Technical field
[0001] The present disclosure relates to a cement grinding media sorter and its operating
method, wherein the grinding media are alloy steel balls. In detail, the cement grinding
ball sorter aims at sorting cement grinding balls according to their size, and separates
scrap and dust from the grinding media load.
Background Art
[0002] In brief, a cement ball mill is a horizontal cylinder partly filled with alloy steel
balls that rotates on its axis, imparting a tumbling and cascading action on the balls.
The cement-derived materials are fed through the mill, and afterwards are crushed
and milled by the impact/friction between the balls. The grinding media is usually
made of steel (e.g. high-chromium steel) or, alternatively, ceramic. Different-sized
media are used to ensure an efficient and appropriate grinding of the materials, therefore,
is very important to ensure an appropriate mix of different-sized balls. As the grinding
media deteriorates with usage, it is necessary to periodically remove the grinding
balls, sort them according to their size and condition, and replenish any specific
size of grinding balls that is lacking in order to restore the most appropriate mix
of different-sized balls.
[0003] Document
SU1200976A1 describes a sorter for cement grinding media. Further in detail, a cement grinding
ball that sorts cement grinding balls according to their size. The prior art sorter
of
SU1200976A1 (see figs. 2-4) uses longitudinal partitions/slots and protrusions (3) of varying
sizes that create longitudinal gaps with the desired sorting sizes for separating
the grinding balls.
[0004] The disclosure of
SU1200976A1 has the disadvantage of having mixed non-spherical elements interfering with the
sorting operation and has a lower sorting precision because the referred slots, not
being circular, are prone to misclassification of any grinding media that is not perfectly
spherical. For example, a non-spherical grinding ball having a major diameter of 62
mm and a minor diameter of 54 mm may be misclassified by a 55mm slot as being below
55 mm, whereas the larger diameter (62 mm) shows that the grinding ball clearly belongs
to the class above 55 mm.
[0005] Document
CN2149256Y discloses a mechanical device, which is suitable for sieving grinding balls with
phi 20 to phi 120 mm, or is suitable for sieving and classifying other materials.
The device is composed of a spindle (1), an outer layer sieving (4), helical blades
(7), two groups of cross steel rods (5), (6), etc. The grinding balls are primarily
sieved by a cone-shaped revolving screen composed of cross steel rods (5), (6), and
are secondly sieved by a screw thread grading sieve composed of helical blades (7)
and outer layer sieving cylinders (4) which are arranged in subsection mode according
to the sizes of the sieve meshes. A telescopic type sieving mechanism with the synchronous
rotation of an inner and an outer layers sieves increases the sieving efficiency,
and the mechanical operation of continuously sieving and classifying grinding balls
are completed.
General Description
[0006] It is described a cement grinding media sorter for sorting cement grinding balls
according to their size, and for separating scrap and dust, comprising:
a cylindrical surface that rotates on its longitudinal axis and is opened at its two
ends; the first end of the cylinder is the inlet for the grinding media and the second
end is the outlet for the grinding media;
a motor, or motors, coupled to the cylindrical surface to ensure its rotation movement;
wherein the cylindrical surface has consecutive cylindrical segments, and each segment
has a plurality of apertures; the apertures of each segment are larger than the largest
aperture of the previous segment towards the outlet direction.
[0007] It has been established that a cylindrical surface allows for easier movement of
the media along the media sorter and is more robust. Nevertheless, a conical surface
could be used alternatively of any of the cylindrical surfaces disclosed in the present
document.
[0008] Said cement grinding media sorter, in addition to said cylindrical surface, comprises:
a second cylindrical surface that rotates on its longitudinal axis and is opened at
its two ends; the first end of the cylinder is the inlet for the grinding media and
the second end is the outlet for the grinding media, wherein the second cylindrical
surface has consecutive cylindrical segments, and each segment has a plurality of
apertures; the apertures of each segment are larger than the largest aperture of the
previous segment towards the outlet direction;
a motor, or motors, coupled to the second cylindrical surface to ensure its rotation
movement;
a size threshold separator for receiving the grinding media to be sorted and for separating
the grinding media into above, or below, a predetermined size threshold; it has its
larger size output connected to the inlet of the first cylindrical surface and its
smaller size output connected to the inlet of the second cylindrical surface.
[0009] It has been established that by pre-separating the media, a more compact construction
can be obtained and each of the subsequent sorters can be constructed more robustly
and with less cost having a much reduced range of media size to handle.
[0010] In an embodiment, the apertures of the first segment of the first cylindrical surface
are larger than the predetermined size threshold, and the apertures of the last segment
of the second cylindrical surface are smaller than the predetermined size threshold.
This enables a more efficient setup.
[0011] In said cement grinding media sorter, the size threshold separator is the first segment
of the first cylindrical surface; the apertures of the first segment of the first
cylindrical surface have the size of the predetermined size threshold, and the apertures
of the second segment of the first cylindrical surface are larger than the predetermined
size threshold, plus, the apertures of the last segment of the second cylindrical
surface are smaller than the predetermined size threshold. This enhances the efficiency
of the setup.
[0012] In an embodiment, the motor, or motors, coupled to the second cylindrical surface
and the motor, or motors, coupled to the first cylindrical surface are the same motor
or motors.
[0013] In an embodiment, the apertures are circular, facilitating the accurate separation
of the grinding media (which is normally circular).
[0014] In an embodiment, the apertures are circular except for the apertures of one, and
only one, segment of any such cylindrical surface, which are oblong, in particular
this segment being the first inlet segment of said cylindrical surface. This facilitates
a faster separation when some debris may be present in the grinding media to be separated.
[0015] In an embodiment, all the apertures of each segment have the same size.
[0016] In an embodiment, the cylindrical surface comprises fins or ribs on the inside of
the cylindrical surface for moving the grinding media from the inlet towards the outlet.
In an embodiment, said fins or ribs are helical. Alternatively, said fins or ribs
are partly helical and partly peripherical.
[0017] In an embodiment, the apertures are offset in respect of the immediate neighbour
apertures and, in particular, are offset in respect of the inlet-outlet direction.
