass das am Rotorblatt (17) angebrachte Gyroskop (22') mit dem am selben Rotorblatt
(17) angebrachten Beschleunigungsmesser (25') kommuniziert
und durch die Kommunikation ein optimierter Anstellwinkel erhalten wird und der Beschleunigungsmesser
die Drift des Gyroskops (22') kompensiert.
15. Verwendung des elektrischen Pitchregelungssystems (1) nach einem der Ansprüche 1-10
zur Durchführung des Verfahrens nach einem der Ansprüche 11-14.
1. Système de contrôle d'inclinaison électrique (1) pour le contrôle d'au moins une pale
de rotor (17) d'une éolienne (14), ladite éolienne (14) comprenant
une nacelle (16) ainsi qu'un moyeu (15), tous les deux placés en haut d'une tour (18),
ledit moyeu (15) étant conçu pour tourner autour d'un axe, et au moins une pale de
rotor (17) étant montée de manière pivotante sur le moyeu (15),
ledit système comprenant au moins un système d'entraînement électronique d'inclinaison
(3), chaque système d'entraînement (3) étant connecté à une pale de rotor (17) et
un moteur électrique d'inclinaison (2) ; le(s) système(s) d'entraînement d'inclinaison
électrique (3) et le(s) moteur(s) (2) sont placés dans le moyeu (15),
ledit/lesdits système(s) d'entraînement d'inclinaison électrique (3) est/sont conçu(s)
pour communiquer avec des unités comprenant le(s) moteur(s) (2) pour l'inclinaison
de la pale du rotor (17) à laquelle il(s) est/sont fixé(s) et conformément à des entrées
enregistrées par un premier capteur et un deuxième capteur (20)
et ledit système de contrôle d'inclinaison électrique (1) comprend en outre au moins
un gyroscope placé dans le moyeu (15),
chaque système d'entraînement d'inclinaison électrique (3) et chaque gyroscope (22)
tournent avec la rotation des pales du rotor (17) et la rotation du moyeu (15) autour
de l'axe et sont placés à une distance fixe de l'axe de rotation du moyeu (15),
ledit gyroscope (22) est conçu pour enregistrer une valeur d'angle de l'axe longitudinal
de la pale du rotor (17) par rapport à la gravité terrestre,
et un processeur est conçu pour calculer une position angulaire de la pale du rotor
(17) sur la base desdites valeurs, caractérisé en ce que
chaque système d'entraînement d'inclinaison électrique (3) comprend un gyroscope (22),
ledit gyroscope (22) étant une partie intégrante du système d'entraînement d'inclinaison
électrique (3) et l'éolienne (14) comprenant 3 pales de rotor (17),
chaque pale de rotor (17) étant connectée à son propre système d'entraînement d'inclinaison
(3) et chaque système d'entraînement d'inclinaison (3) comprenant son propre gyroscope
(22) conçu pour enregistrer les valeurs d'angles de la pale de rotor (17) connectée
par rapport à la gravité terrestre, ledit processeur étant conçu pour calculer la
position angulaire de chacune des pales du rotor (17) sur la base desdites valeurs.
2. Système de contrôle d'inclinaison électrique (1) selon la revendication 1, caractérisé en ce que le système de contrôle d'inclinaison électrique (1) comprend un système de bus de
communication (24) conçu pour collecter les valeurs reçues de chaque angle enregistré
entre la gravité et l'axe central de la pale du rotor (17), reçu du gyroscope (22)
connecté à la pale du rotor (17) concerné,
et la différence entre les valeurs reçues est déterminée par un algorithme et un processeur
est conçu pour calculer une position angulaire de chaque pale de rotor (17) par rapport
aux pales de rotor (17) voisines.
3. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes,
caractérisé en ce que chaque système d'entraînement d'inclinaison électrique (3) comprend un accéléromètre
(25) conçu pour enregistrer l'accélération de la pale du rotor (17) à laquelle il
est connecté.
4. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes,
caractérisé en ce que le premier capteur comprend au moins un gyroscope (22') fixé de manière inamovible
à chacune des pales du rotor (17).
5. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes,
caractérisé en ce que le premier capteur comprend au moins un accéléromètre (25') fixé de manière inamovible
à chacune des pales du rotor (17) .
6. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes,
caractérisé en ce que le premier capteur et le deuxième capteur (20) sont conçus chacun pour détecter les
données de l'angle d'inclinaison de la pale du rotor (17) à laquelle ils sont connectés,
et en ce que le système d'entraînement d'inclinaison électrique (3) est conçu pour modifier l'angle
d'inclinaison en contrôlant le moteur (2) lorsque les données provenant du premier
capteur sont différentes des données provenant du deuxième capteur (20) .
7. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes,
caractérisé en ce que le premier capteur est situé sur l'arbre de la pale de rotor à proximité du moyeu
(15).
8. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes,
caractérisé en ce que le système de contrôle électrique (1) comprend une pluralité de gyroscopes (22')
placés sur une pale de rotor (17) et placés avec une certaine distance entre eux et
sur toute la longueur de la pale de rotor (17).
9. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes,
caractérisé en ce qu'un vecteur de force d'une première pale de rotor est décalé de 120° par rapport à
un vecteur de force d'une deuxième pale de rotor qui est décalé de 120° par rapport
à un vecteur de force d'une troisième pale de rotor.
