| (19) |
 |
|
(11) |
EP 3 690 355 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
17.11.2021 Bulletin 2021/46 |
| (22) |
Date of filing: 31.01.2019 |
|
| (51) |
International Patent Classification (IPC):
|
| (52) |
Cooperative Patent Classification (CPC): |
|
F25B 23/00 |
|
| (54) |
REFRIGERATION DEVICE
KÜHLVORRICHTUNG
DISPOSITIF DE RÉFRIGÉRATION
|
| (84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
| (43) |
Date of publication of application: |
|
05.08.2020 Bulletin 2020/32 |
| (73) |
Proprietor: Ritsch, Helmut |
|
6142 Mieders (AT) |
|
| (72) |
Inventors: |
|
- RITSCH, Helmut
6142 Mieders (AT)
- GENES, Claudiu
91052 Erlangen (DE)
- SOMMER, Christian
91052 Erlangen (DE)
|
| (74) |
Representative: Torggler & Hofinger Patentanwälte |
|
Postfach 85 6010 Innsbruck 6010 Innsbruck (AT) |
| (56) |
References cited: :
|
| |
|
|
- SASS A ET AL: "Laser cooling of a potassium-argon gas mixture using collisional redistribution
of radiation", APPLIED PHYSICS B ; LASERS AND OPTICS, SPRINGER, BERLIN, DE, vol. 102,
no. 3, 10 February 2011 (2011-02-10), pages 503-507, XP019886474, ISSN: 1432-0649,
DOI: 10.1007/S00340-011-4401-Y
- D. GELBWASER-KLIMOVSKY ET AL: "Laser-induced cooling of broadband heat reservoirs",
PHYSICAL REVIEW A (ATOMIC, MOLECULAR, AND OPTICAL PHYSICS), vol. 91, no. 2, 1 February
2015 (2015-02-01), XP055601537, USA ISSN: 1050-2947, DOI: 10.1103/PhysRevA.91.023431
- VOGL ULRICH ET AL: "Laser cooling of dense rubidium-noble gas mixtures via collisional
redistribution of radiation", LASER REFRIGERATION OF SOLIDS V, SPIE, 1000 20TH ST.
BELLINGHAM WA 98225-6705 USA, vol. 8275, no. 1, 9 February 2012 (2012-02-09), pages
1-8, XP060001322, DOI: 10.1117/12.905897 [retrieved on 1901-01-01]
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a refrigeration device for the refrigeration of
a gas mixture of a cooling gas and a buffer gas and its surrounding material by using
laser light, a refrigerator comprising at least one such refrigeration device and
a method for cooling gas using laser light.
[0002] Lasers are sources of energy which is highly concentrated in space and momentum at
almost zero entropy. This effective very low temperature is very successfully used
to cool dilute atomic gases to almost arbitrarily close to absolute zero. In addition,
laser light generated optical traps can be considered to have zero temperature walls.
Similarly, opto-mechanical cooling of single eigenmodes of microscopic mechanical
oscillators can reach the quantum ground state. Despite long standing efforts, the
applications towards cooling molecular gases, liquids or in particular whole solid
objects, however, proved significantly more difficult to implement. Already two decades
ago the first basic proof-of-concept implementations used selective doping to cool
a whole optical fiber by tens of degrees. Anti-Stokes Raman light scattering of the
guided field modes was used to strongly depopulate phononic or motional modes.
[0003] Unfortunately, non-radiative emission processes and reabsorption of the anti-Stokes
photons by pollutions in the material as well as heating from the environment and
support structures prevented to reach much lower temperatures. In the following generations
of experiments, the use of isotope purified small crystals and improved environmental
shielding finally allowed to reach cryogenic temperatures of macroscopic objects,
significantly beating the temperature limits achieved via thermo-electric cooling.
[0004] A solid-state refrigeration device according to the prior art is discussed in
US 8,720,219 B1.
