[0001] A method and a system for heating subareas of apartments, such as a bathroom of an
apartment, for a building provided with a domestic hot water circulation loop for
supplying hot water at a pre-set temperature to points of use in apartments and where
the heating of each subarea is performed using the heating energy of domestic water.
Prior art
[0002] A separate heating device cannot be connected to a domestic water circulation pipe
system, in which the temperature falls below 55°C. For this reason, underfloor heating,
for example, cannot be connected to a domestic hot water circulation loop in a traditional
way. Because of various difficulties, floor heating of subareas, such as bathrooms,
has been implemented with electricity despite demands for improving energy efficiency
and reducing consumption of primary energy.
[0003] Prior art, where a heating device is directly connected to a domestic hot water circulation
loop using duplex connecting conduits, i.e. coaxial pipes, is presented in patent
publication
WO 2004/070279 A2. The tap water is heated up to tap.
[0004] In patent publication
DE 202 18 316 U1 water from the domestic circulation loop is also circulated to a heating device,
which is separated from the domestic loop with valves that can be used to control
the flow of hot and cold water to the radiator.
[0005] Patent publication
WO 02/12125 A2 presents a water purification system with a feedback connection to a heat exchanger,
where cold water entering a water heater is preheated with hot water exiting the water
heater.
[0006] Patent publication
DE 10 2015 004999 A1 presents a supply of decentralized heat exchanger stations for drinking water heating
for use in a block of flats.
Summary
[0007] The object of this invention is to provide a simple and safe method and system for
correcting defects detected in prior art systems. The characteristic features of the
invention are set forth in Claims 1 and 2.
[0008] In the method for heating subareas of apartments, such as a bathroom of an apartment,
in a building provided with a domestic hot water circulation loop for supplying domestic
hot water at a pre-set temperature to points of use in apartments, the heating of
each room is performed using the heating energy of domestic water. According to the
invention, the subarea has a dedicated local water circulation loop, which transfers
heating energy from the domestic hot water circulation loop to this local loop using
a heat exchanger located in the subarea.
[0009] The preferred heat exchanger is arranged between the domestic water circulation loop
and the local water circulation loop for transferring heating energy from the domestic
water circulation system to the local water circulation loop. Specifically, according
to the invention, the heat exchanger comprises a coaxial pipe construction having
at least one elongated jacket pipe, closed with end caps, and an inner pipe placed
longitudinally inside it, wherein one water circulation loop is arranged within the
inner pipe and another one to flow in the jacket space of the jacket pipe based on
the counter-current principle and where the heat exchanger is arranged for a domestic
water flow of 0.5-10 L/min and for a local circulation flow of 0.5-5 L/min to produce
water at 25-40°C for the local circulation from domestic water at 55-60°C. The heat
exchanger according to the invention operates with an exceptionally high terminal
temperature difference, 20-35°C. The counter-current principle is generally used;
however, it is not critical here, since the temperature decrease of domestic water
is small (1-3°C).
[0010] According to the invention, by using a secondary network and a correctly dimensioned
low-output heat exchanger, it is possible to safely control the heating power of the
room by controlling the flow of the secondary side, and the dimensioning of the heat
exchanger will limit the maximum output. The domestic water circulation is always
the same, and when reducing the heating power of the room, the return water temperature
of the circulation line increases.
[0011] A typical application includes a domestic hot water circulation loop for supplying
hot water to points of use at a pre-set temperature and equipment (22) for heating
a subarea with domestic water, where the system further includes a closed local water
circulation loop located in each subarea complete with pumps, a heat exchanger between
the domestic water circulation loop and the local water circulation loop for transferring
heating energy to the local water circulation loop, and heat supply equipment placed
in the subarea for supplying heat energy to the subarea from the local water circulation
loop. An underfloor heating circuit is an advantageous heat supplier due to a low
supply temperature required.
[0012] The other advantages and embodiments of the invention are described below in connection
with the application examples.
Short description of figures
[0013] The invention is described below by making reference to the appended drawings that
illustrate a system according to the invention and its details.
Figure 1 depicts a domestic water supply system of a terrace house or a block of flats.
Figure 2 is a modification of Figure 1.
Figure 3 depicts a heat exchanger according to the invention complete with related
equipment (version 1).
