CROSS-REFERENCE TO RELATED APPLICATION
BACKGROUND
1. Field of the Invention
[0002] The present disclosure relates to a technique for limiting a leakage current, and
more particularly, to a device for limiting a leakage current of a power transmission
line.
2. Discussion of the Related Art
[0003] Electric shock is a phenomenon in which a human body reacts when a current equal
to or greater than a certain value, which is leaked from a power transmission line
or the like, flows to the ground through the human body. Generally, when a current
of 15 mA or more flows through a human body, the current causes the human body to
have a spasm, and when a current of 50 mA or more flows through the human body, the
current leads to death.
[0004] The main cause of the death is a heart attack in which a heart stops working as the
current flowing through the heart damages a nerve. A risk of electric shock is related
to a resistance of a human body when the current flow, which is highly dependent on
a condition of the skin. Therefore, the leakage current should be minimized to prevent
the electric shock of the human body.
[0006] The present inventor has studied a technique capable of reducing a risk of electric
shock by limiting a leakage current leaking to the outside through a power transmission
line using a phenomenon, in which the leakage current decreases as an area ratio between
conductors increases, in the registered technique.
[0007] US 2015/357742 A1 discloses an electrode structure body with electric-shock prevention function is
connected to a power transmission and distribution path to electric equipment.
[0008] WO 2014/109433 A2 discloses a high voltage circuit breaker for preventing flooding and electric shock.
SUMMARY OF THE INVENTION
[0009] The present disclosure is directed to providing a leakage current limiting device
for a power transmission line, which may reduce a risk of electric shock by limiting
a leakage current leaking to the outside through a power transmission line, and is
simple in structure and easy to install.
[0010] The present invention is defined by the attached independent claims. Other preferred
embodiments may be found in the dependent claims. According to the present disclosure
a leakage current limiting device for a power transmission line, comprising:a non-conductor
(110) having a rectangular parallelepiped shape;a first input terminal (121) installed
on a first surface of the non-conductor (110) having a rectangular parallelepiped
shape and connected to a phase line (R, S, or T) of a power transmission line on an
input side;a second input terminal (122) installed on a second surface of the non-conductor
(110) having a rectangular parallelepiped shape and connected to a neutral line (N)
of the power transmission line on the input side;a third input terminal (123) installed
on a third surface of the non-conductor (110) having a rectangular parallelepiped
shape and connected to a ground line (G) of the power transmission line on the input
side;a first output terminal (131) installed on the first surface of the non-conductor
having a rectangular parallelepiped shape and connected to a phase line (R, S, or
T) of a power transmission line on an output side;a second output terminal (132) installed
on the second surface of the non-conductor having a rectangular parallelepiped shape
and connected to a neutral line (N) of the power transmission line on the output side;a
third output terminal (133) installed on the third surface of the non-conductor having
a rectangular parallelepiped shape and connected to a ground line (G) of the power
transmission line on the output side;a first conductor (141) installed on the first
surface of the non-conductor (110) having a rectangular parallelepiped shape and connected
between the first input terminal (121) and the first output terminal (131);a second
conductor (142) which is installed on the second surface of the non-conductor (110)
having a rectangular parallelepiped shape and connected between the second input terminal
(122) and the second output terminal (132), and has a length equal to that of the
first conductor (141) and a sectional area of at least four times a sectional area
of the first conductor; anda third conductor (143) which is installed on the third
surface of the non-conductor (110) having a rectangular parallelepiped shape and connected
between the third input terminal (123) and the third output terminal (133), and has
a length equal to that of the first conductor (141) and a sectional area of at least
four times a sectional area of the first conductor.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] The above and other objects, features and advantages of the present disclosure will
become more apparent to those of ordinary skill in the art by describing in detail
exemplary embodiments thereof with reference to the accompanying drawings, in which:
FIG. 1 is a perspective view illustrating a configuration of a leakage current limiting
device for a power transmission line according to one embodiment of the present disclosure;
FIG. 2 is a cross-sectional view illustrating the configuration of the leakage current
limiting device for a power transmission line according to one embodiment of the present
disclosure;
FIG. 3 is a view exemplifying various shapes of a cross-section of a non-conductor,
which has a rectangular parallelepiped shape, of the leakage current limiting device
for a power transmission line according to the present disclosure; and
FIG. 4 is a circuit diagram illustrating a configuration of an error checker, which
is configured to check a transmission line connection error, of the leakage current
limiting device for a power transmission line according to the present disclosure.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
[0012] The following description is provided to assist the reader in gaining a comprehensive
understanding of the methods, apparatuses, and/or systems described herein. Accordingly,
various changes, modifications, and equivalents of the methods, apparatuses, and/or
systems described herein will be suggested to those of ordinary skill in the art.
