[0001] The present invention relates to a drillpipe module for drilling a borehole in ground,
to a system for drilling such a borehole in ground including drillpipe modules, to
a control unit and an operation unit for use in drilling such a borehole in ground,
to a method for drilling such a borehole in ground to a corresponding computer program.
[0002] A pipe structure comprising inner and outer pipe sections that are coaxial with each
other is disclosed in
US 2012/0031616 A1. A cylindrical truss structure may be disposed between the inner and outer pipe sections
to provide support to the pipe structure while reducing weight. Such a pipe structure
may be used to form lightweight drill pipe that may be used in oil, gas, geothermal,
and horizontal drilling.
[0003] According to
GB 2 163 465 A, a drill rod for use in making up a drill string for drilling holes in the Earth's
crust in the presence of drilling mud is formed with a buoyancy space which can be
filled with liquid, such as water, less dense than the drilling mud to reduce the
weight of the rod when immersed in the mud. A vent hole is provided at the bottom
of the buoyancy space to equalise the pressures in the buoyancy space and in the surrounding
mud. A further closable vent is provided at the top of the buoyancy space to permit
air to vent from the buoyancy space when it is primed with the buoyancy liquid.
[0004] WO 86/04950 A1 discloses a drilling pipe for making of a drill string, in particular for deviation
drilling, comprising an outer tube and an inner tube connected to heads on each end,
in such a manner that the inner tube communicates with apertures through each head,
and in such a manner that a closed cavity is constituted between the tubes, said cavity
contributing to give the drilling pipe and the drill string a buoyancy in the bore
hole.
[0005] There are known several methods for trenchless provisions of underground pipes, conduits,
cables or the like including horizontal directional drilling (HDD), microtunneling,
pipe ramming or jacking or horizontal auger boring, while larger diameters may require
tunneling and smaller diameters (with short distances) may be provided by moling or
the like.
[0006] As the trenchless approach provides minimal disruption as to the surface, this approach
is of major importance in particular in areas where stopping traffic or business on
the surface may not be feasible or where a nature protection area may allow no or
only a very limited footprint in terms of trenching or excavating.
[0007] In particular horizontal directional drilling or boring sees an extensive use, while
there is a desire for extending the range (in terms of possible distance or reach)
and capabilities (e.g. in terms of diameter of borehole). An extended reach allows
for coverage of greater distances without the need for additional entry and exit points.
Similarly, a larger diameter may allow for providing just one borehole instead of
multiple parallel boreholes.
[0008] In
WO 2015/197828 A1, an approach for extending the reach in creating a borehole in ground is disclosed,
where there are provided an inner pipe and an outer pipe having an annular region
therebetween, while the inner pipe is used for exerting (axial) force on just a drilling
head and not on the outer pipe, save for a tensional force on the outer pipe provided
by a clamp and a bearing, while the outer pipe is advanced separately therefrom by
means of an axial force exerted from the outside. As the annular region between the
inner and the outer pipe is filled with air or the like, the effective weight of the
drilling arrangement in the borehole is significantly reduced, thus reducing a friction
between the wall of the borehole and the outer pipe. The reduced friction allows for
a longer range. The separate application of force to the inner pipe and the outer
pipe makes it necessary to provide more complex equipment in comparison to previous
conventional techniques, A further limiting factor to the range of the system discussed
in
WO 2015/197828 A1 is the amount of force which might be applied for advancement unless there would
be buckling or the like.
[0009] In
DE 20 2012 004 882 U1 an approach is provided where the advancement is done by pushing only an outer pipe,
in which a separate supply line may be provided for bringing drilling fluid to the
work face.
[0010] An aim underlying the present invention is to allow for an extension in particular
in term of reach of a drilling in ground in comparison to conventional trenchless
approaches.
[0011] According to a first aspect of the invention, a buoyancy enhanced drillpipe module
for drilling a borehole in ground and being immersed in debris laden drilling fluid
is proposed as defined in claim 1, in particular comprising a pipe, a first and a
second connection unit fixed to the respective ends of the pipe, the connection units
each allowing a connection of the drillpipe module respectively with another drillpipe
module, and a passage for drilling fluid, wherein at least in a part of the space
between the first and second connection unit a buoyancy unit is provided, wherein,
for a drilling fluid having a density in the range of 1.0 to 1.1 kg/l and/or a debris
laden drilling fluid having a density in the range of 1.1 to 1.5 kg/l, the buoyancy
unit has a lower density than the drilling fluid and wherein the drillpipe module
is dimensioned such that a ratio between an absolute value of an effective weight
force per unit length of the drillpipe module in debris laden drilling fluid, with
drilling fluid in the passage, and a total cross sectional area of those elements
of the drillpipe module that are due to transfer axial force is < 10,000 N/m
3.