This enables more apertures for the same separator surface area.
[0018] An embodiment comprises discharge chutes for the sorted grinding balls in the shape
of a funnel, and each chute is located below one of the cylindrical segments.
[0019] In an embodiment, the two ends of the cylindrical surface are flat and circular.
[0020] An embodiment comprises a non-spherical media separator at the grinding media inlet.
This allows a much more efficient separation of the grinding media, because the separators
are not hindered by the non-spherical material present with the grinding media. Furthermore,
when combined with circular apertures at the separators, it is even more important
to remove non-spherical material, as the circular apertures are more susceptible to
non-spherical elements.
[0021] In an embodiment, the non-spherical media separator comprises:
a substantially flat surface arranged to be movable horizontally and for receiving
on its top the grinding media to be separated;
a motor, or motors, arranged for moving horizontally the flat surface in a reciprocating
fashion such that movement in a first reciprocating direction is substantially faster
than in the second inverse reciprocating direction.
[0022] In an embodiment, the flat surface is horizontal or has a slight tilt for promoting
the movement of the grinding balls across the surface; in particular the tilt angle
is adjustable.
[0023] These are configurations that enable a more efficient separation of non-spherical
media.
[0024] An embodiment comprises a discharge chute for the separated non-spherical media in
the shape of a funnel, and is located below the flat surface.
[0025] An embodiment comprises a separator of scrap and dust at the grinding media inlet.
This allows a much more efficient separation of the grinding media, because the separators
are not hindered by the scrap or dust material present with the grinding media. Furthermore,
when combined with circular apertures at the separators, it is even more important
to remove scrap or dust material, as the circular apertures are more susceptible to
non-spherical elements.
[0026] In particular the separator of scrap and dust can be located before the non-spherical
media separator, if present. Alternatively, the separator of scrap and dust can be
located after the non-spherical media separator, if present.
[0027] In an embodiment, the separator of scrap and dust comprises:
a cylindrical surface that rotates on its longitudinal axis and is opened at its two
ends; the first end of the cylinder is the inlet for the separator of scrap and dust
and the second end is the outlet for the separator of scrap and dust;
a motor, or motors, coupled to the cylindrical surface to ensure its rotation movement;
wherein the cylindrical surface has a plurality of apertures; the size of the apertures
is large enough such that the dust and scrap material falls through the apertures,
however, the size of the apertures is small enough such that the grinding media follows
through to the outlet of the separator of scrap and dust.
[0028] In an embodiment, the cylindrical surface of the separator of scrap and dust has
two consecutive cylindrical segments; the apertures of each segment are oblong, wherein
the apertures of the first segment are at an angle with the apertures of the second
stage, in particular, at the angle of 90°.
[0029] In an embodiment, the cylindrical surface of the separator of scrap and dust has
two consecutive cylindrical segments; the apertures of one of the segments are oblong
and the apertures of the other segment are circular.
[0030] These are configurations that enable a more efficient separation of scrap and dust
media.
[0031] The oblong apertures mentioned in this document can be stadium-shaped or ellipse-shaped.
In an embodiment, the cylindrical surface of the separator of scrap and dust comprises
fins or ribs in the inside of the cylindrical surface for moving the grinding media
from the inlet towards the outlet. In an embodiment, said fins or ribs are helical.
Alternatively, said fins or ribs are partly helical and partly peripherical.
[0032] In an embodiment, the apertures of the cylindrical surface of the separator of scrap
and dust are offset in respect to the immediate neighbour apertures and, in particular,
are offset in respect to the inlet-outlet direction.
[0033] An embodiment comprises a discharge chute for the separated dust and scrap material
in the shape of a funnel; the funnel is located below the cylindrical surface of the
separator of scrap and dust.
[0034] In an embodiment, the two ends of the cylindrical surface of the separator of scrap
and dust are flat and circular.
[0035] It is also disclosed a method of operating the cement grinding media sorter of the
described embodiments, comprising the following steps:
loading the grinding media to be sorted;
separating scrap and dust from the grinding media;
separating non-spherical or asymmetrical elements from the grinding media;
separating the grinding media whether above or below a predetermined size threshold
into a larger-size grinding media and a smaller-size grinding media;
sorting the larger-size grinding media by size ranges;
sorting the smaller-size grinding media by size ranges.
[0036] The method can be carried out in successive fashion by re-feeding the previously
separated material should any of the separated material have a significant part of
wrongly sorted elements. The terms sorter and separator are used interchangeably.
Brief Description of the Drawings
[0037] The following figures provide preferred embodiments to illustrate the description
and should not be seen as limiting the scope of the disclosure.
Figure 1: Schematic representation of an embodiment of the cement grinding media sorter.
Figure 2: Schematic representation of the loading hopper and the scrap/dust separation stage
of an embodiment of the cement grinding media sorter.
Figure 3: Schematic representation of the mid-size threshold separation and larger-size separation
stages of an embodiment of the cement grinding media sorter.
Figure 4: Schematic representation of the smaller-size separation stages of an embodiment of
the cement grinding media sorter.
Figure 5: Schematic representation of the asymmetrical or aspherical scrap separation stage
of an embodiment of the cement grinding media sorter.
Figure 6: Schematic representation of size separation stages of an embodiment of the cement
grinding media sorter.
Figure 7: Schematic representation of the operating method of an embodiment of the cement grinding
media sorter.
Figure 8: Schematic representation of an embodiment of the cement grinding media sorter incorporated
in a container, in particular, in a truck container, with a loading hopper at the
back of the truck (not shown).
Figure 9: Schematic representation of the dust and smaller particle separation stage of an
embodiment of the cement grinding media sorter.
Detailed Description
[0038] Figure 1 shows an embodiment of the cement grinding media sorter. A loading hopper
1 receives the shovelled grinding media, which has been dumped from the grinding mill.