[0013] Also, descriptions of well-known functions and constructions may be omitted for increased
clarity and conciseness.
[0014] It will be understood that when an element is referred to as being "connected" or
"coupled" to another element, it can be directly connected or coupled to the other
element or intervening elements may be present.
[0015] Contrarily, when a component is referred to as being "directly connected," or "directly
coupled" to another component, it should be understood that another component may
be absent between the component and the other component.
[0016] FIG. 1 is a perspective view illustrating a configuration of a leakage current limiting
device for a power transmission line according to one embodiment of the present disclosure,
and FIG. 2 is a cross-sectional view illustrating the configuration of the leakage
current limiting device for a power transmission line according to one embodiment
of the present disclosure.
[0017] As shown in the drawings, a leakage current limiting device 100 for a power transmission
line according to the present disclosure is connected between a power transmission
line (not shown) on an input side and a power transmission line (not shown) on an
output side, and limits a leakage current using a difference in sectional area ratio
between a phase line (R, S, or T) and a neutral line (N) of the power transmission
line
[0018] The leakage current limiting device 100 for a power transmission line according to
one embodiment includes a non-conductor 110 having a rectangular parallelepiped shape,
a first input terminal 121, a second input terminal 122, a third input terminal 123,
a first output terminal 131, a second output terminal 132, a third output terminal
133, a first conductor 141, a second conductor 142, and a third conductor 143.
[0019] The non-conductor 110 having a rectangular parallelepiped shape has four lengthwise
surfaces including a first surface, a second surface, and a third surface. Here, a
first groove 111 in which the first conductor 141 is accommodated and fixed is formed
by cutting the first surface in a length direction, a second groove 112 in which the
second conductor 142 is accommodated and fixed is formed by cutting the second surface
in a length direction, and a third groove 113 in which the third conductor 143 is
accommodated and fixed is formed by cutting the third surface in a length direction.
[0020] Here, widths of the second groove 112 and the third groove 113 may be relatively
greater than a width of the first groove 111, and/or depths of the second groove 112
and the third groove 113 may be relatively greater than a depth of the first groove
111.
[0021] FIG. 3 is a view exemplifying various shapes of a cross-section of a non-conductor,
which has a rectangular parallelepiped shape, of the leakage current limiting device
for a power transmission line according to the present disclosure. FIG. 3A exemplifies
a case in which the widths of the second groove 112 and the third groove 113 are relatively
greater than the width of the first groove 111, FIG. 3B exemplifies a case in which
the depths of the second groove 112 and the third groove 113 are relatively greater
than the depth of the first groove 111, and FIG. 3C exemplifies a case in which the
widths and depths of the second groove 112 and the third groove 113 are relatively
greater than the width and depth of the first groove 111.
[0022] The first input terminal 121 is installed on the first surface of the non-conductor
110 having a rectangular parallelepiped shape and connected to the phase line (R,
S, or T) of the power transmission line on the input side. Here, the first input terminal
121 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure
is not limited thereto.
[0023] For example, a bent portion is formed at a central portion of the first input terminal
121, and both ends of the first input terminal 121 are screwed to the first surface
of the non-conductor 110 having a rectangular parallelepiped shape in a state in which
the phase line (R, S, or T) of the power transmission line on the input side is positioned
between the bent portion of the central portion of the first input terminal 121 and
the first conductor 141 which is accommodated in the first groove 111 formed on the
first surface of the non-conductor 110 having a rectangular parallelepiped shape so
that the first input terminal 121 may be connected to the phase line (R, S, or T)
of the power transmission line on the input side. However, the present disclosure
is not limited thereto.
[0024] The second input terminal 122 is installed on the second surface of the non-conductor
110 having a rectangular parallelepiped shape and connected to the neutral line (N)
of the power transmission line on the input side. Here, the second input terminal
122 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure
is not limited thereto.