[0012] According to a second aspect of the invention, a system for drilling a borehole in
ground is proposed as defined in claim 8, in particular comprising a plurality of
buoyancy enhanced drillpipe modules according to the invention and a drilling head
arranged for being attached to a drillpipe formed by the plurality of drillpipe modules.
[0013] According to a third aspect of the invention, a control unit for use in drilling
a borehole in ground with a drillpipe including a plurality of buoyancy enhanced drillpipe
modules is proposed as defined in claim 9, wherein drilling fluid is provided through
the passage of the drillpipe to a drilling head and the drillpipe is immersed in debris
laden drilling fluid returning from a work face of the drilling head, wherein the
control unit is arranged for outputting control signals for controlling the density
of the debris laden drilling fluid for adjusting the effective weight of the drillpipe
by adjusting a density of the drilling fluid provided through the passage, adjusting
a pump rate of the drilling fluid through the passage and/or adjusting a rate of advancement
of the drillpipe.
[0014] According to a fourth aspect of the invention, an operation unit for use in drilling
a borehole in ground with a drillpipe including a plurality of buoyancy enhanced drillpipe
modules is proposed as further defined in claim 9, wherein drilling fluid is provided
through the passage of the drillpipe to a drilling head and the drillpipe is immersed
in debris laden drilling fluid returning from a work face of the drilling head, wherein
the operation unit includes means for adjusting a density of the drilling fluid provided
through the passage, adjusting a pump rate of the drilling fluid through the passage
and/or adjusting a rate of advancement of the drillpipe, so to control the density
of the debris laden drilling fluid for adjusting the effective weight of the drillpipe,
wherein the operation unit is arranged to operate the means in response to control
signals.
[0015] According to a fifth aspect of the invention, a method for drilling a borehole in
ground is proposed as defined in claim 10, in particular comprising the steps of providing
a plurality of buoyancy enhanced drillpipe modules according to the invention forming
a drillpipe and a drilling head attached to the drillpipe, advancing the drillpipe
with the drilling head being pushed and/or turned, wherein drilling fluid is provided
through the combined passages the plurality of drillpipe modules to the drilling head,
the drilling fluid returning as debris laden drilling fluid immersing the drillpipe.
[0016] It was realized that, while an improvement in terms of range may be attempted by
reducing the friction of the drillpipe inside the borehole and such reduction may
be provided by reducing the normal force of the drillpipe on the wall of the borehole,
the conventional approaches for reducing the normal force have shortcomings in terms
of the amount of applicable force.
[0017] The arrangement of the buoyancy enhanced drillpipe module of the present invention
addresses the stability of the overall drillpipe and thus the applicable force by
taking into consideration a ratio between the absolute value of the effective weight
of the drillpipe (module) and its ability to withstand and conduct an axial force.
[0018] While, from a theoretical point of view, a small ratio between the effective weight
of a drillpipe per length unit and the cross section of the elements transferring
axial force may be achieved by using a light weight material, such replacement would
only make sense if the resulting arrangement were still able to be used indeed for
drilling the borehole, i.e. for transferring a force comparable to conventional drillpipes
made of, for example, steel. When contemplating a very sophisticated light-weight
material, a practical implementation - if at all possible - becomes infeasible as
the costs for such material will be prohibitively high, when sufficient strength in
terms of torsion (in case of rotating the drillpipe), buckling resistances (in particular
in view of the force needed for advancing), and pressure resistance (the pressure
of the drilling fluid inside the drillpipe may be in the range of about 100 bar or
more; while furthermore the pressure of the debris laden drilling fluid outside (i.e.
immersing) the drillpipe may be in the range of about 10 bar or more) is needed in
a context of drilling a borehole in the length of several kilometers. Another difficulty
in terms of practical implementations of a use of light-weight material is the connectability
of modules thereof for forming the drillpipe, as, for example, threaded connections
thereof may not withstand repeated connecting and disconnecting, i.e. are not sufficiently
reusable.