[0005] Despite these significant improvements over the last two decades, the efficiency
of the cooling process remained rather low, reaching only a couple of Milliwatt (mW)
of cooling power from 50 Watt (W) of laser power. As one central reason for this low
efficiency one can identify the rather limited Stokes shift of the emitted phonons
of less than 1/1000 of their frequency. Hence one needs thousands of successful cycles
with nonradiative decay per background absorption.
[0006] Interestingly, it has been shown recently that this ratio can be tremendously improved
using excited molecular states (exciplexes) of Alkali-rare gas molecules as e. g.
Rb-Ar or K-Ar which do not have bound ground states (
U. V. A. Saß and M. Weitz, "Laser cooling of a potassium-argon gas mixture using collisional
redistribution of radiation." Appl Phys B 102, 503-507 (2011)). The Alkali atoms play the role of the cooling gas while the Ar atoms are the buffer
gas at high pressure to insure the formation of exciplexes. The experiments are, however,
limited to geometries unfavorable to macroscopic refrigeration (gas cell) with specific
mixtures (Rb-Ar or K-Ar) where cooling is observed as spectral narrowing of the emission
lines of Rb or K atoms. It is therefore desirable to identify optimal cooling geometries
and optimal exciplex gas components with the aim of providing a refrigeration mechanism
for the larger environment and not only of local alkali environments within the exciplex
gas.
[0007] It is an object of the invention to provide for a refrigeration device and a method
for cooling a cooling gas in which efficiency of the cooling process is increased.
[0008] This object is being achieved by a refrigeration device with the features of claim
1, a refrigerator comprising at least one such refrigeration device and a method with
the features of claim 11.
[0009] The invention is based on the particular property of exciplexes formed, e. g., by
alkali atoms colliding with noble gas atoms, which do not bind in the ground state
but instead exhibit a transitory bound excited state. During the small time-window
of exciplex formation, photons generated by the at least one laser light device (of
energy ℏω
L) and coupled into that at least one hollow-core waveguide by way of the at least
one optical coupling device (e. g. in the form of an optical lens or lens system),
which are energetically matched to the instantaneous binding energy can be absorbed.
During subsequent dynamics, the exciplex becomes unbound and upconverted blue-shifted
photons at an energy ℏw
0, which correspond to the bare transition of the cooling gas and which is larger than
ℏω
L, can be spontaneously emitted. An overall energy loss of ℏΩ = ℏω
0 - ℏω
L > 0 per cycle occurs in the gas mixture, leading to a reduction of temperature of
the cooling gas and its surrounding material. The process efficiency is described
by the parameter

, which can reach much larger values (∼ 10 %) compared to similar cooling schemes.
[0010] The use of hollow-core waveguides provides that laser light is very efficiently used
for the cooling process as the light travels mostly in the gas filled core over a
long interaction length. The length of the at least one hollow-core waveguide(s) can
be chosen such that an input power I
0 of laser light coupled into the at least one hollow-core waveguide is being reduced
to a much lower power I
out by light absorption in exciplexes and scattering out of the hollow-core waveguide
(ideally for long waveguides I
out will be close to zero). Two important advantages are offered by the one-dimensional
geometry of the hollow-core waveguide:
- unwanted light absorption by material of the waveguide is very low as light does not
propagate through the boundary material
- spontaneously emitted photons are upshifted in energy to frequencies which are not
supported by the waveguide thus effectively cancelling unwanted reabsorption in the
gas mixture
[0011] It is preferably provided that the density of buffer gas inside the hollow-core waveguide
is chosen to be much larger (e. g. by at least a factor of 10, 100 or 1000) than the
density of the cooling gas thereby reducing the number of collisions between the atoms
or molecules of the cooling gas.
[0012] It is of course not necessary to provide separate sources of cooling gas and buffer
gas wherein each of the sources is separately connected to the at least one hollow-core
waveguide(s). There could also be a joint or common gas source of cooling gas and
buffer gas containing these gases in pre-mixed form. In such an embodiment both, the
cooling gas source and the buffer gas source are being embodied by the joint or common
gas source.