A bucket conveyor
2 picks up the grinding balls from the loading hopper
1 and feeds these into a scrap/dust separator
3. Then the balls are fed into a non-spherical (or asymmetrical) separator
4. After the non-spherical material (e.g. deformed grinding ball) has been removed,
the grinding material is fed into a mid-size threshold separator
5 that separates the grinding media into two large classes of diameters: above or below
a certain threshold. The larger grinding media goes into a larger size separator
6 while the smaller-size grinding media
7 goes into a smaller size separator. The grinding balls go through each stage of the
separators, which sort the grinding media according to the size at each stage. The
sorted balls fall into different ball discharge chutes according to the sorted size
of the grinding media.
[0039] This has the advantage that the layout is eminently linear enabling a compact construction,
which can be placed, for example, in a standard transport container.
[0040] This also has the advantage that the device is transportable.
[0041] This device has the advantage that it is able to process a load of mill balls in
a single batch. This device has the further advantage that 80-95 % of sorting balls
can be re-used immediately.
[0042] Another advantage is that the present device allows efficient sorting of smaller
diameter balls by having the dust/scrap removed.
[0043] Also, by having a mid-size threshold separator and by having two separators of grinding
media for two distinct range sizes, each separator can be much more efficient, not
having to process such a wide range of sizes as the initial range.
[0044] According to an embodiment, each separator comprises a rotatable cylindrical surface
with apertures distributed along its cylindrical face, the separator inlet for the
grinding balls is one of the circular faces of the cylinder and the separator outlet
is the other circular face of the cylinder. The cylindrical surface may preferably
be metallic. An electric engine, or other mean, is provided to ensure the rotation
of the cylindrical surface while grinding balls are fed to the separator inlet.
[0045] Once the cylindrical surface is normally arranged horizontally when in operation,
the flow of material to be separated is ensured by the rotation, and the consequent
interaction that the surface causes to the material - tumbling and cascading - and
not by having an inclination at the sorting surface. This enables an improved separation
since an inclined surface would move the material too quickly along the sorter.
[0046] Figure 2 shows the initial part of an embodiment of the cement grinding media sorter; in particular,
shows the scrap/dust separator
3 and the non-spherical separator
4.
[0047] According to an embodiment, the scrap/dust separator comprises a rotatable cylindrical
surface with apertures distributed along its cylindrical face, the separator inlet
for the grinding balls at one of the top faces of the cylinder and the separator outlet
at the other top face of the cylinder. The cylindrical surface may preferably be metallic.
An electric engine, or other means, is provided to ensure the rotation of the cylindrical
surface while the grinding balls are fed to the separator inlet.
[0048] The apertures are small enough in order to transport all the grinding media to the
next stage, but at the same time the apertures are as large as possible in order to
remove the small scrap and dust from the grinding media.
[0049] The embodiment has the overall advantage that an improved separation of dust and
scrap is achieved, with less scrap/dust remaining in the grinding media.
[0050] It has been observed that removing scrap/dust more effectively before the sorting
of the grinding balls, turns the sorting into a more precise and efficient process,
since any leftover scrap/dust interferes with the sorting as will be discussed further
below.
[0051] In particular, the scrap/dust separator
3 has a first stage
31 and a second stage
32. The separator stages of the scrap/dust separator can have circular and oblong (e.g.
elliptical) apertures, respectively; or can have two stages with oblong (e.g. elliptical)
apertures, wherein the refereed apertures of the first stage are positioned with a
certain angle to the apertures of the second stage, in particular a square angle.
[0052] Oblong apertures have been found to be particularly suited for separating small oddly-shaped
scrap materials and, in general, small non-spherical materials. The oblong apertures
of the first stage
31 and of the second stage
32 are preferably arranged parallel within each stage and arranged at a square angle
in respect to the apertures of the other stage.
[0053] The different angles, and especially when at 90°, have been found out to be the most
particularly suited for ensuring an improved separation of scrap materials and smaller
non-spherical materials.
[0054] The cylindrical surface may comprise helical ribs or fins arranged on the inside
of the cylindrical surface in order to move the material from the inlet to outlet
of the separator.
[0055] The apertures are preferably offset (
'décalés') in respect to the immediate neighbour apertures. The immediate neighbours of an
aperture are those apertures immediately next to it.
[0056] The non-spherical separator
4 separates grinding media that is deformed (e.g. asymmetrical), and removes these
from the grinding media flow.
[0057] It has also been observed that by removing non-spherical or asymmetrical balls before
the sorting of the grinding balls turns the sorting into more precise and efficient,
since any leftover non-spherical or asymmetrical ball interferes with the ball sorting
as will be seen further below.
[0058] Figure 3 shows the mid-size threshold separator
5 that separates the grinding media into two large classes of diameters: above or below
a certain threshold. The larger grinding media goes into a larger size separator
6 while the smaller-size grinding media goes into a smaller size separator
7.
[0059] In said cement grinding media sorter, the mid-size threshold separator
5 is the first stage of the larger size separator
6 once this has the advantage of providing a more compact construction.
[0060] Having two separators working simultaneously in parallel allows a faster operation.
Moreover, having the grinding media separated into two size classes one does not allow
interference between very different sized balls in the same separator, besides, the
sorting is more efficient because the movements are less chaotic and somewhat more
ordered. Furthermore, two cylindrical separators are more easily arranged in a linear
fashion what makes the whole equipment to be more suitable for a transport container.
[0061] The larger size separator
6 has a plurality of separating stages for different ranges of ball diameter. The grinding
balls are separated and sorted according to the diameter as each stage has a different
discharge chute for the balls
61. At the end of the separator the larger grinding balls are dumped to a discharge chute
62.
[0062] Figure 4 shows the smaller size separator
7 of an embodiment. The smaller size separator
7 has a plurality of separating stages
71 for different ranges of ball diameter. The grinding balls are separated and sorted
according to the diameter as each stage has a different discharge chute for the balls
72. At the end of the separator the smaller-size grinding balls are dumped to a discharge
chute
73.
[0063] Figure 5 shows the non-spherical separator of an embodiment. The non-spherical separator comprises
a substantially horizontal and flat surface which is able to be moved horizontally
in a reciprocating fashion. In particular, the non-spherical separator is arranged
such that the movement in a first reciprocating direction is substantially faster
than in the second reciprocating and inverse direction. This reciprocating movement
causes different motions to the grinding balls whether these are spherical or not.