[0019] The provision of the buoyancy unit allows for a reduction of the absolute value of
the effective weight force of the drillpipe when immersed in (debris laden) drilling
fluid. The modular design allows not only for a simple assembling when in use but
also give further advantages. The provision of the connection units improve the overall
strength of a drillpipe formed by the drillpipe modules against buckling, similar
to the nodes in a bamboo stem. Furthermore, in comparison to an arrangement of just
two pipes with an annular space between them, the modular design limits a failure
in the outer pipe in which debris laden drilling fluid enters though the outer pipe
to just one module, allowing for the drilling to be continued.
[0020] Even though it is preferable to completely compensate the weight of the drillpipe,
i.e. to have a neutral lift, a significant effect on the friction reduction may be
provided by just approximating the density of the debris laden drilling fluid and
the drillpipe. Such approximation may also include the case that the density of the
debris laden drilling fluid is higher than that of the overall drillpipe, so that
there might be a certain amount of positive lift (resulting in a friction between
the drillpipe and the ceiling of the borehole).
[0021] It is indeed particularly preferred that, provided a range or variety of density
of the debris laden drilling fluid is expected during the drilling of the borehole
(as it normally will be, in case the density of the debris laden drilling fluid is
not controlled or regulated during the drilling), the drillpipe modules are designed
such that a neutral lift occurs within such range, rather than at one of the extremes
thereof. By such arrangement, the reachable drilling range may be optimized, the (average
of the) absolute value of the effective weight force being as small as possible throughout
the different conditions resulting in differing density of the debris laden drilling
fluid.
[0022] The present invention may be realized by using drilling fluid having a conventional
density in the range of 1.0 to 1.1 kg/I. Nevertheless, it is also possible to provide
fresh drilling fluid already having a comparatively higher density. Drilling fluids
with a density higher than that conventionally used for horizontal drilling are known,
for example, in drilling for an artesian well or in case of drilling for oil or gas
with an increased reservoir pressure. The density of the debris laden drilling fluid
is higher than that of the fresh drilling fluid due to the inclusion of debris generated
at the working face of the drilling head during operation (unless the debris would
have a density lower than that of the drilling fluid).
[0023] In addition to the positive effect on the buoyancy of the drillpipe, there is an
additional benefit of an increased density of the drilling fluid in increasing the
stability of the borehole against caving in. Depending on the circumstances, an impact
on the dynamic and static pressure in the borehole may increase the risk of a break
out or break through of the drilling fluid to the surface, while this can be countered
by increasing the depths of the level at which the horizontal drilling takes place.
In addition or as alternative other technical means may be employed, e.g. adding pump
capacity for influencing the actual dynamic and static pressure in the bore hole,
e.g. by providing pumping from vertical pressure release holes.
[0024] In an advantageous embodiment of an aspect of the invention, in the area of the buoyancy
unit, the elements of the drillpipe module that are due to transfer axial force have
a compressive strength of 50 MPa or more, averaged over the total cross section.
[0025] With such a compressive strength, the ratio of between the absolute value of the
effective weight force per meter of the drillpipe in operation (i.e. with fresh drilling
fluid in the passage and immersed in debris laden drilling fluid) and the transferrable
axial force is < 0.0002 1/m.
[0026] In another advantageous embodiment of an aspect of the invention, the first and second
connection unit are arranged such that, when the drillpipe module is connected with
another drillpipe module, the axial force transferrable by the elements of the drillpipe
that are due to transfer axial force at each point along the length of the drillpipe
module, except a shoulder portion of the connection units having a higher strength,
does not vary by more than 20 %, preferably by no more than 5%.
[0027] The overall ability of the drillpipe module to transfer and withstand an axial force
largely depends on its weakest portion, while the connection units - due to their
design in defining the front and back enclosure of the buoyancy unit - will typically
have a geometrical moment of inertia higher than the average moment of other portions
along the length of the module.
