(19)
(11) EP 3 614 499 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
23.02.2022 Bulletin 2022/08

(21) Application number: 18207963.2

(22) Date of filing: 23.11.2018
(51) International Patent Classification (IPC): 
H01R 4/66(2006.01)
H01R 13/648(2006.01)
(52) Cooperative Patent Classification (CPC):
H01R 13/648; H01R 4/66

(54)

DEVICE FOR LIMITING LEAKAGE CURRENT OF POWER TRANSMISSION LINE

VORRICHTUNG ZUR BEGRENZUNG DES LECKSTROMS EINER STROMÜBERTRAGUNGSLEITUNG

DISPOSITIF DE LIMITATION DE COURANT DE FUITE DE LIGNE DE TRANSMISSION DE PUISSANCE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 20.08.2018 KR 20180096734

(43) Date of publication of application:
26.02.2020 Bulletin 2020/09

(73) Proprietor: Vision Tech Inc.
Busan (KR)

(72) Inventor:
  • LEE, Jin Seong
    Busan (KR)

(74) Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)


(56) References cited: : 
WO-A2-2014/109433
US-A1- 2015 357 742
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATION



    [0001] This application claims priority from Korean Patent Application No. 10-2018-0096734, filed on August 20, 2018 in the Korean Intellectual Property Office.

    BACKGROUND


    1. Field of the Invention



    [0002] The present disclosure relates to a technique for limiting a leakage current, and more particularly, to a device for limiting a leakage current of a power transmission line.

    2. Discussion of the Related Art



    [0003] Electric shock is a phenomenon in which a human body reacts when a current equal to or greater than a certain value, which is leaked from a power transmission line or the like, flows to the ground through the human body. Generally, when a current of 15 mA or more flows through a human body, the current causes the human body to have a spasm, and when a current of 50 mA or more flows through the human body, the current leads to death.

    [0004] The main cause of the death is a heart attack in which a heart stops working as the current flowing through the heart damages a nerve. A risk of electric shock is related to a resistance of a human body when the current flow, which is highly dependent on a condition of the skin. Therefore, the leakage current should be minimized to prevent the electric shock of the human body.

    [0005] Korean Registered Patent No. 10-1625493 (registered on May 24, 2016), which was filed by the present applicant, discloses that a leakage current decreases as an area ratio between two conductors having a flat plate shape increases.

    [0006] The present inventor has studied a technique capable of reducing a risk of electric shock by limiting a leakage current leaking to the outside through a power transmission line using a phenomenon, in which the leakage current decreases as an area ratio between conductors increases, in the registered technique.

    [0007] US 2015/357742 A1 discloses an electrode structure body with electric-shock prevention function is connected to a power transmission and distribution path to electric equipment.

    [0008] WO 2014/109433 A2 discloses a high voltage circuit breaker for preventing flooding and electric shock.

    SUMMARY OF THE INVENTION



    [0009] The present disclosure is directed to providing a leakage current limiting device for a power transmission line, which may reduce a risk of electric shock by limiting a leakage current leaking to the outside through a power transmission line, and is simple in structure and easy to install.

