Technical field of the invention
[0001] The present invention relates to a variable passes heat exchanger used, in particular,
in organic Rankine cycle plants (ORC). The subject heat exchanger will therefore be
controlled either by the heating and/or vaporization phase or by the condensation
phase of an organic working fluid of the ORC cycle. The present invention, as will
be seen, is in any case also applicable to heat exchangers having any other type of
application.
Known art
[0002] As is known, a heat exchanger is a thermal device allowing the exchange of heat between
two fluids, in particular from the cooling fluid with higher temperature to the fluid
at lower temperature which then heats up. In an organic Rankine cycle plant, for example,
in the heat exchanger heating and/or vaporization (in some cases even overheating)
of the organic working fluid takes place thanks to the heat supplied by a higher temperature
fluid. Said fluid can comprise either a high temperature thermal source in the gaseous
or liquid phase (for example, biomass combustion products, geothermal source, etc.)
and in such case we speak of a direct thermal exchange, or it can consist of a fluid
(for example, a diathermic oil) circulating in an intermediate circuit between the
high temperature source and the organic working fluid. The diathermic oil, heated
by the high temperature source, in turn provides the heat to the organic working fluid.
Furthermore, in a heat exchanger for an ORC plant, vapor condensation of the organic
working fluid can occur, for example, by cooling water which when heated can be supplied
to a thermal user.
[0003] Independently from the type of fluids used, a heat exchanger is commonly defined
a "shell & tube " when one of the two fluids flows inside a tube bundle the tubes
of which, in general, are arranged parallel to each other, whereas the second fluid
is located outside the tube bundle and is confined in an outer casing, called a shell.
[0004] The first fluid can pass the tube bundle several times within the exchanger itself
and such crossings are called passes. The number of passes, i.e. the number of passages
in the pipes, of a heat exchanger is decided during the sizing process, based on different
parameters.
[0005] Let us consider for example the evaporator of an ORC plant the thermal source of
which is represented by geothermal water. In such case, water flows inside the tubes
(which are more easily cleaned using brushes), whereas the organic working fluid evaporates
within the shell.
[0006] The choice of the number of passes is a compromise between heat exchange performance
and load losses due to the crossing of the tube bundle. As a matter of fact, once
defined the flow rate of the fluid flowing through the tubes and the number of tubes
of the tube bundle, by increasing the number of passes of the fluid it will distribute
on a smaller number of tubes for each pass, and then its speed and the heat exchange
coefficients will increase. Clearly, the increase in speed, however, leads to an increase
of load losses, as well as possible erosion or vibration problems.
[0007] In a
"kettle" type evaporator the organic liquid fluid is practically stationary in the shell,
which has a cross section larger than the minimum size which would be necessary for
accommodating the tube bundle. In such case, the criterion for choosing the number
of passes on the pipe side is reduced according to what said above, i.e. to the optimization
of the compromise between performance and load losses.
[0008] In cases in which the shell & tube exchanger has also (or just) the purpose of preheating
the organic fluid in the liquid phase, it may be advantageous to use transverse baffles
also on the shell side. When one or more transverse baffles are present, the organic
working fluid is also moving and takes several passes; substantially, the liquid is
forced by the baffles to flow into narrower cross sections of the overall cross section
of the exchanger shell, with a deliberately tortuous path. The choice of the number
of passes is therefore more complex: as a matter of fact, in addition to always considering
the increase of the load losses, in such case the increase in the number of passes
does not necessarily imply an increase in thermal performance, as in some places the
organic working fluid is flowing in a direction globally equal to that of the geothermal
water inside the tubes.
[0009] Furthermore, it must be considered that often the geothermal water flow rate of an
ORC plant (the same obviously applies for the flow rate of cooling water in the condenser
of the same ORC plant) is not constant, but can undergo even very substantial variations,
both during the year and over the years . The change in the water flow rate therefore
involves the removal from the optimal conditions sought by sizing the number of passes;
furthermore, especially in geothermal plants, if the water speed is too low, there
is a greater probability of having problems with fouling/encrustation of the tubes.
[0010] It is therefore important to be able to vary the number of passes on the tube side
of a heat exchanger even during the operation of the ORC plant.
[0011] Figure 1 shows a
shell &
tube exchanger with straight and two-passes tubes according to the known art. According
to a known convention, "X" indicates an arrow seen from the tail representing the
flow, then entering with respect to the sheet, whereas "·" indicates an arrow seen
from the tip, then representing the outgoing flow with respect to the sheet.
[0012] Let us consider a
kettle type ORC evaporator in which the working organic
fluid (fluid) is located on the shell 13 side, whereas the source fluid (a
source, for example, relates to a diathermic oil or a geothermal water) enters the left-hand
head 70, which is divided in two portions, marked as 1 and 3, and passes through the
tube bundle 80. In particular, the source fluid passes in a suitable flanged nozzle
and enters the portion 1 of the left-side head, then passes through a first portion
81 of the tube bundle 80 (first "pass", placed in the upper half of the heat exchanger)
and then finally into the right-hand head 70', the only portion of which is marked
as 2. From the right-hand head 70' then the source fluid flows into a second portion
82 of the tube bundle 80, arranged in the lower half of the heat exchanger (second
pass) and then returns to the left-hand head, more precisely into the portion 3, from
which it then exits through an outlet nozzle.
[0013] Figure 2 shows the same exchanger, but with four passes on the tube side. Substantially
the source fluid flows through the tubes four times inside the exchanger, therefore
the left-hand head 70 is divided into three portions 1, 3, 5 , whereas the right-hand
one is divided into two portions 2, 4.
[0014] In particular, flow enters the portion 1, passes through a first tube bundle which
carries it to portion 2; from 2 it returns to the head 70, in particular to portion
3, by passing through second tube bundle. Then the fluid passes through a third tube
bundle which connects the lower part of portion 3 with portion 4 of head 70'; finally
it returns to portion 5 of the head 70 by passing through a fourth tube bundle. Symbols
"X" and "·" will help to understand the flow direction within the various passes according
to the convention explained above.
