(19)
(11) EP 3 352 917 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
29.12.2021 Bulletin 2021/52

(21) Application number: 16778117.8

(22) Date of filing: 23.09.2016
(51) International Patent Classification (IPC): 
B07B 1/24(2006.01)
B07B 13/07(2006.01)
B07B 15/00(2006.01)
B07B 13/04(2006.01)
B07B 13/11(2006.01)
B07B 1/22(2006.01)
(52) Cooperative Patent Classification (CPC):
B07B 13/113; B07B 1/005; B07B 1/24; B07B 13/07; B07B 15/00; B07B 13/04; B07B 13/11; B07B 1/22
(86) International application number:
PCT/IB2016/055710
(87) International publication number:
WO 2017/051377 (30.03.2017 Gazette 2017/13)

(54)

CEMENT GRINDING MEDIA SORTER AND OPERATING METHOD THEREOF

ZEMENTMAHLKÖRPERSORTIERER UND BETRIEBSVERFAHREN DAFÜR

TRIEUSE DE CORPS BROYANTS DE CIMENT ET SON PROCÉDÉ DE FONCTIONNEMENT


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 23.09.2015 PT 2015108831

(43) Date of publication of application:
01.08.2018 Bulletin 2018/31

(73) Proprietor: Manvia - Manutenção e Exploração de Instalações e Construção S.A.
2796-957 Linda-a-Velha (PT)

(72) Inventor:
  • GOMES ESTEVES, José António
    1600-892 Lisboa (PT)

(74) Representative: Patentree 
Edificio Net Rua de Salazares, 842
4149-002 Porto
4149-002 Porto (PT)


(56) References cited: : 
CN-U- 204 338 454
CN-Y- 201 012 355
JP-A- 2008 246 397
CN-Y- 2 149 256
DE-A1- 2 449 875
JP-A- 2010 216 721
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The present disclosure relates to a cement grinding media sorter and its operating method, wherein the grinding media are alloy steel balls. In detail, the cement grinding ball sorter aims at sorting cement grinding balls according to their size, and separates scrap and dust from the grinding media load.

    Background Art



    [0002] In brief, a cement ball mill is a horizontal cylinder partly filled with alloy steel balls that rotates on its axis, imparting a tumbling and cascading action on the balls. The cement-derived materials are fed through the mill, and afterwards are crushed and milled by the impact/friction between the balls. The grinding media is usually made of steel (e.g. high-chromium steel) or, alternatively, ceramic. Different-sized media are used to ensure an efficient and appropriate grinding of the materials, therefore, is very important to ensure an appropriate mix of different-sized balls. As the grinding media deteriorates with usage, it is necessary to periodically remove the grinding balls, sort them according to their size and condition, and replenish any specific size of grinding balls that is lacking in order to restore the most appropriate mix of different-sized balls.

    [0003] Document SU1200976A1 describes a sorter for cement grinding media. Further in detail, a cement grinding ball that sorts cement grinding balls according to their size. The prior art sorter of SU1200976A1 (see figs. 2-4) uses longitudinal partitions/slots and protrusions (3) of varying sizes that create longitudinal gaps with the desired sorting sizes for separating the grinding balls.

    [0004] The disclosure of SU1200976A1 has the disadvantage of having mixed non-spherical elements interfering with the sorting operation and has a lower sorting precision because the referred slots, not being circular, are prone to misclassification of any grinding media that is not perfectly spherical. For example, a non-spherical grinding ball having a major diameter of 62 mm and a minor diameter of 54 mm may be misclassified by a 55mm slot as being below 55 mm, whereas the larger diameter (62 mm) shows that the grinding ball clearly belongs to the class above 55 mm.

    [0005] Document CN2149256Y discloses a mechanical device, which is suitable for sieving grinding balls with phi 20 to phi 120 mm, or is suitable for sieving and classifying other materials. The device is composed of a spindle (1), an outer layer sieving (4), helical blades (7), two groups of cross steel rods (5), (6), etc. The grinding balls are primarily sieved by a cone-shaped revolving screen composed of cross steel rods (5), (6), and are secondly sieved by a screw thread grading sieve composed of helical blades (7) and outer layer sieving cylinders (4) which are arranged in subsection mode according to the sizes of the sieve meshes. A telescopic type sieving mechanism with the synchronous rotation of an inner and an outer layers sieves increases the sieving efficiency, and the mechanical operation of continuously sieving and classifying grinding balls are completed.

    General Description



    [0006] It is described a cement grinding media sorter for sorting cement grinding balls according to their size, and for separating scrap and dust, comprising:

    a cylindrical surface that rotates on its longitudinal axis and is opened at its two ends; the first end of the cylinder is the inlet for the grinding media and the second end is the outlet for the grinding media;

    a motor, or motors, coupled to the cylindrical surface to ensure its rotation movement; wherein the cylindrical surface has consecutive cylindrical segments, and each segment has a plurality of apertures; the apertures of each segment are larger than the largest aperture of the previous segment towards the outlet direction.



    [0007] It has been established that a cylindrical surface allows for easier movement of the media along the media sorter and is more robust. Nevertheless, a conical surface could be used alternatively of any of the cylindrical surfaces disclosed in the present document.

    [0008] Said cement grinding media sorter, in addition to said cylindrical surface, comprises:

    a second cylindrical surface that rotates on its longitudinal axis and is opened at its two ends; the first end of the cylinder is the inlet for the grinding media and the second end is the outlet for the grinding media, wherein the second cylindrical surface has consecutive cylindrical segments, and each segment has a plurality of apertures; the apertures of each segment are larger than the largest aperture of the previous segment towards the outlet direction;

    a motor, or motors, coupled to the second cylindrical surface to ensure its rotation movement;

    a size threshold separator for receiving the grinding media to be sorted and for separating the grinding media into above, or below, a predetermined size threshold; it has its larger size output connected to the inlet of the first cylindrical surface and its smaller size output connected to the inlet of the second cylindrical surface.



    [0009] It has been established that by pre-separating the media, a more compact construction can be obtained and each of the subsequent sorters can be constructed more robustly and with less cost having a much reduced range of media size to handle.

    [0010] In an embodiment, the apertures of the first segment of the first cylindrical surface are larger than the predetermined size threshold, and the apertures of the last segment of the second cylindrical surface are smaller than the predetermined size threshold. This enables a more efficient setup.

