(19) |
 |
|
(11) |
EP 3 669 389 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
29.12.2021 Bulletin 2021/52 |
(22) |
Date of filing: 13.08.2018 |
|
(51) |
International Patent Classification (IPC):
|
(86) |
International application number: |
|
PCT/EP2018/071901 |
(87) |
International publication number: |
|
WO 2019/034594 (21.02.2019 Gazette 2019/08) |
|
(54) |
TOPOLOGY OF A FERRITE SHIELD FOR INDUCTIVE COILS
TOPOLOGIE EINES FERRITSCHILDES FÜR INDUKTIVE SPULEN
TOPOLOGIE D'UN BLINDAGE EN FERRITE POUR BOBINES INDUCTIVES
|
(84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
(30) |
Priority: |
14.08.2017 NL 2019416
|
(43) |
Date of publication of application: |
|
24.06.2020 Bulletin 2020/26 |
(73) |
Proprietor: Prodrive Technologies Innovation Services B.V. |
|
5692 EM Son en Breugel (NL) |
|
(72) |
Inventors: |
|
- WESSELS, Wouter Johannes Stephanus
5692 EM Son (NL)
- VRIJSEN, Nilles Henricus
5692 EM Son (NL)
- BRON, Ben
5632 JL Eindhoven (NL)
- MEESSEN, Koen Joseph
5621 GP Eindhoven (NL)
|
(74) |
Representative: AWA Benelux |
|
Avenue Josse Goffin 158 1082 Bruxelles 1082 Bruxelles (BE) |
(56) |
References cited: :
EP-A1- 3 128 524 US-A1- 2014 327 391 US-A1- 2015 302 984
|
US-A1- 2008 116 847 US-A1- 2015 022 142
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
Technical field
[0001] The present invention is related to an assembly comprising an arrangement of ferrite
tiles Particularly, the assembly is for contactless power transfer applications, such
as in the automotive field. The present invention is equally related to an arrangement
or disposition of the ferrite shield for such applications.
Background art
[0002] For inductive coils, in particular for inductive power transfer, e.g. for charging
car batteries, it is known to use ferrite not only to shield the magnetic field induced
by the inductive coil, but also to improve the efficiency of power transfer between
a sending and a receiving coil. The ferrite guides the magnetic field generated by
the sending coil along preferred paths, enabling to reduce the volume in which the
magnetic field generated by the inductive coil is significant and increase the intensity
of the magnetic field in the area of interest (i.e. near the receiving coil). This
can improve the coupling between the coils and thereby reduce the energy losses during
inductive power transfer.
[0003] One drawback of ferrite is its high mass density and cost. Using ferrite therefore
tends to lead to high costs and bulky assemblies.
EP 3 128 524 A1 discloses a power transmission apparatus comprising a power transmission coil, which
has a hollow formed in the centre thereof, disposed on layer of a ferrite, which layer
has an opening formed therein located in the hollow of the power transmission coil.
Summary of the invention
[0004] In automotive inductive power transfer applications, it would be desirable to reduce
weight, bulkiness and cost of the assemblies for inductive power transfer. However,
since high power is transferred in such applications, the efficiency of the inductive
power transfer must remain high. It is therefore an aim of the present invention to
provide assemblies which overcome one or more of the above problems.
[0005] It is also an aim of the present invention to provide assemblies for inductive power
transfer having improved power density.
[0006] According to a first aspect of the invention, there is therefore provided an assembly
as set out in the appended claims.
[0007] Assemblies according to aspects described herein comprise a first inductive coil
comprising one or more windings of an electric wire or cable forming one or more coil
loops, and an arrangement of ferrite tiles disposed on one side (e.g., top or bottom)
of the first inductive coil. According to one aspect, the coil loops are disposed
in, or form a first plane. The ferrite tiles are disposed in a second plane substantially
parallel to the first plane. According to a second aspect, the ferrite tiles are disposed
such that they form one or more tile loops corresponding to the one or more coil loops.
