TECHNICAL FIELD
[0001] The present disclosure generally relates to a compressor section of a gas turbine
engine and, more particularly, to a compressor section including a hybrid shroud with
a casing treatment and an abradable section.
BACKGROUND
[0002] Gas turbine engines are often used in aircraft, among other applications. For example,
gas turbine engines used as aircraft main engines may provide propulsion for the aircraft
but are also used to provide power generation. Such propulsion systems for aircraft
must deliver high performance in a compact, lightweight configuration. This is particularly
important in smaller jet propulsion systems typically used in regional and business
aviation applications as well as in other turbofan, turboshaft, turboprop and rotorcraft
applications.
[0003] The compressor section may be configured for increasing cycle pressure ratios to
improve engine performance. Aerodynamic loading or stage counts may be increased,
but these changes may reduce the compressor stall margin, causing engine instability,
increased specific fuel consumption, and/or increased turbine operating temperatures.
[0004] Accordingly, there is a need for an improved compressor stage that achieves superior
surge and stability margins and that maintains high efficiency potential for the gas
turbine engine. There is also a need for an improved gas turbine engine with this
type of compressor stage. Moreover, there is a need for improved methods of manufacturing
these compressor stages for gas turbine engines. Furthermore, other desirable features
and characteristics of the present disclosure will become apparent from the subsequent
detailed description and the appended claims, taken in conjunction with the accompanying
drawings and this background section. A compressor with a contoured blade tip is known
from
EP 3 361 053 A1. The opposing shroud section is abradable and comprises a casing treatment feature
upstream of the minimum tip clearance. A straight compressor blade tip opposing an
abradable and a non-abradable shroud section is known from
US 2009/0252596 Al. A casing treatment feature for fluid injection is provided in the non-abradable
shroud section. Further gas turbine engines are known from
US 2015/003976 Al and
GB 2 407 353 A.
BRIEF SUMMARY
[0005] To overcome the above-mentioned drawbacks, the present invention according to a first
aspect suggests a gas turbine engine with the features of claim 1.
[0006] According to a second aspect of the present invention a method of manufacturing a
compressor section of a gas turbine engine in accordance with claim 13 is suggested.
[0007] Further preferred embodiments are defined by the dependent claims.
[0008] Furthermore, other desirable features and characteristics of the gas turbine engine
will become apparent from the above background, the subsequent detailed description,
and the appended claims, taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The present disclosure will hereinafter be described in conjunction with the following
drawing figures, wherein like numerals denote like elements, and wherein:
FIG. 1 is a schematic view of a gas turbine engine according to example embodiments
of the present disclosure;
FIG. 2 is a perspective view of a compressor stage of the gas turbine engine of FIG.
1 according to example embodiments;
FIG. 3 is a perspective view of the compressor stage of FIG. 2 with the rotor hidden;
FIG. 4 is a section view of the compressor stage of FIG. 2 according to example embodiments;
and
FIG. 5 is a section view of a compressor stage of FIG. 1 according to additional example
embodiments.
DETAILED DESCRIPTION
[0010] The following detailed description is merely exemplary in nature and is not intended
to limit the present invention or the application and uses of the present invention,
which is only defined by the appended claims.
[0011] The present disclosure provides a turbomachine, such as a compressor section for
a gas turbine engine. The compressor section includes a rotor blade with an outer
radial edge or blade tip that radially opposes a shroud. In accordance with the present
disclosure, the rotor tip geometry and opposing shroud configuration are configured
to provide a uniquely robust compressor section that provides high efficiency and
operability throughout a wide range of operating conditions-including "near-stall"
conditions and conditions involving "rubbing" between the rotor blade and the shroud
surface.
[0012] More specifically, during operations, the rotor may rotate and generate an aft axial
(i.e., downstream) fluid flow through a clearance region defined between the rotor
blades and the opposing shroud surface. The geometry of the clearance region provided
by the configuration of the shroud and blade tip may increase the stall margin, decrease
a deficit in axial fluid flow, and resist reverse axial fluid flow (i.e., leakage
or upstream flow) during near-stall conditions.
[0013] In some embodiments, the rotor of the compressor section may include a plurality
of rotor blades. According to the present invention, at least one blade includes an
outer radial edge or blade tip that is contoured with respect to the axis of rotation
of the rotor. The radius at the outer radial edge (measured radially from the axis
of rotation to the outer radial edge) varies in the downstream direction along the
blade tip. According to the present invention, the outer radial edge is crowned. The
outer radial edge exhibits convex curvature from the leading edge to the trailing
edge. An area of the outer radial edge having the greatest radius (i.e., a "crown
area") is included in an intermediate axial position between the leading edge and
the trailing edge.
[0014] The gas turbine engine includes a hybrid shroud with a plurality of features that
increase stall margin while maintaining high operating efficiency of the compressor
section. Specifically, the shroud may have a geometry that corresponds to that of
the blade tip. The shroud and the blade tip cooperatively define a crowned clearance
area therebetween. Leading edge radial clearance and trailing edge radial clearance
between the blade tip and the shroud are greater than the radial clearance at an intermediate
area (a crown area) of the blade tip. Also, the radial clearance between the shroud
and the blade tip may be relatively small axially across the clearance region to maintain
high operating efficiency of the compressor section. This crowned-shape clearance
area creates a more open clearance proximate the leading edge, a smaller clearance
at the crown area of the blade tip, a more open clearance proximate the trailing edge.
[0015] Additionally, in accordance with the present invention, the shroud includes non-abradable
section and an abradable section that define different axial portions of a shroud
surface. A majority of the shroud, including the non-abradable section, may be defined
by a base material such as solid metal. The abradable section may be formed from a
second material and/or formed with a second constructions, such as a material with
a lower density and/or lower wear resistance than the base material. Axial ends of
the abradable section may be embedded within the base material of the shroud to ensure
that the abradable section is robustly attached to the base material of the shroud.
[0016] The blade tip opposes the non-abradable and the abradable section of the shroud.
[0017] The rotor and shroud are arranged such that the crown area of the blade tip (i.e.,
the area with the least amount of clearance) opposes the abradable section of the
shroud surface. Thus, if the crown area contacts or "rubs" against the shroud surface,
the abradable material of the abradable section may wear away without detrimentally
affecting performance of the compressor section.