If the reciprocating movement is asymmetrical, this effect is enhanced. Preferably
the surface may be slightly tilted in order to promote the movement of the grinding
balls across the surface. If one adjusts the tilting direction of the surface, the
separation of the non-spherical balls can be fine-tuned such that non-spherical balls
are removed at one end-region of the surface and the spherical balls continue to the
next stage.
[0064] Figure 6 shows a view of a ball separator (or sorter) according to an embodiment of the disclosure.
This separator can be used for both the larger size separator
6 and the smaller size separator
7, by means of adapting the required sorting sizes.
[0065] According to an embodiment, the grinding ball separator
80 comprises a rotatable cylindrical surface with apertures
81 distributed along its cylindrical face.
[0066] The separator inlet
84 for the grinding balls is at one circular face of the cylinder and the separator
outlet
85 is at the other circular face of the cylinder. The cylindrical surface may preferably
be metallic. An electric engine, or other means, is provided to ensure the rotation
of the cylindrical surface while grinding balls are fed to the separator inlet
84.
[0067] The cylindrical surface comprises helical ribs or fins
82, preferably helical fins, arranged on the inner side of the cylindrical surface in
order to move the material from the inlet
84 towards the outlet
85 of the separator
80. The apertures
81 are preferably offset (
'décalés') in respect to the immediate neighbour apertures, in particular in respect to the
inlet/outlet direction.
[0068] The apertures
81 at each stage are small enough that grinding media is able to go through to the separator
outlet, but dust and scrap material smaller than the aperture falls through the apertures
to a ball chute
83.
[0069] For each separator, the apertures
81 of each stage
81a, 81b, 81c and
81d are progressively larger as the grinding balls follows from the inlet to the outlet.
As intentional consequence, the balls exiting through the ball chutes
83 are gradually larger at each chute
83a, 83b, 83c and
83d.
[0070] Preferably, the apertures 81 within each stage
81a, 81b, 81c and
81d have all the same size.
[0071] If the apertures are circular, the size of an aperture is defined as its diameter.
If the apertures are not circular, the size of an aperture is defined as the diameter
of the largest sphere that is able to go through the aperture.
[0072] The separator stages have apertures
81 that are preferably circular apertures. It has been found that other shapes (e.g.
oblong shapes) are less precise in separating and sorting the grinding media, even
if they may operate faster than circular apertures. This precision is further improved
if scrap and/or non-spherical grinding media have been removed beforehand. Irregular
materials cause difficulties in sorting the grinding balls as they interfere with
the circular apertures. Thus, removing such materials before the sorting is advantageous.
[0073] An example of sizes of the apertures is given below in Table 1 for a grinding media
separator such as in Fig. 6.
Table 1
Stage |
Aperture size (mm) |
Balls exiting at this stage (mm) |
Balls continuing to next stage (mm) |
81a / 83a |
55 |
<55 |
>55 |
81b / 83b |
65 |
>55 and <65 |
>65 |
81c / 83c |
75 |
>65 and <75 |
>75 |
81d / 83d |
85 |
>75 and <85 |
>85 |
Outlet |
- |
>85 |
- |
[0074] One can see how the 4-stage separator is able to separate, and sort, the grinding
media according to the diameter in 5 classes (<55; 55-65; 65-75; 75-85; >85 mm).
[0075] One can also verify how the output of the first stage can be related or compared
to a small size separator that separates the grinding balls below 55 mm. Such separator
works as the separator that has just been described as well.
[0076] An example of sizes of the apertures is given below in Table 2 for two grinding media
separators such as in Fig. 6, one for larger sizes and the other for small sizes,
wherein the output of the first stage of the first separator (larger size separator)
is the feeding inlet for the second separator (smaller size separator):
Table 2
Separator |
Stage |
Aperture size (mm) |
Balls exiting at this stage (mm) |
Balls continuing to next stage (mm) |
Larger size separator |
81a / 83a |
55 |
<55 (fed into the smaller size separator) |
>55 |
81b / 83b |
65 |
>55 and <65 |
>65 |
81c / 83c |
75 |
>65 and <75 |
>75 |
81d / 83d |
85 |
>75 and <85 |
>85 |
Outlet |
- |
>85 |
- |
Smaller size separator |
81a / 83a |
15 |
<15 |
>15 and <55 |
81b / 83b |
25 |
>15 and <25 |
>25 and <55 |
81c / 83c |
35 |
>25 and <35 |
>35 and <55 |
81d / 83d |
45 |
>35 and <45 |
>45 and <55 |
Outlet |
- |
>45 and <55 |
- |
[0077] It can be seen how the larger size separator is able to separate, and sort, the grinding
media according to the diameter in 5 classes (<55; 55-65; 65-75; 75-85; >85 mm). The
smaller class is fed into the smaller size separator, which then sorts the grinding
media according to the diameter in 5 classes (<15; 15-25; 25-35; 35-45; 45-55 mm).
[0078] In conclusion, the two 4-stage separators are then able to fully separate and sort
the grinding media according to the diameter in 9 classes (<15; 15-25; 25-35; 35-45;
45-55; 55-65; 65-75; 75-85; >85 mm).
[0079] It is possible to "cascade" more separators like this, but it was found out that
the benefit of a possible improved precision through the increase of the number stages
is damaged with a less compact construction, making the assembly less transportable.
[0080] Figure 7 shows the grinding media flow of an embodiment of the cement grinding media sorter.
The grinding media, which has been dumped before from the grinding mill, is loaded
onto a loading hopper. The grinding balls are fed into a scrap/dust separator that
removes dust and small scraps. The grinding balls are then taken into a non-spherical
(or asymmetrical) separator which removes the non-spherical grinding media. After
the non-spherical material (e.g. a deformed grinding ball) has been removed, the grinding
material is fed into a mid-size threshold separator that separates the grinding media
into two classes of diameters: above or below a certain threshold. The larger grinding
media follows into a larger size separator while the smaller size grinding media follows
into a smaller size separator. The grinding balls go through each stage of the separators,
which sort the balls according to their size at each stage. The sorted balls fall
into different discharge chutes according to their size.