[0028] In other advantageous embodiments of an aspect of the invention (i) the pipe is an
inner pipe and encloses the passage, wherein the drillpipe module further includes
an outer pipe fixed to the first and second connection unit, wherein the buoyancy
unit is provided in the space between the outer pipe and the inner pipe, wherein the
buoyancy unit is preferably formed by gaseous material, (ii) the pipe encloses the
passage and the buoyancy unit at least partially encloses the pipe, wherein the buoyancy
unit is formed by solid material, (iii) the pipe encloses the buoyancy unit formed
by solid material, wherein the buoyancy unit encloses the passage, or (iv) the buoyancy
unit is formed by solid material and includes a first unit and a second unit, wherein
the first unit encloses the passage and the second unit encloses the pipe, which encloses
the first unit.
[0029] Such combinations of pipe and buoyancy unit allow for a high pressure inside the
passage and a high pressure outside the drillpipe, wherein the (in comparison to just
the inner pipe) increased cross sectional area provides a large area for receiving
forwardly directed (axial) push force and the geometrical moment of inertia provides
resistance against folding or buckling.
[0030] The arrangement where there is a further (outer) pipe, which, in turn, surrounds
the buoyancy unit, is particularly beneficial insofar as it allows for the buoyancy
unit being made of a material (e.g. polyurethane foam or another material like polyethylene
with gas or air bubbles therein) which by itself may not be able to withstand the
conditions inside the borehole, e.g. due to abrasion at the walls of the borehole
or due to pressure of the debris laden drilling fluid return from the working face.
In such case, the outer pipe may have a smaller wall thickness, so just to withstand
the pressure from the outside. The arrangement of an inner pipe and an outer pipe
also allows that the buoyancy unit is formed by gas enclosed between the pipes.
[0031] It is also possible, provided suitable (a) material(s) for the buoyancy unit are
used, that the drilling fluid is provided inside the buoyancy unit, which is enclosed
by the pipe, wherein the pipe may also be sandwiched between two portions of the buoyancy
unit.
[0032] In a variation of one of the above embodiments, between the inner pipe and the outer
pipe one or more stiffeners are provided, wherein the one or more stiffeners preferably
extend along the whole length of the buoyancy unit and in radial direction from the
inner pipe to the outer pipe.
[0033] With the stiffeners extending along the whole length of the buoyancy unit, the stiffeners
by themselves may contribute to the transfer of axial force. However, independently
from receiving and transferring any axial force, the stiffeners contribute to the
buckling or folding resistance of the drillpipe module in linking the inner and the
outer pipe against a radial deforming of either pipe. In addition, the stiffeners
provide further strengthening of the outer pipe in terms of hoop stress or collapse
resistance, i.e. assist in preventing that the outer pipe collapses under the pressure
of the debris laden drilling fluid.
[0034] The stiffeners and the inner and outer pipe are not necessarily made of the same
material (or material class). In particular, the inner and outer pipe may be made
of steel, as with conventional drillpipes, while the stiffeners may be made of, for
example, fiber-reinforced plastic. It is, however, also possible to provide other
mixes of materials, including, for example, an inner pipe made of steel, stiffeners
made of steel or aluminum and an outer pipe made of fiber reinforced plastic, possibly
provided with a further coating.
[0035] In a modification of the above variation, at least one of the one or more stiffeners
is arranged to fix the inner pipe and the outer pipe together and/or the outer pipe
is releasably fixed to the connection units.
[0036] A fixing of the inner and outer pipe by means of the stiffeners allows for a further
improvement in terms of stability, as such fixing not only prevents, for example,
a radial deforming of the outer pipe in the direction to the inner pipe but also a
deforming in the opposite direction.
[0037] On the other hand, it is also possible that the outer pipe only abuts the stiffeners
and is furthermore connected to the connection units is a releasable manner, so that
the outer pipe may be removed and replaced easily in order to address wear and tear.
[0038] In another advantageous embodiment of an aspect of the invention, the connection
units are arranged for allowing a releasable connection with the other drillpipe module,
wherein the releasable connection is preferably a screwed connection, wherein the
connection units most preferably include a pin connection unit and a box connection
unit.
[0039] Preferably, the connection between drillpipe modules of the present invention is
comparable or even compatible with connections conventionally used for, for example,
HDD arrangements.
[0040] A particularly preferred example of such embodiment includes that there are provided
an API box connection and/or an API pin connection, while also other connections may
be provided, preferably including trapezoidal threading and a sealing shoulder.
[0041] In a further advantageous variation of such embodiment, the pin connection unit includes
a projection portion provided with a sleeve arranged for being attached over the projection
portion.