[0018] Furthermore, the shroud includes at least one casing treatment that resists a reverse
axial fluid flow during near-stall conditions of the compressor section. In other
words, rotation of the rotor generates the af axial fluid flow while increasing the
fluid's pressure. It will be appreciated that a deficit may exist in the aft axial
fluid flow's velocity due to friction along the shroud or due to inlet distortion.
Further, in proximity to the shroud, a clearance region is formed between the blade
tip and the shroud surface. Fluid flow that traverses this clearance region may contribute
to the deficit in aft axial velocity. These debits to aft axial fluid flow may result
in a reduction in compressor stability. However, the casing treatments included in
the hybrid shroud of the present disclosure reduce these deficits. The casing treatments
of the present disclosure increase the stall margin of the compressor section.
[0019] The casing treatment may be one of a plurality of different types of features without
departing from the scope of the present disclosure. For example, the casing treatment
may include at least one groove, channel, pocket, dimple or other aperture that is
recessed into the shroud surface, a honeycomb structure that partly defines the shroud
surface, a suction device, a blowing device, an active clearance control device, and
a plasma flow control device.
[0020] The casing treatment may be formed within, supported by, and/or otherwise provided
in the non-abradable section. As such, the casing treatment may be robust and effective
at resisting the reverse axial fluid flow.
[0021] Methods of manufacturing the compressor stage and/or other components of the gas
turbine engine are also disclosed. Accordingly, the present disclosure provides convenient
and effective methods of manufacturing these components.
[0022] Turning now to FIG. 1, a functional block diagram of an exemplary gas turbine engine
100 is depicted. The engine 100 may be included on a vehicle 110 of any suitable type,
such as an aircraft, rotorcraft, marine vessel, train, or other vehicle, and the engine
100 can propel or provide auxiliary power to the vehicle 110.
[0023] In some embodiments, the depicted engine 100 may be a single-spool turbo-shaft gas
turbine propulsion engine. The engine 100 may generally include an intake section
101, a compressor section 102, a combustion section 104, a turbine section 106, and
an exhaust section 108, which are arranged sequentially along a longitudinal axis
103. A downstream direction through the engine 100 may be defined generally along
the axis 103 from the intake section 101 to the exhaust section 108. Conversely, an
upstream direction is defined from the exhaust section 108 to the intake section 101.
[0024] The intake section 101 may receive an intake airstream indicated by arrows 107 in
FIG. 1. The compressor section 102, may include one or more compressor stages that
draw air 107 downstream into the engine 100 and compress the air 107 to raise its
pressure. In the depicted embodiment, the compressor section 102 includes two stages:
a low pressure compressor stage 112 and a high pressure compressor stage 113. The
compressor stages 112, 113 may be disposed sequentially along the axis 103 with the
low pressure compressor stage 112 disposed upstream of the high pressure compressor
stage 113. It will be appreciated that the engine 100 could be configured with more
or less than this number of compressor stages.
[0025] The compressed air from the compressor section 102 may be directed into the combustion
section 104. In the combustion section 104, which includes a combustor assembly 114,
the compressed air is mixed with fuel supplied from a non-illustrated fuel source.
The fuel- and-air mixture is combusted in the combustion section 104, and the high
energy combusted air mixture is then directed into the turbine section 106.
[0026] The turbine section 106 includes one or more turbines. In the depicted embodiment,
the turbine section 106 includes two turbines: a high pressure turbine 116 and a low
pressure turbine 118. However, it will be appreciated that the engine 100 could be
configured with more or less than this number of turbines. No matter the particular
number, the combusted air mixture from the combustion section 104 expands through
each turbine 116, 118, causing it to rotate a power shaft 119. The combusted air mixture
is then exhausted via the exhaust section 108. The power shaft 119 may be used to
drive various devices within the engine 100 and/or within the vehicle 110.
[0027] Referring now to FIGS. 2 and 3, the compressor section 102 will be discussed in greater
detail according to example embodiments of the present disclosure. Specifically, the
low pressure compressor stage 112 is shown as an example; however, it will be appreciated
that the features described may be included in the high pressure compressor stage
113.
[0028] The compressor section 102 may include a case 120. The case 120 may be hollow and
cylindrical in some embodiments. The case 120 includes a shroud 150 with a shroud
surface 152 (e.g., an inner diameter surface of the shroud 150).
[0029] The compressor section 102 inlcudes a rotor 122. The rotor 122 may include a wheel
124. The wheel 124 may be supported on the shaft 119 (FIG. 1), which is hidden in
FIGS. 2 and 3 for purposes of clarity. The wheel 124 may be centered on the axis 103.
The rotor 122 may further include a plurality of blades 126, which extend radially
from the wheel 124 and which may be spaced apart in a circumferential direction about
the axis 103. The blades 126 of the rotor 122 may radially oppose the shroud surface
152. The rotor 122,
[0030] including the wheel 124 and the plurality of blades 126, may rotate about the axis
103 relative to the case 120, the shroud 150, and the shroud surface 152 to generate
an aft axial fluid flow through the compressor section 102 as will be discussed.
[0031] As shown in FIG. 3, the compressor section 102 may additionally include a stator
138. (The rotor 122 is hidden from view in FIG. 3 so as to reveal the stator 138.)
The stator 138 may include a plurality of stationary blades 140 and one or more support
structures 142 that support the blades 140 in a fixed position on the case 120. The
stator 138 may be disposed downstream of the wheel 124 and blades 126 of the rotor
122, and the stator 138 may direct air from the blades 126 further downstream through
the engine 100.
[0032] As indicated on a representative blade 126 in FIG. 2, an inner radial end 130 is
fixedly attached to the outer diameter of the wheel 124. The blade 126 also includes
an outer radial edge or blade tip 132. The blade tip 132 is radially spaced apart
from the inner radial end 130. The blade 126 further includes a leading edge 134,
which extends radially between the inner radial end 130 and the blade tip 132. Furthermore,
the blade 126 includes a trailing edge 136, which extends radially between the inner
end and the blade tip 132, and which is spaced downstream of the leading edge 134
relative to the longitudinal axis 103. The blade tip 132 extends between the leading
edge 134 and the trailing edge 136 extends generally along the longitudinal axis 103.