    [0011] In said cement grinding media sorter, the size threshold separator is the first segment of the first cylindrical surface; the apertures of the first segment of the first cylindrical surface have the size of the predetermined size threshold, and the apertures of the second segment of the first cylindrical surface are larger than the predetermined size threshold, plus, the apertures of the last segment of the second cylindrical surface are smaller than the predetermined size threshold. This enhances the efficiency of the setup.

    [0012] In an embodiment, the motor, or motors, coupled to the second cylindrical surface and the motor, or motors, coupled to the first cylindrical surface are the same motor or motors.

    [0013] In an embodiment, the apertures are circular, facilitating the accurate separation of the grinding media (which is normally circular).

    [0014] In an embodiment, the apertures are circular except for the apertures of one, and only one, segment of any such cylindrical surface, which are oblong, in particular this segment being the first inlet segment of said cylindrical surface. This facilitates a faster separation when some debris may be present in the grinding media to be separated.

    [0015] In an embodiment, all the apertures of each segment have the same size.

    [0016] In an embodiment, the cylindrical surface comprises fins or ribs on the inside of the cylindrical surface for moving the grinding media from the inlet towards the outlet. In an embodiment, said fins or ribs are helical. Alternatively, said fins or ribs are partly helical and partly peripherical.

    [0017] In an embodiment, the apertures are offset in respect of the immediate neighbour apertures and, in particular, are offset in respect of the inlet-outlet direction. This enables more apertures for the same separator surface area.

    [0018] An embodiment comprises discharge chutes for the sorted grinding balls in the shape of a funnel, and each chute is located below one of the cylindrical segments.

    [0019] In an embodiment, the two ends of the cylindrical surface are flat and circular.

    [0020] An embodiment comprises a non-spherical media separator at the grinding media inlet. This allows a much more efficient separation of the grinding media, because the separators are not hindered by the non-spherical material present with the grinding media. Furthermore, when combined with circular apertures at the separators, it is even more important to remove non-spherical material, as the circular apertures are more susceptible to non-spherical elements.

    [0021] In an embodiment, the non-spherical media separator comprises:

    a substantially flat surface arranged to be movable horizontally and for receiving on its top the grinding media to be separated;

    a motor, or motors, arranged for moving horizontally the flat surface in a reciprocating fashion such that movement in a first reciprocating direction is substantially faster than in the second inverse reciprocating direction.



    [0022] In an embodiment, the flat surface is horizontal or has a slight tilt for promoting the movement of the grinding balls across the surface; in particular the tilt angle is adjustable.

    [0023] These are configurations that enable a more efficient separation of non-spherical media.

    [0024] An embodiment comprises a discharge chute for the separated non-spherical media in the shape of a funnel, and is located below the flat surface.

    [0025] An embodiment comprises a separator of scrap and dust at the grinding media inlet. This allows a much more efficient separation of the grinding media, because the separators are not hindered by the scrap or dust material present with the grinding media. Furthermore, when combined with circular apertures at the separators, it is even more important to remove scrap or dust material, as the circular apertures are more susceptible to non-spherical elements.

    [0026] In particular the separator of scrap and dust can be located before the non-spherical media separator, if present. Alternatively, the separator of scrap and dust can be located after the non-spherical media separator, if present.

    [0027] In an embodiment, the separator of scrap and dust comprises:

    a cylindrical surface that rotates on its longitudinal axis and is opened at its two ends; the first end of the cylinder is the inlet for the separator of scrap and dust and the second end is the outlet for the separator of scrap and dust;

    a motor, or motors, coupled to the cylindrical surface to ensure its rotation movement; wherein the cylindrical surface has a plurality of apertures; the size of the apertures is large enough such that the dust and scrap material falls through the apertures, however, the size of the apertures is small enough such that the grinding media follows through to the outlet of the separator of scrap and dust.



    [0028] In an embodiment, the cylindrical surface of the separator of scrap and dust has two consecutive cylindrical segments; the apertures of each segment are oblong, wherein the apertures of the first segment are at an angle with the apertures of the second stage, in particular, at the angle of 90°.

    [0029] In an embodiment, the cylindrical surface of the separator of scrap and dust has two consecutive cylindrical segments; the apertures of one of the segments are oblong and the apertures of the other segment are circular.

    [0030] These are configurations that enable a more efficient separation of scrap and dust media.

    [0031] The oblong apertures mentioned in this document can be stadium-shaped or ellipse-shaped. In an embodiment, the cylindrical surface of the separator of scrap and dust comprises fins or ribs in the inside of the cylindrical surface for moving the grinding media from the inlet towards the outlet. In an embodiment, said fins or ribs are helical. Alternatively, said fins or ribs are partly helical and partly peripherical.

    [0032] In an embodiment, the apertures of the cylindrical surface of the separator of scrap and dust are offset in respect to the immediate neighbour apertures and, in particular, are offset in respect to the inlet-outlet direction.

    [0033] An embodiment comprises a discharge chute for the separated dust and scrap material in the shape of a funnel; the funnel is located below the cylindrical surface of the separator of scrap and dust.

    [0034] In an embodiment, the two ends of the cylindrical surface of the separator of scrap and dust are flat and circular.

    [0035] It is also disclosed a method of operating the cement grinding media sorter of the described embodiments, comprising the following steps:

    loading the grinding media to be sorted;

    separating scrap and dust from the grinding media;

    separating non-spherical or asymmetrical elements from the grinding media;

    separating the grinding media whether above or below a predetermined size threshold into a larger-size grinding media and a smaller-size grinding media;

    sorting the larger-size grinding media by size ranges;

    sorting the smaller-size grinding media by size ranges.



    [0036] The method can be carried out in successive fashion by re-feeding the previously separated material should any of the separated material have a significant part of wrongly sorted elements. The terms sorter and separator are used interchangeably.

    Brief Description of the Drawings



    [0037] The following figures provide preferred embodiments to illustrate the description and should not be seen as limiting the scope of the disclosure.

    Figure 1: Schematic representation of an embodiment of the cement grinding media sorter.

    Figure 2: Schematic representation of the loading hopper and the scrap/dust separation stage of an embodiment of the cement grinding media sorter.