Tiles arranged at opposite sides of the coil are advantageously spaced apart a distance
substantially equal to an internal diameter of the coil. According to another aspect,
spaces between adjacent ferrite tiles are aligned locally perpendicular to an axial
orientation of the electric wire. According to yet another aspect, the assembly comprises
at least one second inductive coil wound about one or more of the ferrite tiles. A
winding axis of the first inductive coil and a winding axis of the second inductive
coil are advantageously perpendicular.
[0008] Assemblies according to aspects described herein hence can ensure that the gaps (spaces)
between adjacent tiles run parallel with the direction of the magnetic field and therefore
the path of the magnetic field remains practically undisturbed by the tile arrangement.
[0009] Furthermore, advantageously, the area of the tiles and the area of the coil substantially
fully overlap. As a result, a central area is obtained with sufficient volume that
can be used for accommodating additional components. As the tiles do not substantially
extend beyond the area of the coil, weight and cost can be saved.
[0010] Further advantageous aspects are described in the dependent claims.
Brief description of the figures
[0011] Aspects of the invention will now be described in more detail with reference to the
appended drawings, wherein same reference numerals illustrate same features and wherein:
Figure 1 represents a partially exploded perspective view of an assembly according
to aspects described herein;
Figure 2 represents an exploded perspective view of an assembly according to aspects
described herein.
Description of embodiments
[0012] Referring to Fig. 1, an assembly 10 according to aspects described herein comprises
an inductive coil 11, which can comprise an electric wire or cable which is wound
in one or more turns forming a loop. In the configuration of Fig. 1, the loop is a
single loop having an "0" configuration, even though other configurations, such as
double loops (e.g. having the shape of an "8") or multiple loops are possible.
[0013] Advantageously, the coil 11 is accommodated in a housing 12 which can comprise pre-formed
paths or tracks 121 accommodating the electric wire. The paths 121 may run spirally
to form the turns of the electric wire or cable and thereby form the coil 11.
[0014] The housing 12 may further comprise mounts 122 for mounting ferrite tiles 14 thereon.
Mounts 122 may have any suitable shape and may allow for maintaining a relative position
between the coil 11 and the ferrite tiles 14. Tile support members 13, e.g. made of
a resilient material, such as an elastomeric material, may be provided on mounts 122
for supporting and securing the tiles 14. Useful examples of mounts 122 and tile support
members 13 are described in co-pending international application No.
PCT/EP2018/071819 filed 10 August 2018.
[0015] Support members 13 and mounts 122 may ensure that tiles 14 are spaced apart from
the coil 11 at any suitable distance.
[0016] According to one aspect, a plurality of ferrite tiles 14 are disposed so as to cover
the coil 11. The tiles 14 are advantageously made of ferrite, in particular soft ferrite.
They may be made of other magnetic (e.g. ferromagnetic or ferrimagnetic) materials.
The magnetic material is advantageously used to improve magnetic coupling between
the coils of the primary side and of the secondary side. Therefore, it is advantageous
to choose a composition that has low losses at the power transfer frequency of interest
(e.g. <500 kW/m
3 at 100 kHz, 200 mT and 25 °C). Typically, power transfer frequencies range between
50 and 100 kHz for automotive applications.
[0017] It will be convenient to note that in use, the ferrite tiles may be disposed on one
side of the coil 11 only, e.g. either above, or below the coil 11. In the present
disposition, a combination of rectangular tiles 141 and tiles 142 having the shape
of a disc segment, e.g. a 45° segment, are advantageously used. By way of example,
as shown in Fig. 1, between each 90° segment formed with tiles 142, at least one rectangular
tile 141 is disposed. The tiles 14 are disposed such that they form a loop corresponding
to the loop of the coil 11. The tiles 14 overlap the windings of coil 11 and advantageously
provide a substantially 1/1 overlap with the area of the coil 11, i.e. the area of
tiles 14 and the area of coil 11 is substantially identical.
[0018] As shown in Fig. 1, the spaces between adjacent tiles 14 are perpendicular to the
local orientation (axis) of the wire of coil 11. Such a disposition ensures that the
gaps (spaces) between adjacent tiles run parallel with the main direction of the magnetic
field and therefore the magnetic field is not negatively affected by the tile arrangement.