    [0010] The present invention is defined by the attached independent claims. Other preferred embodiments may be found in the dependent claims. According to the present disclosure a leakage current limiting device for a power transmission line, comprising:a non-conductor (110) having a rectangular parallelepiped shape;a first input terminal (121) installed on a first surface of the non-conductor (110) having a rectangular parallelepiped shape and connected to a phase line (R, S, or T) of a power transmission line on an input side;a second input terminal (122) installed on a second surface of the non-conductor (110) having a rectangular parallelepiped shape and connected to a neutral line (N) of the power transmission line on the input side;a third input terminal (123) installed on a third surface of the non-conductor (110) having a rectangular parallelepiped shape and connected to a ground line (G) of the power transmission line on the input side;a first output terminal (131) installed on the first surface of the non-conductor having a rectangular parallelepiped shape and connected to a phase line (R, S, or T) of a power transmission line on an output side;a second output terminal (132) installed on the second surface of the non-conductor having a rectangular parallelepiped shape and connected to a neutral line (N) of the power transmission line on the output side;a third output terminal (133) installed on the third surface of the non-conductor having a rectangular parallelepiped shape and connected to a ground line (G) of the power transmission line on the output side;a first conductor (141) installed on the first surface of the non-conductor (110) having a rectangular parallelepiped shape and connected between the first input terminal (121) and the first output terminal (131);a second conductor (142) which is installed on the second surface of the non-conductor (110) having a rectangular parallelepiped shape and connected between the second input terminal (122) and the second output terminal (132), and has a length equal to that of the first conductor (141) and a sectional area of at least four times a sectional area of the first conductor; anda third conductor (143) which is installed on the third surface of the non-conductor (110) having a rectangular parallelepiped shape and connected between the third input terminal (123) and the third output terminal (133), and has a length equal to that of the first conductor (141) and a sectional area of at least four times a sectional area of the first conductor.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] The above and other objects, features and advantages of the present disclosure will become more apparent to those of ordinary skill in the art by describing in detail exemplary embodiments thereof with reference to the accompanying drawings, in which:

    FIG. 1 is a perspective view illustrating a configuration of a leakage current limiting device for a power transmission line according to one embodiment of the present disclosure;

    FIG. 2 is a cross-sectional view illustrating the configuration of the leakage current limiting device for a power transmission line according to one embodiment of the present disclosure;

    FIG. 3 is a view exemplifying various shapes of a cross-section of a non-conductor, which has a rectangular parallelepiped shape, of the leakage current limiting device for a power transmission line according to the present disclosure; and

    FIG. 4 is a circuit diagram illustrating a configuration of an error checker, which is configured to check a transmission line connection error, of the leakage current limiting device for a power transmission line according to the present disclosure.


    DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS



    [0012] The following description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. Accordingly, various changes, modifications, and equivalents of the methods, apparatuses, and/or systems described herein will be suggested to those of ordinary skill in the art.

    [0013] Also, descriptions of well-known functions and constructions may be omitted for increased clarity and conciseness.

    [0014] It will be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present.

    [0015] Contrarily, when a component is referred to as being "directly connected," or "directly coupled" to another component, it should be understood that another component may be absent between the component and the other component.

    [0016] FIG. 1 is a perspective view illustrating a configuration of a leakage current limiting device for a power transmission line according to one embodiment of the present disclosure, and FIG. 2 is a cross-sectional view illustrating the configuration of the leakage current limiting device for a power transmission line according to one embodiment of the present disclosure.

    [0017] As shown in the drawings, a leakage current limiting device 100 for a power transmission line according to the present disclosure is connected between a power transmission line (not shown) on an input side and a power transmission line (not shown) on an output side, and limits a leakage current using a difference in sectional area ratio between a phase line (R, S, or T) and a neutral line (N) of the power transmission line

    [0018] The leakage current limiting device 100 for a power transmission line according to one embodiment includes a non-conductor 110 having a rectangular parallelepiped shape, a first input terminal 121, a second input terminal 122, a third input terminal 123, a first output terminal 131, a second output terminal 132, a third output terminal 133, a first conductor 141, a second conductor 142, and a third conductor 143.

    [0019] The non-conductor 110 having a rectangular parallelepiped shape has four lengthwise surfaces including a first surface, a second surface, and a third surface. Here, a first groove 111 in which the first conductor 141 is accommodated and fixed is formed by cutting the first surface in a length direction, a second groove 112 in which the second conductor 142 is accommodated and fixed is formed by cutting the second surface in a length direction, and a third groove 113 in which the third conductor 143 is accommodated and fixed is formed by cutting the third surface in a length direction.

    [0020] Here, widths of the second groove 112 and the third groove 113 may be relatively greater than a width of the first groove 111, and/or depths of the second groove 112 and the third groove 113 may be relatively greater than a depth of the first groove 111.