[0025] For example, a bent portion is formed at a central portion of the second input terminal
122, and both ends of the second input terminal 122 are screwed to the second surface
of the non-conductor 110 having a rectangular parallelepiped shape in a state in which
the neutral line (N) of the power transmission line on the input side is positioned
between the bent portion of the central portion of the second input terminal 122 and
the second conductor 142 which is accommodated in the second groove 112 formed on
the second surface of the non-conductor 110 having a rectangular parallelepiped shape
so that the second input terminal 122 may be connected to the neutral line (N) of
the power transmission line on the input side. However, the present disclosure is
not limited thereto.
[0026] The third input terminal 123 is installed on the third surface of the non-conductor
110 having a rectangular parallelepiped shape and connected to a ground line (G) of
the power transmission line on the input side. Here, the third input terminal 123
may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure
is not limited thereto.
[0027] For example, a bent portion is formed at a central portion of the third input terminal
123, and both ends of the third input terminal 123 are screwed to the third surface
of the non-conductor 110 having a rectangular parallelepiped shape in a state in which
the ground line (G) of the power transmission line on the input side is positioned
between the bent portion of the central portion of the third input terminal 123 and
the third conductor 143 which is accommodated in the third groove 113 formed on the
third surface of the non-conductor 110 having a rectangular parallelepiped shape so
that the third input terminal 123 may be connected to the ground line (G) of the power
transmission line on the input side. However, the present disclosure is not limited
thereto.
[0028] The first output terminal 131 is installed on the first surface of the non-conductor
110 having a rectangular parallelepiped shape and connected to the phase line (R,
S, or T) 310 of the power transmission line on the output side. Here, the first output
terminal 131 may be made of a copper (Cu) or aluminum (Al) material, but the present
disclosure is not limited thereto.
[0029] For example, a bent portion is formed at a central portion of the first output terminal
131, and both ends of the first output terminal 131 are screwed to the first surface
of the non-conductor 110 having a rectangular parallelepiped shape in a state in which
the phase line (R, S, or T) 310 of the power transmission line on the output side
is positioned between the bent portion of the central portion of the first output
terminal 131 and the first conductor 141 which is accommodated in the first groove
111 formed on the first surface of the non-conductor 110 having a rectangular parallelepiped
shape so that the first output terminal 131 may be connected to the phase line (R,
S, or T) 310 of the power transmission line on the output side. However, the present
disclosure is not limited thereto.
[0030] The second output terminal 132 is installed on the second surface of the non-conductor
110 having a rectangular parallelepiped shape and connected to the neutral line (N)
320 of the power transmission line on the output side. Here, the second output terminal
132 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure
is not limited thereto.
[0031] For example, a bent portion is formed at a central portion of the second output terminal
132, and both ends of the second output terminal 132 are screwed to the second surface
of the non-conductor 110 having a rectangular parallelepiped shape in a state in which
the neutral line (N) 320 of the power transmission line on the output side is positioned
between the bent portion of the central portion of the second output terminal 132
and the second conductor 142 which is accommodated in the second groove 112 formed
on the second surface of the non-conductor 110 having a rectangular parallelepiped
shape so that the second output terminal 132 may be connected to the neutral line
(N) 320 of the power transmission line on the output side. However, the present disclosure
is not limited thereto.
[0032] The third output terminal 133 is installed on the third surface of the non-conductor
110 having a rectangular parallelepiped shape and connected to the ground line (N)
330 of the power transmission line on the output side. Here, the third output terminal
133 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure
is not limited thereto.
[0033] For example, a bent portion is formed at a central portion of the third output terminal
133, and both ends of the third output terminal 133 are screwed to the third surface
of the non-conductor 110 having a rectangular parallelepiped shape in a state in which
the ground line (G) 330 of the power transmission line on the output side is positioned
between the bent portion of the central portion of the third output terminal 133 and
the third conductor 143 which is accommodated in the third groove 113 formed on the
third surface of the non-conductor 110 having a rectangular parallelepiped shape so
that the third output terminal 133 may be connected to the ground line (G) 330 of
the power transmission line on the output side. However, the present disclosure is
not limited thereto.
[0034] The first conductor 141 is installed on the first surface of the non-conductor 110
having a rectangular parallelepiped shape and connected between the first input terminal
121 and the first output terminal 131. Here, the first conductor 141 may be made of
a copper (Cu) or aluminum (Al) material, but the present disclosure is not limited
thereto.
[0035] For example, the first conductor 141 may be fixed by being screw-coupled to the non-conductor
110 having a rectangular parallelepiped shape in a state in which the first conductor
141 is accommodated in the first groove 111 formed on the first surface of the non-conductor
110 having a rectangular parallelepiped shape. However, the present disclosure is
not limited thereto.