[0015] As can be seen from figures 1 and 2, in order to convert the heat exchanger from
a two-passes to a four-passes configuration, it would be sufficient to change the
arrangement of the separating baffles which divide the two heads into different volumes
and thus determine the fluid distribution into the tubes.
[0016] Separating baffles are usually sheets welded to the walls of the head itself and
the tube bundle plate, therefore it is impossible to change their position during
operation of the plant.
[0017] US patent 4,105,065 (A) indicates how it is possible not to weld the separating baffles inside the housing
of the heat exchanger, but to realize them as removable plates which are inserted
into the housing by means of suitable guides. Also in such case however, in order
to change the number of passes, it is necessary to stop the system and empty the heat
exchanger.
US5178102 A and
CN103175347 A disclose relevant prior art.
[0018] There is therefore a need to define a heat exchanger in which it is possible to modify
the number of passes during the operation of the same, without requiring the ORC system
to stop and/or the heat exchanger to be emptied.
Summary of the invention
[0019] Subject of the present invention is therefore an innovative variable passes heat
exchanger, the passes variation of which is made during the operation of the heat
exchanger, either according to a predetermined frequency or according to a control
method which continuously calculates the number of passes optimizes performances,
as specified in the appended independent claim.
[0020] Dependent claims define particular and further advantageous aspects of the invention.
Brief description of the drawings
[0021] Different embodiments of the invention will now be described, by way of examples,
with reference to the accompanying drawings in which:
- Figure 1 shows a shell & tube heat exchanger with straight tubes and with two passes, according to the known art,
- Figure 2 shows the same exchanger as in Fig. 1, but with four passes on the tube side,
according to the known art,
- Figures 3a and 3b schematically show a variable passes heat exchanger, in particular
the input/output head of the source fluid, according to a first embodiment of the
present invention,
- Figure 4 shows the heat exchanger of Figs. 3a and 3b, according to a different operating
mode,
- Figure 5 shows the opposed head of the heat exchanger of Fig. 4,
- Figure 6 schematically shows a variable passes heat exchanger according to a second
example which is not part of the claimed invention,
- Figure 7 shows in a simplified way a constructive solution of one of the movable separating
baffles of the heat exchanger of Fig. 6,
- Figure 8 is a detail of Fig. 7 and in particular a detail of the sealing area of the
shaft according to the constructive solution of Fig. 7,
- Figure 9 shows the same detail of Fig. 7 but showing a different example of the shaft
sealing according to the constructive solution of Fig. 7,
- Figure 10 shows the variable passes heat exchanger of Fig. 6, according to a different
operating mode,
- Figure 11 schematically shows a variable passes heat exchanger according to a third
embodiment of the present invention,
- Figure 12 schematically shows a variable passes heat exchanger according to a fourth
example which is not part of the claimed invention,
- Figure 13 schematically shows a variable passes heat exchanger comprising tubes made
in the shape of a "U".
Detailed description
[0022] With reference to aforementioned figures, a tube bundle heat exchanger is disclosed
performing a thermal exchange between a pair of fluids and therefore comprising a
tube bundle inside which a first fluid flows, which crosses the tube bundle or portions
of the same according to a variable number of passes; it also comprises a shell internally
containing the tube bundle and the second fluid (the latter being external to the
tube bundle). The shell is provided with at least one
fluid IN inlet nozzle and at least of one
fluid OUT outlet nozzle of said second fluid. The heat exchanger also comprises at least one
distribution head of the first fluid inside the tubes of the tube bundle. The head
is provided for this purpose of a variable number of separating baffles, which may
be fixed or movable as necessary. Finally, the head is provided with at least one
source IN input nozzle and at least of one
source OUT outlet of said first fluid.
[0023] With reference to Figures 3 to 13, some implementation modes of the present invention
will be shown, all of them sharing the possibility of making the variation of the
passes of a heat exchanger, during the operation of the organic Rankine cycle plant
without the need to stop the plant itself and/or empty the machine. It has to be understood
that, even if the illustrated examples refer to heat exchangers used in ORC plants,
the present invention can be applied to any kind of a
"shell &
tube" heat exchanger, i.e. to a tube bundle.
[0024] Following description shows the possibility of varying during operation the number
of passes of a heat exchanger, from two to four passes and vice versa. It has to be
understood that the variation from two to four passes is represented only by way of
example and in a non-limiting way, as the invention in its implementation modes described
below allows any variation of the number of passes with obvious modifications with
respect to the presented examples.
[0025] Fig. 3 shows a first embodiment of the present invention. As shown in Figure 3a,
for a generic heat exchanger 100 a first possibility is to rotate the movable separating
baffles by hinging them nearly at the center of the inlet/outlet head 70 of the source
fluid. The separating baffle C is fixed, whereas the separating baffles A and B are
hinged to the center of the head and rotate from a first position P2, in which they
are superimposed and define a two-passes heat exchanger, to a second position P4 in
which they are arrange opposed along the vertical direction, in such a way to make
a four-passes heat exchanger. As a matter of fact, what is shown in the left heads
70 of the exchangers in figures 1 and 2 is realized.
[0026] A first kinematics mode for rotating the movable separating baffles A and B is schematically
shown figure 3b. The movable separating baffles A and B are hinged at respective coaxial
shafts of the toothed wheels F and G, which mesh into a worm screw H. The rotation
of the worm screw H causes the rotation of the toothed wheels F and G (nuts) in opposite
directions. The system composed of F, G and H is external to the head 70 and constitutes
a worm screw reducer with two counter-rotating output shafts.
[0027] Possibly the movable separating baffles A and B can be rotated by means of shafts
independently moved from each other.