    Figure 3: Schematic representation of the mid-size threshold separation and larger-size separation stages of an embodiment of the cement grinding media sorter.

    Figure 4: Schematic representation of the smaller-size separation stages of an embodiment of the cement grinding media sorter.

    Figure 5: Schematic representation of the asymmetrical or aspherical scrap separation stage of an embodiment of the cement grinding media sorter.

    Figure 6: Schematic representation of size separation stages of an embodiment of the cement grinding media sorter.

    Figure 7: Schematic representation of the operating method of an embodiment of the cement grinding media sorter.

    Figure 8: Schematic representation of an embodiment of the cement grinding media sorter incorporated in a container, in particular, in a truck container, with a loading hopper at the back of the truck (not shown).

    Figure 9: Schematic representation of the dust and smaller particle separation stage of an embodiment of the cement grinding media sorter.


    Detailed Description



    [0038] Figure 1 shows an embodiment of the cement grinding media sorter. A loading hopper 1 receives the shovelled grinding media, which has been dumped from the grinding mill. A bucket conveyor 2 picks up the grinding balls from the loading hopper 1 and feeds these into a scrap/dust separator 3. Then the balls are fed into a non-spherical (or asymmetrical) separator 4. After the non-spherical material (e.g. deformed grinding ball) has been removed, the grinding material is fed into a mid-size threshold separator 5 that separates the grinding media into two large classes of diameters: above or below a certain threshold. The larger grinding media goes into a larger size separator 6 while the smaller-size grinding media 7 goes into a smaller size separator. The grinding balls go through each stage of the separators, which sort the grinding media according to the size at each stage. The sorted balls fall into different ball discharge chutes according to the sorted size of the grinding media.

    [0039] This has the advantage that the layout is eminently linear enabling a compact construction, which can be placed, for example, in a standard transport container.

    [0040] This also has the advantage that the device is transportable.

    [0041] This device has the advantage that it is able to process a load of mill balls in a single batch. This device has the further advantage that 80-95 % of sorting balls can be re-used immediately.

    [0042] Another advantage is that the present device allows efficient sorting of smaller diameter balls by having the dust/scrap removed.

    [0043] Also, by having a mid-size threshold separator and by having two separators of grinding media for two distinct range sizes, each separator can be much more efficient, not having to process such a wide range of sizes as the initial range.

    [0044] According to an embodiment, each separator comprises a rotatable cylindrical surface with apertures distributed along its cylindrical face, the separator inlet for the grinding balls is one of the circular faces of the cylinder and the separator outlet is the other circular face of the cylinder. The cylindrical surface may preferably be metallic. An electric engine, or other mean, is provided to ensure the rotation of the cylindrical surface while grinding balls are fed to the separator inlet.

    [0045] Once the cylindrical surface is normally arranged horizontally when in operation, the flow of material to be separated is ensured by the rotation, and the consequent interaction that the surface causes to the material - tumbling and cascading - and not by having an inclination at the sorting surface. This enables an improved separation since an inclined surface would move the material too quickly along the sorter.

    [0046] Figure 2 shows the initial part of an embodiment of the cement grinding media sorter; in particular, shows the scrap/dust separator 3 and the non-spherical separator 4.

    [0047] According to an embodiment, the scrap/dust separator comprises a rotatable cylindrical surface with apertures distributed along its cylindrical face, the separator inlet for the grinding balls at one of the top faces of the cylinder and the separator outlet at the other top face of the cylinder. The cylindrical surface may preferably be metallic. An electric engine, or other means, is provided to ensure the rotation of the cylindrical surface while the grinding balls are fed to the separator inlet.

    [0048] The apertures are small enough in order to transport all the grinding media to the next stage, but at the same time the apertures are as large as possible in order to remove the small scrap and dust from the grinding media.

    [0049] The embodiment has the overall advantage that an improved separation of dust and scrap is achieved, with less scrap/dust remaining in the grinding media.

    [0050] It has been observed that removing scrap/dust more effectively before the sorting of the grinding balls, turns the sorting into a more precise and efficient process, since any leftover scrap/dust interferes with the sorting as will be discussed further below.

    [0051] In particular, the scrap/dust separator 3 has a first stage 31 and a second stage 32. The separator stages of the scrap/dust separator can have circular and oblong (e.g. elliptical) apertures, respectively; or can have two stages with oblong (e.g. elliptical) apertures, wherein the refereed apertures of the first stage are positioned with a certain angle to the apertures of the second stage, in particular a square angle.

    [0052] Oblong apertures have been found to be particularly suited for separating small oddly-shaped scrap materials and, in general, small non-spherical materials. The oblong apertures of the first stage 31 and of the second stage 32 are preferably arranged parallel within each stage and arranged at a square angle in respect to the apertures of the other stage.

    [0053] The different angles, and especially when at 90°, have been found out to be the most particularly suited for ensuring an improved separation of scrap materials and smaller non-spherical materials.

    [0054] The cylindrical surface may comprise helical ribs or fins arranged on the inside of the cylindrical surface in order to move the material from the inlet to outlet of the separator.

    [0055] The apertures are preferably offset ('décalés') in respect to the immediate neighbour apertures. The immediate neighbours of an aperture are those apertures immediately next to it.

    [0056] The non-spherical separator 4 separates grinding media that is deformed (e.g. asymmetrical), and removes these from the grinding media flow.

    [0057] It has also been observed that by removing non-spherical or asymmetrical balls before the sorting of the grinding balls turns the sorting into more precise and efficient, since any leftover non-spherical or asymmetrical ball interferes with the ball sorting as will be seen further below.

    [0058] Figure 3 shows the mid-size threshold separator 5 that separates the grinding media into two large classes of diameters: above or below a certain threshold. The larger grinding media goes into a larger size separator 6 while the smaller-size grinding media goes into a smaller size separator 7.

    [0059] In said cement grinding media sorter, the mid-size threshold separator 5 is the first stage of the larger size separator 6 once this has the advantage of providing a more compact construction.

    [0060] Having two separators working simultaneously in parallel allows a faster operation. Moreover, having the grinding media separated into two size classes one does not allow interference between very different sized balls in the same separator, besides, the sorting is more efficient because the movements are less chaotic and somewhat more ordered. Furthermore, two cylindrical separators are more easily arranged in a linear fashion what makes the whole equipment to be more suitable for a transport container.