[0036] The second conductor 142 is installed on the second surface of the non-conductor
110 having a rectangular parallelepiped shape and connected between the second input
terminal 122 and the second output terminal 132 and has a length equal to that of
the first conductor 141 and a sectional area of at least four times a sectional area
of the first conductor 141. Here, the second conductor 142 may be made of a copper
(Cu) or aluminum (Al) material, but the present disclosure is not limited thereto.
[0037] For example, the second conductor 142 may be fixed by being screw-coupled to the
non-conductor 110 having a rectangular parallelepiped shape in a state in which the
second conductor 142 is accommodated in the second groove 112 formed on the second
surface of the non-conductor 110 having a rectangular parallelepiped shape. However,
the present disclosure is not limited thereto.
[0038] The third conductor 143 is installed on the third surface of the non-conductor 110
having a rectangular parallelepiped shape and connected between the third input terminal
123 and the third output terminal 133, and has a length equal to that of the first
conductor 141 and a sectional area of at least four times a sectional area of the
first conductor 141. Here, the third conductor 143 may be made of a copper (Cu) or
aluminum (Al) material, but the present disclosure is not limited thereto.
[0039] For example, the third conductor 143 may be fixed by being screw-coupled to the non-conductor
110 having a rectangular parallelepiped shape in a state in which the third conductor
143 is accommodated in the third groove 113 formed on the third surface of the non-conductor
110 having a rectangular parallelepiped shape. However, the present disclosure is
not limited thereto.
[0040] Meanwhile, in order for the second conductor 142 and the third conductor 143 to have
relatively greater sectional areas as compared to the first conductor 141, the first
conductor 141 may be formed in a flat plate shape and the second conductor 142 and
the third conductor 143 may be formed in a bent shape.
[0041] As can be seen from contents described in the
Korean Registered Patent No. 10-1625493 (registered on May 24, 2016) mentioned in the related art, the greater a sectional area of a conductor connected
to a (-) terminal of a power source as compared with a sectional area of a conductor
connected to a (+) terminal of the power source, the more leakage current is reduced,
and accordingly, the leakage current leaked through the power transmission line may
be limited by connecting conductors having different sectional areas to the phase
line (R, S, or T) having the (+) terminal role in the power transmission line, the
neutral line (N) having the (-) terminal role in the power transmission line, and
the ground line (G), respectively.

[0042] Meanwhile, as can be seen from the above equation, resistance R of a path (a transmission
line, a human body, or the like) through which a current flow is proportional to a
length 1 of the path and inversely proportional to a sectional area S and conductivity
σ, and thus, the larger a sectional area of the third conductor 143 than a sectional
area of the second conductor 142, the better.
[0043] When a human body is exposed to the leakage current, the human body and the third
conductor 143 are placed in a state of being electrically connected in parallel to
the ground. Accordingly, since internal resistance of the third conductor 143 becomes
smaller than human resistance as the sectional area of the third conductor 143 is
greater, even when the leakage current is generated, the leakage current does not
flow to the human body but flows through the third conductor 143 to the ground, or
stays in the third conductor 143 to prevent electric shock of the human body.
[0044] Meanwhile, in the present disclosure, since the conductor, the input terminal and
the output terminal, to which each of the phase line, the neutral line and the ground
line of the power transmission line is connected, are disposed on and coupled to each
of the three surfaces of four lengthwise surfaces of the non-conductor 110 having
a rectangular parallelepiped shape, the conductors, the input terminals and the output
terminals are not facing each other and electrically isolated completely, so that
an electrical short circuit may be prevented.
[0045] Meanwhile, according to an additional aspect of the present disclosure, the leakage
current limiting device 100 for a power transmission line may further include a shielding
part 150. The shielding part 150 shields the non-conductor 110 having a rectangular
parallelepiped shape from the outside.
[0046] For example, since the shielding part 150 shields the non-conductor 110 having a
rectangular parallelepiped shape from the outside by using a shielding material made
of graphite or the like, the conductor, the input terminal and the output terminal,
which are disposed on and coupled to each of the three surfaces of the four lengthwise
surfaces of the non-conductor 110 having a rectangular parallelepiped shape, may be
shielded from the outside. Accordingly, the conductor, the input terminal and the
output terminal may be protected from the outside, and at the same time, an outflow
of electromagnetic waves generated by the conductor, the input terminal and the output
terminal may be efficiently blocked.