    [0021] FIG. 3 is a view exemplifying various shapes of a cross-section of a non-conductor, which has a rectangular parallelepiped shape, of the leakage current limiting device for a power transmission line according to the present disclosure. FIG. 3A exemplifies a case in which the widths of the second groove 112 and the third groove 113 are relatively greater than the width of the first groove 111, FIG. 3B exemplifies a case in which the depths of the second groove 112 and the third groove 113 are relatively greater than the depth of the first groove 111, and FIG. 3C exemplifies a case in which the widths and depths of the second groove 112 and the third groove 113 are relatively greater than the width and depth of the first groove 111.

    [0022] The first input terminal 121 is installed on the first surface of the non-conductor 110 having a rectangular parallelepiped shape and connected to the phase line (R, S, or T) of the power transmission line on the input side. Here, the first input terminal 121 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure is not limited thereto.

    [0023] For example, a bent portion is formed at a central portion of the first input terminal 121, and both ends of the first input terminal 121 are screwed to the first surface of the non-conductor 110 having a rectangular parallelepiped shape in a state in which the phase line (R, S, or T) of the power transmission line on the input side is positioned between the bent portion of the central portion of the first input terminal 121 and the first conductor 141 which is accommodated in the first groove 111 formed on the first surface of the non-conductor 110 having a rectangular parallelepiped shape so that the first input terminal 121 may be connected to the phase line (R, S, or T) of the power transmission line on the input side. However, the present disclosure is not limited thereto.

    [0024] The second input terminal 122 is installed on the second surface of the non-conductor 110 having a rectangular parallelepiped shape and connected to the neutral line (N) of the power transmission line on the input side. Here, the second input terminal 122 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure is not limited thereto.

    [0025] For example, a bent portion is formed at a central portion of the second input terminal 122, and both ends of the second input terminal 122 are screwed to the second surface of the non-conductor 110 having a rectangular parallelepiped shape in a state in which the neutral line (N) of the power transmission line on the input side is positioned between the bent portion of the central portion of the second input terminal 122 and the second conductor 142 which is accommodated in the second groove 112 formed on the second surface of the non-conductor 110 having a rectangular parallelepiped shape so that the second input terminal 122 may be connected to the neutral line (N) of the power transmission line on the input side. However, the present disclosure is not limited thereto.

    [0026] The third input terminal 123 is installed on the third surface of the non-conductor 110 having a rectangular parallelepiped shape and connected to a ground line (G) of the power transmission line on the input side. Here, the third input terminal 123 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure is not limited thereto.

    [0027] For example, a bent portion is formed at a central portion of the third input terminal 123, and both ends of the third input terminal 123 are screwed to the third surface of the non-conductor 110 having a rectangular parallelepiped shape in a state in which the ground line (G) of the power transmission line on the input side is positioned between the bent portion of the central portion of the third input terminal 123 and the third conductor 143 which is accommodated in the third groove 113 formed on the third surface of the non-conductor 110 having a rectangular parallelepiped shape so that the third input terminal 123 may be connected to the ground line (G) of the power transmission line on the input side. However, the present disclosure is not limited thereto.

    [0028] The first output terminal 131 is installed on the first surface of the non-conductor 110 having a rectangular parallelepiped shape and connected to the phase line (R, S, or T) 310 of the power transmission line on the output side. Here, the first output terminal 131 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure is not limited thereto.

    [0029] For example, a bent portion is formed at a central portion of the first output terminal 131, and both ends of the first output terminal 131 are screwed to the first surface of the non-conductor 110 having a rectangular parallelepiped shape in a state in which the phase line (R, S, or T) 310 of the power transmission line on the output side is positioned between the bent portion of the central portion of the first output terminal 131 and the first conductor 141 which is accommodated in the first groove 111 formed on the first surface of the non-conductor 110 having a rectangular parallelepiped shape so that the first output terminal 131 may be connected to the phase line (R, S, or T) 310 of the power transmission line on the output side. However, the present disclosure is not limited thereto.