[0013] The buffer gas should be chosen to be chemically inert with respect to the cooling
gas. Suitable buffer gases could be noble gases.
[0014] The cooling gas and/or the buffer gas could be composed of single chemical elements
or could be composed of chemical compounds, molecules or the like.
[0015] The hollow-core waveguide(s) can be arranged such that it/they run along a straight
line or it/they could be bent. It is also possible to use hollow-core waveguide(s)
which is/are bent into a circle such that the hollow-core(s) provide(s) an endless
space. The optical coupling device can be arranged at one specific position on the
circumference of the waveguide(s). It is also possible to use more than one optical
coupling device.
[0016] In an embodiment of the invention the at least one buffer gas source is configured
to provide a noble gas, preferably argon.
[0017] In an embodiment of the invention the at least one cooling gas source is configured
to provide alkali gas, preferably Rubidium, or halogen gas, preferably chlorine gas
or fluoride gas.
[0018] In an embodiment of the invention the at least one hollow-core waveguide is made
of dielectric material and/or is in the form of a fiber, preferably in the form of
a photonic crystal fiber.
[0019] In an embodiment of the invention there is provided a plurality of hollow-core waveguides
which are bundled together (and possibly to each other) and which preferably are coupled
to the same laser light device(s). This improves cooling by increasing the volume
to surface ratio of the refrigeration device.
[0020] In an embodiment of the invention a pressure of a mixture of the atoms or molecules
of the buffer gas and the atoms or molecules of the cooling gas in the at least one
hollow-core waveguide is in a range of about 1 bar to about 50 bar, preferably about
5 bar to about 25 bar.
[0021] In an embodiment of the invention a length of the at least one hollow-core waveguide
is chosen such that at least 10 %, preferably at least 50 %, of the power of the laser
light coupled into the at least one hollow-core waveguide is being absorbed via exciplex-formation
present in the at least one hollow-core waveguide.
[0022] In an embodiment of the invention a diameter of the hollow-core of the at least one
hollow-core waveguide is in a range of about 5 µm to about 100 µm, preferably in a
range of about 15 µm to about 25 µm.
[0023] In an embodiment of the invention the at least one laser light device for generating
laser light is configured to generate laser light with a wavelength in a range of
about 200 nm to about 1000 nm, preferably with a wavelength in a range of about 500
nm to about 700 nm.
[0024] In all of the above-referenced embodiments it is possible that the refrigeration
device is used to cool the cooling gas as a primary object of its operation. Of course,
it is also possible to use the fact that the cooling gas cools the walls of the at
least one hollow-core waveguide to operate a refrigerator comprising at least one
refrigeration device according to at least one of the discussed embodiments.
[0025] The at least one hollow-core waveguide provides a quasi-one-dimensional geometry
for the formation and dynamics of the exciplexes.
[0026] A surprising result is that increasing buffer gas density (as a means to increase
the frequency of collisions) is not always an optimal strategy as it can reduce cooling
rates.
[0027] In an embodiment of the invention it is provided that the hollow-core of the waveguide
is closed on both ends of the waveguide with respect to the cooling gas and the buffer
gas (but is of course open to receive the laser light generated by the at least one
laser light device and coupled into the hollow-core by the optical coupling device).
In this case it can be provided that the hollow-core waveguide has at least one opening
which can be opened and closed in order to release the cooled cooling gas.
[0028] In an embodiment of the invention the gas mixture of cooling gas and buffer gas is
pumped through the fiber entering at ambient temperature on one end and exiting at
much lower temperature on the other end. Temperature limit of the gas mixture can
be much lower as for Peltier (< 150 K) and the gas mixture can be used to cool other
devices.