As shown in FIG. 2, the blades 126 may exhibit complex, three-dimensional curved surfaces
and may be shaped so as to have a degree of helical twist about its respective radial
axis and/or sweeping curvature in the downstream direction.
[0033] Referring now to FIG. 4, the compressor section 102 will be discussed in greater
detail according to example embodiments. The shroud 150 of the case 120 is shown in
section view, and the blade 126 is shown with its outer profile (including the leading
edge 134, the trailing edge 136, and the blade tip 132) projected onto a longitudinal
plane (i.e., the plane of the paper). A radial axis 105 is also shown for reference
purposes as well.
[0034] The leading edge 134 and the trailing edge 136 may extend radially and may be substantially
parallel to the radial axis 105 in some embodiments. Also, the blade tip 132 exhibits
a certain contour that advantageously affects fluid flow through the compressor section
102. In other words, a radius 171 of the blade tip 132 (measured from the axis 103
to the blade tip 132 along the radial axis 105) may vary along the axis 103.
[0035] The blade tip 132 is crowned as shown in FIG. 4. According to the present invention,
the radius 171 of the blade tip 132 downstream axially from the leading edge 134 gradually
increases According to the present invention, the radius 171 of the blade tip 132
further downstream axially gradually decreases toward the trailing edge 136. In the
illustrated embodiment, for example, the radius 171 may gradually change continuously
in the axial direction between the leading edge 134 and the trailing edge 136. As
shown, the profile of the blade tip 132 contours convexly continuously along the longitudinal
axis 103 from the leading edge 134 to the trailing edge 136.
[0036] According to the present invention, the blade tip 132 defines a crown area 172. The
crown area 172 represents an area or point on the blade tip 132 at which the radius
171 is at a maximum. As represented in FIG. 4, the crown area 172 represents an apex
of the crowned outer profile of the blade tip 132 with respect to the axis 103. Thus,
the blade tip 132 decreases in radius 171 in the upstream and downstream directions
from the crown area 172.
[0037] Furthermore, the shroud 150 may be an annular component. In some embodiments represented
in FIGS. 2-4, the shroud 150 may have a radius (measured from the axis 103) that remains
substantially constant along the axis 103. However, in other embodiments of the present
disclosure (e.g., the embodiment of FIG. 5), the shroud may be tapered such that the
radius varies longitudinally.
[0038] The shroud 150 may define the shroud surface 152 on an inner diameter thereof. The
shroud surface 152 may be centered about the axis 103. Additionally, the shroud surface
152 may be sub-divided relative to the blade 126 so as to include an upstream region
154, an opposing region 156, and a downstream region 158. The upstream region 154
of the shroud surface 152 may be disposed upstream of the blade 126. The opposing
region 156 of the shroud surface 152 may directly oppose (in the radial direction)
the blade tip 132. The downstream region 158 may be disposed downstream of the blade
126. A forward border 160 separates the upstream region 154 from the opposing region
156 in FIG. 2, and an aft border 162 separates the opposing region 156 from the downstream
region 158.
[0039] A clearance region 174 is defined between the blade tip 132 and the opposing region
156 of the shroud surface 152. A clearance dimension 176 (measured radially between
the shroud surface 152 and the blade 126) varies along the longitudinal axis 103 from
the leading edge 134 to the trailing edge 136. The clearance region 174 has a crowned
or crown-like shape. In this case, the term "crowned" is used to define the difference
between the minimum tip gap clearance 176 (at the crown area 172) and the maximum
tip gap clearance 176 upstream of the crown area 172. Also, it will be appreciated
that the clearance region 174 may be crowned when at the design operating condition
of the compressor, which for an aircraft propulsion engine, would be a sea-level takeoff,
cruise, or approach condition.
[0040] The clearance dimension 176 proximate the crown area 172 (a crown clearance dimension)
is smaller than the clearance dimension 176 proximate the leading edge 134 (a leading
clearance dimension). Likewise, the clearance dimension 176 proximate the crown area
172 is smaller than the clearance dimension 176 proximate the trailing edge 136. In
some embodiments, the clearance dimension 176 within the opposing region 156 may be
smallest at the crown area 172. Furthermore, in some embodiments, the clearance dimension
176 at the crown area 172 may be between approximately forty percent (40%) to sixty
percent (60%) of the clearance dimension 176 at the leading edge 134.
[0041] The rotor 122 is supported for rotation about the axis 103 to generate the aft axial
fluid flow through the clearance region 174 (in a downstream direction) from the leading
edge 134 to the trailing edge 136. The aft axial fluid flow, directed in the downstream
direction, is represented by arrow 161 in FIG. 4.
[0042] The blade tip 132 may define a theta angle 170 between: 1) an imaginary axial line
that is directed downstream and parallel to the axis 103; and 2) an intersecting imaginary
tangential line that is directed generally downstream and tangent to the blade tip
132. A first theta angle (a leading edge theta angle at the leading edge 134) is indicated
at 170 as an example. Also, a second theta angle (an intermediate theta angle disposed
longitudinally between the leading edge 134 and the trailing edge 136) is indicated
in FIG. 4 at 170'.
[0043] The theta angle 170 may be a positive angle at the leading edge 134, and the theta
angle 170' may be a negative angle further downstream. More specifically, if the axial
line defining the theta angle 170 represents zero degrees, then the tangential line
defining the theta angle 170 is spaced at a positive angle therefrom; in contrast,
if the axial line defining the theta angle 170' represents zero degrees, then the
tangential line defining the theta angle 170' is spaced at a negative angle therefrom.
Thus, those having ordinary skill in the art will understand that the theta angle
170 may change along the blade tip 132 in the downstream direction relative to the
axis 103. The theta angle 170 may gradually change along the blade tip 132. Also,
in some embodiments, there may be a higher degree of change proximate the leading
edge 134 than proximate the trailing edge 136. In some embodiments (e.g., the embodiment
of FIG. 4), the theta angle 170 may change continuously along an entirety of the blade
tip 13 in the downstream direction.