[0028] With reference to Fig. 4, a second mode for rotating the movable separating baffles
A and B is to connect them with a kinematic with a worm screw H', which by rotating
moves a sleeve M (nut), in turn connected to the baffle with a suitable arm K, hinged
to the baffle in a suitable intermediate position. The movable separating baffles
A and B can be moved through a single threaded rod, possibly with two left and right
threading directions for the two sleeves (the one placed at the upper half and the
other one at the lower half), or by two worm screws.
[0029] The entire kinematic can be made inside the head 70 and the only point of possible
leakage of fluid towards the outside would occur by the threaded rod, which could
be moved manually or with a suitable actuator.
[0030] The internal leakage between the different sections of the case can be limited by
the use of suitable seals at the abutment points of the plates, at positions P2 and
P4.
[0031] Figure 5 shows the opposed head 70' of the heat exchanger 100, whereas it is necessary
on the contrary to shift from two to just one section. The left image shows the movable
separating baffles A' and B' close to the first position P2 (two passes), whereas
at the right one such baffles are close to position P4 (four passes).
[0032] It must be noted that in the 2-passes configuration (left image) the position of
the two vertically superimposed baffles A' and B' in the upper portion of the head
does not represent an obstacle to the flow which in this mode and with this head is
substantially vertical (see figure 1, at 70').
[0033] If the shifting between the two-passes and four-passes configuration or vice versa
is made with an ORC functioning, the opening or closing sequence of the movable separating
baffles must be made following such a sequence, in which there is no interruption
of the tube side.
[0034] For example, let us consider a geothermal water evaporator according to figures 1
to 5. Let us suppose that at the beginning the heat exchanger is working with two
passes. In order to shift to four passes, first the bulkheads of the left head 70
move until reaching the position 4P. In this way, the left head is in position 4P
(as in Fig. 2), whereas the right head 70' is in position 2P (as in Fig. 1); during
this transitional phase, the source fluid enters the left head at portion 1 (Fig.
2), passes through the tubes and reaches the right head 70', still in the configuration
of Fig. 1, then returns to the left head but only at portion 5 (Fig. 2), and then
comes out from the heat exchanger; as a matter of fact, the water cannot flow through
the exchanger portion corresponding to the portion 3 of the left head (Fig. 2). Therefore
the geothermal water passes only through one-half of the exchanger. Once completed
the positioning of the movable separating baffles of the left head, one proceeds with
the right one. If, on the other hand one should intervene on the right head (70')
and then the on the left one (70), the geothermal water would stop at the upper half
of the exchanger, without reaching the outlet nozzle, so blocking the operation of
the plant.
[0035] In a second example which is not part of the claimed invention, instead of moving
the movable separating baffles with a kinematic connected to a worm screw, it is possible
to open or close passages among movable separating baffles in the heads, by rotating
them as if they were throttle valves. For example, in Figure 6 an example which is
not part of the claimed invention is shown for the left head 70 of the exchanger 110,
completely similar to that shown in Figs. 1 and 2. The head 70 has a fixed separating
baffle C (horizontally placed at the right half) and three movable separating baffles
D, E, and F. In order to shift from two to four passes the three movable separating
baffles must be rotated from the horizontal first position P2 to the vertical second
position P4.
[0036] Figure 7 shows in a simplified way a possible constructive solution of one of the
movable separating baffles D, E, F as shown in Fig. 6. Figure 8 shows a detail of
the sealing zone of the shaft.
[0037] Figure 7 shows a partial section of a straight-tube heat exchanger 110. Tubes 14,
through which the source fluid flows, that is the one at the highest temperature,
are fixed to the tube plate 12, whereas the organic fluid is confined in the shell
13. The head 11 is closed by a cover 10 constrained to the head itself by threaded
connections 26.
[0038] The change in the number of passes is carried out by rotating a shaft 19, to which
a rectangular plate 17 is fixed, that is a movable separating baffle as shown in Fig.
6. The sealing between the movable separating baffles 17 and the fixed separating
baffles 27 is carried out through suitable sealing means 16 (for example of the flexible
blade type), which preferably act on a projection 15 of the fixed separating baffle
27.
[0039] The shaft can rotate being inserted in a hole of cover 10 on one side, and in a sleeve
18 on the other one, rigidly constrained to the tube plate. During assembly, the shaft
is inserted into the element 18, then the cover 10 is mounted in such a way that shaft
19 fits into the respective hole of cover. The shaft has a certain axial clearance
given by the space remaining between its end and the base of element 18; in order
to avoid excessive axial movements however, a widening 25 of the shaft section is
provided, such as to possibly abut on the cover (which therefore acts as a limit switch.
[0040] In the example of Fig. 7, the shaft is moved by a manual hand wheel 20, but can also
be rotated with a pneumatic, electric or hydraulic actuator, normally with the interposition
of a speed reducer, for example of the worm screw/nut type.
[0041] Figure 8 shows a detail of a possible sealing system towards the external environment.
It should be kept in mind, however, that small losses can be accepted, both if the
fluid passing through the tubes and the head is for example a geothermal water, and
if such small losses are still collected and conveyed in suitable collection volumes.
[0042] In particular, a gland sealing system is shown. The stuffing box 23 is pressed into
a suitable seat by the externally threaded gland 22, which is screwed to the internally
threaded element 21 and welded to the cover 10. It is possible to install different
sealing systems, such as O-Rings (for example the O-Ring 24 in Fig. 8) or a gland
with compression spring system 28, as in Figure 9, or a combination thereof.
[0043] The same sealing systems can also be applied to the worm screw of the first embodiment
of the invention (the one shown in Figs. 3b , 4 and 5).
[0044] The movable separating baffles inside the case can be rotated as previously shown,
or transferred as shown in Figure 10. The movable separating baffle 61 rests on guides
60, 62 formed in the fixed separating baffle 63. The displacement of the movable separating
baffle 61 is generated by the rotation of the threaded shaft 29, which is inserted
into a threaded hole made of a protuberance 61' of the movable separating baffle.