[0029] Embodiments of the invention are being described with respect to Fig. 1 - 4:
Fig. 1 shows schematically an embodiment of the invention comprising a multimode hollow-core
waveguide 2 in the form of a fiber of inner radius r and length I filled with Rb-Ar
gas which is pumped by laser light provided by a laser light device 1 at central frequency
ω
L with bandwidth δω and input power I
0. Cooling gas (by way of example Rubidium - Rb) is provided into the hollow-core of
the hollow-core waveguide 2 by a cooling gas source 5. Buffer gas (by way of example
Argon - Ar) is provided into the hollow-core of the hollow-core waveguide 2 by a buffer
gas source 4. Other than shown, the cooling gas and the buffer gas could be pre-mixed
outside the hollow-core waveguide 2 such that the gas mixture of cooling gas and buffer
gas could be provided to the hollow-core waveguide 2.
[0030] The laser light generated by the laser light device 1 is coupled into the hollow-core
waveguide 2 by an optical coupling device 3 which is known in the prior art (e. g.
one or more optical lenses). Power loss resulting in a reduction of the kinetic energy
of the cooling gas occurs via spontaneous emission from the Rb atoms leading to a
reduced power I
out of laser light leaving hollow-core waveguide 2.
[0031] Fig. 2 shows the dynamics of an inventive cooling process for an example working
with a Rb-Ar collision process showing a ground state Ar atom approaching a Rb atom
initially in the ground state at constant velocity v. On the y-axis ground state potential
U
g(a) and the excited state potential U
e(a) are shown. On the x-axis the separation between the Ar atom and Rb atom is shown.
[0032] During the collision time τ ≃ 2δa/v, the laser light is resonant to the transition
between distances a
0 ± δa where a
0 is the coordinate of the minimum of U
e(a). Following absorption at frequency ℏω
L ≈ U
e(a
0) - U
g(a
0) an exciplex is formed with a lifetime of τ
γ = γ
-1. Spontaneous emission at rate γ leads to an effective energy loss.
[0033] Fig. 3 shows a table with parameters for an embodiment of the invention using Rb
as cooling gas and Ar as buffer gas. An initial temperature resulted in a relative
collision velocity of about v = 433 m/s. Spontaneous emission rate
γ = 2
π × 5.75
MHz, loss per cycle is about Ω = 2
π × 6,7154
THz. The bare ground-excited frequency difference is ω
0 = 2
π × 377
THz. The simulations in Fig. 4 have been done for these parameters.
[0034] Fig. 4a shows a sketch of a bundle of N hollow-core waveguides 2 in the form of fibers
as an arrangement that minimizes heat flow while maximizing cooling power leading
to a temperature drop roughly scaling as δT · √
N where δT is the single fiber temperature drop.
[0035] Fig. 4b shows the temperature vs. radius for a single hollow-core waveguide 2.
[0036] Fig. 4c shows the temperature plotted in grey values (darker grey means lower temperature)
for a bundle similar to the one shown in Fig. 4a over a section orthogonal to the
extension of the bundle.
[0037] Fig. 4d shows the temperature in Kelvin for y = 0 in Fig. 4c.