[0044] However, in some embodiments, the theta angle 170 either remains constant or decreases
along the blade tip 132 in the downstream direction. Stated differently, the change
in the theta angle 170 along the blade tip 132 in the downstream direction may be,
at most, zero. In the embodiment of FIG. 4, for example, the theta angle 170 does
not increase in the downstream direction. Instead, the theta angle 170 continuously
decreases along the blade tip 132 in the downstream direction.
[0045] Specifically, as shown in FIG. 4, the theta angle 170 may be a positive angle at
the leading edge 134. This may be the area at which the theta angle 170 of the blade
tip 132 is greatest. Moving downstream along the blade tip 132 away from the leading
edge 134, the theta angle 170 may gradually decrease. The theta angle 170 may be approximately
zero degrees (0°) proximate the crown area 172. Moving even further downstream on
the blade tip 132, the theta angle 170 may gradually decrease even further until reaching
the trailing edge 136.
[0046] It will be appreciated, however, that the embodiment of FIG. 4 is merely an example
and the blade tip 132 may be configured differently without departing from the scope
of the present disclosure.
[0047] Furthermore, the shroud 150 includes an abradable section 164 and a non-abradable
section 166. In some embodiments, the majority of the shroud 150 may be defined by
a first material (i.e., a base material) of the non-abradable section 166, whereas
the abradable section 164 may be constructed of a different material and/or construction
that defines a minority of the shroud 150. The first material of the non-abradable
section 166 may be formed of solid metal with high hardness, whereas the abradable
section 164 may be constructed of a porous material with lower hardness. Also, the
abradable section 164 may be formed of a composite material with a matrix that wears
away, for example, when contacted by the blade tip 132.
[0048] The abradable section 164 may be embedded within the non-abradable section 166. For
example, the abradable section 164 may be an insert that is disposed within a recess,
groove, or other aperture of the non-abradable section 166. The abradable section
164 may have a substantially rectangular cross section (FIG. 4), and this cross section
may extend in the circumferential direction about the axis 103. Also, as shown in
FIG. 4, the abradable section 164 may include an upstream end 180 and an inner diameter
surface 182. The abradable section 164 may also include a downstream end that is similar
to the upstream end 180, but that is disposed downstream therefrom. The upstream end
180 may be recessed below the shroud surface 182 and embedded within the base material
of the non-abradable section 166 such that the inner diameter surface 182 is exposed
and flush with the abradable section 164 disposed immediately upstream. Accordingly,
the abradable section 164 and the non-abradable section 166 cooperatively define the
shroud surface 152 of the shroud 150.
[0049] Also, the non-abradable section 166 and the abradable section 164 define the opposing
region 156 of the shroud surface 152 such that parts of the abradable section 164
and the non-abradable section 166 oppose the blade tip 132. Also, in some embodiments,
the non-abradable section 166 may be disposed upstream of the abradable section 164
with respect to the axis 103. Specifically, the non-abradable section 166 may define
the upstream region 154 and part of the opposing region 156 of the shroud surface
152. Conversely, the abradable section 164 may define part of the opposing region
156 and the downstream region 158 of the shroud surface 152.
[0050] Furthermore, the blade 126 is disposed relative to the shroud surface 152 such that
the crown area 172 radially opposes the abradable section 164. Also, the crown area
172 may be disposed axially downstream of the end 180 of the abradable section 164
(i.e., the crown area 172 may be disposed downstream of the non-abradable section
166). This ensures that, should the blade tip 132 contact the shroud 150, the blade
tip 132 will contact abradable material that will wear away with little to no effect
on operations of the compressor section 102. Furthermore, because the upstream end
180 is embedded within the non-abradable portion 166, the upstream end 180 is protected
from chipping away. Accordingly, the compressor section 102 may be very robust.
[0051] Moreover, the shroud 150 includes a casing treatment 186. The casing treatment 186
is configured to resist a reverse axial fluid flow (i.e., in a direction opposite
the arrow 161) during near-stall operating conditions of the compressor section 102.
In other words, the casing treatment 186 increases the stall margin of the compressor
section 102 and/or reduces the deficit in the axial fluid flow, especially proximate
the leading edge.
[0052] As shown in FIGS. 2 and 3, the casing treatment 186 may include one or more grooves
that are recessed radially into the shroud surface 152. As shown in the embodiment
of FIG. 2 and 3, grooves may be elongated, extending axially as well as circumferentially
about the axis 103. However, as detailed above, the casing treatment 186 may be another
feature without departing from the scope of the present disclosure (e.g., another
aperture that is recessed into the shroud surface 152, a honeycomb structure that
partly defines the shroud surface 152, a suction device, a blowing device, an active
clearance control device, and a plasma flow control device).
[0053] In another embodiment represented in FIG. 4, the casing treatment 186 may include
a first groove 187 and a second groove 188 recessed radially into the shroud surface
152. In some embodiments, the first and second grooves 187, 188 may have a rectangular
(e.g., square) cross section, and this cross section of the grooves 187, 188 may extend
circumferentially about the axis 103. Thus, these may be considered circumferential
grooves. It will be appreciated, however, that at least one groove 187, 188 may have
a triangular or wedge-shaped cross section. Furthermore, the major axis of the first
and/or second grooves may extend generally parallel to the axis 103. Also, at least
one groove 187, 188 may extend helically about the axis 103 or in another direction
with respect to the axis 103.
[0054] Moreover, the casing treatment 186 (i.e., the first and second grooves 187, 188)
2. in accordance with the present invention is provided in the non-abradable section
166 of the shroud 150 and partly within the opposing region 156 of the shroud surface
152 to radially oppose the blade tip 132 proximate the leading edge 134. Accordingly,
the grooves 187, 188 may resist the reverse axial fluid flow during near-stall operating
conditions. Also, because the grooves 187, 188 are provided in the non-abradable section
166, the grooves 187, 188 are unlikely to wear away, and the compressor section 102
may be very robust. Likewise, where the casing treatment 186 includes a plasma control
device, electrodes may be disposed within and supported by the non-abradable section
166. These electrodes may be fixedly and robustly attached to the non-abradable section
and may generate a voltage that ionizes the air, and the ionized air may be directed
downstream via a selectively controlled electric field.