[0045] According to a third embodiment of the invention, it is possible to shift from a
two-passes to a four-passes configuration by using tubes and valves external to the
heat exchanger, thus avoiding the movement of the separating baffles. Therefore, the
heat exchanger heads will be provided only with fixed separating baffles. By proceeding
with the description by way of example of passes variation from two to four, it is
evident that the left head can be divided into three or four portions whereas the
right head will be divided into two portions. Depending on the position of the external
valves, some portions of the external circuit will or not always be accessible to
the source fluid, also determining in this case its operation with two or four passes.
[0046] Due to this embodiment of the invention, its advantage is represented by the absence
of possible leakage points due to the need to handle internal mechanisms to the heat
exchanger, whereas its disadvantage consist in cost and overall encumbrance of the
machine due to tubes (also provided with large diameters therefore requiring wide
curves), valves and also nozzles.
[0047] Figure 11 shows a first example of a third embodiment of the invention. Heat exchanger
120 is provided with a left head 70 divided into four portions and with a pair of
inlet nozzles 71 of the source fluid and with a pair of outlet nozzles 72 for the
same fluid. A first valve 30 is fluid-dynamically connected to the two inlet nozzles
71; a second valve 31 fluid-dynamically connected to an inlet nozzle and an outlet
nozzle, which are angularly adjacent one another; a third valve 32 makes instead a
fluid-dynamic connection between the two outlet nozzles 72. Starting from the left-hand
head, a tube bundle 80 extends to the right-hand head 70', which is divided in two
portions being in fluid-dynamic connection according to the opening or closing position
of a fourth valve 33.
[0048] During a two-passes operation ( Fig. 11 - configuration 2P), the valve 31 is closed
whereas the valves 30, 32 and 33 are open (in the figures, the open valves are indicated
with ON, whereas the closed ones are indicated with OFF). In this way the source enters
the two upper nozzles 71 of the left head 70, passes through a first upper portion
81 of the tube bundle 80, enters the upper portion of the right end head 70', passes
through the duct controlled by the valve 33, and returns to the bottom of the lower
head portion; finally it crosses a second lower portion 82 of the tube bundle 80 and
returns to the left head 70, where it exits through the lower nozzles 72.
[0049] During a four-passes operation (Fig. 11 - configuration 4P), the valve 31 instead
is open, whereas the valves 30, 32 and 33 are closed. The source fluid will then follow
this path: it enters the portion 1 of the left head 70, crosses a first portion of
the tube bundle 80 and arrives to the portion 2 of the right head 70'. Starting from
here it crosses a second portion of the tube bundle and opens into the portion 3 of
the left head 70. Being the valve 31 open, the fluid can then flow into the portion
4 of the left head 70 and from there crosses a third portion of the tube bundle and
opens into the portion 5 of the right head 70'. Finally, it crosses a fourth portion
of the tube bundle and arrives to the portion 6 of the left head, from which it emerges
through an outlet nozzle.
[0050] According to an example which is not part of the claimed invention, the solution
of figure 12 is very similar to the previous one, from which it differs in that the
heat exchanger 130 does not need any valve in the right head 70' and has a smaller
number of nozzles.
[0051] In particular, the heat exchanger 130 is provided with a left head 70 and is divided
in three portions with a pair of inlet nozzles 71 of the source fluid and an outlet
nozzle 72 of the same fluid. A first valve 40 is fluid-dynamically connected to the
two inlet nozzles 71; a second valve 41 and a third valve 42 are in fluid-dynamic
connection with each other and with an inlet nozzle and an outlet nozzle, mutually
angularly adjacent to one another. The tube bundle 80 departs from the left head and
reaches the right head 70', which is divided into two portions separated from each
other by a fixed separating baffle.
[0052] In the configuration with two passes (2P) of Figure 12, the source fluid enters sections
1 from both upper nozzles of the left head (valve 40 open, 41 closed), flows in the
tubes and reaches the right head, where it distributes in the lower tube bundles,
then exiting in section 3 of the left head (valve 42 open).
[0053] In the four-passes configuration (4P) of Figure 12, the source fluid enters portion
1 in only one of the upper nozzles (valve 40 closed), flows through the tubes, reaches
portion 2 along lower tubes and reaches portion 3. Being valve 42 closed, source fluid
continues flowing through the other lower tube bundle reaching portion 4 of the opposed
head; at 4 source goes back towards last upper tube bundle and reaches portion 5 from
which it then leaves the heat exchanger 130 (valve 41 open).
[0054] The solution of Figure 12 is very similar to the previous one, with the advantage
that the left head has one less nozzle and the right one does not need external valves/circuits.
On the contrary, the solution of Figure 11 has another advantage: considering for
example that by the tube side a hot source of an evaporator or a preheater is present,
the hottest tubes (first pass in the 2P configuration, first and second pass in the
4P configuration) are always in the upper portion of the exchanger, whereas in Figure
12 in 4P configuration the upper portion of the shell is occupied by the tube bundles
relating to the first and fourth pass. According to this configuration, it is therefore
not possible to organize the path of the other flow which must be heated and which
flows within the shell in counter-flow with respect to the flow passing through in
the tubes.
[0055] The configurations shown in the present patent application can also be applied to
heat exchangers with "U"-shaped tubes.
[0056] According to an example which is not part of the claimed invention, in Figure 13
a diagram is shown of a heat exchanger 140 or, in particular, a capacitor with "U"-shaped
tubes with a variable number of passes. The variation of the number of passes is useful
for optimizing the operation as a consequence of the variation of the cooling water
flow rate to the capacitor; this variation can be due to the fact that at certain
times of the year the plant is operated with a cogeneration function (the water heated
in the capacitor is used for thermal purposes) and in other times of the year it is
operated just for producing electric energy. By decreasing the number of passes, at
the same speed inside the tubes and with the same thermal power transferred by the
capacitor, a double temperature difference on the water will be available.