Figure 4 is a first modification of Figure 3 (version 2).
Figure 5 is a second modification of Figure 3 (version 3).
Figure 6 is a third modification of Figure 3 (version 4).
[0014] In Figure 1, reference number 18 shows heating equipment for domestic water supply
of a building connected to a district heating network. The heat exchanger with related
control equipment is otherwise conventional except that the domestic hot water circulation
loop is designed for a higher heat supply. This means either a higher flow rate or
a larger temperature difference in the circulation loop. According to the current
dimensioning principle (currently applicable guidelines K1/2013), the temperature
difference in the domestic hot water circulation loop is 3°C (58°C minus 55°C). According
to the invention, either a temperature difference of 5°C (60°C minus 55°C) or correspondingly,
a higher flow rate is used in the domestic hot water circulation system (particularly
in detached houses). The invention enables the connection of heating and drying of
washrooms to a domestic hot water circulation system without risks that are present
in known solutions. Thus, the heat supply includes the heating power necessary for
the heating and drying of washrooms (10-40 W/m
2, preferably 15-25 W/m
2).
[0015] Instead of district heating, virtually any primary heating system can be used.
[0016] District heating equipment includes a heat volume measuring device 30, which is used
to measure the consumption of energy of heat supply of a domestic hot water circulation
system. The consumption of domestic hot water (water feeds) does not interfere with
this measurement, since the flow measurement is placed on the circulation return side.
The consumption of domestic hot water is measured at the cold water supply pipe of
the building's domestic water exchanger.
[0017] Figure 1 illustrates conventional water feeds of apartments, such as a shower, handbasin
and toilet pan. For the invention, it is essential that the heating and/or drying
of washrooms is performed with a heat exchanger-local heating circuit connected to
the domestic hot water circulation system. When entering the apartment, the domestic
hot water pipe has an auxiliary shutoff valve 14 (before the heat exchanger) and a
control and shutoff valve of the circulation line is placed after the heat exchanger.
Water measurement of domestic hot water is placed after the connection point of the
heat exchanger in the flow direction. The heat exchanger unit 10 is described below
in detail (Figures 3, 4, 5 and 6). In the embodiment of Figure 1, the heat supplier
of each washroom is a water-circulation drying radiator.
[0018] In the modification of Figure 2, the heat supplier of each washroom is a water-circulation
underfloor heating system, where the heating power of underfloor heating can be controlled
with a thermostatic return water valve known as such (temperature limiter 20).
[0019] The heat exchanger unit 10 of Figure 3 includes a heat exchanger 15, a pump 19, a
3-way control valve 17 and the necessary connections. Domestic water pipes are connected
to the connections 11a and 11b via maintenance shutoff valves. The design of the heat
exchanger 15 is extremely simple. Circulation water that performs the heating runs
at a constant flow to the domestic water piping in a pipe 11c of an approved type
(pressure class 10 bar). Water to be heated for the local circuit circulates in the
jacket of the heat exchanger 15, connected to connections 15.3 and 15.4. In the figure,
the heat exchanger operates according to the counter-current principle. When a lower
output is desired, the co-current principle is applied. When more efficient heat transfer
is needed (smaller size or higher output), the inner pipe is equipped with an external
fin construction.
[0020] Figure 3 shows a filling connection 21 and a venting connection 23. During the filling
operation, the filling pressure or the static pressure of the secondary circuit (rated
value 0.5 bar at 20°C) can be measured at the filling connection of the secondary
circuit. Expansion and safety devices 24 and 26 of the secondary circuit are connected
to the filling pipe. The working pressure of a domestic water network is typically
in the range of 3-5 bar; however, 10 bar is applied as design pressure in Finland.
Generally, the heat exchanger is arranged for a domestic water flow of 0.5-10 L/min
and for a local circulation flow of 0.1-5 L/min to produce water at 25-40°C for the
local circulation from domestic water at 55-60°C.
[0021] A short sleeve 15.6 is provided at the ends of the heat exchanger 10 between the
jacket pipe 15 and the inner pipe 11c placing the central pipe 11c in a coaxial position.
[0022] In a modification, the shape of the cylindrical jacket differs suitably from a tubular
and symmetric shape, automatically imparting elasticity.