    [0061] The larger size separator 6 has a plurality of separating stages for different ranges of ball diameter. The grinding balls are separated and sorted according to the diameter as each stage has a different discharge chute for the balls 61. At the end of the separator the larger grinding balls are dumped to a discharge chute 62.

    [0062] Figure 4 shows the smaller size separator 7 of an embodiment. The smaller size separator 7 has a plurality of separating stages 71 for different ranges of ball diameter. The grinding balls are separated and sorted according to the diameter as each stage has a different discharge chute for the balls 72. At the end of the separator the smaller-size grinding balls are dumped to a discharge chute 73.

    [0063] Figure 5 shows the non-spherical separator of an embodiment. The non-spherical separator comprises a substantially horizontal and flat surface which is able to be moved horizontally in a reciprocating fashion. In particular, the non-spherical separator is arranged such that the movement in a first reciprocating direction is substantially faster than in the second reciprocating and inverse direction. This reciprocating movement causes different motions to the grinding balls whether these are spherical or not. If the reciprocating movement is asymmetrical, this effect is enhanced. Preferably the surface may be slightly tilted in order to promote the movement of the grinding balls across the surface. If one adjusts the tilting direction of the surface, the separation of the non-spherical balls can be fine-tuned such that non-spherical balls are removed at one end-region of the surface and the spherical balls continue to the next stage.

    [0064] Figure 6 shows a view of a ball separator (or sorter) according to an embodiment of the disclosure. This separator can be used for both the larger size separator 6 and the smaller size separator 7, by means of adapting the required sorting sizes.

    [0065] According to an embodiment, the grinding ball separator 80 comprises a rotatable cylindrical surface with apertures 81 distributed along its cylindrical face.

    [0066] The separator inlet 84 for the grinding balls is at one circular face of the cylinder and the separator outlet 85 is at the other circular face of the cylinder. The cylindrical surface may preferably be metallic. An electric engine, or other means, is provided to ensure the rotation of the cylindrical surface while grinding balls are fed to the separator inlet 84.

    [0067] The cylindrical surface comprises helical ribs or fins 82, preferably helical fins, arranged on the inner side of the cylindrical surface in order to move the material from the inlet 84 towards the outlet 85 of the separator 80. The apertures 81 are preferably offset ('décalés') in respect to the immediate neighbour apertures, in particular in respect to the inlet/outlet direction.

    [0068] The apertures 81 at each stage are small enough that grinding media is able to go through to the separator outlet, but dust and scrap material smaller than the aperture falls through the apertures to a ball chute 83.

    [0069] For each separator, the apertures 81 of each stage 81a, 81b, 81c and 81d are progressively larger as the grinding balls follows from the inlet to the outlet. As intentional consequence, the balls exiting through the ball chutes 83 are gradually larger at each chute 83a, 83b, 83c and 83d.

    [0070] Preferably, the apertures 81 within each stage 81a, 81b, 81c and 81d have all the same size.

    [0071] If the apertures are circular, the size of an aperture is defined as its diameter. If the apertures are not circular, the size of an aperture is defined as the diameter of the largest sphere that is able to go through the aperture.

    [0072] The separator stages have apertures 81 that are preferably circular apertures. It has been found that other shapes (e.g. oblong shapes) are less precise in separating and sorting the grinding media, even if they may operate faster than circular apertures. This precision is further improved if scrap and/or non-spherical grinding media have been removed beforehand. Irregular materials cause difficulties in sorting the grinding balls as they interfere with the circular apertures. Thus, removing such materials before the sorting is advantageous.

    [0073] An example of sizes of the apertures is given below in Table 1 for a grinding media separator such as in Fig. 6.
    Table 1
    Stage Aperture size (mm) Balls exiting at this stage (mm) Balls continuing to next stage (mm)
    81a / 83a 55 <55 >55
    81b / 83b 65 >55 and <65 >65
    81c / 83c 75 >65 and <75 >75
    81d / 83d 85 >75 and <85 >85
    Outlet - >85 -


    [0074] One can see how the 4-stage separator is able to separate, and sort, the grinding media according to the diameter in 5 classes (<55; 55-65; 65-75; 75-85; >85 mm).

    [0075] One can also verify how the output of the first stage can be related or compared to a small size separator that separates the grinding balls below 55 mm. Such separator works as the separator that has just been described as well.

    [0076] An example of sizes of the apertures is given below in Table 2 for two grinding media separators such as in Fig. 6, one for larger sizes and the other for small sizes, wherein the output of the first stage of the first separator (larger size separator) is the feeding inlet for the second separator (smaller size separator):
    Table 2
    Separator Stage Aperture size (mm) Balls exiting at this stage (mm) Balls continuing to next stage (mm)
    Larger size separator 81a / 83a 55 <55 (fed into the smaller size separator) >55
    81b / 83b 65 >55 and <65 >65
    81c / 83c 75 >65 and <75 >75
    81d / 83d 85 >75 and <85 >85
    Outlet - >85 -
    Smaller size separator 81a / 83a 15 <15 >15 and <55
    81b / 83b 25 >15 and <25 >25 and <55
    81c / 83c 35 >25 and <35 >35 and <55
    81d / 83d 45 >35 and <45 >45 and <55
    Outlet - >45 and <55 -


    [0077] It can be seen how the larger size separator is able to separate, and sort, the grinding media according to the diameter in 5 classes (<55; 55-65; 65-75; 75-85; >85 mm). The smaller class is fed into the smaller size separator, which then sorts the grinding media according to the diameter in 5 classes (<15; 15-25; 25-35; 35-45; 45-55 mm).

    [0078] In conclusion, the two 4-stage separators are then able to fully separate and sort the grinding media according to the diameter in 9 classes (<15; 15-25; 25-35; 35-45; 45-55; 55-65; 65-75; 75-85; >85 mm).

    [0079] It is possible to "cascade" more separators like this, but it was found out that the benefit of a possible improved precision through the increase of the number stages is damaged with a less compact construction, making the assembly less transportable.