[0055] Moreover, the compressor section 102 has a "max crown fraction (MCF)," where:

where MCD is equal to the axial distance from the leading edge 134 to the crown area
172 (indicated at 163), and where Cx is the axial chord length of the blade 126 (indicated
at 165). In some embodiments, MCF of the compressor section 102 may be a value between
0.33 and 0.62. This construction may provide ample space for one or more casing treatments
186 and the abradable section 164 and enhances manufacturability.
[0056] Furthermore, in some embodiments, the compressor section 102 has a "crown transition
length (CTL)," where:

where LEL is a leading edge zone length equal to the axial distance from the leading
edge 134 to the upstream end 180 of the abradable section 164 (indicated at 167),
and where MCD is equal to the axial distance from the leading edge 134 to the crown
area 172 (indicated at 163). In some embodiments, CTL of the compressor section 102
may be a value between 0.60 to 0.90. This construction may provide ample space for
one or more casing treatments 186 and the abradable section 164 and enhances manufacturability.
[0057] The compressor section 102 may be manufactured in various ways. For example, the
case 120 may be formed initially. Portions of the non-abradable section 166 may be
formed as a metallic cylinder. Then, the grooves 187, 188 may be formed, for example,
by cutting or otherwise removing material. Next, the abradable section 164 may be
inserted, embedded, attached, or otherwise provided to substantially complete the
shroud 150. Subsequently, upon installation of the rotor 122, the blades 126 may be
axially positioned as represented in FIG. 4 with the blade tips 132 opposing the hybrid
shroud 150.
[0058] It will be appreciated, however, that manufacturing may occur differently without
departing from the scope of the present disclosure. For example, parts of the shroud
150 may be additively manufactured (e.g., 3-D printing). Specifically, the non-abradable
section 166 may be additively manufactured to include the grooves 187, 188, and then
the abradable section 164 may be attached and the rotor 122 positioned within the
shroud 150. In another example, the shroud 150 may be additively manufactured to include
the grooves 187, 188 (or other casing treatment 186) as well as the abradable section
164, and then the rotor 122 may be positioned within the shroud 150.
[0059] Referring now to FIG. 5, the compressor section is illustrated according to additional
embodiments of the present disclosure. For example, the compressor section of FIG.
5 may represent the high-pressure compressor stage 113 of FIG. 1. The compressor section
of FIG. 5 may correspond to the embodiments of FIG. 4 except as noted. Components
that correspond to those of FIG. 4 are indicated with corresponding reference numbers
increased by 100.
[0060] In some embodiments, the shroud 250 may be tapered. For example, the shroud 250 may
taper such that the diameter gradually reduces in the downstream direction along the
axis 103. Furthermore, the blade tip 232 is crowned. In some embodiments, the theta
angle 270 at the leading edge 234 may be a negative angle. The theta angle 270 may
gradually reduce along the blade tip 232 in the downstream direction.
[0061] Like the embodiment of FIG. 4, the crown area 272 of the blade 226 opposes the abradable
section 264. The casing treatment 286 (e.g., grooves) is included in the non-abradable
section 266.
[0062] While at least one exemplary embodiment has been presented in the foregoing detailed
description, it should be appreciated that a vast number of variations exist. It should
also be appreciated that the exemplary embodiment or exemplary embodiments are only
examples, and are not intended to limit the scope, applicability, or configuration
of the present invention as defined by the appended claims.
[0063] Rather, the foregoing detailed description will provide those skilled in the art
with a convenient road map for implementing an exemplary embodiment of the present
disclosure. It is understood that various changes may be made in the function and
arrangement of elements described in an exemplary embodiment without departing from
the scope of the present disclosure as set forth in the appended claims.
1. A gas turbine engine (100) comprising:
a shroud (150, 250) with an abradable section (164, 264) and a non-abradable section
(166, 266) that cooperatively define a shroud surface (152);
a rotor (122) that is supported for rotation within the shroud to generate an aft
axial fluid flow, the rotor including a blade (126, 226) with a blade tip (132, 232)
that is crowned such as to exhibit convex curvature and that opposes the abradable
section and the non-abradable section of the shroud surface, a crown area (172) of
the blade tip opposing the abradable section;
wherein the blade tip extends axially between a leading edge (134) and a trailing
edge (136) of the blade;
wherein a clearance region (174) is defined between the blade tip and the shroud surface;
and
wherein a crown clearance dimension (176, 276) measured between the shroud surface
(182) and the blade tip at the crown area is less than a leading clearance dimension
and a trailing clearance dimension, the leading clearance dimension measured between
the shroud surface and the blade tip proximate the leading edge, the trailing clearance
dimension measured between the shroud surface and the blade tip proximate the trailing
edge (136), the gas turbine engine being characterised in that a casing treatment (186, 286) feature is provided in the non-abradable section (166,
266) of the shroud (150, 250) to oppose the blade tip (132, 232) of the rotor (122).
2. The gas turbine engine of claim 1, wherein the crown area clearance dimension is between
forty percent (40%) to sixty percent (60%) of the leading edge clearance dimension.
3. The gas turbine engine of claim 1, wherein the blade tip has a radius (171) that changes
continuously from the leading edge to the trailing edge.
4. The gas turbine engine of claim 1, wherein the rotor (122) is supported for rotation
about a longitudinal axis; and wherein the shroud (250) has a radius that remains
constant in a downstream direction relative to the longitudinal axis.
5. The gas turbine engine of claim 1, wherein the rotor (122) is supported for rotation
about a longitudinal axis; and
wherein the shroud (250) radially tapers in a downstream direction relative to the
longitudinal axis.
6. The gas turbine engine of claim 1, wherein the rotor (122) is supported for rotation
about a longitudinal axis;
wherein the blade tip extends axially between a leading edge and a trailing edge of
the blade;
wherein, in a projection of the blade tip onto a longitudinal plane, a theta angle
is defined between an imaginary axial line and an imaginary tangential line, the imaginary
axial line being parallel to the longitudinal axis, the imaginary tangential line
being tangential to the blade tip; and
wherein a change in the theta angle along the blade tip in a downstream direction
is, at most, zero.
7. The gas turbine engine of claim 6, wherein the theta angle proximate the leading edge
is a positive angle.