[0023] The cylinder should be slightly flattened in its cross-section to form an elliptical
shape rather than curving the entire pipe. If this is done industrially, the construction
would become controllably flexible. Then, it is up to the construction technology
to ensure elasticity of the construction in long-term use. A safety valve can secure
exceptional extreme conditions.
[0024] Low elasticity required in the secondary circuit is provided with deformations of
the jacket construction. An elastic element can be used in the end connections 15.1
and 15.2. The end and the jacket can be arranged for a sufficient deformation. The
required deformation is small. If desired, it is possible to use a known expansion
element.
[0025] The output of the circulation water pump of the local loop is small. For example,
with rated values of 0.03 L/s and 10 kPa in the heating circuit, the power requirement
of the pump is 7 W. Generally, the energy transmission of the heat exchanger 10 and
thus of the heat supply is arranged in the range of 200-500 W in a block of flats
and a terrace house and in the range of 300-800 W in a detached house.
[0026] In the modification of Figure 4, the 3-way valve is replaced with two presetting
valves 17'.
[0027] When the power requirement of the heat exchanger in Figures 3 and 4 is in the range
of 150-300 W, the length of the shell 15 is 250-1500 mm, preferably 300-700 mm. The
diameter of the inner pipe is preferably 12-18 mm and the diameter of the outer pipe
is 22-35 mm in a terrace house and a block of flats. Correspondingly the diameter
of the inner pipe is 15-24 mm in a detached house. Based on new tests, the shortcut
branch of the secondary circuit is preferably connected from the inlet side 15.3 of
the heat exchanger 10 to the suction side of the pump 19. On the secondary side of
the heat exchanger 10, the flow is almost constant. On both sides, the flow is advantageously
so high that the flow remains turbulent.
[0028] In addition to the embodiments of Figures 3-5, it is possible to use a plate heat
exchanger, which can here be made very small.
[0029] Figure 5 illustrates a heat exchanger 15' with a higher performance compared to those
set forth above, having two jacket spaces in series. The jacket spaces are connected
together with a connection 15.5 and the inner pipes with a thermally insulated connection
pipe 11d.
[0030] In a modification, the connection pipe 15.5 can be replaced with a surrounding jacket
pipe 11d, which connects the jacket pipes at the ends (not shown).
[0031] In the modification of Figure 6, the 3-way valve is replaced with two presetting
valves 17'.
[0032] The most central component is the local loop heat exchanger, which uses an exceptionally
high terminal temperature difference, i.e. a large temperature difference between
the primary and the secondary flow.
[0033] Some possible pipe sizes and related parameters are listed below.
Inner pipe 18/16 Cu Δtk = 24ºC
length 600 mm - 0.034 m2
length 500 mm - 0.028 m2
length 400 mm - 0.022 m2
Inner pipe 15/13 Cu Δtk = 24°C
600 mm - 0.028 m2
500 mm - 0.023 m2
400 mm - 0.019 m2



[0034] The terminal temperature difference is preferably 18-30°C, more preferably 22-26°C.
List of parts
[0035]
10 Heat exchanger
11a Connection, domestic hot water
11b Connection, domestic water circulation
11c Inner pipe for domestic water circulation
12 Water flowmeters in the apartment
14 Auxiliary shutoff valves and presetting valves
15 Heat exchanger jacket
15.1, 15.2 End connections
15.3, 15.4 Connections for local circuit pipes
16 Line shutoff valves
17 Three-way valve
17' Presetting valve
18 Heating of domestic water
19 Circulation water pump
20 Return water controller
21 Shutoff valve
22' Heat supplier (water heated drying radiator)
22 Heat supplier (water-circulation underfloor heating)
23 Shutoff valve
24 Safety valve 3 bar
25 Manometer 0-4 bar
26 Expansion tank 2 dm3, pre-pressure 0.5 bar, preferable volume 0.2-2 L
LV Hot domestic water
KV Cold domestic water
LVK Hot water circulation
[0036] The examples given above were related to blocks of flats or terrace houses. In detached
houses, higher performance may be needed and it is easy to arrange. A 60 kW exchanger
gives 0.35 L/s at 10-60°C (e.g. district heat), so that a suitable circulation line
for improving control is 0.06 L/s and output 500 W with a temperature reduction of
two degrees (760 W with a reduction of three degrees) and a pipe size of 18 mm. The
circulation line loss is now well below 1°C due to the short distance. In a detached
house, pipe sizes 18/28 are probably optimal.