[0081] Figure 8 shows a schematic representation of an embodiment of the cement grinding media sorter
incorporated in a container, in this particular case, a truck container with a loading
hopper at the back of the truck (not shown). The grinding ball chutes are placed in
the lateral side of the container, according to the sorted sizes.
[0082] Figure 9 shows a view of the scrap/dust separator
90 according to an embodiment of the disclosure. According to an embodiment, the scrap/dust
separator comprises a rotatable cylindrical surface with apertures
91 distributed along its cylindrical face, the separator inlet
94 for the grinding balls at one of the circular faces of the cylinder and the separator
outlet
95 at the other circular face of the cylinder. The cylindrical surface may preferably
be metallic. An electric engine, or other mean, is provided to ensure the rotation
of the cylindrical surface while grinding balls are fed to the separator inlet.
[0083] The apertures are small enough in order to allow the passage of the grinding media
towards the separator outlet, however, the apertures are as large as possible in order
to remove the small scraps and dust from the grinding media. A chute
93 is provided for funnelling the removed scrap and dust.
[0084] The separator stages can have circular and oblong (e.g. elliptical) apertures, respectively;
or can have two stages with oblong (e.g. elliptical) apertures, wherein the refereed
apertures of the first stage are positioned with a certain angle to the apertures
of the second stage, in particular a square angle.
[0085] In particular, the scrap/dust separator
90 may have a first stage and a second stage. The apertures
91a of the first stage and the apertures
91b of the second stage are preferably arranged parallel within each stage and arranged
in a square angle in respect to the apertures of the other stage.
[0086] This embodiment has the advantage of supplying an improved separation of dust and
scrap, which promotes less remaining scrap/dust in the grinding media flow.
[0087] It has also been observed that removing scrap/dust more effectively before the sorting
of the grinding balls turns the sorting into a more precise and efficient process,
since any leftover scrap/dust interferes with the sorting as will be discussed further
below.
[0088] The cylindrical surface may comprise helical fins arranged on the inside cylindrical
surface in order to move the material from the inlet to outlet of the separator.
[0089] The apertures are preferably offset (
'décalés') in respect to the immediate neighbour apertures, in particular in respect to the
inlet/outlet direction.
[0090] The term "comprising" whenever used in this document is intended to indicate the
presence of stated features, integers, steps, components, but not to preclude the
presence or addition of one or more other features, integers, steps, components or
groups thereof.
1. Cement grinding media sorter for sorting cement grinding balls according to their
size, and for separating scrap and dust, comprising:
a first cylindrical surface (6) rotatable on its longitudinal axis and open at its
two top ends, a first end being an inlet for the grinding media and the second end
being an outlet for the grinding media;
a motor, or motors, coupled to the cylindrical surface for rotating it;
wherein the first cylindrical surface has consecutive cylindrical segments, each segment
having a plurality of apertures, wherein the apertures of each segment are larger
than the largest aperture of the previous segment towards the outlet direction;
a second cylindrical surface (7) rotatable on its longitudinal axis and open at its
two top ends, a first end being an inlet for the grinding media and the second end
being an outlet for the grinding media, wherein the second cylindrical surface has
consecutive cylindrical segments, each segment having a plurality of apertures, wherein
the apertures of each segment are larger than the largest aperture of the previous
segment towards the outlet direction;
another motor, or motors, coupled to the second cylindrical surface for rotating it;
a size threshold separator (5) for receiving the grinding media to be sorted and for
separating the grinding media between above and below a predetermined size threshold
into a larger-size outlet and a smaller-size outlet, being its larger-size output
connected to the inlet of the first cylindrical surface and its smaller-size output
connected to the inlet of the second cylindrical surface;
wherein the size threshold separator is the first segment of the first cylindrical
surface; the apertures of the first segment of the first cylindrical surface have
the size of the predetermined size threshold, and the apertures of the second segment
of the first cylindrical surface are larger than the predetermined size threshold,
and the apertures of the last segment of the second cylindrical surface are smaller
than the predetermined size threshold.
2. Cement grinding media sorter according to the previous claim wherein the apertures
of the first segment of the first cylindrical surface (6) are larger than the predetermined
size threshold, and the apertures of the last segment of the second cylindrical surface
(7) are smaller than the predetermined size threshold.
3. Cement grinding media sorter according to any of the previous claims comprising a
non-spherical media separator (4) at the grinding media inlet of the cement grinding
media sorter.
4. Cement grinding media sorter according to the previous claim wherein the non-spherical
media separator (4) comprises:
a substantially flat surface (41) arranged to be movable horizontally and for receiving
on its top side the grinding media (40a, 40b) to be separated (44a, 44b);
a motor (43), or motors, arranged for moving horizontally the flat surface in a reciprocating
fashion (42).
5. Cement grinding media sorter according to the previous claim wherein the non-spherical
media separator (4) is arranged such that movement in a first reciprocating direction
is substantially faster than in the second inverse reciprocating direction.
6. Cement grinding media sorter according to claim 4 or 5 wherein the non-spherical media
separator (4) is arranged such that the reciprocating movement is transversal to the
direction of movement of the grinding media at the substantially flat surface.
7. Cement grinding media sorter according to any of the claims 4 - 6 wherein the substantially
flat surface (41) is horizontal or has a slight tilt for promoting the movement of
the grinding balls across the surface, in particular the tilt angle being adjustable.
8. Cement grinding media sorter according to any of the previous claims wherein the apertures
(81a, 81b, 81c, 81d) are circular, or the apertures are circular except for the apertures
of one, and only one, segment of any such cylindrical surface, which are oblong, in
particular this segment being the first inlet segment of any said cylindrical surface
(6, 7).
9. Cement grinding media sorter according to any of the previous claims wherein any such
cylindrical surface (6, 7) comprises helical fins or ribs (82) on the inside of the
cylindrical surface for moving the grinding media from the inlet (84) towards the
outlet (85).
10. Cement grinding media sorter according to any of the previous claims wherein the apertures
(81a, 81b, 81c, 81d) are offset in respect of the immediate neighbour apertures, in
particular offset in respect of the inlet-outlet (84-85) direction.