    [0080] Figure 7 shows the grinding media flow of an embodiment of the cement grinding media sorter. The grinding media, which has been dumped before from the grinding mill, is loaded onto a loading hopper. The grinding balls are fed into a scrap/dust separator that removes dust and small scraps. The grinding balls are then taken into a non-spherical (or asymmetrical) separator which removes the non-spherical grinding media. After the non-spherical material (e.g. a deformed grinding ball) has been removed, the grinding material is fed into a mid-size threshold separator that separates the grinding media into two classes of diameters: above or below a certain threshold. The larger grinding media follows into a larger size separator while the smaller size grinding media follows into a smaller size separator. The grinding balls go through each stage of the separators, which sort the balls according to their size at each stage. The sorted balls fall into different discharge chutes according to their size.

    [0081] Figure 8 shows a schematic representation of an embodiment of the cement grinding media sorter incorporated in a container, in this particular case, a truck container with a loading hopper at the back of the truck (not shown). The grinding ball chutes are placed in the lateral side of the container, according to the sorted sizes.

    [0082] Figure 9 shows a view of the scrap/dust separator 90 according to an embodiment of the disclosure. According to an embodiment, the scrap/dust separator comprises a rotatable cylindrical surface with apertures 91 distributed along its cylindrical face, the separator inlet 94 for the grinding balls at one of the circular faces of the cylinder and the separator outlet 95 at the other circular face of the cylinder. The cylindrical surface may preferably be metallic. An electric engine, or other mean, is provided to ensure the rotation of the cylindrical surface while grinding balls are fed to the separator inlet.

    [0083] The apertures are small enough in order to allow the passage of the grinding media towards the separator outlet, however, the apertures are as large as possible in order to remove the small scraps and dust from the grinding media. A chute 93 is provided for funnelling the removed scrap and dust.

    [0084] The separator stages can have circular and oblong (e.g. elliptical) apertures, respectively; or can have two stages with oblong (e.g. elliptical) apertures, wherein the refereed apertures of the first stage are positioned with a certain angle to the apertures of the second stage, in particular a square angle.

    [0085] In particular, the scrap/dust separator 90 may have a first stage and a second stage. The apertures 91a of the first stage and the apertures 91b of the second stage are preferably arranged parallel within each stage and arranged in a square angle in respect to the apertures of the other stage.

    [0086] This embodiment has the advantage of supplying an improved separation of dust and scrap, which promotes less remaining scrap/dust in the grinding media flow.

    [0087] It has also been observed that removing scrap/dust more effectively before the sorting of the grinding balls turns the sorting into a more precise and efficient process, since any leftover scrap/dust interferes with the sorting as will be discussed further below.

    [0088] The cylindrical surface may comprise helical fins arranged on the inside cylindrical surface in order to move the material from the inlet to outlet of the separator.

    [0089] The apertures are preferably offset ('décalés') in respect to the immediate neighbour apertures, in particular in respect to the inlet/outlet direction.

    [0090] The term "comprising" whenever used in this document is intended to indicate the presence of stated features, integers, steps, components, but not to preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.


    Claims

    1. Cement grinding media sorter for sorting cement grinding balls according to their size, and for separating scrap and dust, comprising:

    a first cylindrical surface (6) rotatable on its longitudinal axis and open at its two top ends, a first end being an inlet for the grinding media and the second end being an outlet for the grinding media;

    a motor, or motors, coupled to the cylindrical surface for rotating it;

    wherein the first cylindrical surface has consecutive cylindrical segments, each segment having a plurality of apertures, wherein the apertures of each segment are larger than the largest aperture of the previous segment towards the outlet direction;

    a second cylindrical surface (7) rotatable on its longitudinal axis and open at its two top ends, a first end being an inlet for the grinding media and the second end being an outlet for the grinding media, wherein the second cylindrical surface has consecutive cylindrical segments, each segment having a plurality of apertures, wherein the apertures of each segment are larger than the largest aperture of the previous segment towards the outlet direction;

    another motor, or motors, coupled to the second cylindrical surface for rotating it;

    a size threshold separator (5) for receiving the grinding media to be sorted and for separating the grinding media between above and below a predetermined size threshold into a larger-size outlet and a smaller-size outlet, being its larger-size output connected to the inlet of the first cylindrical surface and its smaller-size output connected to the inlet of the second cylindrical surface;

    wherein the size threshold separator is the first segment of the first cylindrical surface; the apertures of the first segment of the first cylindrical surface have the size of the predetermined size threshold, and the apertures of the second segment of the first cylindrical surface are larger than the predetermined size threshold, and the apertures of the last segment of the second cylindrical surface are smaller than the predetermined size threshold.


     
    2. Cement grinding media sorter according to the previous claim wherein the apertures of the first segment of the first cylindrical surface (6) are larger than the predetermined size threshold, and the apertures of the last segment of the second cylindrical surface (7) are smaller than the predetermined size threshold.
     
    3. Cement grinding media sorter according to any of the previous claims comprising a non-spherical media separator (4) at the grinding media inlet of the cement grinding media sorter.
     
    4. Cement grinding media sorter according to the previous claim wherein the non-spherical media separator (4) comprises:

    a substantially flat surface (41) arranged to be movable horizontally and for receiving on its top side the grinding media (40a, 40b) to be separated (44a, 44b);

    a motor (43), or motors, arranged for moving horizontally the flat surface in a reciprocating fashion (42).


     
    5. Cement grinding media sorter according to the previous claim wherein the non-spherical media separator (4) is arranged such that movement in a first reciprocating direction is substantially faster than in the second inverse reciprocating direction.
     
    6. Cement grinding media sorter according to claim 4 or 5 wherein the non-spherical media separator (4) is arranged such that the reciprocating movement is transversal to the direction of movement of the grinding media at the substantially flat surface.
     
    7. Cement grinding media sorter according to any of the claims 4 - 6 wherein the substantially flat surface (41) is horizontal or has a slight tilt for promoting the movement of the grinding balls across the surface, in particular the tilt angle being adjustable.
     
    8. Cement grinding media sorter according to any of the previous claims wherein the apertures (81a, 81b, 81c, 81d) are circular, or the apertures are circular except for the apertures of one, and only one, segment of any such cylindrical surface, which are oblong, in particular this segment being the first inlet segment of any said cylindrical surface (6, 7).
     