8. The gas turbine engine of claim 6, wherein the theta angle proximate the leading edge
is a negative angle.
9. The gas turbine engine of claim 6, wherein the theta angle changes continuously along
an entirety of the blade tip in the downstream direction
10. The gas turbine engine of claim 1, wherein the shroud (250) includes a base material;
wherein the base material defines the non-abradable section of the shroud;
wherein the abradable section includes an upstream end and an inner diameter surface,
the upstream end being embedded within the base material, and the inner diameter surface
being exposed from the base material to partly define the shroud surface.
11. The gas turbine engine of claim 1, wherein the casing treatment includes at least
one of an aperture that is recessed into the shroud surface, a honeycomb structure
that partly defines the shroud surface, a suction device, a blowing device, an active
clearance control device, and a plasma flow control device.
12. The gas turbine engine of claim 1, wherein the blade tip opposes the shroud surface
to cooperatively define a clearance region therebetween, the clearance region having
a flow axis;
wherein the abradable section includes an upstream end; and
wherein the crown area is disposed downstream of the upstream end relative to the
flow axis.
13. A method of manufacturing a compressor section of a gas turbine engine comprising:
providing a case;
applying an abradable material to the case to define an abradable section of a shroud
surface, the abradable section being spaced apart in an axial direction from a non-abradable
section of the shroud surface;
providing a casing treatment feature in the non-abradable section; and
supporting a rotor for rotation within the case, the rotor including a blade with
a blade tip that is crowned such as to exhibit convex curvature and that opposes the
abradable section and the non-abradable section of the shroud surface, a crown area
of the blade tip opposing the abradable section, wherein the blade tip is configured
to extend axially between a leading edge and a trailing edge of the blade;
wherein a clearance region is defined between the blade tip and the shroud surface;
and
wherein a crown clearance dimension measured between the shroud surface and the blade
tip at the crown area is less than a leading clearance dimension and a trailing clearance
dimension, the leading clearance dimension measured between the shroud surface and
the blade tip proximate the leading edge, the trailing clearance dimension measured
between the shroud surface and the blade tip proximate the trailing edge.
14. The gas turbine engine of claim 1, wherein a compressor section defines the shroud
(150, 250) with the abradable section (186, 286) and the non-abradable section (164,264)
that cooperatively define a shroud surface (152);
wherein, in a projection of the blade tip onto a longitudinal plane, a theta angle
is defined between an imaginary axial line and an imaginary tangential line, the imaginary
axial line being parallel to the longitudinal axis, the imaginary tangential line
being tangential to the blade tip; and
wherein a change in the theta angle along the blade tip in a downstream direction
is, at most, zero.
1. Gasturbinentriebwerk (100), umfassend:
eine Ummantelung (150, 250) mit einem abreibbaren Abschnitt (164, 264) und einem nicht
abreibbaren Abschnitt (166, 266), die zusammenwirkend eine Ummantelungsfläche (152)
definieren;
einen Rotor (122), der zur Drehung innerhalb der Ummantelung gelagert ist, um eine
hintere axiale Fluidströmung zu erzeugen, wobei der Rotor eine Schaufel (126, 226)
mit einer Schaufelspitze (132, 232) einschließt, die so gewölbt ist, dass sie eine
konvexe Krümmung zeigt und die dem abreibbaren Abschnitt und dem nicht abreibbaren
Abschnitt der Ummantelungsfläche gegenüberliegt, wobei ein Wölbungsbereich (172) der
Schaufelspitze dem abreibbaren Abschnitt gegenüberliegt;
wobei sich die Schaufelspitze axial zwischen einer Vorderkante (134) und einer Hinterkante
(136) der Schaufel erstreckt;
wobei ein Freiraumbereich (174) zwischen der Schaufelspitze und der Ummantelungsfläche
definiert ist; und
wobei eine Wölbungsfreiraumabmessung (176, 276), die zwischen der Ummantelungsfläche
(182) und der Schaufelspitze im Wölbungsbereich gemessen wird, kleiner ist als eine
vordere Freiraumabmessung und eine hintere Freiraumabmessung, wobei die vordere Freiraumabmessung
zwischen der Ummantelungsfläche und der Schaufelspitze in der Nähe der Vorderkante
gemessen wird und die hintere Freiraumabmessung zwischen der Ummantelungsfläche und
der Schaufelspitze in der Nähe der Hinterkante (136) gemessen wird,
wobei das Gasturbinentriebwerk dadurch gekennzeichnet ist, dass ein Gehäusebehandlungsmerkmal (186, 286) in dem nicht abreibbaren Abschnitt (166,
266) der Ummantelung (150, 250) vorgesehen ist, um der Schaufelspitze (132, 232) des
Rotors (122) gegenüber zu liegen.
2. Gasturbinentriebwerk nach Anspruch 1, wobei die Wölbungsfreiraumabmessung zwischen
vierzig Prozent (40 %) und sechzig Prozent (60 %) der vorderen Freiraumabmessung beträgt.
3. Gasturbinentriebwerk nach Anspruch 1, wobei die Schaufelspitze einen Radius (171)
aufweist, der sich von der Vorderkante zur Hinterkante kontinuierlich ändert.
4. Gasturbinentriebwerk nach Anspruch 1, wobei der Rotor (122) zur Drehung um eine Längsachse
gelagert ist; und
wobei die Ummantelung (250) einen Radius aufweist, der in einer nachgelagerten Richtung
relativ zur Längsachse konstant bleibt.
5. Gasturbinentriebwerk nach Anspruch 1, wobei der Rotor (122) zur Drehung um eine Längsachse
gelagert ist; und
wobei sich die Ummantelung (250) in einer nachgelagerten Richtung relativ zur Längsachse
radial verjüngt.
6. Gasturbinentriebwerk nach Anspruch 1, wobei der Rotor (122) zur Drehung um eine Längsachse
gelagert ist;
wobei sich die Schaufelspitze axial zwischen einer Vorderkante und einer Hinterkante
der Schaufel erstreckt;
wobei in einer Projektion der Schaufelspitze auf eine Längsebene ein Thetawinkel zwischen
einer imaginären axialen Linie und einer imaginären tangentialen Linie definiert ist,
wobei die imaginäre axiale Linie parallel zur Längsachse verläuft und die imaginäre
tangentiale Linie tangential zur Schaufelspitze verläuft; und
wobei eine Änderung des Thetawinkels entlang der Schaufelspitze in einer nachgelagerten
Richtung höchstens null ist.