As a result, any number of ferrite tiles 14 may be used, as long as the spaces (gaps)
between the tiles are oriented perpendicular to the coil windings. This allows to
tailor the dimensions of the tiles on the basis of material properties in order to
prevent breaking of tiles. This furthermore also allows to provide appropriate mounting
and securing of the tiles.
[0019] Each tile advantageously comprises four edges. Two opposite edges 143 are arranged
such that they are aligned with the wire of the coil 11. The other two opposite edges
144 run perpendicular to the wire of the coil. This is also advantageously the case
for the segment-shaped tiles 142. The edges 144 advantageously have a length substantially
corresponding to a breadth of the coil 11, i.e. the tile 14 extends continuously over
a breadth of coil 11.
[0020] A central area 15 is completely enclosed by the coil 11. Advantageously, central
area 15 is also fully enclosed by the loop of tiles 14. That is, tiles arranged at
opposite sides of the coil 11 are spaced apart over a distance substantially equal
to, or slightly smaller than an internal diameter of coil 11. The central area advantageously
accommodates electronic circuitry, e.g. driving circuitry for the coil 11. Useful
examples of electric circuitry that can be accommodated in central area 15 are: inverter
circuitry and rectifier circuitry
[0021] Referring to Fig. 2, in order to shield the electronic circuitry arranged in central
area 15, a shielding layer 16 of an electrically conductive material can be arranged
between the central area on the one hand and the coil 11 and ferrite tiles 14 on the
other hand. Layer 16 may advantageously be made of a thermally conductive material
in order to form a thermal path with low thermal resistance to facilitate heat spreading.
Advantageously, layer 16 overlaps at least partially with the ferrite tiles 14, at
a side opposite the coil 11. Within central area 15, layer 16 advantageously forms
a bulge 161. Bulge 161 advantageously increases a space in central area 15. Additionally,
bulge 161 advantageously protrudes in a direction of the coil 11 which may facilitate
heat transfer to the environment from a side 101. This is particularly useful where
assembly 20 is a ground assembly of an automotive inductive power transfer system
and the assembly 20 rests with side 102 on ground level. In such a case, side 101
will form the top side.
[0022] It will be convenient to note that the assembly 20 of Fig. 2 is inversed with respect
to the assembly 10 of Fig. 1, i.e. in Fig. 2 the tiles 14 are located underneath the
coil 11. Additionally, electronic circuitry in central area 15 would be located underneath
layer 16 (e.g., underneath bulge 161).
[0023] A conductive loop 17 may be provided at a periphery of layer 16. Conductive loop
17 advantageously has a higher conductivity than layer 16. By way of example, layer
16 may be made of aluminium and conductive loop 17 may be formed of copper. A relatively
high conductivity for loop 17 advantageously decreases power dissipation within the
housing 12. The conductive loop 17 may comprise a wire arranged in a single turn or
a plurality of turns and may or may not be constrained to a single plane. Conductive
loop 17 may be terminated by a fixed or variable impedance, which can be resistive,
capacitive, or inductive, or any suitable combination thereof. By way of example,
conductive loop 17 can be made of (separately insulated) stranded copper wire, solid
copper plate or any other material with a relatively low AC resistance.
[0024] The central area 15 may additionally or alternatively be covered with a layer 18
made of a material having a relative magnetic permeability µ
r > 10. The material of layer 18 advantageously has a low electrical conductivity σ
<< 1000 S/m, e.g. ferrite material (σ ≈ 1·10
-5 S/m). The ferrite can be either flexible or solid and may be relatively thin due
to the low magnetic flux density in this location. Layer 18 advantageously has a thickness
which is less than or equal to half the thickness of the tiles 14, advantageously
less than or equal to 0.2 times the thickness of tiles 14. The layer 18 is advantageously
applied to shield the layer 16 which reduces the power dissipation due to eddy currents
that are induced by the coil. Layer 18 advantageously has some overlap with the tiles
14.