[0042] In case of modules, it is known from conventional drilling, that such module may
be damaged, e.g. during handling in the course of assembling the drillpipe modules
or of disassembling, wherein, in particular, a damage to the ends of the module are
of concern where adjacent modules are linked. As, in particular relative minor, variations
of the respective length of a drillpipe module of a series of drillpipe modules are
of no concern, rather than discarding a damaged module, the damaged end may be cut
off, while a new connection is provided, e.g. by cutting a fresh thread in case of
threaded connections. This may be done rather easily if at least one of the connection
units projects from the buoyancy unit. Once the drillpipe modules are connected, the
sleeve may be provided so to provide a rather smooth and flush outer surface of the
connection area. The sleeve, if needed, may also be cut accordingly for fitting. A
preferred variation of such sleeve includes two halves, which are fit on the connection
area and fixed together along secants of the cross section, e.g. by bolts.
[0043] The pump provided for pumping the drilling fluid through the drillpipe may be a centrifugal
pump and/or is preferably arranged to pump drilling fluid with a solids content of
5% or more.
[0044] It may be noted that the drilling fluid provided to the drilling head does not necessarily
has to be freshly composed drilling fluid, as it is indeed possible to recycle the
debris laden drilling fluid by at least partially removing debris therefrom. Insofar
as the present application includes the term "fresh drilling fluid" this is to be
understood as being in contrast to the debris laden drilling fluid returning from
the working face.
[0045] The drilling head or some other suitable element of the arrangement inside the borehole
may be provided with steering elements, wherein furthermore the drilling head is preferably
provided with a position, orientation and/or attitude detecting element.
[0046] A preferable implementation of the invention includes the provision of a motor for
driving the drilling head, arranged between the drillpipe and the drilling head, wherein
most preferably the motor is a mud motor driven, in turn, by the drilling fluid.
[0047] In order to increase the torque and reduce the rotational speed of a known and commercially
available mud motor, a transmission may be provided between the mud motor and the
drilling head.
[0048] While any additional equipment (e.g. a sensor or the like) in the area of the drilling
head may be provided with batteries or the like as power sources, it is also foreseen
that power may be derived from the mud motor or by other means from the flow of the
drilling fluid and/or power is provided from above ground by means of, for example,
wiring provided inside or along the drillpipe.
[0049] In an advantageous embodiment of an aspect of the invention, the drilling method
includes adjusting a density of the drilling fluid provided through the passage, adjusting
a pump rate of the drilling fluid through the passage, and/or adjusting a rate of
advancement of the drillpipe, so to control the density of the debris laden drilling
fluid for adjusting the effective weight of the drillpipe.
[0050] It may be sufficient in certain cases to just set a particular density (i.e. composition)
of the drilling fluid provided to the drill head, to provide for a certain advancing
of the drilling and to provide for a certain pump rate of the drilling fluid. Controlling
of these parameters, which influence the density of the debris laden drilling fluid,
however, allows for adjusting in view of different drilling conditions. If, for example,
due to the situation at the working face, the rate of advancement needs to be reduced,
so that there is less debris in the returning drilling fluid, the density of the provided
drilling fluid may be increased for compensation. Depending on the ground, the composition
(and thus the density) of the debris at the working face may also change, which might
similarly be addressed by appropriately controlling the density of the drilling fluid,
the pump rate and/or the rate of advancement.
[0051] The method may also comprises detecting the density of the debris laden drilling
fluid at the drill head and/or above ground, wherein the detected density is used
in controlling the density. Measuring, sensing or detecting the density of the debris
laden drilling fluid and modifying the control of the density of the (fresh) drilling
fluid, the pump rate and/or the rate of advancement allows for a feedback control
or regulation loop, while, however, the density of the debris laden drilling fluid
and the ratio thereof in comparison to the density of the drillpipe may also be inferred
otherwise. For example, the amount of friction between the drillpipe and the borehole
may also be used, derived from the force needed for advancing and possibly from knowledge
about the ground, as a basis for controlling the parameters influencing the uplift
or downlift of the drillpipe in the borehole.
[0052] The method for drilling preferably further includes a steering of the drill head
(indirectly via the drillpipe and/or directly) during the drilling. It is particularly
preferred that the steering is based on positional information obtained in situ, e.g.
by means of a sensor or probe attached to the drill head providing position information
of the drill head or allowing a detection of the drill head's position from above
surface. The positional information may preferably be supplemented with information
on the attitude and/or orientation of the drill head. Conventional approaches on steering
and determination of the position and the like may be used in the context of the invention,
as appreciated by the skilled person.