[0057] With reference to Figure 13, the heat exchanger 140 is provided with a left 70 divided
into three portions and with a pair of inlet nozzles 71 of the source fluid source
and an outlet nozzle 72 of the same fluid. A first valve 40 is fluid-dynamically connected
to the two inlet nozzles 71; a second valve 41 is in fluid-dynamic connection with
one of the two inlet nozzles and with the with a circuit of a thermal user; a third
valve 42 is in fluid-dynamic connection with an outlet nozzle and with a feed pump
51. From the left head the tube bundle 80' is departing with a plurality of "U"-shaped
tubes.
[0058] The two-passes configuration (2P) corresponds to the operation just for the production
of electric energy, with a large water flow rate. The cooling water is circulated
by means of at least one feed pump 51 and is cooled in the air heat exchanger 52,
being valve 47 open and valves 44 and 46 closed. Cooling water is then distributed
to the two upper portions of the head 70" of heat exchanger 140 being valve 40 open
and valve 41 closed. Water then flows through the tube bundle 80' and returns to the
lower portion of the head 70" exiting heat exchanger 140, valve 42 being open. The
thermal user 50 may not require thermal power and in such case either valve 45 is
closed (off) and pump 53 is off, or else heat power is required at a temperature such
that it cannot use the one of the ORC capacitor; in such case valve 45 is open, pump
53 switched on and the thermal user is supplied with water heated by other heat sources
(54) .
[0059] In the four-passes configuration (4P) with lower water flow rate, water after having
cooled down by the thermal user 50, passes through valves 44 and 46 entering portion
1 of the exchanger (valve 40 closed). Then water passes through the tubes of the tube
bundle 80' departing from portion 1 and arriving to underlying portion 2 (valve 42
closed), from where it then enters the tubes which occupy the right side of the exchanger
and exits at portion 3, with valve 41 open. Finally, water having taken off heat from
the condensing steam, exits heat exchanger 140 and reaches the thermal user 50, valve
45 being closed and pump 53 in operation. In four-passes configuration, water can
either bypass the air exchanger 52, flowing through valve 46 or continue to pass through
air heat exchanger 52, but with fans off.
[0060] Although at least one exemplary embodiment has been presented in the summary and
the detailed description, it must be understood that there exists a large number of
variations falling within the scope of the invention, for example with more than two
portions connected to each other as in the proposed diagram. Furthermore, it must
be understood that the embodiment or the embodiments presented are only examples which
do not intend to limit in any way the scope of protection of the invention or its
application or its configurations. On the contrary, the summary and detailed description
provide the expert in the field with a convenient guide in order to implement at least
one exemplary embodiment, being clear that numerous variations may be made in the
function and assembly of the elements described therein, without departing from the
scope of protection of the invention as established by the attached claims.
1. Heat exchanger (100, 120) having a tube bundle configured to achieve a heat exchange
between a couple of fluids, the heat exchanger comprising:
- the tube bundle (80, 80') inside which a first fluid of the couple of fluids flows,
said first fluid passing through the tube bundle or through its portions according
to a variable number of passes,
- a shell (13) inside which the tube bundle (80, 80') and the second fluid of the
couple of fluids are contained, the second fluid flowing outside of the tube bundle
(80, 80'), said shell provided with at least an inlet nozzle and at least one outlet
nozzle of said second fluid,
- at least a head (70, 70', 70") for the distribution of the first fluid inside the
tubes of the tube bundle according to a variable number of passes, said head comprising
for this purpose a variable number of separating baffles, fixed or movable, and at
least one inlet nozzle and at least one outlet nozzle of said first fluid,
wherein said heat exchanger is configured so as to be able to vary the number of passes
of the first fluid without having to open the at least one head and/or remove one
of the two fluids from the heat exchanger, wherein the variation of the passes number
is obtained by means of the movement of at least a movable separating baffle (A, B,
A', B', D, E, F, 17, 61) inside of the heads (70, 70', 70") or by varying the opening
and closing of a plurality of valves external to the heat exchanger, the heat exchanger
(100, 120) being
characterized in that:
when the variation of the passes number is obtained by means of the movement of at
least a movable separating baffle (A, B, A', B', D, E, F, 17, 61) inside of the heads
(70, 70', 70"),
- the movable separating baffles (A, B) are hinged near the head (70) center and rotate
from a first position (P2), in which said separating baffles are overlapping and defining
a two passes heat exchanger, to a second position (P4) rotated of 90° in which said
separating baffles are opposite arranged along a straight line, so as to realize a
four passes heat exchanger, or when the variation of the number of passes is obtained
by varying the opening and closing of a plurality of valves external to the heat exchanger,
the heat exchanger (120) comprising :
- a left head (70), divided into four portions, having a couple of inlet nozzles (71)
for the first fluid and a couple of output nozzles (72) for the same fluid, and provided
with a first valve (30) in fluid connection with the two inlet nozzles (71), a second
valve (31) in fluid connection with an inlet nozzle and an outlet nozzle, angularly
adjacent to each other and a third valve (32) in fluid connection with the two outlet
nozzles (72),
- a right head (70'), divided into two portions, provided with a fourth valve (33)
in fluid connection with said two portions of the right head (70').
2. Heat exchanger (100) according to claim 1, characterized in that the movable separating baffles (A, B) are hinged in corresponding coaxial shafts
with toothed wheels (F, G), which engaged in a worm screw (H).
3. Heat exchanger (100) according to claim 1, characterized in that the movable separating baffles (A, B) can be rotated by means of shafts which can
be moved independently between them.
4. Heat exchanger (100) according to claim 1 characterized in that the movable separating baffles (A, B, A', B') are connected by a kinematic mechanism
to at least a worm screw (H'), that by rotating moves corresponding sleeves (M) in
turn connected to the movable separating baffles (A, B, A', B') by an appropriate
arm (K).
5. Heat exchanger (100) according to claim 1, characterized in that at least one of the two heads is provided with a movable separating baffle (D, E,
F) that rotates from a first position (P2), in which it defines a two passes heat
exchanger, to a second position (P4) in which it defines a four passes heat exchanger,
being its rotational axis at the center of the baffle itself.