1. A method for heating (22) subareas of apartments, such as a bathroom of an apartment,
for a building provided with a domestic hot water circulation loop (11a, 11b) for
supplying domestic hot water to points of use in apartments at a pre-set temperature
and wherein heating of each subarea is performed with the heating energy of domestic
water, characterised in that it is provided in the subarea a dedicated closed local water circulation loop (10,
22), having a pump (19) and an expansion tank (26), to which heating energy is transferred
from the domestic water circulation loop using a heat exchanger (15) placed in the
subarea.
2. A system for heating subareas of apartments, such as a bathroom of an apartment for
a building, the system including
- a domestic hot water circulation loop (11a, 11b) for supplying domestic hot water
to points of use at a pre-set temperature and
- equipment (22) for heating a subarea with domestic water, characterised in that
- the system includes a closed local water circulation loop (15, 15.1, 15.2, 22) complete
with a pump (19) and an expansion tank (26) located in each subarea,
- a heat exchanger (10) between the domestic water circulation loop and the local
water circulation loop for transferring heating energy with a heat transmission to
the local water circulation loop (15, 15.1, 15.2, 22), and
- heat supply equipment (22) located in the subarea for supplying heat energy to the
subarea from the local water circulation loop.
3. A system according to Claim 2, characterised in that the local water circulation loop includes a bypass line complete with control valves
(17, 17') for decreasing the heat supply temperature.
4. A system according to Claims 2 to 3, characterised in that the heat transmission of the heat exchanger (10) and thus of the heat supply is arranged
in the range of 200-500 W in a block of flats or a terrace house and in the range
of 300-800 W in a detached house.
5. A system according to Claim 2, characterised in that the length of a jacket (15) of the heat exchanger is 250-1500 mm and the diameter
of the inner pipe is 10-30 mm, preferably 12-16 mm in a block of flats and terrace
house and 15-24 mm in a detached house.
6. A system according to any of Claim 2-5, characterised in that it includes equipment (30) arranged in the domestic water circulation loop (30) for
measuring the consumption of energy (30).
7. A system according to any of Claim 2-6, characterised in that the expansion tank has a volume of 0.2-2 L.
8. A system according to any of Claim 2-7, characterised in that the heat exchanger (10) is arranged for a domestic water flow of 0.5-10 L/min and
for a local circulation flow of 0.1-5 L/min to produce water at 25-40°C for the local
circulation from domestic water at 55-60°C.
9. A system according to any of Claim 2-8, characterised in that the length of the jacket pipe of the heat exchanger (10) is 250-1500 mm, most preferably
400-800 mm, and the nominal output is 200-500 W with a terminal temperature difference
of 25°C.
10. A system according to any of Claim 2-9, characterised in that a short sleeve (15.6) is provided at the ends of the heat exchanger (10) between
the jacket pipe (15) and the inner pipe (11c) placing the central pipe (11c) in a
coaxial position.
11. A system according to any of Claim 2-10, characterised in that the heat exchanger (10) comprises a straight jacket pipe (15) complete with connections
(15.3, 15.4) and a straight coaxial inner pipe (11c).
1. Ein Verfahren zum Erwärmen (22) von Teilbereichen von Wohnungen, wie etwa einem Badezimmer
einer Wohnung, für ein Gebäude mit häuslicher Warmwasserzirkulation (11a, 11b) für
die Verteilung von Warmwasser mit einer voreingestellten Temperatur zu den Entnahmestellen
in Wohnungen, wobei das Erwärmen eines jeden Teilbereichs durch die Wärmeenergie des
häuslichen Wassers erfolgt, dadurch gekennzeichnet, dass in dem Teilbereich eine spezielle geschlossene lokale Wasserzirkulation (10, 22)
verfügbar ist, ausgestattet mit einer Pumpe (19) und einem Ausdehnungsgefäß (26),
in das die Wärmeenergie aus der häuslichen Wasserzirkulation über einen Wärmetauscher
(15) übertragen wird, der in dem Teilbereich platziert ist.