[0053] The present invention allows for, depending on the particular embodiment, advancing
the drillpipe by pushing the drillpipe (with the drill head being driven independently
from the drillpipe) or by rotating or turning the drillpipe itself so to turn the
drill head. This might be combined with the steering.
[0054] In particular in an embodiment in which the drill head is driven by means of a drill
motor (or mud motor) included in the overall drilling arrangement (specifically between
the drillpipe and the drill head), the drillpipe may be pressed at its end above the
surface in a known way. However, it is also possible to provide to pre-assemble a
length of drillpipe of 100 m or more from comparatively short drillpipe modules (e.g.
10 m long), while the axial force on the drillpipe is provided not (only) from its
end but also from outside (e.g. by clamping) in an area preferably close to the entrance
of the borehole. The pre-assembly is, of course, only possible if there is sufficient
space, while the benefit lies in the reduced amount of time needed for inserting the
numerous drillpipe modules directly at the entrance of the borehole.
[0055] Features of preferred embodiments of the invention are defined, in particular, in
the dependent claims, while further advantageous features, embodiments and implementations
are apparent to the skilled person from the above explanation and the following discussion.
[0056] In the following, the present invention is further elucidated and exemplified under
reference to embodiments illustrated in the attached drawings, in which
- Fig. 1
- shows a schematic representation for illustrating a first exemplary embodiment of
the present invention,
- Fig. 2
- shows a schematic representation of a buoyancy enhanced drillpipe module according
to an embodiment of the invention,
- Fig. 3
- shows a schematic representation of a buoyancy enhanced drillpipe module according
to another embodiment of the invention,
- Fig. 4
- shows a schematic representation of buoyancy enhanced drillpipe modules according
to another embodiment of the invention,
- Fig. 5
- shows a schematic representation of buoyancy enhanced drillpipe modules according
to another embodiment of the invention,
- Fig. 6
- shows a schematic representation of buoyancy enhanced drillpipe modules according
to another embodiment of the invention,
- Fig. 7
- shows a schematic representation of buoyancy enhanced drillpipe modules according
to another embodiment of the invention,
- Fig. 8
- shows a schematic representation of a system for drilling a borehole in ground according
to an embodiment of the invention, and
- Fig. 9
- shows a schematic flow diagram of an exemplary embodiment of a method for drilling
a borehole in ground according to the invention.
[0057] In the attached drawings and the explanations on these drawings elements, which are
in relation or in correspondence, are indicated - where expedient - by corresponding
or similar reference signs, regardless of whether or not the elements are part of
the same embodiment.
[0058] Fig. 1 shows a schematic representation for illustrating a first exemplary embodiment
of the present invention.
[0059] Similar to a known HDD arrangement, there is provided a pump 10 and a drill rig 12,
which are coupled to a drillpipe 16, which extends inside a borehole in ground 14.
Forward to the drillpipe 16, a mud motor 18 is provided, which is coupled to a transmission
20, which in turn is coupled to a drilling head 22. The drilling head 22 includes
a drive 24, which drives the drilling bit 26 at the working face of the borehole.
[0060] From the pump 10, fresh drilling fluid 28 is provided through the drillpipe 16 to
the mud motor 18 and further to the drilling bit 26, where the drilling fluid takes
up debris from the drilling operation and returns in the space between the drillpipe
16 and the walls of the borehole as debris laden drilling fluid 30. The illustrated
path of the drilling fluid 28 is to be understood as schematically.
[0061] The drillpipe 16 is formed by buoyancy enhanced drillpipe modules, which includes
a pipe 32 and a buoyancy unit 34, wherein the buoyancy body has a lower density than
the debris laden drilling fluid 30 and the dimensions of the buoyancy body 34 and
the passage inside the pipe 32 in which the fresh drilling fluid 28 flows are set
such that a density ratio between a combined density of the drillpipe 16 including
the fresh drilling fluid 28 and a density of the debris laden drilling fluid 30 is
such that, the effective weight of the drillpipe is thus reduced significantly.
[0062] In the schematic overall illustration provided by Fig. 1, the details of the drillpipe
modules including the arrangement of the connection units thereof and not shown and
reference is made insofar to Fig. 2 to 7.