List of Reference Signs:
[0038]
- 1
- laser light device
- 2
- hollow-core waveguide
- 3
- optical coupling device
- 4
- buffer gas source
- 5
- cooling gas source
- ωL
- frequency of laser light
- δω
- bandwidth of laser light
- I0
- input power of laser light entering hollow-core waveguide
- Iout
- power of laser light leaving hollow-core waveguide
- ω0
- transition frequency between bare excited and bare ground state of cooling gas
- ℏΩ
- energy loss of cooling gas per spontaneous emission event
- Ug(a)
- ground state potential
- Ue(a)
- excited state potential
- a0
- coordinate of the minimum of Ue(a)
- δa
- variance in distance around a0
- τ
- collision time
- τγ
- lifetime of exciplex
- γ
- spontaneous emission rate
- v
- velocity
1. Refrigeration device, comprising:
- at least one laser light device (1) for generating laser light
- at least one hollow-core waveguide (2)
- at least one optical coupling device (3) for coupling laser light generated by the
at least one laser light device (1) into the at least one hollow-core waveguide (2)
- at least one buffer gas source (4) which is or can be connected to the at least
one hollow-core waveguide (2) for providing buffer gas into the hollow-core of the
hollow-core waveguide (2) and at least one cooling gas source (5) for cooling gas
which is or can be connected to the at least one hollow-core waveguide (2) for providing
cooling gas into the hollow-core of the hollow-core waveguide (2) such that during
operation of the refrigeration device atoms or molecules of the buffer gas and atoms
or molecules of the cooling gas are present together and collide with each other in
the hollow-core of the at least one hollow-core waveguide (2)
wherein the buffer gas provided by the at least one buffer gas source (4) and the
cooling gas provided by the at least one cooling gas source (5) are chosen such that
in the presence of laser light generated by the at least one laser light device (1)
and due to the collisions the atoms or molecules of the cooling gas and the buffer
gas form exciplexes, which do not bind in the ground state, but instead exhibit a
transitory bound excited state and thermic energy of the atoms or molecules of the
cooling gas is being converted to photons spontaneously emitted during the decay of
the exciplexes thereby cooling the atoms or molecules of the cooling gas.
2. Device according to claim 1, wherein the at least one buffer gas source (4) is configured
to provide a noble gas, preferably argon.
3. Device according to one of the preceding claims, wherein the at least one cooling
gas source (5) is configured to provide alkali gas, preferably Rubidium, or a halogen
gas, preferably chlorine gas or fluoride gas or an excimer gas mixture
4. Device according to one of the preceding claims, wherein the at least one hollow-core
waveguide (2) is made of dielectric material and/or is in the form of a fiber, preferably
in the form of a photonic crystal fiber.
5. Device according to one of the preceding claims, wherein there is provided a plurality
of hollow-core waveguides (2) which are bundled together and which preferably are
coupled to the same laser light device (1).
6. Device according to one of the preceding claims, wherein a pressure of a mixture of
the atoms or molecules of the buffer gas and the atoms or molecules of the cooling
gas in the at least one hollow-core waveguide (2) is in a range of about 1 bar to
about 50 bar, preferably about 5 bar to about 25 bar.
7. Device according to one of the preceding claims, wherein a length of the at least
one hollow-core waveguide (2) is chosen such that at least 10 %, preferably at least
50 %, of the power of the laser light coupled into the at least one hollow-core waveguide
(2) is being absorbed via exciplex-formation present in the at least one hollow-core
waveguide (2).
8. Device according to one of the preceding claims, wherein a diameter of the hollow-core
of the at least one hollow-core waveguide (2) is in a range of about 5 µm to about
100 µm, preferably in a range of about 15 µm to about 25 µm.
9. Device according to one of the preceding claims, wherein the at least one laser light
device (1) for generating laser light is configured to generate laser light with a
wavelength in a range of about 200 nm to about 1000 nm, preferably with a wavelength
in a range of about 500 nm to about 700 nm.
10. Refrigerator comprising at least one refrigeration device according to at least one
of the preceding claims.
11. Method for cooling gas in which the gas to be cooled is mixed with a buffer gas which
is chosen such that the atoms or molecules of the cooling gas and the atoms or molecules
of the buffer gas do not bind in the ground state but instead exhibit a transitory
bound excited state wherein the mixture is irradiated with laser light in at least
one hollow-core waveguide (2) such that light exciplexes are formed by the laser light
and by the collisions of atoms or molecules of the cooling gas and atoms or molecules
of the buffer gas and thermic energy of the atoms or molecules of the cooling gas
is being converted to photons spontaneously emitted during the decay of the exciplexes
thereby cooling the atoms or molecules of the cooling gas.