[0025] Assemblies as in Fig. 1 and Fig. 2 are advantageously used for inductive power transfer
in automotive applications. By way of example, the assembly of Fig. 1 can be mounted
underneath a vehicle to form a vehicle unit for inductive power transfer with coil
11 being the power transfer coil. The assembly of Fig. 2 can be installed on ground
for power transmission to the assembly of Fig. 1.
[0026] Referring back to Fig. 1, a second type of coil 19 is provided in addition to coil
11. Four such coils 19 are provided in Fig. 1, at 90° distance from one another, and
more or less coils 19 may be provided as desired. For example, only two or three coils
19 may be provided, at least two of which may have perpendicular axes. Each coil 19
is wound about a tile 14, in particular a rectangular tile 141. The coils 19 are wound
about a plurality of tiles 14. As shown in more detail in Fig. 2, the second type
coil 19 may comprise two opposite coils 191 and another two opposite coils 192, each
one arranged in a different quadrant of the loop formed by tiles 14. Coils 191 have
a winding axis 193 which is perpendicular to winding axis 194 of the coils 192. The
winding axes 193, 194 of the second type coils 19 are perpendicular to the winding
axis 111 of the (inductive power transfer) coil 11.
[0027] Coils 19 may be used for inducing/sensing additional magnetic fields distinct from
the magnetic field induced by coil 11, e.g. for position sensing. By spatially separating
the different coils 19, less coils are required and/or a better accuracy can be obtained
for such purposes. Typically, the coils 19 are wound perpendicular to the main direction
of the magnetic field generated by power transfer coil 11. This leads to an improved
decoupling of the magnetic fields of coils 11 and 19, with improves signal to noise
ratio and reduced coupling of higher harmonics. As a result less stringent insulation
requirements for coil 19 are needed.
[0028] The second coils 19 are connected to circuitry 195 designed for either providing
power to the coils to emit a magnetic field, or to sense a magnetic field. The circuitry
195 is advantageously arranged in the central area 15, and advantageously comprises
an analog front-end connecting the second coils to a digital processing unit. The
emitted or sensed magnetic field is advantageously a low frequent magnetic field,
such as in the range between 3 kHz and 300 kHz, in particular between 75 kHz and 225
kHz. Advantageously, the second coils 19 are formed as a resonant tank, hence including
a capacitor which can be comprised in the circuitry to which the second coils are
connected. The resonant tank advantageously has a resonance at a frequency different
than the frequency of the coil 11 for efficiently receiving or transmitting signals
used.
[0029] The coils 19, when used in transmit (power emission) mode are advantageously powered
sequentially to create a pulsed magnetic field. Alternatively, each of the coils 19
is powered with a different frequency so as to avoid interference between the coils
19. In the latter case, the coils 19 can be powered simultaneously. A square wave
is advantageously used to power the coils. A coding scheme can be used to identify
which one of the coils 19 is active. Typically, in an inductive power transfer system,
one side of the system, e.g. the ground unit, comprises a plurality of second coils
19 as transmitting coils and the other side, e.g. the mobile (vehicle) unit, comprises
a plurality of second coils 19 as receiving coils, configured to sense the magnetic
field emitted by the second coils 19 of the opposite side.
[0030] In use, the receiving coils sense the magnetic field emitted by the transmitting
coils. The properties, such as magnitude and phase, of the sensed magnetic field pulses
can be used to obtain the position of the power transmitting side of the power transfer
system with respect to the power receiving side of the system, or vice versa. This
position information is relevant to enable efficient power transfer.
1. Assembly (10, 20), comprising:
a first inductive coil (11) comprising one or more windings of an electric wire forming
one or more coil loops defining a plane,
an arrangement of ferrite tiles (14) disposed on one side of the first inductive coil
substantially parallel to the plane,
wherein the ferrite tiles are disposed such that they form one or more tile loops
corresponding to the one or more coil loops and such that spaces between adjacent
ones of the ferrite tiles are aligned locally perpendicular to the electric wire,
characterised in that the assembly comprises at least one second inductive coil (19) wound about one or
more of the ferrite tiles (14) such that a winding axis (111) of the first inductive
coil (11) and a winding axis (193, 194) of the second inductive coil are perpendicular.