11. Cement grinding media sorter according to any of the previous claims comprising a
separator of scrap and dust (3) at the grinding media inlet, in particular before
the non-spherical media separator (4), if present.
12. Cement grinding media sorter according to the previous claim wherein the separator
of scrap and dust (3) comprises:
a cylindrical surface rotatable on its longitudinal axis and open at its two ends,
a first end (94) being the inlet for scrap and dust separator and the second end (95)
being the outlet for the scrap and dust separator;
a motor or motors coupled to the cylindrical surface for rotating it;
wherein the cylindrical surface has a plurality of apertures (91a, 91b), the size
of the apertures being large enough such that dust and scrap material falls through
the apertures, whereas the size of the apertures is small enough such that grinding
media do not fall through the apertures and go through to the outlet of the scrap
and dust separator.
13. Cement grinding media sorter according to the previous claim wherein the cylindrical
surface of the separator of scrap and dust (3) has two consecutive cylindrical segments
(31, 32), the apertures of each segment being oblong, wherein the apertures of the
first segment (91a) are at an angle with the apertures of the second segment (91b),
in particular at the angle of 90°.
14. Cement grinding media sorter according to the claim 12 wherein the cylindrical surface
of the separator of scrap and dust (3) has two consecutive cylindrical segments (31,
32), the apertures of one of the segments being oblong and the apertures of the other
segment being circular.
15. Method of operating the cement grinding media sorter of any of the previous claims,
comprising the steps of:
loading the grinding media to be sorted (1);
separating scrap and dust from the grinding media (3);
separating non-spherical or asymmetrical elements from the grinding media (4);
separating the grinding media whether above or below a predetermined size threshold
into a larger-size grinding media and a smaller-size grinding media (5);
sorting the larger-size grinding media by size ranges (6);
sorting the smaller-size grinding media by size ranges (7).
1. Zementmahlkörpersortierer zum Sortieren von Zementmahlkugeln nach ihrer Größe und
zum Abscheiden von Abfall und Staub, umfassend:
eine erste zylindrische Oberfläche (6), die um ihre Längsachse drehbar und an ihren
beiden oberen Enden offen ist, wobei ein erstes Ende ein Einlass für die Mahlkörper
und das zweite Ende ein Auslass für die Mahlkörper ist;
einen oder mehrere Motoren, die mit der zylindrischen Oberfläche gekoppelt sind, um
diese zu drehen;
wobei die erste zylindrische Oberfläche aufeinanderfolgende zylindrische Segmente
aufweist, wobei jedes Segment eine Vielzahl von Öffnungen aufweist, wobei die Öffnungen
jedes Segments, in Richtung des Auslasses verlaufend, größer sind als die größte Öffnung
des vorherigen Segments;
eine zweite zylindrische Oberfläche (7), die um ihre Längsachse drehbar und an ihren
beiden oberen Enden offen ist, wobei ein erstes Ende ein Einlass für die Mahlkörper
und das zweite Ende ein Auslass für die Mahlkörper ist, wobei die zweite zylindrische
Fläche aufeinanderfolgende zylindrische Segmente aufweist, wobei jedes Segment eine
Vielzahl von Öffnungen aufweist, wobei die Öffnungen jedes Segments, in Richtung des
Auslasses verlaufend, größer sind als die größte Öffnung des vorherigen Segments;
einen oder mehrere weitere Motoren, die mit der zylindrischen Fläche gekoppelt sind,
um diese zu drehen;
eine Größentrenneinrichtung (5) für die Aufnahme der zu sortierenden Mahlkörper und
für die Trennung der Mahlkörper in Mahlkörper, die über oder unter einer vorgegebenen
Trenngröße liegen, in einen Auslass für größere Größen und einen Auslass für kleinere
Größen, wobei der Auslass für die größeren Größen mit dem Einlass der ersten zylindrischen
Oberfläche und der Auslass für die kleineren Größen mit dem Einlass der zweiten zylindrischen
Oberfläche verbunden ist;
wobei die Größentrenneinrichtung das erste Segment der ersten zylindrischen Oberfläche
ist; die Öffnungen des ersten Segments der ersten zylindrischen Oberfläche der Größe
der vorgegebenen Trenngröße entsprechen und die Öffnungen des zweiten Segments der
ersten zylindrischen Oberfläche größer als die vorgegebene Trenngröße sind und die
Öffnungen des letzten Segments der zweiten zylindrischen Oberfläche kleiner als die
vorgegebene Trenngröße sind.
2. Zementmahlkörpersortierer nach dem vorangehenden Anspruch, wobei die Öffnungen des
ersten Segments der ersten zylindrischen Oberfläche (6) größer sind als die vorgegebene
Trenngröße und die Öffnungen des letzten Segments der zweiten zylindrischen Oberfläche
(7) kleiner sind als die vorgegebene Trenngröße.
3. Zementmahlkörpersortierer nach einem der vorangehenden Ansprüche mit einer nichtkugelförmigen
Trenneinrichtung (4) am Mahlkörpereinlass des Zementmahlkörpersortierers.
4. Zementmahlkörpersortierer nach dem vorangehenden Anspruch, wobei die nichtkugelförmige
Trenneinrichtung (4) umfasst:
eine im Wesentlichen ebene Fläche (41), die so angeordnet ist, dass sie horizontal
beweglich ist und auf deren Oberseite die zu trennenden Mahlkörper (40a, 40b) aufgenommen
werden (44a, 44b);
einen Motor (43) oder mehrere Motoren, die so angeordnet sind, dass sie die ebene
Fläche (42) in horizontaler Richtung hin- und herbewegen.
5. Zementmahlkörpersortierer nach dem vorangehenden Anspruch, wobei die nicht kugelförmige
Trenneinrichtung (4) so angeordnet ist, dass die Hin- und Her-Bewegung in einer ersten
Richtung wesentlich schneller erfolgt als in der zweiten umgekehrten Richtung der
Hin- und Her-Bewegung.