6. Heat exchanger (100) according to any of the preceding claims, characterized in that the variation of the number of passes is carried out by rotating a shaft (19, 29)
to which the movable separating baffle is fixed (17), whose sealing against a fixed
separating baffle (27) is realized by means of flexible sealing means (16), acting
on a protrusion(15) of the fixed separating baffle (27).
7. Heat exchanger (100) according to claim 6, characterized in that the shaft (19, 29) is constrained to a sleeve (18) on one side and on the other side
passes through a hole of a cover (10).
8. Heat exchanger (100) according to claim 6 or 7, characterized in that the shaft (19, 29) or the worm screw (H, H') are moved by a hand wheel (20) or by
means of a pneumatic, electric or hydraulic actuator.
9. Heat exchanger (100) according to any of claims from 6 to 8, characterized in that the shaft (19, 29) sealing means are chosen between a stuffing box (23), O-rings
(24), a stuffing box (23) having a compression spring system (28) or a combination
thereof.
10. Heat exchanger (100) according to claim 1, characterized in that at least one movable separating baffle (61) rests on guides (60, 62) formed in the
fixed separating baffle (63) and is traversed by means of the rotation of a threaded
shaft (29), which fits into a threaded hole formed in a protuberance (61') in one
piece with the movable separating baffle (61).
11. Heat exchanger (120) according to claim 1, characterized in that during two passes operations the second valve (31) is closed while the remaining
valves (30, 32, 33) are open and during four passes operations the second valve (31)
is open while the remaining valves (30, 32, 33) are closed.
12. Organic Rankine cycle system comprising a heat exchanger (100, 120) according to any
of claims 1 to 11.
13. Organic Rankine cycle system according to claim 12, wherein said heat exchanger (100,
120) is designed to operate as an evaporator or preheater of an organic working fluid
and characterized in that the heat source is the first fluid flowing inside the tube bundle.
14. Organic Rankine cycle system according to claim 12 or 13, wherein said heat exchanger
(100, 120) is designed to operate as a condenser of the organic working fluid and
characterized in that the cooling water is the first fluid flowing inside the tube bundle.
1. Wärmetauscher (100, 120) mit einem Rohrbündel, das konfiguriert ist, um einen Wärmeaustausch
zwischen einem Paar von Fluiden zu erreichen, wobei der Wärmetauscher umfasst:
- das Rohrbündel (80, 80'), in dem ein erstes Fluid des Paars von Fluiden fließt,
wobei das erste Fluid das Rohrbündel oder seine Teile gemäß einer variablen Anzahl
von Durchgängen durchströmt,
- eine Hülle (13), in der das Rohrbündel (80, 80') und das zweite Fluid des Paars
von Fluiden enthalten sind, wobei das zweite Fluid außerhalb des Rohrbündels (80,
80') strömt, wobei die Hülle bereitgestellt wird mit mindestens einer Einlassdüse
und mindestens einer Auslassdüse für das zweite Fluid,
- mindestens einen Kopf (70, 70', 70") zum Verteilen des ersten Fluides in den Rohren
des Rohrbündels gemäß einer variablen Anzahl von Durchgängen, wobei der Kopf zu diesem
Zweck eine variable Anzahl von festen oder fahrbaren Trennablenkern umfasst, und mindestens
eine Einlassdüse und mindestens eine Auslassdüse für das erste Fluid,
wobei der Wärmetauscher so konfiguriert ist, dass er die Anzahl der Durchgänge des
ersten Fluides variieren kann, ohne mindestens einen Kopf öffnen und/oder eines der
beiden Fluide aus dem Wärmetauscher entfernen zu müssen, wobei die Variation der Anzahl
der Durchgänge durch die Verschiebung mindestens eines beweglichen Trennablenkers
(A, B, A', B', D, E, F, 17, 61) innerhalb der Köpfe (70, 70', 70") oder durch Variieren
des Öffnens und Schließens einer Vielzahl von Ventilen außerhalb des Wärmetauschers
erfolgt, wobei der Wärmetauscher (100, 120)
dadurch gekennzeichnet ist, dass:
wenn die Variation der Anzahl der Durchgänge durch die Verschiebung von mindestens
einem beweglichen Trennablenker (A, B, A', B', D, E, F, 17, 61) innerhalb der Köpfe
(70, 70', 70") erhalten wird,
- so werden die beweglichen Trennablenker (A, B) in der Nähe der Mitte des Kopfes
(70) aufgehängt und sich von einer ersten Position (P2), in der die Trennablenker
übereinander liegen und einen Wärmetauscher mit zwei Durchgängen bilden, in eine zweite
Position (P4) um 90° gedreht wird, wobei sich die Trennablenker entlang einer geraden
Linie gegenüberliegen, um so einen Wärmetauscher mit vier Durchgängen zu schaffen,
bzw. wenn die Variation der Anzahl von Durchgängen durch Variieren des Öffnens und
Schließens einer Vielzahl von Ventilen außerhalb des Wärmetauschers erhalten wird,
umfasst der Wärmetauscher (120):
- einen linken Kopf (70), der in vier Teile geteilt ist, mit einem Paar Einlassdüsen
(71) für das erste Fluid und mit einem Paar Auslassdüsen (72) für das gleiche Fluid
und ausgestattet mit einem ersten Ventil (30) in Fluidverbindung mit den zwei Einlassdüsen
(71), ein zweites Ventil (31) in Fluidverbindung mit einer Einlassdüse und mit einer
Auslassdüse, die winklig benachbart zueinander sind, und mit einem dritten Ventil
(32) in Fluidverbindung mit den beiden Austrittsdüsen (72),
- einen rechten Kopf (70'), der in zwei Teile geteilt ist, mit einem vierten Ventil
(33) in Fluidverbindung mit den beiden Teilen des rechten Kopfes (70').