2. Assembly of claim 1, wherein the ferrite tiles (14) are continuous in a direction
locally perpendicular to the electric wire and over a length corresponding to a breadth
of the inductive coil (11).
3. Assembly of claim 1 or 2, wherein an area of extension of the ferrite tiles (14) and
an area of extension of the first inductive coil (11) are substantially identical.
4. Assembly of any one of the claims 1 to 3, wherein at least one of the one or more
coil loops and corresponding tile loop enclose a central area (15) free from covering
by the ferrite tiles (14), preferably further comprising one or more driving circuits
for the inductive coil arranged in the central area (15), more preferably further
comprising a thermally conductive layer (16) covering the central area (15) and the
respective coil loop and tile loop, even more preferably wherein the thermally conductive
layer (16) is electrically conductive.
5. Assembly of claim 4, comprising a ferrite comprising layer covering the central area
(15), wherein the ferrite comprising layer at least partially overlaps the ferrite
tiles, preferably wherein the ferrite comprising layer is formed as a continuous sheet.
6. Assembly of claim 5, wherein the ferrite comprising layer has a thickness at least
20% smaller than a thickness of the ferrite tiles.
7. Assembly of any one of the preceding claims, wherein the at least one second inductive
coil (19) is configured for generating and/or sensing an additional magnetic field
distinct from a magnetic field induced by the first inductive coil (11).
8. Assembly of claim 7, wherein the at least one second inductive coil (19) is a positioning
coil configured for inducing or sensing the additional magnetic field for position
sensing.
9. Assembly of any one of the preceding claims, wherein the at least one second inductive
coil (19) forms a resonant tank.
10. Assembly of any one of the preceding claims, comprising circuitry (195) coupled to
the at least one second coil (19) and configured to form a or the resonant tank.
11. Assembly of any one of the preceding claims, comprising a plurality of the second
inductive coil (19), each of the plurality of the second inductive coil being located
in a different quadrant of the respective coil loop.
12. Assembly of any one of the preceding claims, wherein at least one of the tile loops
consists of a combination of rectangular tiles (141) and tiles shaped as a disc segment
(142).
13. Assembly of any one of the preceding claims, wherein the first inductive coil (11)
is a coil for inductive transfer of electrical energy.
14. Ground assembly (20) for inductive power transfer to a vehicle, comprising the assembly
of claim 10.
15. Vehicle assembly (10) for receiving electrical energy transferred by inductive power
transfer, comprising the assembly of claim 13.
1. Anordnung (10, 20), umfassend:
eine erste induktive Spule (11), umfassend eine oder mehrere Wicklungen eines elektrischen
Drahts, die eine oder mehrere Spulenschleifen bildet, die eine Ebene definieren,
eine Anordnung von Ferritfliesen (14), die auf einer Seite der ersten induktiven Spule
angeordnet ist, im Wesentlichen parallel zur Ebene,
wobei die Ferritfliesen derart angeordnet sind, dass sie eine oder mehrere Fliesenschleifen
bilden, die der einen oder mehreren Spulenschleifen entsprechen, und derart, dass
Zwischenräume zwischen Benachbarten der Ferritfliesen lokal senkrecht zum elektrischen
Draht ausgefluchtet sind,
dadurch gekennzeichnet, dass die Anordnung mindestens eine zweite induktive Spule (19) umfasst, die um eine oder
mehrere der Ferritfliesen (14) gewickelt ist, so dass eine Wicklungsachse (111) der
ersten induktiven Spule (11) und eine Wickelungsachse (193, 194) der zweiten induktiven
Spule senkrecht sind.
2. Anordnung nach Anspruch 1, wobei die Ferritfliesen (14) kontinuierlich in einer Richtung,
die lokal senkrecht zum elektrischen Draht ist, und über eine Länge, die einer Breite
der induktiven Spule (11) entspricht, sind.