6. Zementmahlkörpersortierer nach Anspruch 4 oder 5, wobei die nicht kugelförmige Trenneinrichtung
(4) so angeordnet ist, dass die Hin- und Her-Bewegung quer zur Bewegungsrichtung der
Mahlkörper an der im Wesentlichen ebenen Fläche erfolgt.
7. Zementmahlkörpersortierer nach einem der Ansprüche 4 - 6, wobei die im Wesentlichen
ebene Fläche (41) horizontal ist oder eine leichte Neigung aufweist, um die Bewegung
der Mahlkugeln über die Fläche zu fördern, wobei insbesondere der Neigungswinkel einstellbar
ist.
8. Zementmahlkörpersortierer nach einem der vorangehenden Ansprüche, wobei die Öffnungen
(81a, 81b, 81c, 81d) kreisförmig sind oder die Öffnungen kreisförmig sind, mit Ausnahme
der Öffnungen eines, und nur eines Segments einer dieser zylindrischen Oberflächen,
die länglich sind, wobei dieses Segment insbesondere das erste Einlasssegment einer
der genannten zylindrischen Oberflächen (6, 7) ist.
9. Zementmahlkörpersortierer nach einem der vorangehenden Ansprüche, wobei jede dieser
zylindrischen Oberflächen (6, 7) schraubenförmige Lamellen oder Rippen (82) auf der
Innenseite der zylindrischen Oberfläche aufweist, um die Mahlkörper vom Einlass (84)
zum Auslass (85) zu bewegen.
10. Zementmahlkörpersortierer nach einem der vorhergehenden Ansprüche, wobei die Öffnungen
(81a, 81b, 81c, 81d) gegenüber den unmittelbar benachbarten Öffnungen versetzt sind,
insbesondere in Einlass-Auslass-Richtung (84-85) versetzt sind.
11. Zementmahlkörpersortierer nach einem der vorangehenden Ansprüche mit einer Trenneinrichtung
für Abfall und Staub (3) am Mahlkörpereinlass, insbesondere vor der nichtkugelförmigen
Trenneinrichtung (4), falls vorhanden.
12. Zementmahlkörpersortierer nach dem vorangehenden Anspruch, wobei die Trenneinrichtung
für Abfall und Staub (3) umfasst:
eine zylindrische Oberfläche, die um ihre Längsachse drehbar und an ihren beiden Enden
offen ist, wobei ein erstes Ende (94) der Einlass für die Trenneinrichtung für Altmetall
und Staub und das zweite Ende (95) der Auslass für die Trenneinrichtung für Altmetall
und Staub ist;
einen oder mehrere Motoren, die mit der zylindrischen Fläche gekoppelt sind, um diese
zu drehen;
wobei die zylindrische Oberfläche eine Vielzahl von Öffnungen (91a, 91b) aufweist,
wobei die Größe der Öffnungen groß genug ist, so dass das Staub und Abfall durch die
Öffnungen fällt, während die Größe der Öffnungen klein genug ist, damit die Mahlkörper
nicht durch die Öffnungen fallen und zum Auslass der Trenneinrichtung für Abfall und
Staub durchlaufen.
13. Zementmahlkörpersortierer nach dem vorangehenden Anspruch, wobei die zylindrische
Oberfläche der Trenneinrichtung für Abfall und Staub (3) zwei aufeinanderfolgende
zylindrische Segmente (31, 32) aufweist, wobei die Öffnungen jedes Segments länglich
sind, wobei die Öffnungen des ersten Segments (91a) schräg zu den Öffnungen des zweiten
Segments (91b) stehen, insbesondere in einem Winkel von 90°.
14. Zementmahlkörpersortierer nach Anspruch 12, wobei die zylindrische Oberfläche der
Trenneinrichtung für Abfall und Staub (3) zwei aufeinanderfolgende zylindrische Segmente
(31, 32) aufweist, wobei die Öffnungen eines der Segmente länglich und die Öffnungen
des anderen Segments kreisförmig sind.
15. Betriebsverfahren für den Zementmahlkörpersortierer nach einem der vorangehenden Ansprüche,
umfassend die Schritte:
Laden der zu sortierenden Mahlkörper (1);
Trennen von Abfall und Staub von den Mahlkörpern (3);
Trennen nichtkugelförmiger oder asymmetrischer Elemente von den Mahlkörpern (4);
Trennen der Mahlkörper in Mahlkörper, die über oder unter einer vorgegebenen Trenngröße
liegen, in größere Mahlkörper und kleinere Mahlkörper (5);
Sortieren der größeren Mahlkörper nach Größenbereichen (6);
Sortieren der kleineren Mahlkörper nach Größenbereichen (7).
1. Trieuse de corps broyants de ciment pour trier des billes de broyage de ciment selon
leur taille, et pour séparer la ferraille et la poussière, comprenant :
une première surface cylindrique (6) pouvant tourner sur son axe longitudinal et ouverte
à ses deux extrémités supérieures, une première extrémité étant une entrée pour les
corps broyants et la seconde extrémité étant une sortie pour les corps broyants ;
un moteur, ou des moteurs, accouplé(s) à la surface cylindrique pour la faire tourner
;
dans laquelle la première surface cylindrique a des segments cylindriques consécutifs,
chaque segment ayant une pluralité d'ouvertures, dans laquelle les ouvertures de chaque
segment sont plus larges que l'ouverture la plus large du segment précédent en direction
de la sortie ;
une seconde surface cylindrique (7) pouvant tourner sur son axe longitudinal et ouverte
à ses deux extrémités supérieures, une première extrémité étant une entrée pour les
corps broyants et la seconde extrémité étant une sortie pour les corps broyants, dans
laquelle la seconde surface cylindrique a des segments cylindriques consécutifs, chaque
segment ayant une pluralité d'ouvertures, dans laquelle les ouvertures de chaque segment
sont plus larges que l'ouverture la plus large du segment précédent en direction de
la sortie ;
un autre moteur, ou d'autres moteurs, accouplé(s) à la seconde surface cylindrique
pour la faire tourner;
un séparateur de seuil de grandeur (5) pour recevoir les corps broyants devant être
triés et pour séparer les corps broyants entre au-dessus et en-dessous d'un seuil
de grandeur prédéterminé vers une sortie plus grande et une sortie plus petite, sa
sortie plus grande étant connectée à l'entrée de la première surface cylindrique et
sa sortie plus petite connectée à l'entrée de la seconde surface cylindrique ;
dans laquelle le séparateur de seuil de grandeur est le premier segment de la première
surface cylindrique; les ouvertures du premier segment de la première surface cylindrique
ont la taille du seuil de grandeur prédéterminé, et les ouvertures du second segment
de la première surface cylindrique sont plus grandes que le seuil de grandeur prédéterminé,
et les ouvertures du dernier segment de la seconde surface cylindrique sont plus petites
que le seuil de grandeur prédéterminé.