    [0030] The second output terminal 132 is installed on the second surface of the non-conductor 110 having a rectangular parallelepiped shape and connected to the neutral line (N) 320 of the power transmission line on the output side. Here, the second output terminal 132 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure is not limited thereto.

    [0031] For example, a bent portion is formed at a central portion of the second output terminal 132, and both ends of the second output terminal 132 are screwed to the second surface of the non-conductor 110 having a rectangular parallelepiped shape in a state in which the neutral line (N) 320 of the power transmission line on the output side is positioned between the bent portion of the central portion of the second output terminal 132 and the second conductor 142 which is accommodated in the second groove 112 formed on the second surface of the non-conductor 110 having a rectangular parallelepiped shape so that the second output terminal 132 may be connected to the neutral line (N) 320 of the power transmission line on the output side. However, the present disclosure is not limited thereto.

    [0032] The third output terminal 133 is installed on the third surface of the non-conductor 110 having a rectangular parallelepiped shape and connected to the ground line (N) 330 of the power transmission line on the output side. Here, the third output terminal 133 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure is not limited thereto.

    [0033] For example, a bent portion is formed at a central portion of the third output terminal 133, and both ends of the third output terminal 133 are screwed to the third surface of the non-conductor 110 having a rectangular parallelepiped shape in a state in which the ground line (G) 330 of the power transmission line on the output side is positioned between the bent portion of the central portion of the third output terminal 133 and the third conductor 143 which is accommodated in the third groove 113 formed on the third surface of the non-conductor 110 having a rectangular parallelepiped shape so that the third output terminal 133 may be connected to the ground line (G) 330 of the power transmission line on the output side. However, the present disclosure is not limited thereto.

    [0034] The first conductor 141 is installed on the first surface of the non-conductor 110 having a rectangular parallelepiped shape and connected between the first input terminal 121 and the first output terminal 131. Here, the first conductor 141 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure is not limited thereto.

    [0035] For example, the first conductor 141 may be fixed by being screw-coupled to the non-conductor 110 having a rectangular parallelepiped shape in a state in which the first conductor 141 is accommodated in the first groove 111 formed on the first surface of the non-conductor 110 having a rectangular parallelepiped shape. However, the present disclosure is not limited thereto.

    [0036] The second conductor 142 is installed on the second surface of the non-conductor 110 having a rectangular parallelepiped shape and connected between the second input terminal 122 and the second output terminal 132 and has a length equal to that of the first conductor 141 and a sectional area of at least four times a sectional area of the first conductor 141. Here, the second conductor 142 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure is not limited thereto.

    [0037] For example, the second conductor 142 may be fixed by being screw-coupled to the non-conductor 110 having a rectangular parallelepiped shape in a state in which the second conductor 142 is accommodated in the second groove 112 formed on the second surface of the non-conductor 110 having a rectangular parallelepiped shape. However, the present disclosure is not limited thereto.

    [0038] The third conductor 143 is installed on the third surface of the non-conductor 110 having a rectangular parallelepiped shape and connected between the third input terminal 123 and the third output terminal 133, and has a length equal to that of the first conductor 141 and a sectional area of at least four times a sectional area of the first conductor 141. Here, the third conductor 143 may be made of a copper (Cu) or aluminum (Al) material, but the present disclosure is not limited thereto.

    [0039] For example, the third conductor 143 may be fixed by being screw-coupled to the non-conductor 110 having a rectangular parallelepiped shape in a state in which the third conductor 143 is accommodated in the third groove 113 formed on the third surface of the non-conductor 110 having a rectangular parallelepiped shape. However, the present disclosure is not limited thereto.

    [0040] Meanwhile, in order for the second conductor 142 and the third conductor 143 to have relatively greater sectional areas as compared to the first conductor 141, the first conductor 141 may be formed in a flat plate shape and the second conductor 142 and the third conductor 143 may be formed in a bent shape.