1. Kühlgerät, umfassend:
° wenigstens eine Laserlichtvorrichtung (1) zur Generierung von Laserlicht
° wenigstens einen Hohlkörper-Wellenleiter (2)
° wenigstens eine optische Koppelungsvorrichtung (3) zum Koppeln von Laserlicht, generiert
von der wenigstens einen Laserlichtvorrichtung (1) in den wenigstens einen Hohlkörper-Wellenleiter
(2),
° wenigstens eine Puffergasquelle (4), die mit dem wenigstens einen Hohlkörper-Wellenleiter
(2) verbunden ist oder verbunden werden kann, zum Vorsehen von Puffergas in den Hohlkern
des Hohlkörper-Wellenleiters (2), und wenigstens eine Kühlgasquelle (5) für Kühlgas,
welche mit dem wenigstens einen Hohlkörper-Wellenleiter (2) verbunden ist oder verbunden
werden kann, um Kühlgas in den Hohlkern des Hohlkörper-Wellenleiters (2) derart vorzusehen,
dass während des Betriebs des Kühlgeräts Atome oder Moleküle des Puffergases und Atome
oder Moleküle des Kühlgases gemeinsam vorhanden sind und im Hohlkern des wenigstens
einen Hohlkörper-Wellenleiters (2) miteinander kollidieren,
wobei
das Puffergas, welches durch die wenigstens eine Puffergasquelle (4) vorgesehen ist,
und das Kühlgas, welches durch die wenigstens eine Kühlgasquelle (5) vorgesehen ist,
so gewählt sind, dass sie in in der Gegenwart von Laserlicht, generiert durch die
wenigstens eine Laserlichtvorrichtung (1), und aufgrund der Kollisionen die Atome
oder Moleküle des Kühlgases und des Puffergases Exciplexe bilden, die sich nicht im
Grundzustand binden, sondern stattdessen einen vorübergehend gebundenen angeregten
Zustand einnehmen, und die thermische Energie der Atome oder Moleküle des Kühlgases
in Photonen umgewandelt wird, die während des Zerfalls der Exciplexe spontan emittiert
werden, wodurch die Atome oder Moleküle des Kühlgases gekühlt werden.
2. Gerät nach Anspruch 1, wobei die wenigstens eine Puffergasquelle (4) so gestaltet
ist, dass sie ein Edelgas, vorzugsweise Argon, vorsieht.
3. Gerät nach einem der vorhergehenden Ansprüche, wobei die wenigstens eine Kühlgasquelle
(5) so gestaltet ist, dass sie Alkaligas, vorzugsweise Rubidium, oder ein Halogengas,
vorzugsweise Chlorgas oder Fluoridgas, oder ein Excimer-Gasgemisch vorsieht.
4. Gerät nach einem der vorhergehenden Ansprüche, wobei der wenigstens eine Hohlkörper-Wellenleiter
(2) aus dielektrischem Material besteht und/oder in Form einer Faser, vorzugsweise
in Form einer photonischen Kristallfaser, vorliegt.
5. Gerät nach einem der vorhergehenden Ansprüche, wobei eine Vielzahl von Hohlkörper-Wellenleitern
(2) vorgesehen ist, die zusammengebündelt sind und die vorzugsweise an dieselbe Laserlichtvorrichtung
(1) gekoppelt sind.
6. Gerät nach einem der vorhergehenden Ansprüche, wobei ein Druck einer Mischung der
Atome oder Moleküle des Puffergases und der Atome oder Moleküle des Kühlgases in dem
wenigstens einen Hohlkörper-Wellenleiter (2) in einem Bereich von etwa 1 bar bis etwa
50 bar, vorzugsweise etwa 5 bar bis etwa 25 bar, liegt.