2. Wärmetauscher (100) nach Anspruch 1, dadurch gekennzeichnet, dass die beweglichen Trennablenker (A, B) in entsprechenden koaxialen Wellen mit Zahnrädern
(F, G) aufgehängt sind, die mit einer Schnecke (H) koppeln.
3. Wärmetauscher (100) nach Anspruch 1, dadurch gekennzeichnet, dass die beweglichen Trennablenker (A, B) mittels unabhängig voneinander bewegbarer Wellen
drehbar sind.
4. Wärmetauscher (100) nach Anspruch 1, dadurch gekennzeichnet, dass die beweglichen Trennablenker (A, B, A', B') über einen kinematischen Mechanismus
mit mindestens einer Schnecke (H') verbunden sind, die sich durch Drehung entsprechende
Hülsen (M) bewegt, die ihrerseits mit den beweglichen Trennablenkern (A, B, A', B')
mittels eines geeigneten Arms (K) verbunden sind.
5. Wärmetauscher (100) nach Anspruch 1, dadurch gekennzeichnet, dass mindestens einer der beiden Köpfe mit einem beweglichen Trennablenker (D, E, F) versehen
ist, der sich von einer ersten Position (P2) dreht, in die er einen Wärmetauscher
mit zwei Durchgängen definiert, in eine zweite Position (P4), in der er einen Wärmetauscher
mit vier Durchgängen definiert, dessen Rotationsachse in der Mitte des Trennablenkers
angeordnet ist.
6. Wärmetauscher (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Variation der Anzahl der Durchgänge durch Drehen einer Welle (19, 29) erfolgt,
an der das bewegliche Trennablenker (17) befestigt ist, dessen Abdichtung gegen einen
feststehenden Trennablenker (27) durch flexible Dichtungsmittel (16) erreicht wird,
die auf einen Vorsprung (15) des feststehenden Trennablenkers (27) einwirken.
7. Wärmetauscher (100) nach Anspruch 6, dadurch gekennzeichnet, dass die Welle (19, 29) an einer Hülse befestigt ist auf einer Seite an einer Hülse (18)
befestigt ist und auf der anderen Seite ein Loch eines Deckels (10) durchsetzt.
8. Wärmetauscher (100) nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Welle (19, 29) oder die Schnecke (H, H') mittels eines Handrades (20) oder mittels
eines pneumatischen, elektrischer oder hydraulischer Antrieb, bewegt werden.
9. Wärmetauscher (100) nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Dichtmittel der Welle (19, 29) ausgewählt sind aus einer Stopfbuchse (23), einem
O-Ring (24), wobei eine Stopfbuchse (23) ein Druckfedersystem (28) oder eine Kombination
davon aufweist.
10. Wärmetauscher (100) nach Anspruch 1, dadurch gekennzeichnet, dass mindestens ein beweglicher Trennablenker (61) auf Führungen (60, 62) aufliegt, die
in dem feststehenden Trennablenker (63) ausgebildet sind, und durch Drehung von einem
Gewindewelle (29) durchsetzt ist, die in ein Gewindeloch passt, das in einem einstückigen
Vorsprung (61') mit dem beweglichen Trennablenker (61) ausgebildet ist.
11. Wärmetauscher (120) nach Anspruch 1, dadurch gekennzeichnet, dass während des zweistufigen Betriebs das zweite Ventil (31) geschlossen ist, während
die übrigen Ventile (30, 32, 33) geöffnet sind, und während des vierstufigen Betriebs
ist das zweite Ventil (31) geöffnet, während die übrigen Ventile (30, 32, 33) geschlossen
sind.
12. Organisches Rankine-Kreislaufsystem, umfassend einen Wärmetauscher (100, 120) nach
einem der Ansprüche 1 bis 11.
13. Organisches Rankine-Kreislaufsystem nach Anspruch 12, wobei der Wärmetauscher (100,
120) so ausgelegt ist, dass er als Verdampfer oder Vorwärmer eines organischen Arbeitsfluids
fungiert, und ist dadurch gekennzeichnet, dass die Wärmequelle dem ersten Fluid in das Rohrbündel hinein entspricht.
14. Organisches Rankine-Kreislaufsystem nach Anspruch 12 oder 13, wobei der Wärmetauscher
(100, 120) so strukturiert ist, dass er als Kondensator des organischen Arbeitsfluids
fungiert, und ist dadurch gekennzeichnet, dass das Kühlwasser das erste Fluid ist, das das Rohrbündel hineinströmt.