3. Anordnung nach Anspruch 1 oder 2, wobei ein Ausdehnungsbereich der Ferritfliesen (14)
und ein Ausdehnungsbereich der ersten induktiven Spule (11) im Wesentlichen identisch
sind.
4. Anordnung nach irgendeinem der Ansprüche 1 bis 3, wobei mindestens eine der einen
oder mehreren Spulenschleifen und entsprechenden Fliesenschleife einen zentralen Bereich
(15) einschließen, der frei von Abdeckung durch die Ferritfliesen (14) ist, vorzugsweise
weiter umfassend einen oder mehrere Antriebsschaltkreise für die induktive Spule,
die im zentralen Bereich (15) angeordnet sind, insbesondere weiter umfassend eine
thermisch leitende Schicht (16), die den zentralen Bereich (15) und die entsprechende
Spulenschleife und Fliesenschleife abdeckt, noch bevorzugter, wobei die thermisch
leitende Schicht (16) elektrisch leitend ist.
5. Anordnung nach Anspruch 4, umfassend eine Ferrit-umfassende Schicht, die den zentralen
Bereich (15) abdeckt, wobei die Ferrit-umfassende Schicht mindestens teilweise die
Ferritfliesen überlappt, vorzugsweise wobei die Ferrit-umfassende Schicht als eine
kontinuierliche Bahn gebildet ist.
6. Anordnung nach Anspruch 5, wobei die Ferrit-umfassende Schicht eine Dicke aufweist,
die mindestens 20 % kleiner als eine Dicke der Ferritfliesen ist.
7. Anordnung nach irgendeinem der vorhergehenden Ansprüche, wobei die mindestens eine
zweite induktive Spule (19) konfiguriert ist, um ein zusätzliches magnetisches Feld
verschieden von einem magnetischem Feld, das von der ersten induktiven Spule (11)
induziert wird, zu erzeugen und/oder abzutasten.
8. Anordnung nach Anspruch 7, wobei die mindestens eine zweite induktive Spule (19) eine
Positionierspule ist, die konfiguriert ist, um das zusätzliche magnetische Feld für
die Positionserfassung zu induzieren oder abzutasten.
9. Anordnung nach irgendeinem der vorhergehenden Ansprüche, wobei die mindestens eine
zweite induktive Spule (19) einen Resonanztank bildet.
10. Anordnung nach irgendeinem der vorhergehenden Ansprüche, umfassend einen Schaltkreis
(195), der mit der mindestens einen zweiten Spule (19) gekoppelt und konfiguriert
ist, um einen oder den Resonanztank zu bilden.
11. Anordnung nach irgendeinem der vorhergehenden Ansprüche, umfassend eine Vielzahl der
zweiten induktiven Spule (19), wobei sich jede der Vielzahl der zweiten induktiven
Spule in einem verschiedenen Quadranten der entsprechenden Spulenschleife befindet.
12. Anordnung nach irgendeinem der vorhergehenden Ansprüche, wobei mindestens eine der
Fliesenschleifen aus einer Kombination von rechtwinkligen Fliesen (141) und Fliesen,
die wie ein Scheibensegment (142) geformt sind, besteht.
13. Anordnung nach irgendeinem der vorhergehenden Ansprüche, wobei die erste induktive
Spule (11) eine Spule für induktive Übertragung von elektrischer Energie ist.
14. Bodenanordnung (20) zur induktiven Leistungsübertragung an ein Fahrzeug, umfassend
die Anordnung nach Anspruch 10.
15. Fahrzeuganordnung (10) zum Aufnahme von elektrischer Energie, übertragen durch induktive
Leistungsübertragung, umfassend die Anordnung nach Anspruch 13.