    9. Cement grinding media sorter according to any of the previous claims wherein any such cylindrical surface (6, 7) comprises helical fins or ribs (82) on the inside of the cylindrical surface for moving the grinding media from the inlet (84) towards the outlet (85).
     
    10. Cement grinding media sorter according to any of the previous claims wherein the apertures (81a, 81b, 81c, 81d) are offset in respect of the immediate neighbour apertures, in particular offset in respect of the inlet-outlet (84-85) direction.
     
    11. Cement grinding media sorter according to any of the previous claims comprising a separator of scrap and dust (3) at the grinding media inlet, in particular before the non-spherical media separator (4), if present.
     
    12. Cement grinding media sorter according to the previous claim wherein the separator of scrap and dust (3) comprises:

    a cylindrical surface rotatable on its longitudinal axis and open at its two ends, a first end (94) being the inlet for scrap and dust separator and the second end (95) being the outlet for the scrap and dust separator;

    a motor or motors coupled to the cylindrical surface for rotating it;

    wherein the cylindrical surface has a plurality of apertures (91a, 91b), the size of the apertures being large enough such that dust and scrap material falls through the apertures, whereas the size of the apertures is small enough such that grinding media do not fall through the apertures and go through to the outlet of the scrap and dust separator.


     
    13. Cement grinding media sorter according to the previous claim wherein the cylindrical surface of the separator of scrap and dust (3) has two consecutive cylindrical segments (31, 32), the apertures of each segment being oblong, wherein the apertures of the first segment (91a) are at an angle with the apertures of the second segment (91b), in particular at the angle of 90°.
     
    14. Cement grinding media sorter according to the claim 12 wherein the cylindrical surface of the separator of scrap and dust (3) has two consecutive cylindrical segments (31, 32), the apertures of one of the segments being oblong and the apertures of the other segment being circular.
     
    15. Method of operating the cement grinding media sorter of any of the previous claims, comprising the steps of:

    loading the grinding media to be sorted (1);

    separating scrap and dust from the grinding media (3);

    separating non-spherical or asymmetrical elements from the grinding media (4);

    separating the grinding media whether above or below a predetermined size threshold into a larger-size grinding media and a smaller-size grinding media (5);

    sorting the larger-size grinding media by size ranges (6);

    sorting the smaller-size grinding media by size ranges (7).


     


    Ansprüche

    1. Zementmahlkörpersortierer zum Sortieren von Zementmahlkugeln nach ihrer Größe und zum Abscheiden von Abfall und Staub, umfassend:

    eine erste zylindrische Oberfläche (6), die um ihre Längsachse drehbar und an ihren beiden oberen Enden offen ist, wobei ein erstes Ende ein Einlass für die Mahlkörper und das zweite Ende ein Auslass für die Mahlkörper ist;

    einen oder mehrere Motoren, die mit der zylindrischen Oberfläche gekoppelt sind, um diese zu drehen;

    wobei die erste zylindrische Oberfläche aufeinanderfolgende zylindrische Segmente aufweist, wobei jedes Segment eine Vielzahl von Öffnungen aufweist, wobei die Öffnungen jedes Segments, in Richtung des Auslasses verlaufend, größer sind als die größte Öffnung des vorherigen Segments;

    eine zweite zylindrische Oberfläche (7), die um ihre Längsachse drehbar und an ihren beiden oberen Enden offen ist, wobei ein erstes Ende ein Einlass für die Mahlkörper und das zweite Ende ein Auslass für die Mahlkörper ist, wobei die zweite zylindrische Fläche aufeinanderfolgende zylindrische Segmente aufweist, wobei jedes Segment eine Vielzahl von Öffnungen aufweist, wobei die Öffnungen jedes Segments, in Richtung des Auslasses verlaufend, größer sind als die größte Öffnung des vorherigen Segments;

    einen oder mehrere weitere Motoren, die mit der zylindrischen Fläche gekoppelt sind, um diese zu drehen;

    eine Größentrenneinrichtung (5) für die Aufnahme der zu sortierenden Mahlkörper und für die Trennung der Mahlkörper in Mahlkörper, die über oder unter einer vorgegebenen Trenngröße liegen, in einen Auslass für größere Größen und einen Auslass für kleinere Größen, wobei der Auslass für die größeren Größen mit dem Einlass der ersten zylindrischen Oberfläche und der Auslass für die kleineren Größen mit dem Einlass der zweiten zylindrischen Oberfläche verbunden ist;

    wobei die Größentrenneinrichtung das erste Segment der ersten zylindrischen Oberfläche ist; die Öffnungen des ersten Segments der ersten zylindrischen Oberfläche der Größe der vorgegebenen Trenngröße entsprechen und die Öffnungen des zweiten Segments der ersten zylindrischen Oberfläche größer als die vorgegebene Trenngröße sind und die Öffnungen des letzten Segments der zweiten zylindrischen Oberfläche kleiner als die vorgegebene Trenngröße sind.


     
    2. Zementmahlkörpersortierer nach dem vorangehenden Anspruch, wobei die Öffnungen des ersten Segments der ersten zylindrischen Oberfläche (6) größer sind als die vorgegebene Trenngröße und die Öffnungen des letzten Segments der zweiten zylindrischen Oberfläche (7) kleiner sind als die vorgegebene Trenngröße.
     
    3. Zementmahlkörpersortierer nach einem der vorangehenden Ansprüche mit einer nichtkugelförmigen Trenneinrichtung (4) am Mahlkörpereinlass des Zementmahlkörpersortierers.
     
    4. Zementmahlkörpersortierer nach dem vorangehenden Anspruch, wobei die nichtkugelförmige Trenneinrichtung (4) umfasst:

    eine im Wesentlichen ebene Fläche (41), die so angeordnet ist, dass sie horizontal beweglich ist und auf deren Oberseite die zu trennenden Mahlkörper (40a, 40b) aufgenommen werden (44a, 44b);

    einen Motor (43) oder mehrere Motoren, die so angeordnet sind, dass sie die ebene Fläche (42) in horizontaler Richtung hin- und herbewegen.


     
    5. Zementmahlkörpersortierer nach dem vorangehenden Anspruch, wobei die nicht kugelförmige Trenneinrichtung (4) so angeordnet ist, dass die Hin- und Her-Bewegung in einer ersten Richtung wesentlich schneller erfolgt als in der zweiten umgekehrten Richtung der Hin- und Her-Bewegung.
     