2. Ein System zum Erwärmen von Teilbereichen von Wohnungen, wie etwa einem Badezimmer
einer Wohnung, für ein Gebäude, bestehend aus
- einer häuslichen Warmwasserzirkulation (11a, 11b) für die Verteilung von häuslichem
Warmwasser mit einer voreingestellten Temperatur zu den Entnahmestellen und
- einer Vorrichtung (22) zum Erwärmen des Teilbereichs mit häuslichem Warmwasser,
dadurch gekennzeichnet, dass
- das System eine geschlossene lokale Wasserzirkulation (15, 15.1, 15.2, 22) mit einer
Pumpe (19) und einem in jedem Teilbereich platzierten Ausdehnungsgefäß (26) enthält,
- einen Wärmetauscher (10) zwischen der häuslichen Wasserzirkulation und der lokalen
Wasserzirkulation zum Einspeisen der Wärmeenergie in die lokale Wasserzirkulation
(15, 15.1, 15.2, 22) mittels Wärmeübertragung, und
- eine in dem Teilbereich platzierte Wärmeverteilungsvorrichtung (22) zur Versorgung
des Teilbereichs mit Wärmeenergie aus der lokalen Wasserzirkulation.
3. System nach Anspruch 2, dadurch gekennzeichnet, dass die lokale Wasserzirkulation eine Umgehungsleitung hat mit Regelventilen (17, 17')
zur Reduzierung der Wärmeversorgungstemperatur.
4. System nach den Ansprüchen 2 - 3, dadurch gekennzeichnet, dass die Wärmeübertragung des Wärmetauschers (10) und somit die Wärmeversorgung in einem
Wohnblock oder Reihenhaus in einem Bereich von 200 - 500 W und in einem Einfamilienhaus
in einem Bereich von 300 - 800 W erfolgt.
5. System nach Anspruch 2, dadurch gekennzeichnet, dass die Länge des Mantels (15) des Wärmetauschers 250 - 1500 mm beträgt und der Durchmesser
des Innenrohrs 10 - 30 mm, vorzugsweise 12 - 16 mm in einem Wohnblock und Reihenhaus
und 15 - 24 mm in einem Einfamilienhaus.
6. System nach jedem der Ansprüche 2 - 5 ,dadurch gekennzeichnet, dass es eine Vorrichtung (30) enthält, die in der häuslichen Wasserzirkulation (30) zum
Messen des Verbrauchs an Energie (30) eingerichtet ist.
7. System nach jedem der Ansprüche 2 - 6, dadurch gekennzeichnet, dass das Ausdehnungsgefäß ein Volumen von 0,2 - 2 l hat.
8. System nach jedem der Ansprüche 2 - 7, dadurch gekennzeichnet, dass der Wärmetauscher (10) eingerichtet ist für einen Durchfluss von 0,5 - 10 l/min in
der häuslichen Wasserzirkulation und für einen Durchfluss von 0,1 - 5 l/min in der
lokalen Wasserzirkulation, um aus dem häuslichen Wasser mit 55 - 60 °C Wasser mit
25 - 40 °C für die lokale Wasserzirkulation zu erzeugen.
9. System nach jedem der Ansprüche 2 - 8, dadurch gekennzeichnet, dass die Länge des Mantelrohrs des Wärmetauschers (10) 250 - 1500 mm beträgt, vorzugsweise
400 - 800 mm, und die Nennleistung 200 - 500 W mit einer Grädigkeit von 25 °C.
10. System nach jedem der Ansprüche 2 - 9, dadurch gekennzeichnet, dass eine kurze Hülse (15.6) an den Enden des Wärmetauschers (10) zwischen dem Mantelrohr
(15) und dem Innenrohr (11c) vorgesehen ist, wodurch das Innenrohr (11c) koaxial angeordnet
ist.
11. System nach jedem der Ansprüche 2 - 10, dadurch gekennzeichnet, dass der Wärmetauscher (10) aus einem geraden Mantelrohr (15) mit Anschlüssen (15.3, 15.4)
und einem geraden koaxialen Innenrohr (11c) besteht.