    [0041] As can be seen from contents described in the Korean Registered Patent No. 10-1625493 (registered on May 24, 2016) mentioned in the related art, the greater a sectional area of a conductor connected to a (-) terminal of a power source as compared with a sectional area of a conductor connected to a (+) terminal of the power source, the more leakage current is reduced, and accordingly, the leakage current leaked through the power transmission line may be limited by connecting conductors having different sectional areas to the phase line (R, S, or T) having the (+) terminal role in the power transmission line, the neutral line (N) having the (-) terminal role in the power transmission line, and the ground line (G), respectively.



    [0042] Meanwhile, as can be seen from the above equation, resistance R of a path (a transmission line, a human body, or the like) through which a current flow is proportional to a length 1 of the path and inversely proportional to a sectional area S and conductivity σ, and thus, the larger a sectional area of the third conductor 143 than a sectional area of the second conductor 142, the better.

    [0043] When a human body is exposed to the leakage current, the human body and the third conductor 143 are placed in a state of being electrically connected in parallel to the ground. Accordingly, since internal resistance of the third conductor 143 becomes smaller than human resistance as the sectional area of the third conductor 143 is greater, even when the leakage current is generated, the leakage current does not flow to the human body but flows through the third conductor 143 to the ground, or stays in the third conductor 143 to prevent electric shock of the human body.

    [0044] Meanwhile, in the present disclosure, since the conductor, the input terminal and the output terminal, to which each of the phase line, the neutral line and the ground line of the power transmission line is connected, are disposed on and coupled to each of the three surfaces of four lengthwise surfaces of the non-conductor 110 having a rectangular parallelepiped shape, the conductors, the input terminals and the output terminals are not facing each other and electrically isolated completely, so that an electrical short circuit may be prevented.

    [0045] Meanwhile, according to an additional aspect of the present disclosure, the leakage current limiting device 100 for a power transmission line may further include a shielding part 150. The shielding part 150 shields the non-conductor 110 having a rectangular parallelepiped shape from the outside.

    [0046] For example, since the shielding part 150 shields the non-conductor 110 having a rectangular parallelepiped shape from the outside by using a shielding material made of graphite or the like, the conductor, the input terminal and the output terminal, which are disposed on and coupled to each of the three surfaces of the four lengthwise surfaces of the non-conductor 110 having a rectangular parallelepiped shape, may be shielded from the outside. Accordingly, the conductor, the input terminal and the output terminal may be protected from the outside, and at the same time, an outflow of electromagnetic waves generated by the conductor, the input terminal and the output terminal may be efficiently blocked.

    [0047] Meanwhile, according to an additional aspect of the present disclosure, the leakage current limiting device 100 for a power transmission line may further include an error checker 160. The error checker 160 is connected between the second input terminal 122 and the third input terminal 123 to check a transmission line connection error. FIG. 4 is a circuit diagram illustrating a configuration of an error checker, which is configured to check the transmission line connection error, of the leakage current limiting device for a power transmission line according to the present disclosure.

    [0048] As shown in FIG. 4, the error checker 160 may include a current limiting resistor 161 and an LED 162 which is turned on when the phase line of the power transmission line on the input side is connected to the second input terminal 122 to indicate the transmission line connection error and is not turned on when the neutral line of the power transmission line on the input side is connected to the second input terminal 122 to indicate that the transmission line connection is normal.

    [0049] When the phase line of the power transmission line on the input side is incorrectly connected to the second input terminal 122 to which the neutral line of the power transmission line on the input side is to be connected, the current flows to the ground through the second input terminal 122, the current limiting resistor 161, and the LED 162, and the third input terminal 123, so that the LED 162 is turned on.