[0047] Meanwhile, according to an additional aspect of the present disclosure, the leakage
current limiting device 100 for a power transmission line may further include an error
checker 160. The error checker 160 is connected between the second input terminal
122 and the third input terminal 123 to check a transmission line connection error.
FIG. 4 is a circuit diagram illustrating a configuration of an error checker, which
is configured to check the transmission line connection error, of the leakage current
limiting device for a power transmission line according to the present disclosure.
[0048] As shown in FIG. 4, the error checker 160 may include a current limiting resistor
161 and an LED 162 which is turned on when the phase line of the power transmission
line on the input side is connected to the second input terminal 122 to indicate the
transmission line connection error and is not turned on when the neutral line of the
power transmission line on the input side is connected to the second input terminal
122 to indicate that the transmission line connection is normal.
[0049] When the phase line of the power transmission line on the input side is incorrectly
connected to the second input terminal 122 to which the neutral line of the power
transmission line on the input side is to be connected, the current flows to the ground
through the second input terminal 122, the current limiting resistor 161, and the
LED 162, and the third input terminal 123, so that the LED 162 is turned on.
[0050] Meanwhile, when the neutral line of the power transmission line on the input side
is correctly connected to the second input terminal 122 to which the neutral line
of the power transmission line on the input side is to be connected, since there is
no potential difference between the neutral line and the ground line, the current
does not flow to the ground through the second input terminal 122, the current limiting
resistor 161, and the LED 162, and the third input terminal 123, so that the LED 162
is not turned on. Accordingly, the transmission line connection error may be detected
according to a turned-on state of the LED 162 of the error checker 160.
[0051] As described above, according to the present disclosure, the leakage current leaking
to the outside through the power transmission line may be limited by using the leakage
current limiting device for a power transmission line which is simple in structure
and easy to install, so that a risk of the electric shock may be reduced.
[0052] According to the present disclosure, a risk of electric shock can be reduced by limiting
a leakage current leaking to the outside through a power transmission line using a
leakage current limiting device for a power transmission line, which is simple in
structure and easy to install.
1. A leakage current limiting device for a power transmission line, comprising:
a non-conductor (110) having a rectangular parallelepiped shape;
a first input terminal (121) installed on a first surface of the non-conductor (110)
having a rectangular parallelepiped shape and connected to a phase line (R, S, or
T) of a power transmission line on an input side;
a second input terminal (122) installed on a second surface of the non-conductor (110)
having a rectangular parallelepiped shape and connected to a neutral line (N) of the
power transmission line on the input side;
a third input terminal (123) installed on a third surface of the non-conductor (110)
having a rectangular parallelepiped shape and connected to a ground line (G) of the
power transmission line on the input side;
a first output terminal (131) installed on the first surface of the non-conductor
having a rectangular parallelepiped shape and connected to a phase line (R, S, or
T) of a power transmission line on an output side;
a second output terminal (132) installed on the second surface of the non-conductor
having a rectangular parallelepiped shape and connected to a neutral line (N) of the
power transmission line on the output side;
a third output terminal (133) installed on the third surface of the non-conductor
having a rectangular parallelepiped shape and connected to a ground line (G) of the
power transmission line on the output side;
a first conductor (141) installed on the first surface of the non-conductor (110)
having a rectangular parallelepiped shape and connected between the first input terminal
(121) and the first output terminal (131);
a second conductor (142) which is installed on the second surface of the non-conductor
(110) having a rectangular parallelepiped shape and connected between the second input
terminal (122) and the second output terminal (132), and has a length equal to that
of the first conductor (141) and a sectional area of at least four times a sectional
area of the first conductor; and
a third conductor (143) which is installed on the third surface of the non-conductor
(110) having a rectangular parallelepiped shape and connected between the third input
terminal (123) and the third output terminal (133), and has a length equal to that
of the first conductor (141) and a sectional area of at least four times a sectional
area of the first conductor.
2. The device of claim 1, further comprising a shielding part (150) which shields the
non-conductor (110) having a rectangular parallelepiped shape from the outside.
3. The device of claim 1, wherein the first conductor (141), the second conductor (142),
and the third conductor (143) are made of a copper (Cu) or aluminum (Al) material.