1. Ensemble (10, 20) comprenant :
une première bobine inductive (11) comprenant un ou plusieurs enroulements d'un fil
électrique formant une ou plusieurs boucles de bobine définissant un plan,
un agencement de carreaux de ferrite (14) disposé d'un côté de la première bobine
inductive sensiblement parallèlement au plan,
dans lequel les carreaux de ferrite sont disposés de sorte qu'ils forment une ou plusieurs
boucles de carreau correspondant aux une ou plusieurs boucles de bobine et de sorte
que des espaces entre les carreaux adjacents des carreaux de ferrite sont alignés
localement perpendiculairement au fil électrique,
caractérisé en ce que l'ensemble comprend au moins une seconde bobine inductive (19) enroulée autour d'un
ou de plusieurs carreaux de ferrite (14) de sorte qu'un axe d'enroulement (111) de
la première bobine inductive (11) et un axe d'enroulement (193, 194) de la seconde
bobine inductive sont perpendiculaires.
2. Ensemble selon la revendication 1, dans lequel les carreaux de ferrite (14) sont continus
dans une direction localement perpendiculaire au fil électrique et sur une longueur
correspondant à une largeur de la bobine inductive (11) .
3. Ensemble selon la revendication 1 ou 2, dans lequel une zone d'extension des carreaux
de ferrite (14) et une zone d'extension de la première bobine inductive (11) sont
sensiblement identiques.
4. Ensemble selon l'une quelconque des revendications 1 à 3, dans lequel au moins l'une
des une ou plusieurs boucles de bobine et une boucle de carreau correspondante entourent
une zone centrale (15) dépourvue de recouvrement par les carreaux de ferrite (14),
comprenant de préférence en outre un ou plusieurs circuits d'entraînement pour la
bobine inductive agencée dans la zone centrale (15), comprenant en outre encore de
préférence une couche thermiquement conductrice (16) recouvrant la zone centrale (15)
et la boucle de bobine respective et la boucle de carreau, même encore de préférence,
dans lequel la couche thermiquement conductrice (16) est électriquement conductrice.
5. Ensemble selon la revendication 4, comprenant une couche comprenant du ferrite recouvrant
la zone centrale (15), dans lequel la couche comprenant du ferrite recouvre au moins
partiellement les carreaux de ferrite, de préférence dans lequel la couche comprenant
du ferrite est formée en tant que feuille continue.
6. Ensemble selon la revendication 5, dans lequel la couche comprenant du ferrite a une
épaisseur au moins 20% inférieure à une épaisseur des carreaux de ferrite.
7. Ensemble selon l'une quelconque des revendications précédentes, dans lequel la au
moins une seconde bobine inductive (19) est configurée pour générer et/ou détecter
un champ magnétique additionnel distinct d'un champ magnétique induit par la première
bobine inductive (11).
8. Ensemble selon la revendication 7, dans lequel la au moins une seconde bobine inductive
(19) est une bobine de positionnement configurée pour induire ou détecter le champ
magnétique additionnel pour détecter la position.
9. Ensemble selon l'une quelconque des revendications précédentes, dans lequel la au
moins une seconde bobine inductive (19) forme un convertisseur résonnant.
10. Ensemble selon l'une quelconque des revendications précédentes, comprenant des circuits
(195) couplés à la au moins une seconde bobine (19) et configurés pour former un ou
le convertisseur résonnant.
11. Ensemble selon l'une quelconque des revendications précédentes, comprenant une pluralité
de secondes bobines inductives (19), chacune de la pluralité de secondes bobines inductives
étant positionnée dans un quadrant différent de la boucle de bobine respective.
12. Ensemble selon l'une quelconque des revendications précédentes, dans lequel au moins
l'une des boucles de carreau se compose d'une combinaison de carreaux rectangulaires
(141) et de carreaux formés comme un segment de disque (142).
13. Ensemble selon l'une quelconque des revendications précédentes, dans lequel la première
bobine inductive (11) est une bobine pour le transfert inductif d'énergie électrique.
14. Ensemble de terre (20) pour le transfert d'énergie inductive à un véhicule, comprenant
l'ensemble selon la revendication 10.
15. Ensemble de véhicule (10) pour recevoir l'énergie électrique transférée par transfert
d'énergie inductive comprenant l'ensemble selon la revendication 13.


REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description