    [0050] Meanwhile, when the neutral line of the power transmission line on the input side is correctly connected to the second input terminal 122 to which the neutral line of the power transmission line on the input side is to be connected, since there is no potential difference between the neutral line and the ground line, the current does not flow to the ground through the second input terminal 122, the current limiting resistor 161, and the LED 162, and the third input terminal 123, so that the LED 162 is not turned on. Accordingly, the transmission line connection error may be detected according to a turned-on state of the LED 162 of the error checker 160.

    [0051] As described above, according to the present disclosure, the leakage current leaking to the outside through the power transmission line may be limited by using the leakage current limiting device for a power transmission line which is simple in structure and easy to install, so that a risk of the electric shock may be reduced.

    [0052] According to the present disclosure, a risk of electric shock can be reduced by limiting a leakage current leaking to the outside through a power transmission line using a leakage current limiting device for a power transmission line, which is simple in structure and easy to install.


    Claims

    1. A leakage current limiting device for a power transmission line, comprising:

    a non-conductor (110) having a rectangular parallelepiped shape;

    a first input terminal (121) installed on a first surface of the non-conductor (110) having a rectangular parallelepiped shape and connected to a phase line (R, S, or T) of a power transmission line on an input side;

    a second input terminal (122) installed on a second surface of the non-conductor (110) having a rectangular parallelepiped shape and connected to a neutral line (N) of the power transmission line on the input side;

    a third input terminal (123) installed on a third surface of the non-conductor (110) having a rectangular parallelepiped shape and connected to a ground line (G) of the power transmission line on the input side;

    a first output terminal (131) installed on the first surface of the non-conductor having a rectangular parallelepiped shape and connected to a phase line (R, S, or T) of a power transmission line on an output side;

    a second output terminal (132) installed on the second surface of the non-conductor having a rectangular parallelepiped shape and connected to a neutral line (N) of the power transmission line on the output side;

    a third output terminal (133) installed on the third surface of the non-conductor having a rectangular parallelepiped shape and connected to a ground line (G) of the power transmission line on the output side;

    a first conductor (141) installed on the first surface of the non-conductor (110) having a rectangular parallelepiped shape and connected between the first input terminal (121) and the first output terminal (131);

    a second conductor (142) which is installed on the second surface of the non-conductor (110) having a rectangular parallelepiped shape and connected between the second input terminal (122) and the second output terminal (132), and has a length equal to that of the first conductor (141) and a sectional area of at least four times a sectional area of the first conductor; and

    a third conductor (143) which is installed on the third surface of the non-conductor (110) having a rectangular parallelepiped shape and connected between the third input terminal (123) and the third output terminal (133), and has a length equal to that of the first conductor (141) and a sectional area of at least four times a sectional area of the first conductor.


     
    2. The device of claim 1, further comprising a shielding part (150) which shields the non-conductor (110) having a rectangular parallelepiped shape from the outside.
     
    3. The device of claim 1, wherein the first conductor (141), the second conductor (142), and the third conductor (143) are made of a copper (Cu) or aluminum (Al) material.
     
    4. The device of claim 1, further comprising an error checker (160) which is connected between the second input terminal (122) and the third input terminal (123) and configured to check whether the power transmission line is connected correctly or not.
     
    5. The device of claim 4, wherein the error checker (160) includes a current limiting resistor (161) and an LED (162) which is turned on when the phase line of the power transmission line on the input side is connected to the second input terminal (122) to indicate that the power transmission line is connected incorrectly , and is not turned on when the neutral line of the power transmission line on the input side is connected to the second input terminal (122) to indicate that the power transmission line is connected correctly.
     