7. Gasturbinentriebwerk nach Anspruch 6, wobei der Thetawinkel nahe der Vorderkante ein
positiver Winkel ist.
8. Gasturbinentriebwerk nach Anspruch 6, wobei der Thetawinkel nahe der Vorderkante ein
negativer Winkel ist.
9. Gasturbinentriebwerk nach Anspruch 6, wobei sich der Thetawinkel entlang der Gesamtheit
der Schaufelspitze in der nachgelagerten Richtung kontinuierlich ändert.
10. Gasturbinentriebwerk nach Anspruch 1, wobei die Ummantelung (250) ein Basismaterial
einschließt;
wobei das Basismaterial den nicht abreibbaren Abschnitt der Ummantelung definiert;
wobei der abreibbare Abschnitt ein vorgelagertes Ende und eine Innendurchmesserfläche
einschließt, wobei das vorgelagerte Ende in das Basismaterial eingebettet ist und
die Innendurchmesserfläche von dem Basismaterial freiliegt, um teilweise die Ummantelungsfläche
zu definieren.
11. Gasturbinentriebwerk nach Anspruch 1, wobei die Gehäusebehandlung mindestens eines
von einer Öffnung, die in die Ummantelungsfläche eingelassen ist, einer Wabenstruktur,
die teilweise die Ummantelungsfläche definiert, einer Ansaugvorrichtung, einer Gebläsevorrichtung,
einer aktiven Freiraumsteuerungsvorrichtung und einer Plasmastromsteuerungsvorrichtung
einschließt.
12. Gasturbinentriebwerk nach Anspruch 1, wobei die Schaufelspitze der Ummantelungsfläche
gegenüberliegt, um gemeinsam einen Freiraumbereich dazwischen zu definieren, wobei
der Freiraumbereich eine Strömungsachse aufweist;
wobei der abreibbare Abschnitt ein vorgelagertes Ende einschließt; und
wobei der Wölbungsbereich dem vorgelagerten Ende relativ zur Strömungsachse nachgelagert
angeordnet ist.
13. Verfahren zur Herstellung eines Verdichterabschnitts eines Gasturbinentriebwerks,
umfassend:
Bereitstellen eines Gehäuses;
Aufbringen eines abreibbaren Materials auf das Gehäuse, um einen abreibbaren Abschnitt
einer Ummantelungsfläche zu definieren, wobei der abreibbare Abschnitt in einer axialen
Richtung von einem nicht abreibbaren Abschnitt der Ummantelungsfläche beabstandet
ist;
Bereitstellen eines Gehäusebehandlungsmerkmals in dem nicht abreibbaren Abschnitt;
und
Lagern eines Rotors zur Drehung innerhalb des Gehäuses, wobei der Rotor eine Schaufel
mit einer Schaufelspitze einschließt, die so gewölbt ist, dass sie eine konvexe Krümmung
aufweist und die dem abreibbaren Abschnitt und dem nicht abreibbaren Abschnitt der
Ummantelungsfläche gegenüberliegt, wobei ein Wölbungsbereich der Schaufelspitze dem
abreibbaren Abschnitt gegenüberliegt, wobei die Schaufelspitze so konfiguriert ist,
dass sie sich axial zwischen einer Vorderkante und einer Hinterkante der Schaufel
erstreckt;
wobei ein Freiraumbereich zwischen der Schaufelspitze und der Ummantelungsfläche definiert
ist; und
wobei eine Wölbungsfreiraumabmessung, die zwischen der Ummantelungsfläche und der
Schaufelspitze im Wölbungsbereich gemessen wird, kleiner ist als eine vordere Freiraumabmessung
und eine hintere Freiraumabmessung, wobei die vordere Freiraumabmessung zwischen der
Ummantelungsfläche und der Schaufelspitze in der Nähe der Vorderkante gemessen wird
und die hintere Freiraumabmessung zwischen der Ummantelungsfläche und der Schaufelspitze
in der Nähe der Hinterkante gemessen wird.
14. Gasturbinentriebwerk nach Anspruch 1, wobei ein Verdichterabschnitt die Ummantelung
(150, 250) mit dem abreibbaren Abschnitt (186, 286) und dem nicht abreibbaren Abschnitt
(164, 264) definiert, die zusammenwirkend eine Ummantelungsfläche (152) definieren;
wobei in einer Projektion der Schaufelspitze auf eine Längsebene ein Thetawinkel zwischen
einer imaginären axialen Linie und einer imaginären tangentialen Linie definiert ist,
wobei die imaginäre axiale Linie parallel zur Längsachse verläuft und die imaginäre
tangentiale Linie tangential zur Schaufelspitze verläuft; und
wobei eine Änderung des Thetawinkels entlang der Schaufelspitze in einer nachgelagerten
Richtung höchstens null ist.
1. Moteur de turbine à gaz (100) comportant :
une enveloppe (150, 250) avec une section abradable (164, 264) et une section non
abradable (166, 266) qui définissent de manière coopérante une surface d'enveloppe
(152) ;
un rotor (122) soutenu en rotation à l'intérieur de l'enveloppe pour générer un écoulement
de fluide axial vers l'arrière, le rotor comprenant une aube (126, 226) dont une extrémité
d'aube (132, 232) est bombée de manière à présenter une courbure convexe et qui s'oppose
à la section abradable et à la section non abradable de la surface d'enveloppe, une
zone de bombement (172) de l'extrémité d'aube étant opposée à la section abradable
;
dans lequel l'extrémité d'aube s'étend axialement entre un bord d'attaque (134) et
un bord de fuite (136) de l'aube ;
dans lequel une région de jeu (174) est définie entre l'extrémité d'aube et la surface
d'enveloppe ; et
dans lequel une dimension de jeu de bombement (176, 276) mesurée entre la surface
d'enveloppe (182) et l'extrémité d'aube au niveau de la zone de bombement est inférieure
à une dimension de jeu d'attaque et à une dimension de jeu de fuite, la dimension
de jeu d'attaque se mesurant entre la surface d'enveloppe et l'extrémité d'aube à
proximité du bord d'attaque et la dimension de jeu de fuite se mesurant entre la surface
d'enveloppe et l'extrémité d'aube à proximité du bord de fuite (136),
le moteur de turbine à gaz se caractérisant en ce qu'un élément de traitement de boîtier (186, 286) se trouve dans la section non abradable
(166, 266) de l'enveloppe (150, 250) pour s'opposer à l'extrémité d'aube (132, 232)
du rotor (122).