2. Trieuse de corps broyants de ciment selon la revendication précédente, dans laquelle
les ouvertures du premier segment de la première surface cylindrique (6) sont plus
grandes que le seuil de grandeur prédéterminé, et les ouvertures du dernier segment
de la seconde surface cylindrique (7) sont plus petites que le seuil de grandeur prédéterminé.
3. Trieuse de corps broyants de ciment selon l'une quelconque des revendications précédentes
comprenant un séparateur de corps non sphériques (4) à l'entrée des corps broyants
de la trieuse de corps broyants de ciment.
4. Trieuse de corps broyants de ciment selon la revendication précédente, dans laquelle
le séparateur de corps non sphériques (4) comprend :
une surface substantiellement plate (41) arrangée pour se mouvoir horizontallement
et pour recevoir sur son côté supérieur les corps broyants (40a, 40b) devant être
séparés (44a, 44b);
un moteur (43), ou des moteurs, arrangé(s) pour mouvoir horizontallement la surface
plate de manière alternative (42).
5. Trieuse de corps broyants de ciment selon la revendication précédente, dans laquelle
le séparateur de corps non sphériques (4) est arrangé tel que le mouvement dans une
première direction alternative est substantiellement plus rapide que dans la seconde
direction alternative inverse.
6. Trieuse de corps broyants de ciment selon la revendication 4 ou 5, dans laquelle le
séparateur de corps non sphériques (4) est arrangé tel que le mouvement alternatif
est transversal à la direction de mouvement des corps broyants sur la surface substantiellement
plate.
7. Trieuse de corps broyants de ciment selon l'une quelconque des revendications 4-6,
dans laquelle la surface substantiellement plate (41) est horizontale ou a une légère
inclinaison pour promouvoir le mouvement des billes de broyage à travers la surface,
l'angle d'inclinaison étant, en particulier, ajustable.
8. Trieuse de corps broyants de ciment selon l'une quelconque des revendications précédentes,
dans laquelle les ouvertures (81a, 81b, 81c, 81d) sont circulaires, ou les ouvertures
sont circulaires sauf pour les ouvertures d'un, et d'un seul, segment de l'une quelconque
de ces surfaces cylindriques, qui sont oblongues, ce segment étant, en particulier,
le premier segment d'entrée de l'une quelconque desdites surfaces cylindriques (6,
7).
9. Trieuse de corps broyants de ciment selon l'une quelconque des revendications précédentes,
dans laquelle l'une quelconque de ces surfaces cylindriques (6, 7) comprend des ailettes
ou nervures hélicoidales (82) à l'intérieur de la surface cylindrique pour mouvoir
les corps broyant de l'entrée (84) vers la sortie (85).
10. Trieuse de corps broyants de ciment selon l'une quelconque des revendications précédentes,
dans laquelle les ouvertures (81a, 81b, 81c, 81d) sont décalées par rapport aux ouvertures
immédiatement voisines, en particulier décalées par rapport à la direction entrée-sortie
(84-85).
11. Trieuse de corps broyants de ciment selon l'une quelconque des revendications précédentes
comprenant un séparateur de ferraille et poussière (3) à l'entrée des corps broyants,
en particulier avant le séparateur de corps non sphériques (4), si présent.
12. Trieuse de corps broyants de ciment selon la revendication précédente, dans laquelle
le séparateur de ferraille et de poussière (3) comprend :
une surface cylindrique pouvant tourner sur son axe longitudinal et ouverte à ses
deux extrémités, une première extrémité (94) étant l'entrée pour le séparateur de
ferraille et de poussière et la seconde extrémité (95) étant la sortie pour le séparateur
de ferraille et de poussière ;
un moteur ou des moteurs accouplé(s) à la surface cylindrique pour la tourner;
dans laquelle la surface cylindrique a une pluralité d'ouvertures (91a, 91b), la taille
des ouvertures étant suffisamment grande pour que le matériel de poussière et ferraille
tombe à travers les ouvertures, la taille des ouvertures étant néanmoins sufisamment
petite pour que les corps broyants ne tombent pas à travers les ouvertures et passent
par la sortie du séparateur de ferraille et poussière.
13. Trieuse de corps broyants de ciment selon la revendication précédente, dans laquelle
la surface cylindrique du séparateur de ferraille et poussière (3) a deux segments
cylindriques consécutifs (31, 32), les ouvertures de chaque segment étant oblongues,
dans laquelle les ouvertures du premier segment (91a) sont à un angle par rapport
aux ouvertures du second segment (91b), en particulier à un angle de 90°.
14. Trieuse de corps broyants de ciment selon la revendication 12, dans laquelle la surface
cylindrique du séparateur de ferraille et poussière (3) a deux segments cylindriques
consécutifs (31, 32), les ouvertures d'un des segments étant oblongues et les ouvertures
de l'autre segment étant circulaires.
15. Procédé de fonctionnement de la trieuse de corps broyants de ciment de l'une quelconque
des revendications précédentes, comprenant les étapes de :
charger les corps broyants devant être triés (1);
séparer la ferraille et poussière des corps broyants (3) ;
séparer les éléments non sphériques ou assimétriques des corps broyants (4);
séparer les corps broyants qui soient au-dessus ou en-dessous d'un seuil de grandeur
prédéterminé entre les corps broyants plus grands, et les corps broyants plus petits
(5);
trier les plus grands corps broyants par classes de grandeur (6);
trier les plus petits corps broyants par classes de grandeur (7).