    Ansprüche

    1. Vorrichtung zur Begrenzung des Leckstroms für eine Stromübertragungsleitung, umfassend:

    einen Nichtleiter (110) mit der Form eines rechtwinkligen Parallelepipeds;

    eine erste Eingangsklemme (121), die auf einer ersten Oberfläche des Nichtleiters (110) mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem Phasenleiter (R, S oder T) einer Stromübertragungsleitung auf einer Eingangsseite verbunden ist;

    eine zweite Eingangsklemme (122), die auf einer zweiten Oberfläche des Nichtleiters (110) mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem Neutralleiter (N) der Stromübertragungsleitung auf der Eingangsseite verbunden ist;

    eine dritte Eingangsklemme (123), die auf einer dritten Oberfläche des Nichtleiters (110) mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem Erdleiter (G) der Stromübertragungsleitung auf der Eingangsseite verbunden ist;

    eine erste Ausgangsklemme (131), die auf einer ersten Oberfläche des Nichtleiters mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem Phasenleiter (R, S oder T) einer Stromübertragungsleitung auf einer Ausgangsseite verbunden ist;

    eine zweite Ausgangsklemme (132), die auf der zweiten Oberfläche des Nichtleiters mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem Neutralleiter (N) der Stromübertragungsleitung auf der Ausgangsseite verbunden ist;

    eine dritte Ausgangsklemme (133), die auf der dritten Oberfläche des Nichtleiters mit der Form eines rechtwinkligen Parallelepipeds installiert ist und mit einem Erdleiter (G) der Stromübertragungsleitung auf der Ausgangsseite verbunden ist;

    einen ersten Leiter (141), der auf der ersten Oberfläche des Nichtleiters (110) mit der Form eines rechtwinkligen Parallelepipeds installiert ist und zwischen der ersten Eingangsklemme (121) und der ersten Ausgangsklemme (131) angeschlossen ist;

    einen zweiten Leiter (142), der auf der zweiten Oberfläche des Nichtleiters (110) mit der Form eines rechtwinkligen Parallelepipeds installiert ist und zwischen der zweiten Eingangsklemme (122) und der zweiten Ausgangsklemme (132) angeschlossen ist und eine Länge gleich der des ersten Leiters (141) und eine Querschnittsfläche von mindestens dem Vierfachen einer Querschnittsfläche des ersten Leiters aufweist; und

    einen dritten Leiter (143), der auf der dritten Oberfläche des Nichtleiters (110) mit der Form eines rechtwinkligen Parallelepipeds installiert ist und zwischen der dritten Eingangsklemme (123) und der dritten Ausgangsklemme (133) angeschlossen ist, und eine Länge gleich der des ersten Leiters (141) und eine Querschnittsfläche von mindestens dem Vierfachen einer Querschnittsfläche des ersten Leiters aufweist.


     
    2. Vorrichtung nach Anspruch 1, des Weiteren umfassend einen Abschirmteil (150), der den Nichtleiter (110) mit der Form eines rechtwinkligen Parallelepipeds von außen abschirmt.
     
    3. Vorrichtung nach Anspruch 1, wobei der erste Leiter (141), der zweite Leiter (142) und der dritte Leiter (143) aus einem Kupfer- (Cu) oder Aluminium- (Al) Material hergestellt sind.
     
    4. Vorrichtung nach Anspruch 1, des Weiteren umfassend einen Fehlerprüfer (160), der zwischen der zweiten Eingangsklemme (122) und der dritten Eingangsklemme (123) angeschlossen ist und zum Überprüfen konfiguriert ist, ob die Stromübertragungsleitung korrekt angeschlossen ist oder nicht.
     
    5. Vorrichtung nach Anspruch 4, wobei der Fehlerprüfer (160) einen Strombegrenzungswiderstand (161) und eine LED (162) enthält, die eingeschaltet wird, wenn der Phasenleiter der Stromübertragungsleitung auf der Eingangsseite mit der zweiten Eingangsklemme (122) verbunden ist, um anzuzeigen, dass die Stromübertragungsleitung falsch angeschlossen ist, und nicht eingeschaltet wird, wenn der Neutralleiter der Stromübertragungsleitung auf der Eingangsseite mit der zweiten Eingangsklemme (122) verbunden ist, um anzuzeigen, dass die Stromübertragungsleitung richtig angeschlossen ist.
     