2. Moteur de turbine à gaz selon la revendication 1, dans lequel la dimension de jeu
de surface de bombement est comprise entre quarante pour cent (40 %) et soixante pour
cent (60 %) de la dimension de jeu de bord d'attaque.
3. Moteur de turbine à gaz selon la revendication 1, dans lequel l'extrémité d'aube a
un rayon (171) variant continûment du bord d'attaque au bord de fuite.
4. Moteur de turbine à gaz selon la revendication 1, dans lequel le rotor (122) est soutenu
en rotation autour d'un axe longitudinal ; et
dans lequel l'enveloppe (250) a un rayon constant dans une direction aval par rapport
à l'axe longitudinal.
5. Moteur de turbine à gaz selon la revendication 1, dans lequel le rotor (122) est soutenu
en rotation autour d'un axe longitudinal ; et
dans lequel l'enveloppe (250) s'effile radialement dans une direction aval par rapport
à l'axe longitudinal.
6. Moteur de turbine à gaz selon la revendication 1, dans lequel le rotor (122) est soutenu
en rotation autour d'un axe longitudinal ;
dans lequel l'extrémité d'aube s'étend axialement entre un bord d'attaque et un bord
de fuite de l'aube ;
dans lequel, dans une projection de l'extrémité d'aube sur un plan longitudinal, un
angle thêta est défini entre une ligne axiale imaginaire et une ligne tangentielle
imaginaire, la ligne axiale imaginaire étant parallèle à l'axe longitudinal, la ligne
tangentielle imaginaire étant tangente à l'extrémité d'aube ; et
dans lequel une variation de l'angle thêta le long de l'extrémité d'aube dans une
direction aval est, au plus, nulle.
7. Moteur de turbine à gaz selon la revendication 6, dans lequel l'angle thêta à proximité
du bord d'attaque est un angle positif.
8. Moteur de turbine à gaz selon la revendication 6, dans lequel l' angle thêta à proximité
du bord d'attaque est un angle négatif.
9. Moteur de turbine à gaz selon la revendication 6, dans lequel l'angle thêta varie
continûment le long d'une totalité de l'extrémité d'aube dans la direction aval.
10. Moteur de turbine à gaz selon la revendication 1, dans lequel l'enveloppe (250) comprend
un matériau de base ;
dans lequel le matériau de base définit la section non abradable de l'enveloppe ;
dans lequel la section abradable comprend une extrémité amont et une surface à diamètre
interne, l'extrémité amont étant noyée dans le matériau de base et la surface à diamètre
interne étant exposée à partir du matériau de base pour définir en partie la surface
d'enveloppe.
11. Moteur de turbine à gaz selon la revendication 1, dans lequel le traitement de boîtier
comprend au moins une ouverture en retrait dans la surface d'enveloppe, une structure
en nid d'abeille définissant en partie la surface d'enveloppe, un dispositif d'aspiration,
un dispositif de soufflage, un dispositif de régulation active de jeu et un dispositif
de régulation de débit de plasma.
12. Moteur de turbine à gaz selon la revendication 1, dans lequel l'extrémité d'aube s'oppose
à la surface d'enveloppe pour définir de manière coopérante entre elles une région
de jeu, la région de jeu ayant un axe d'écoulement ;
dans lequel la section abradable comprend une extrémité amont ; et
dans lequel la zone de bombement est disposée en aval de l'extrémité amont par rapport
à l'axe d'écoulement.
13. Procédé de fabrication de section de compresseur d'un moteur de turbine à gaz, comportant
:
la fourniture d'un carter ;
l'application d'un matériau abradable sur le carter pour définir une section abradable
d'une surface d'enveloppe, la section abradable étant espacée dans une direction axiale
d'une section non abradable de la surface d'enveloppe ;
la fourniture d'une caractéristique de traitement de boîtier dans la section non abradable
; et
le soutien d'un rotor en rotation à l'intérieur du carter, le rotor comprenant une
aube avec une extrémité d'aube bombée de manière à présenter une courbure convexe
opposée à la section abradable et à la section non abradable de la surface d'enveloppe,
une zone de bombement de l'extrémité d'aube étant opposée à la section abradable,
dans lequel l'extrémité d'aube est conçue pour s'étendre axialement entre un bord
d'attaque et un bord de fuite de l'aube ;
dans lequel une région de jeu est définie entre l'extrémité d'aube et la surface d'enveloppe
; et
dans lequel une dimension de jeu de bombement, mesurée entre la surface d'enveloppe
et l'extrémité d'aube au niveau de la zone de bombement, est inférieure à une dimension
de jeu d'attaque et une dimension de jeu de fuite, la dimension de jeu d'attaque se
mesurant entre la surface d'enveloppe et l'extrémité d'aube à proximité du bord d'attaque
et la dimension de jeu de fuite se mesurant entre la surface d'enveloppe et l'extrémité
d'aube à proximité du bord de fuite.
14. Moteur de turbine à gaz selon la revendication 1, dans lequel une section de compresseur
définit l'enveloppe (150, 250) tandis que la section abradable (186, 286) et la section
non abradable (164, 264) définissent de manière coopérante une surface d'enveloppe
(152) ;
dans lequel, dans une projection de l'extrémité d'aube sur un plan longitudinal, un
angle thêta est défini entre une ligne axiale imaginaire et une ligne tangentielle
imaginaire, la ligne axiale imaginaire étant parallèle à l'axe longitudinal, la ligne
tangentielle imaginaire étant tangente à l'extrémité d'aube ; et
dans lequel une variation de l'angle thêta le long de l'extrémité d'aube dans une
direction aval est, au plus, nulle.