4. The device of claim 1, further comprising an error checker (160) which is connected
between the second input terminal (122) and the third input terminal (123) and configured
to check whether the power transmission line is connected correctly or not.
5. The device of claim 4, wherein the error checker (160) includes a current limiting
resistor (161) and an LED (162) which is turned on when the phase line of the power
transmission line on the input side is connected to the second input terminal (122)
to indicate that the power transmission line is connected incorrectly , and is not
turned on when the neutral line of the power transmission line on the input side is
connected to the second input terminal (122) to indicate that the power transmission
line is connected correctly.
1. Vorrichtung zur Begrenzung des Leckstroms für eine Stromübertragungsleitung, umfassend:
einen Nichtleiter (110) mit der Form eines rechtwinkligen Parallelepipeds;
eine erste Eingangsklemme (121), die auf einer ersten Oberfläche des Nichtleiters
(110) mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem
Phasenleiter (R, S oder T) einer Stromübertragungsleitung auf einer Eingangsseite
verbunden ist;
eine zweite Eingangsklemme (122), die auf einer zweiten Oberfläche des Nichtleiters
(110) mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem
Neutralleiter (N) der Stromübertragungsleitung auf der Eingangsseite verbunden ist;
eine dritte Eingangsklemme (123), die auf einer dritten Oberfläche des Nichtleiters
(110) mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem
Erdleiter (G) der Stromübertragungsleitung auf der Eingangsseite verbunden ist;
eine erste Ausgangsklemme (131), die auf einer ersten Oberfläche des Nichtleiters
mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem Phasenleiter
(R, S oder T) einer Stromübertragungsleitung auf einer Ausgangsseite verbunden ist;
eine zweite Ausgangsklemme (132), die auf der zweiten Oberfläche des Nichtleiters
mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem Neutralleiter
(N) der Stromübertragungsleitung auf der Ausgangsseite verbunden ist;
eine dritte Ausgangsklemme (133), die auf der dritten Oberfläche des Nichtleiters
mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem Erdleiter
(G) der Stromübertragungsleitung auf der Ausgangsseite verbunden ist;
einen ersten Leiter (141), der auf der ersten Oberfläche des Nichtleiters (110) mit
der Form eines rechtwinkligen Parallelepipeds installiert ist und zwischen der ersten
Eingangsklemme (121) und der ersten Ausgangsklemme (131) angeschlossen ist;
einen zweiten Leiter (142), der auf der zweiten Oberfläche des Nichtleiters (110)
mit der Form eines rechtwinkligen Parallelepipeds installiert ist und zwischen der
zweiten Eingangsklemme (122) und der zweiten Ausgangsklemme (132) angeschlossen ist
und eine Länge gleich der des ersten Leiters (141) und eine Querschnittsfläche von
mindestens dem Vierfachen einer Querschnittsfläche des ersten Leiters aufweist; und
einen dritten Leiter (143), der auf der dritten Oberfläche des Nichtleiters (110)
mit der Form eines rechtwinkligen Parallelepipeds installiert ist und zwischen der
dritten Eingangsklemme (123) und der dritten Ausgangsklemme (133) angeschlossen ist,
und eine Länge gleich der des ersten Leiters (141) und eine Querschnittsfläche von
mindestens dem Vierfachen einer Querschnittsfläche des ersten Leiters aufweist.
2. Vorrichtung nach Anspruch 1, des Weiteren umfassend einen Abschirmteil (150), der
den Nichtleiter (110) mit der Form eines rechtwinkligen Parallelepipeds von außen
abschirmt.
3. Vorrichtung nach Anspruch 1, wobei der erste Leiter (141), der zweite Leiter (142)
und der dritte Leiter (143) aus einem Kupfer- (Cu) oder Aluminium- (Al) Material hergestellt
sind.
4. Vorrichtung nach Anspruch 1, des Weiteren umfassend einen Fehlerprüfer (160), der
zwischen der zweiten Eingangsklemme (122) und der dritten Eingangsklemme (123) angeschlossen
ist und zum Überprüfen konfiguriert ist, ob die Stromübertragungsleitung korrekt angeschlossen
ist oder nicht.