1. Echangeur de chaleur (100, 120) avec un faisceau de tubes, configuré pour réaliser
un échange de chaleur entre un couple de fluides, l'échangeur de chaleur comprenant
:
- le faisceau de tubes (80, 80') à l'intérieur duquel s'écoule un premier fluide du
couple de fluides, le premier fluide traversant le faisceau de tubes ou ses parties,
selon un nombre variable de passages,
- une enveloppe (13) à l'intérieur de laquelle sont contenus le faisceau de tubes
(80, 80') et le deuxième fluide du couple de fluides, le deuxième fluide passant à
l'extérieur du faisceau de tubes (80, 80'), l'enveloppe étant pourvue avec au moins
une buse d'entrée et au moins une buse de sortie pour le deuxième fluide,
- au moins une tête (70, 70', 70") de distribution du premier fluide à l'intérieur
des tubes du faisceau de tubes, selon un nombre variable de passages, la tête comportant
à cet effet un nombre variable de déflecteurs de séparation, fixes ou mobiles, et
au moins une buse d'entrée et au moins une buse de sortie du premier fluide,
où l'échangeur de chaleur est configuré pour pouvoir faire varier le nombre de passages
du premier fluide, sans avoir à ouvrir au moins une tête et/ou retirer l'un des deux
fluides de l'échangeur de chaleur,
où la variation du nombre de passages se produit au moyen du déplacement d'au moins
un déflecteur de séparation mobile (A, B, A', B', D, E, F, 17, 61) à l'intérieur des
têtes (70, 70', 70 ") ou en faisant varier l'ouverture et la fermeture d'une pluralité
de vannes à l'extérieur de l'échangeur de chaleur, l'échangeur de chaleur (100, 120)
étant
caractérisé en ce que:
lorsque la variation du nombre de passages est obtenue au moyen du déplacement d'au
moins un déflecteur de séparation mobile (A, B, A', B', D, E, F, 17, 61) à l'intérieur
des têtes (70, 70', 70 "),
- les déflecteurs de séparation mobiles (A, B) sont suspendus à proximité du centre
de la tête (70) et tournent depuis une première position (P2) dans laquelle les déflecteurs
de séparation sont superposés et définissent un échangeur de chaleur à deux passages,
vers une deuxième position (P4) tournée de 90°, dans lequel les déflecteurs de séparation
sont opposés selon une droite, de manière à créer un échangeur à quatre passages ou
lorsque la variation du nombre de passages est obtenue en faisant varier l'ouverture
et la fermeture d'une pluralité de vannes externes à l'échangeur de chaleur, l'échangeur
de chaleur (120) comprend :
- une tête gauche (70) divisée en quatre parties, avec une paire de buses d'entrée
(71) pour le premier fluide et avec une paire de buses de sortie (72) pour le même
fluide, et équipée d'une première vanne (30) en liaison fluidique avec les deux buses
d'entrée (71), une deuxième vanne (31) en liaison fluidique avec une buse d'entrée
et avec une buse de sortie, angulairement adjacentes l'une à l'autre, et avec une
troisième vanne (32) en liaison fluidique avec les deux buses de sortie (72),
- une tête droite (70') divisée en deux parties, avec une quatrième vanne (33) en
liaison fluidique avec les deux parties de la tête droite (70').
2. Echangeur de chaleur (100) selon la revendication 1, caractérisé en ce que les déflecteurs de séparation mobiles (A, B) sont suspendus dans des arbres coaxiaux
correspondants à des roues dentées (F, G), qui s'accouplent dans une vis sans fin
(H).
3. Echangeur de chaleur (100) selon la revendication 1, caractérisé en ce que les déflecteurs de séparation mobiles (A, B) peuvent être entraînés en rotation au
moyen d'arbres qui peuvent être déplacés indépendamment l'un de l'autre.
4. Echangeur de chaleur (100) selon la revendication 1, caractérisé en ce que les déflecteurs mobiles de séparation (A, B, A', B') sont reliés par l'intermédiaire
d'un mécanisme cinématique à au moins une vis sans fin (H'), qui par rotation déplace
des manchons correspondants (M) reliés quant à eux aux déflecteurs de séparation mobiles
(A, B, A', B') au moyen d'un bras approprié (K).
5. Echangeur de chaleur (100) selon la revendication 1, caractérisé en ce qu'au moins une des deux têtes est munie d'un déflecteur de séparation mobile (D, E,
F) qui tourne à partir d'une première position (P2) dans laquelle il définit un échangeur
de chaleur à deux passages, à une deuxième position (P4) dans laquelle il définit
un échangeur de chaleur à quatre passages, dont l'axe de rotation est situé au centre
du déflecteur.
6. Echangeur de chaleur (100) selon l'une des revendications précédentes, caractérisé en ce que la variation du nombre des passages est effectuée en tournant un arbre (19, 29) auquel
le déflecteur de séparation mobile est fixé (17) dont l'étanchéité contre un déflecteur
de séparation fixe (27) est réalisée par des moyens d'étanchéité flexibles (16), agissant
sur une saillie (15) du déflecteur de séparation fixe (27).
7. Echangeur de chaleur (100) selon la revendication 6, caractérisé en ce que l'arbre (19, 29) est fixé à un manchon (18) d'un côté, et de l'autre côté il traverse
un trou d'un couvercle (10).
8. Echangeur de chaleur (100) selon la revendication 6 ou 7, caractérisé en ce que l'arbre (19, 29) ou la vis sans fin (H, H') sont déplacés au moyen d'un volant (20)
ou au moyen d'un actionneur pneumatique, électrique ou hydraulique.
9. Echangeur de chaleur (100) selon l'une des revendications 6 à 8, caractérisé en ce que les moyens d'étanchéité d'arbre (19, 29) sont choisis parmi un presse-étoupe (23),
des joints toriques (24), dans lesquels un presse-étoupe (23 comporte un système de
ressorts de compression (28) ou une combinaison de ceux-ci.
10. Echangeur de chaleur (100) selon la revendication 1, caractérisé en ce qu'au moins un déflecteur de séparation mobile (61) repose sur des guides (60, 62) formés
dans le déflecteur de séparation fixe (63), et est traversé en rotation par un arbre
taraudé (29), qui s'adapte dans un trou taraudé ménagé dans une protubérance monobloc
(61') avec le déflecteur séparateur mobile (61).
11. Echangeur de chaleur (120) selon la revendication 1, caractérisé en ce que pendant les opérations en deux passages, la deuxième vanne (31) est fermée, tandis
que les vannes restantes (30, 32, 33) sont ouvertes, et pendant les opérations en
quatre passages, la deuxième vanne (31) est ouverte, tandis que les vannes restantes
(30, 32, 33) sont fermées.
12. Système à cycle organique de Rankine, comprenant un échangeur de chaleur (100, 120)
selon l'une des revendications 1 à 11.
13. Système à cycle organique de Rankine selon la revendication 12, dans lequel l'échangeur
de chaleur (100, 120) est prévu pour fonctionner comme évaporateur ou préchauffeur
d'un fluide de travail organique, et est caractérisé en ce que la source de chaleur correspond au premier fluide qui passe à l'intérieur du faisceau
de tubes.
14. Système de cycle organique de Rankine selon la revendication 12 ou 13, dans lequel
l'échangeur de chaleur (100, 120) est structuré pour fonctionner comme un condenseur
du fluide de travail organique, et est caractérisé en ce que l'eau de refroidissement est le premier fluide qui passe à l'intérieur du faisceau
de tubes.