    6. Zementmahlkörpersortierer nach Anspruch 4 oder 5, wobei die nicht kugelförmige Trenneinrichtung (4) so angeordnet ist, dass die Hin- und Her-Bewegung quer zur Bewegungsrichtung der Mahlkörper an der im Wesentlichen ebenen Fläche erfolgt.
     
    7. Zementmahlkörpersortierer nach einem der Ansprüche 4 - 6, wobei die im Wesentlichen ebene Fläche (41) horizontal ist oder eine leichte Neigung aufweist, um die Bewegung der Mahlkugeln über die Fläche zu fördern, wobei insbesondere der Neigungswinkel einstellbar ist.
     
    8. Zementmahlkörpersortierer nach einem der vorangehenden Ansprüche, wobei die Öffnungen (81a, 81b, 81c, 81d) kreisförmig sind oder die Öffnungen kreisförmig sind, mit Ausnahme der Öffnungen eines, und nur eines Segments einer dieser zylindrischen Oberflächen, die länglich sind, wobei dieses Segment insbesondere das erste Einlasssegment einer der genannten zylindrischen Oberflächen (6, 7) ist.
     
    9. Zementmahlkörpersortierer nach einem der vorangehenden Ansprüche, wobei jede dieser zylindrischen Oberflächen (6, 7) schraubenförmige Lamellen oder Rippen (82) auf der Innenseite der zylindrischen Oberfläche aufweist, um die Mahlkörper vom Einlass (84) zum Auslass (85) zu bewegen.
     
    10. Zementmahlkörpersortierer nach einem der vorhergehenden Ansprüche, wobei die Öffnungen (81a, 81b, 81c, 81d) gegenüber den unmittelbar benachbarten Öffnungen versetzt sind, insbesondere in Einlass-Auslass-Richtung (84-85) versetzt sind.
     
    11. Zementmahlkörpersortierer nach einem der vorangehenden Ansprüche mit einer Trenneinrichtung für Abfall und Staub (3) am Mahlkörpereinlass, insbesondere vor der nichtkugelförmigen Trenneinrichtung (4), falls vorhanden.
     
    12. Zementmahlkörpersortierer nach dem vorangehenden Anspruch, wobei die Trenneinrichtung für Abfall und Staub (3) umfasst:

    eine zylindrische Oberfläche, die um ihre Längsachse drehbar und an ihren beiden Enden offen ist, wobei ein erstes Ende (94) der Einlass für die Trenneinrichtung für Altmetall und Staub und das zweite Ende (95) der Auslass für die Trenneinrichtung für Altmetall und Staub ist;

    einen oder mehrere Motoren, die mit der zylindrischen Fläche gekoppelt sind, um diese zu drehen;

    wobei die zylindrische Oberfläche eine Vielzahl von Öffnungen (91a, 91b) aufweist, wobei die Größe der Öffnungen groß genug ist, so dass das Staub und Abfall durch die Öffnungen fällt, während die Größe der Öffnungen klein genug ist, damit die Mahlkörper nicht durch die Öffnungen fallen und zum Auslass der Trenneinrichtung für Abfall und Staub durchlaufen.


     
    13. Zementmahlkörpersortierer nach dem vorangehenden Anspruch, wobei die zylindrische Oberfläche der Trenneinrichtung für Abfall und Staub (3) zwei aufeinanderfolgende zylindrische Segmente (31, 32) aufweist, wobei die Öffnungen jedes Segments länglich sind, wobei die Öffnungen des ersten Segments (91a) schräg zu den Öffnungen des zweiten Segments (91b) stehen, insbesondere in einem Winkel von 90°.
     
    14. Zementmahlkörpersortierer nach Anspruch 12, wobei die zylindrische Oberfläche der Trenneinrichtung für Abfall und Staub (3) zwei aufeinanderfolgende zylindrische Segmente (31, 32) aufweist, wobei die Öffnungen eines der Segmente länglich und die Öffnungen des anderen Segments kreisförmig sind.
     
    15. Betriebsverfahren für den Zementmahlkörpersortierer nach einem der vorangehenden Ansprüche, umfassend die Schritte:

    Laden der zu sortierenden Mahlkörper (1);

    Trennen von Abfall und Staub von den Mahlkörpern (3);

    Trennen nichtkugelförmiger oder asymmetrischer Elemente von den Mahlkörpern (4);

    Trennen der Mahlkörper in Mahlkörper, die über oder unter einer vorgegebenen Trenngröße liegen, in größere Mahlkörper und kleinere Mahlkörper (5);

    Sortieren der größeren Mahlkörper nach Größenbereichen (6);

    Sortieren der kleineren Mahlkörper nach Größenbereichen (7).


     


    Revendications

    1. Trieuse de corps broyants de ciment pour trier des billes de broyage de ciment selon leur taille, et pour séparer la ferraille et la poussière, comprenant :

    une première surface cylindrique (6) pouvant tourner sur son axe longitudinal et ouverte à ses deux extrémités supérieures, une première extrémité étant une entrée pour les corps broyants et la seconde extrémité étant une sortie pour les corps broyants ;

    un moteur, ou des moteurs, accouplé(s) à la surface cylindrique pour la faire tourner ;

    dans laquelle la première surface cylindrique a des segments cylindriques consécutifs, chaque segment ayant une pluralité d'ouvertures, dans laquelle les ouvertures de chaque segment sont plus larges que l'ouverture la plus large du segment précédent en direction de la sortie ;

    une seconde surface cylindrique (7) pouvant tourner sur son axe longitudinal et ouverte à ses deux extrémités supérieures, une première extrémité étant une entrée pour les corps broyants et la seconde extrémité étant une sortie pour les corps broyants, dans laquelle la seconde surface cylindrique a des segments cylindriques consécutifs, chaque segment ayant une pluralité d'ouvertures, dans laquelle les ouvertures de chaque segment sont plus larges que l'ouverture la plus large du segment précédent en direction de la sortie ;

    un autre moteur, ou d'autres moteurs, accouplé(s) à la seconde surface cylindrique pour la faire tourner;

    un séparateur de seuil de grandeur (5) pour recevoir les corps broyants devant être triés et pour séparer les corps broyants entre au-dessus et en-dessous d'un seuil de grandeur prédéterminé vers une sortie plus grande et une sortie plus petite, sa sortie plus grande étant connectée à l'entrée de la première surface cylindrique et sa sortie plus petite connectée à l'entrée de la seconde surface cylindrique ;

    dans laquelle le séparateur de seuil de grandeur est le premier segment de la première surface cylindrique; les ouvertures du premier segment de la première surface cylindrique ont la taille du seuil de grandeur prédéterminé, et les ouvertures du second segment de la première surface cylindrique sont plus grandes que le seuil de grandeur prédéterminé, et les ouvertures du dernier segment de la seconde surface cylindrique sont plus petites que le seuil de grandeur prédéterminé.