7. Gerät nach einem der vorhergehenden Ansprüche, wobei eine Länge des wenigstens einen
Hohlkörper-Wellenleiters (2) so gewählt ist, dass wenigstens 10 %, vorzugsweise wenigstens
50 %, der Leistung des in den wenigstens einen Hohlkörper-Wellenleiter (2) eingekoppelten
Laserlichts über eine in dem wenigstens einen Hohlkörper-Wellenleiter (2) vorhandene
Exciplexbildung absorbiert wird.
8. Gerät nach einem der vorhergehenden Ansprüche, wobei ein Durchmesser des Hohlkerns
des wenigstens einen Hohlkörper-Wellenleiters (2) in einem Bereich von etwa 5 µm bis
etwa 100 µm, vorzugsweise in einem Bereich von etwa 15 µm bis etwa 25 µm, liegt.
9. Gerät nach einem der vorhergehenden Ansprüche, wobei die wenigstens eine Laserlichtvorrichtung
(1) zur Generierung von Laserlicht so gestaltet ist, dass sie Laserlicht mit einer
Wellenlänge in einem Bereich von etwa 200 nm bis etwa 1000 nm, vorzugsweise mit einer
Wellenlänge in einem Bereich von etwa 500 nm bis etwa 700 nm, generiert.
10. Kühlschrank mit wenigstens einem Kühlgerät nach wenigstens einem der vorhergehenden
Ansprüche.
11. Verfahren zum Kühlen von Gas, bei dem das zu kühlende Gas mit einem Puffergas gemischt
wird, welches so gewählt ist, dass sich die Atome oder Moleküle des Kühlgases und
die Atome oder Moleküle des Puffergases nicht im Grundzustand binden, sondern stattdessen
einen vorübergehend gebundenen angeregten Zustand einnehmen, wobei das Gemisch mit
Laserlicht in wenigstens einem Hohlkörper-Wellenleiter (2) so bestrahlt wird, dass
Licht-Exciplexe durch das Laserlicht und durch die Kollisionen von Atomen oder Molekülen
des Kühlgases und Atomen oder Molekülen des Puffergases gebildet werden, und thermische
Energie der Atome oder Moleküle des Kühlgases in Photonen umgewandelt wird, die spontan
während des Zerfalls der Exciplexe emittiert werden, wodurch die Atome oder Moleküle
des Kühlgases gekühlt werden.
1. Dispositif de réfrigération, comprenant :
- au moins un dispositif de lumière laser (1) pour générer une lumière laser
- au moins un guide d'ondes à noyau creux (2)
- au moins un dispositif de couplage optique (3) pour coupler une lumière laser générée
par l'au moins un dispositif de lumière laser (1) dans l'au moins un guide d'ondes
à noyau creux (2)
- au moins une source de gaz tampon (4) qui est ou qui peut être reliée à l'au moins
un guide d'ondes à noyau creux (2) pour fournir un gaz tampon dans le noyau creux
du guide d'ondes à noyau creux (2), et au moins une source de gaz de refroidissement
(5) pour un gaz de refroidissement qui est ou qui peut être reliée à l'au moins un
guide d'ondes à noyau creux (2) pour fournir un gaz de refroidissement dans le noyau
creux du guide d'ondes à noyau creux (2), de sorte que, pendant le fonctionnement
du dispositif de réfrigération, des atomes ou des molécules du gaz tampon et des atomes
ou des molécules du gaz de refroidissement soient présents ensemble et entrent en
collision les uns avec les autres dans le noyau creux de l'au moins un guide d'ondes
à noyau creux (2)
dans lequel
le gaz tampon fourni par l'au moins une source de gaz tampon (4) et le gaz de refroidissement
fourni par l'au moins une source de gaz de refroidissement (5) sont choisis de sorte
qu'en présence d'une lumière laser générée par l'au moins un dispositif de lumière
laser (1) et, en raison des collisions, les atomes ou les molécules du gaz de refroidissement
et du gaz tampon forment des exciplexes qui ne se lient pas à l'état fondamental mais
qui présentent au contraire un état excité lié transitoire, et l'énergie thermique
des atomes ou des molécules du gaz de refroidissement est convertie en photons émis
spontanément pendant la désintégration des exciplexes, refroidissant ainsi les atomes
ou les molécules du gaz de refroidissement.