1. Procédé pour chauffer (22) des zones secondaires d'appartements, telles qu'une salle
de bains d'un appartement, pour un bâtiment équipé d'un circuit de circulation d'eau
chaude sanitaire (11a, 11b) en vue d'alimenter en eau chaude sanitaire des points
d'utilisation dans des appartements à une température prédéfinie, et dans lequel le
chauffage de chaque zone secondaire est assuré avec l'énergie de chauffage de l'eau
sanitaire, caractérisé en ce que la zone secondaire présente un circuit de circulation d'eau local fermé dédié (10,
22) doté d'une pompe (19) et d'un vase d'expansion (26), auquel l'énergie de chauffage
est transférée depuis le circuit de circulation d'eau sanitaire à l'aide d'un échangeur
de chaleur (15) placé dans la zone secondaire.
2. Système pour le chauffage de zones secondaires d'appartements, telles qu'une salle
de bains d'un appartement pour un bâtiment, le système comprenant
- un circuit de circulation d'eau chaude sanitaire (11a, 11b) pour alimenter en eau
chaude sanitaire des points d'utilisation à une température prédéfinie et
- des équipements (22) pour chauffer une zone secondaire avec de l'eau sanitaire,
caractérisé en ce que
- le système comprend un circuit de circulation d'eau local fermé (15, 15.1, 15.2,
22) complet doté d'une pompe (19) et d'un vase d'expansion (26) situé dans chaque
zone secondaire,
- un échangeur de chaleur (10) situé entre le circuit de circulation d'eau sanitaire
et le circuit de circulation d'eau local pour le transfert d'énergie de chauffage
avec une transmission de chaleur au circuit de circulation d'eau local (15, 15.1,
15.2, 22), et
- des équipements de fourniture de chaleur (22) situés dans la zone secondaire pour
fournir de l'énergie de chauffage à la zone secondaire depuis le circuit de circulation
d'eau local.
3. Système conformément à la revendication 2, caractérisé en ce que le circuit de circulation d'eau local comprend une conduite de dérivation complète
avec des vannes de régulation (17, 17') pour faire baisser la température de la fourniture
de chaleur.
4. Système conformément aux revendications 2 à 3, caractérisé en ce que la transmission de chaleur de l'échangeur de chaleur (10) et donc de la fourniture
de chaleur se situe entre 200 et 500 W pour un logement collectif ou une maison mitoyenne,
et entre 300 et 800 W pour une maison isolée.
5. Système conformément à la revendication 2, caractérisé en ce que la longueur d'un manchon (15) de l'échangeur de chaleur est comprise entre 250 et
1 500 mm et le diamètre de la conduite intérieure est compris entre 10 et 30 mm, de
préférence entre 12 et 16 mm dans un logement collectif et une maison mitoyenne, et
entre 15 et 24 mm dans une maison isolée.
6. Système conformément à l'une quelconque des revendications 2 à 5,caractérisé en ce qu'il comprend des équipements (30) situés dans le circuit de circulation d'eau sanitaire
(30) pour mesurer la consommation d'énergie (30).
7. Système conformément à l'une quelconque des revendications 2 à 6, caractérisé en ce que le vase d'expansion a un volume compris entre 0,2 et 2 L.
8. Système conformément à l'une quelconque des revendications 2 à 7, caractérisé en ce que l'échangeur de chaleur (10) est prévu pour un débit d'eau sanitaire compris entre
0,5 et 10 L/min et pour un débit dans le circuit de circulation local compris entre
0,1 et 5 L/min pour produire de l'eau à une température comprise entre 25 et 40 °C
pour la circulation locale à partir d'eau sanitaire à une température comprise entre
55 et 60 °C
9. Système conformément à l'une quelconque des revendications 2 à 8, caractérisé en ce que la longueur de la conduite à manchon de l'échangeur de chaleur (10) est comprise
entre 250 et 1 500 mm, de préférence entre 400 et 800 mm, et la sortie nominale est
comprise entre 200 et 500 W avec une différence de température finale de 25 °C.
10. Système conformément à l'une quelconque des revendications 2 à 9, caractérisé en ce qu'un manchon court (15.6) est placé aux extrémités de l'échangeur de chaleur (10) entre
la conduite à manchon (15) et la conduite intérieure (11c) plaçant la conduite centrale
(11c) dans une position coaxiale.
11. Système conformément à l'une quelconque des revendications 2 à 10, caractérisé en ce que l'échangeur de chaleur (10) comprend une conduite à manchon droite (15) complète
avec des raccords (15.3, 15.4) et une conduite intérieure coaxiale droite (11c).