10. Système de contrôle d'inclinaison électrique (1) selon l'une des revendications précédentes,
caractérisé en ce que chaque système d'entraînement d'inclinaison électrique (3) est placé de manière stationnaire
dans le moyeu (15) et le gyroscope (22) est placé de manière stationnaire dans le
système d'entraînement d'inclinaison électrique (3) et fait partie intégrante du système
d'entraînement d'inclinaison électrique (3).
11. Procédé de fonctionnement d'au moins une pale de rotor (17) pour une éolienne (14),
ladite éolienne (14) comprenant un système de contrôle d'inclinaison électrique (1),
une nacelle (16) ainsi qu'un moyeu (15), tous les deux placés en haut d'une tour (18),
dans lequel
ledit moyeu (15) tourne autour d'un axe et au moins une pale de rotor (17) est montée
de manière rotative sur le moyeu (15) ;
ledit système de contrôle d'inclinaison électrique (1) comprend au moins un système
d'entraînement d'inclinaison électrique (3), chacun connecté à une pale de rotor (17)
et un moteur d'inclinaison électrique (2) ; dans lequel le(s) système(s) d'entraînement
d'inclinaison électrique (3) et le(s) moteur(s) (2) sont placés dans le moyeu (15)
et
ledit/lesdits système(s) d'entraînement d'inclinaison électrique (3) contrôle le(s)
moteur(s) (2) pour faire tanguer la pale du rotor (17) et conformément à des entrées
enregistrées par un premier capteur et un deuxième capteur (20) ,
ledit système de contrôle d'inclinaison électrique (1) comprend en outre au moins
un gyroscope placé dans le moyeu (15) à une distance fixe de l'axe de rotation du
moyeu (15) et le(s) système(s) d'entraînement d'inclinaison électrique (3) et le(s)
gyroscope(s) (22) tournent à une distance fixe de l'axe de rotation du moyeu (15),
caractérisé en ce que
chaque pale de rotor est connectée à son propre système d'entraînement d'inclinaison
électrique (3),
un gyroscope (22) est placé dans chacun des systèmes d'entraînement d'inclinaison
électrique (3) et chacun à une distance fixe de l'axe de rotation du moyeu (15) et
faisant partie intégrante de chaque système d'entraînement d'inclinaison électrique
(3),
et, lorsque les pales du rotor (17) tournent, le moyeu (15) tournant, ce qui fait
tourner le(s) gyroscope(s) qui indiquent une direction de la pale du rotor (17),par
rapport à la gravité terrestre,
et le système de contrôle d'inclinaison électrique (1) détecte une position de direction/angulaire
de l'axe central de la pale du rotor (17) par rapport à la tour (18) et parallèle
au vecteur gravitationnel,
ladite éolienne comprend trois pales de rotor (17) et le gyroscope (22) placé dans
chaque système d'entraînement d'inclinaison électrique (3) enregistre une valeur d'angle
de la pale de rotor connectée par rapport à la gravité,
un système de bus de communication (24) compare les valeurs reçues - une première
position - de chaque valeur d'angle enregistrée entre la gravité et l'axe central
de la pale du rotor (17), reçu du gyroscope (22) connecté à la pale de rotor (17)
concernée,
et la différence entre les valeurs reçues indique une orientation/position de chaque
pale de rotor (17) par rapport aux pales de rotor voisines,
et un processeur calcule une inclinaison optimale de chaque pale de rotor (17) en
fonction de l'orientation/position.
12. Procédé de fonctionnement d'au moins une pale de rotor (17) selon la revendication
11, caractérisé en ce que le système d'entraînement d'inclinaison électrique (3) comprend en outre un accéléromètre
(25) et en ce que l'accéléromètre (25) enregistre la vélocité angulaire de la pale du rotor (17) fixée
au système d'entraînement d'inclinaison électrique (3) lorsqu'elle tourne
et en ce qu'un processeur adapte les valeurs de la vélocité et en ce que le système d'entraînement d'inclinaison électrique (3) incline les pales du rotor
(17) en fonction des valeurs afin d'optimiser la vélocité des pales du rotor (17)
.
13. Procédé de fonctionnement d'au moins une pale de rotor (17) selon la revendication
11 ou 12, caractérisé en ce qu'au moins un gyroscope (22') est fixé de manière inamovible à chacune des pales du
rotor (17)
et en ce que le (s) gyroscope (s) (22) dans le système d'entraînement d'inclinaison électrique
(3) communique avec les gyroscopes (22') placés sur la pale du rotor (17) que le système
d'entraînement d'inclinaison électrique (3) concerné régulé, les gyroscopes (22) étant
calibrés et effectuant un calibrage de la position de pale possible sans mesures géométriques
extensives.
14. Procédé de fonctionnement d'au moins une pale de rotor (17) selon la revendication
13, caractérisé en ce qu'au moins un accéléromètre (25') est placé de manière inamovible sur chaque pale de
rotor (17) et en ce que le gyroscope (22') placé sur la pale du rotor (17) communique avec l'accéléromètre
(25') placé sur la même pale de rotor (17),
et, grâce aux communications, un angle d'inclinaison optimisé est obtenu et l'accéléromètre
compense la dérive du gyroscope (22').
15. Utilisation du système de contrôle d'inclinaison électrique (1) selon l'une des revendications
1 à 10 pour l'exécution du procédé selon l'une des revendications 11 à 14.