     
    2. Trieuse de corps broyants de ciment selon la revendication précédente, dans laquelle les ouvertures du premier segment de la première surface cylindrique (6) sont plus grandes que le seuil de grandeur prédéterminé, et les ouvertures du dernier segment de la seconde surface cylindrique (7) sont plus petites que le seuil de grandeur prédéterminé.
     
    3. Trieuse de corps broyants de ciment selon l'une quelconque des revendications précédentes comprenant un séparateur de corps non sphériques (4) à l'entrée des corps broyants de la trieuse de corps broyants de ciment.
     
    4. Trieuse de corps broyants de ciment selon la revendication précédente, dans laquelle le séparateur de corps non sphériques (4) comprend :

    une surface substantiellement plate (41) arrangée pour se mouvoir horizontallement et pour recevoir sur son côté supérieur les corps broyants (40a, 40b) devant être séparés (44a, 44b);

    un moteur (43), ou des moteurs, arrangé(s) pour mouvoir horizontallement la surface plate de manière alternative (42).


     
    5. Trieuse de corps broyants de ciment selon la revendication précédente, dans laquelle le séparateur de corps non sphériques (4) est arrangé tel que le mouvement dans une première direction alternative est substantiellement plus rapide que dans la seconde direction alternative inverse.
     
    6. Trieuse de corps broyants de ciment selon la revendication 4 ou 5, dans laquelle le séparateur de corps non sphériques (4) est arrangé tel que le mouvement alternatif est transversal à la direction de mouvement des corps broyants sur la surface substantiellement plate.
     
    7. Trieuse de corps broyants de ciment selon l'une quelconque des revendications 4-6, dans laquelle la surface substantiellement plate (41) est horizontale ou a une légère inclinaison pour promouvoir le mouvement des billes de broyage à travers la surface, l'angle d'inclinaison étant, en particulier, ajustable.
     
    8. Trieuse de corps broyants de ciment selon l'une quelconque des revendications précédentes, dans laquelle les ouvertures (81a, 81b, 81c, 81d) sont circulaires, ou les ouvertures sont circulaires sauf pour les ouvertures d'un, et d'un seul, segment de l'une quelconque de ces surfaces cylindriques, qui sont oblongues, ce segment étant, en particulier, le premier segment d'entrée de l'une quelconque desdites surfaces cylindriques (6, 7).
     
    9. Trieuse de corps broyants de ciment selon l'une quelconque des revendications précédentes, dans laquelle l'une quelconque de ces surfaces cylindriques (6, 7) comprend des ailettes ou nervures hélicoidales (82) à l'intérieur de la surface cylindrique pour mouvoir les corps broyant de l'entrée (84) vers la sortie (85).
     
    10. Trieuse de corps broyants de ciment selon l'une quelconque des revendications précédentes, dans laquelle les ouvertures (81a, 81b, 81c, 81d) sont décalées par rapport aux ouvertures immédiatement voisines, en particulier décalées par rapport à la direction entrée-sortie (84-85).
     
    11. Trieuse de corps broyants de ciment selon l'une quelconque des revendications précédentes comprenant un séparateur de ferraille et poussière (3) à l'entrée des corps broyants, en particulier avant le séparateur de corps non sphériques (4), si présent.
     
    12. Trieuse de corps broyants de ciment selon la revendication précédente, dans laquelle le séparateur de ferraille et de poussière (3) comprend :

    une surface cylindrique pouvant tourner sur son axe longitudinal et ouverte à ses deux extrémités, une première extrémité (94) étant l'entrée pour le séparateur de ferraille et de poussière et la seconde extrémité (95) étant la sortie pour le séparateur de ferraille et de poussière ;

    un moteur ou des moteurs accouplé(s) à la surface cylindrique pour la tourner;

    dans laquelle la surface cylindrique a une pluralité d'ouvertures (91a, 91b), la taille des ouvertures étant suffisamment grande pour que le matériel de poussière et ferraille tombe à travers les ouvertures, la taille des ouvertures étant néanmoins sufisamment petite pour que les corps broyants ne tombent pas à travers les ouvertures et passent par la sortie du séparateur de ferraille et poussière.


     
    13. Trieuse de corps broyants de ciment selon la revendication précédente, dans laquelle la surface cylindrique du séparateur de ferraille et poussière (3) a deux segments cylindriques consécutifs (31, 32), les ouvertures de chaque segment étant oblongues, dans laquelle les ouvertures du premier segment (91a) sont à un angle par rapport aux ouvertures du second segment (91b), en particulier à un angle de 90°.
     
    14. Trieuse de corps broyants de ciment selon la revendication 12, dans laquelle la surface cylindrique du séparateur de ferraille et poussière (3) a deux segments cylindriques consécutifs (31, 32), les ouvertures d'un des segments étant oblongues et les ouvertures de l'autre segment étant circulaires.
     
    15. Procédé de fonctionnement de la trieuse de corps broyants de ciment de l'une quelconque des revendications précédentes, comprenant les étapes de :

    charger les corps broyants devant être triés (1);

    séparer la ferraille et poussière des corps broyants (3) ;

    séparer les éléments non sphériques ou assimétriques des corps broyants (4);

    séparer les corps broyants qui soient au-dessus ou en-dessous d'un seuil de grandeur prédéterminé entre les corps broyants plus grands, et les corps broyants plus petits (5);

    trier les plus grands corps broyants par classes de grandeur (6);

    trier les plus petits corps broyants par classes de grandeur (7).


     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description