    Revendications

    1. Dispositif de limitation du courant de fuite pour une ligne de transmission d'énergie, comprenant :

    un non-conducteur (110) présentant une forme parallélépipédique rectangulaire ;

    un premier terminal d'entrée (121) installé sur une première surface du non-conducteur (110), présentant une forme parallélépipédique rectangulaire, et connecté à une ligne de phase (R, S ou T) d'une ligne de transmission d'énergie sur un côté d'entrée ;

    un deuxième terminal d'entrée (122) installé sur une deuxième surface du non-conducteur (110), présentant une forme parallélépipédique rectangulaire, et connecté à une ligne neutre (N) de la ligne de transmission d'énergie sur le côté d'entrée ;

    un troisième terminal d'entrée (123) installé sur une troisième surface du non-conducteur (110), présentant une forme parallélépipédique rectangulaire, et connecté à une ligne de terre (G) de la ligne de transmission d'énergie sur le côté d'entrée ;

    un premier terminal de sortie (131) installé sur la première surface du non-conducteur, présentant une forme parallélépipédique rectangulaire, et connecté à une ligne de phase (R, S ou T) d'une ligne de transmission d'énergie sur un côté de sortie ;

    un deuxième terminal de sortie (132) installé sur la deuxième surface du non-conducteur, présentant une forme parallélépipédique rectangulaire, et connecté à une ligne neutre (N) de la ligne de transmission d'énergie sur le côté de sortie ;

    un troisième terminal de sortie (133) installé sur la troisième surface du non-conducteur, présentant une forme parallélépipédique rectangulaire, et connecté à une ligne de terre (G) de la ligne de transmission d'énergie sur le côté de sortie ;

    un premier conducteur (141) installé sur la première surface du non-conducteur (110), présentant une forme parallélépipédique rectangulaire, et connecté entre le premier terminal d'entrée (121) et le premier terminal de sortie (131) ;

    un deuxième conducteur (142) qui est installé sur la deuxième surface du non-conducteur (110), présentant une forme parallélépipédique rectangulaire, et connecté entre le deuxième terminal d'entrée (122) et le deuxième terminal de sortie (132), et qui présente une longueur égale à celle du premier conducteur (141) et une surface en section au moins quatre fois supérieure à la surface en section du premier conducteur ; et

    un troisième conducteur (143) qui est installé sur la troisième surface du non-conducteur (110), présentant une forme parallélépipédique rectangulaire, et connecté entre le troisième terminal d'entrée (123) et le troisième terminal de sortie (133), et qui présente une longueur égale à celle du premier conducteur (141) et une surface en section au moins quatre fois supérieure à la surface en section du premier conducteur.


     
    2. Dispositif selon la revendication 1, comprenant en outre une partie de blindage (150) qui blinde le non-conducteur (110), présentant une forme parallélépipédique rectangulaire depuis l'extérieur.
     
    3. Dispositif selon la revendication 1, dans lequel le premier conducteur (141), le deuxième conducteur (142) et le troisième conducteur (143) sont constitués d'un matériau en cuivre (Cu) ou en aluminium (Al).
     
    4. Dispositif selon la revendication 1, comprenant en outre un vérificateur d'erreur (160) qui est connecté entre le deuxième terminal d'entrée (122) et le troisième terminal d'entrée (123), et configuré pour vérifier si la ligne de transmission d'énergie est connectée correctement ou non.
     
    5. Dispositif selon la revendication 4, dans lequel le vérificateur d'erreur (160) comprend une résistance de limitation de courant (161) et une DEL (162) qui est allumée quand la ligne de phase de la ligne de transmission d'énergie sur le côté d'entrée est connectée au deuxième terminal d'entrée (122) pour indiquer que la ligne de transmission d'énergie est connectée incorrectement, et qui n'est pas allumée quand la ligne neutre de la ligne de transmission d'énergie sur le côté d'entrée est connectée au deuxième terminal d'entrée (122) pour indiquer que la ligne de transmission d'énergie est connectée correctement.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description