2. Dispositif selon la revendication 1, dans lequel l'au moins une source de gaz tampon
(4) est configurée pour fournir un gaz noble, de préférence l'argon.
3. Dispositif selon l'une des revendications précédentes, dans lequel l'au moins une
source de gaz de refroidissement (5) est configurée pour fournir un gaz alcalin, de
préférence le rubidium, ou un gaz halogène, de préférence le chlore gazeux ou le fluor
gazeux ou un mélange de gaz excimère.
4. Dispositif selon l'une des revendications précédentes, dans lequel l'au moins un guide
d'ondes à noyau creux (2) est réalisé en matériau diélectrique et/ou se présente sous
la forme d'une fibre, de préférence sous la forme d'une fibre à cristal photonique.
5. Dispositif selon l'une des revendications précédentes, dans lequel il est prévu une
pluralité de guides d'ondes à noyau creux (2) qui sont regroupés et qui sont de préférence
couplés au même dispositif de lumière laser (1).
6. Dispositif selon l'une des revendications précédentes, dans lequel une pression d'un
mélange des atomes ou des molécules du gaz tampon et des atomes ou des molécules du
gaz de refroidissement dans l'au moins un guide d'ondes à noyau creux (2) est dans
une plage d'environ 1 bar à environ 50 bar, de préférence d'environ 5 bar à environ
25 bar.
7. Dispositif selon l'une des revendications précédentes, dans lequel une longueur de
l'au moins un guide d'ondes à noyau creux (2) est choisie de sorte qu'au moins 10
%, de préférence au moins 50 %, de la puissance de la lumière laser couplée dans l'au
moins un guide d'ondes à noyau creux (2) soit absorbée via la formation d'exciplexes
présents dans l'au moins un guide d'ondes à noyau creux (2).
8. Dispositif selon l'une des revendications précédentes, dans lequel un diamètre du
noyau creux de l'au moins un guide d'ondes à noyau creux (2) est dans une plage d'environ
5 µm à environ 100 µm, de préférence dans une plage d'environ 15 µm à environ 25 µm.
9. Dispositif selon l'une des revendications précédentes, dans lequel l'au moins un dispositif
de lumière laser (1) pour générer une lumière laser est configuré pour générer une
lumière laser avec une longueur d'onde dans une plage d'environ 200 nm à environ 1000
nm, de préférence avec une longueur d'onde dans une plage d'environ 500 nm à environ
700 nm.
10. Réfrigérateur comprenant au moins un dispositif de réfrigération selon au moins une
des revendications précédentes.
11. Procédé de refroidissement d'un gaz dans lequel le gaz à refroidir est mélangé avec
un gaz tampon qui est choisi de sorte que les atomes ou les molécules du gaz de refroidissement
et les atomes ou les molécules du gaz tampon ne se lient pas à l'état fondamental
mais présentent au contraire un état excité lié transitoire dans lequel le mélange
est irradié avec une lumière laser dans au moins un guide d'ondes à noyau creux (2),
de sorte que des exciplexes de lumière soient formés par la lumière laser et par les
collisions d'atomes ou de molécules du gaz de refroidissement et d'atomes ou de molécules
du gaz tampon, et l'énergie thermique des atomes ou des molécules du gaz de refroidissement
est convertie en photons émis spontanément pendant la désintégration des exciplexes,
refroidissant ainsi les atomes ou les molécules du gaz de refroidissement.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description
Non-patent literature cited in the description
- U. V. A. SAßM. WEITZLaser cooling of a potassium-argon gas mixture using collisional redistribution of
radiation.Appl Phys B, 2011, vol. 102, 503-507 [0006]