5. Vorrichtung nach Anspruch 4, wobei der Fehlerprüfer (160) einen Strombegrenzungswiderstand
(161) und eine LED (162) enthält, die eingeschaltet wird, wenn der Phasenleiter der
Stromübertragungsleitung auf der Eingangsseite mit der zweiten Eingangsklemme (122)
verbunden ist, um anzuzeigen, dass die Stromübertragungsleitung falsch angeschlossen
ist, und nicht eingeschaltet wird, wenn der Neutralleiter der Stromübertragungsleitung
auf der Eingangsseite mit der zweiten Eingangsklemme (122) verbunden ist, um anzuzeigen,
dass die Stromübertragungsleitung richtig angeschlossen ist.
1. Dispositif de limitation du courant de fuite pour une ligne de transmission d'énergie,
comprenant :
un non-conducteur (110) présentant une forme parallélépipédique rectangulaire ;
un premier terminal d'entrée (121) installé sur une première surface du non-conducteur
(110), présentant une forme parallélépipédique rectangulaire, et connecté à une ligne
de phase (R, S ou T) d'une ligne de transmission d'énergie sur un côté d'entrée ;
un deuxième terminal d'entrée (122) installé sur une deuxième surface du non-conducteur
(110), présentant une forme parallélépipédique rectangulaire, et connecté à une ligne
neutre (N) de la ligne de transmission d'énergie sur le côté d'entrée ;
un troisième terminal d'entrée (123) installé sur une troisième surface du non-conducteur
(110), présentant une forme parallélépipédique rectangulaire, et connecté à une ligne
de terre (G) de la ligne de transmission d'énergie sur le côté d'entrée ;
un premier terminal de sortie (131) installé sur la première surface du non-conducteur,
présentant une forme parallélépipédique rectangulaire, et connecté à une ligne de
phase (R, S ou T) d'une ligne de transmission d'énergie sur un côté de sortie ;
un deuxième terminal de sortie (132) installé sur la deuxième surface du non-conducteur,
présentant une forme parallélépipédique rectangulaire, et connecté à une ligne neutre
(N) de la ligne de transmission d'énergie sur le côté de sortie ;
un troisième terminal de sortie (133) installé sur la troisième surface du non-conducteur,
présentant une forme parallélépipédique rectangulaire, et connecté à une ligne de
terre (G) de la ligne de transmission d'énergie sur le côté de sortie ;
un premier conducteur (141) installé sur la première surface du non-conducteur (110),
présentant une forme parallélépipédique rectangulaire, et connecté entre le premier
terminal d'entrée (121) et le premier terminal de sortie (131) ;
un deuxième conducteur (142) qui est installé sur la deuxième surface du non-conducteur
(110), présentant une forme parallélépipédique rectangulaire, et connecté entre le
deuxième terminal d'entrée (122) et le deuxième terminal de sortie (132), et qui présente
une longueur égale à celle du premier conducteur (141) et une surface en section au
moins quatre fois supérieure à la surface en section du premier conducteur ; et
un troisième conducteur (143) qui est installé sur la troisième surface du non-conducteur
(110), présentant une forme parallélépipédique rectangulaire, et connecté entre le
troisième terminal d'entrée (123) et le troisième terminal de sortie (133), et qui
présente une longueur égale à celle du premier conducteur (141) et une surface en
section au moins quatre fois supérieure à la surface en section du premier conducteur.
2. Dispositif selon la revendication 1, comprenant en outre une partie de blindage (150)
qui blinde le non-conducteur (110), présentant une forme parallélépipédique rectangulaire
depuis l'extérieur.
3. Dispositif selon la revendication 1, dans lequel le premier conducteur (141), le deuxième
conducteur (142) et le troisième conducteur (143) sont constitués d'un matériau en
cuivre (Cu) ou en aluminium (Al).
4. Dispositif selon la revendication 1, comprenant en outre un vérificateur d'erreur
(160) qui est connecté entre le deuxième terminal d'entrée (122) et le troisième terminal
d'entrée (123), et configuré pour vérifier si la ligne de transmission d'énergie est
connectée correctement ou non.
5. Dispositif selon la revendication 4, dans lequel le vérificateur d'erreur (160) comprend
une résistance de limitation de courant (161) et une DEL (162) qui est allumée quand
la ligne de phase de la ligne de transmission d'énergie sur le côté d'entrée est connectée
au deuxième terminal d'entrée (122) pour indiquer que la ligne de transmission d'énergie
est connectée incorrectement, et qui n'est pas allumée quand la ligne neutre de la
ligne de transmission d'énergie sur le côté d'entrée est connectée au deuxième terminal
d'entrée (122) pour indiquer que la ligne de transmission d'énergie est connectée
correctement.