[0063] Fig. 2 shows a schematic representation of a buoyancy enhanced drillpipe module 40
according to an embodiment of the invention. Specifically, Fig. 2a) shows a partial
view of the drillpipe module, Fig. 2b) shows a view of the left face of the drillpipe
module shown in Fig 2a) and Fig. 2c) and 2d) show cross sectional views at corresponding
positions.
[0064] The drillpipe module 40 is immersed in debris laden drilling fluid 30 and includes
a passage 46 in which fresh drilling fluid 28 is provided.
[0065] The drillpipe module 40 comprises an inner pipe 41 made of steel, which is surrounded
by an outer pipe 41' also made of steel. At their ends (only one which is shown in
Fig. 2) the pipes 41, 41' are connected to a respective connection unit. In the case
of Fig. 2, the connection unit is formed by a steel shoulder 45 together with a connection
portion of the inner pipe 41. The inner pipe 41, in its form, corresponds to a conventional
drillpipe module having API box and pin connections.
[0066] The inner pipe 41, the steel shoulder 45 and the outer pipe 41' enclose and define
a hollow portion filled with air, which forms the buoyancy unit 42 of the drillpipe
module 40.
[0067] As further shown in Figs. 2c) and 2d), the area between the inner pipe 41 and the
outer pipe 41' is provided with stiffeners or stabilizers 48, which extend radially
from the inner pipe 41 to the outer pipe 41', adding to the stability and strength
of the combination of inner and outer pipe 41, 41'.
[0068] Providing a borehole having a diameter of 19.1 inch (486 mm), the inner pipe has
a diameter of 110 mm and a wall thickness of 12.5 mm, while the outer pipe is provided
with a diameter of 324 mm and a wall thickness of 5 mm. There are provided six stiffeners,
having a length (in radial direction) of 101.5 mm and a thickness of 5 mm.
[0069] Such arrangement as shown in Fig. 2 with the values above gives a cross sectional
area for transferring axial force of 11.885 mm
2, while in debris laden drilling fluid having a density of 1.1 kg/I, the effective
weight force per meter is -84 N/m (the negative sign indicating here a force directed
downwards) (+78 N/m with a debris laden drilling fluid having a density of 1.3 kg/I;
the positive sign indicating a force directed upward, i.e. an uplift with the drillpipe
pressing against the ceiling of the borehole). The ratio between the absolute value
of the effective weight force per meter and the total cross section of those elements
of the drillpipe module that are due to transfer axial force is thus is the range
of 6.500 to 7.500 N/m
3.
[0070] It was found that with a weight on bit of 5 kN/in (i.e. a total force of 96 kN),
a theoretical range of approx. 10 km may be expected, while under similar circumstances
a range of only 2 km may be expected for a conventional drillpipe.
[0071] It is to be understood that the above values are exemplary and that other dimensions
are of course also possible.
[0072] Fig. 3 shows a schematic representation of a buoyancy enhanced drillpipe module 50
according to another embodiment of the invention.
[0073] The module 50 includes a steel pipe 51 and a buoyancy unit 52 made of high density
polyethylene (having a density of 0.985 kg/I), wherein the HPDE surrounds the steel
pipe 51 and is fixed thereto.
[0074] The dimensions of the steel pipe 51 (which forms a passage 56) and the buoyancy unit
52 are set such that, with drilling fluid (not shown) flowing inside the passage 56
and debris laden drilling fluid outside the drillpipe module 50, the effective weight
of the module 50 is basically compensated by the buoyancy of the module 50 in the
drilling fluid.
[0075] The module 50 is furthermore provided, at each end thereof, with a steel shoulder
55, which serves as protection and break-out area for an API pin connection 53 and
an API box connection 54 provided with the steel pipe 51, which allow combination
of the module 50 with other such modules. A typical length of such module 50 is about
10 m.
[0076] The steel shoulder 55 and the connection portions 53, 54 of the steel pipe 51 form
the connection units, wherein these connection units have the buoyancy unit 52 provided
therebetween.
[0077] Fig. 4 shows a schematic representation of buoyancy enhanced drillpipe modules 60
according to another embodiment of the invention.
[0078] Similar to the drillpipe modules 40, 50 shown in Fig. 2 and Fig. 3, the buoyancy
enhanced drillpipe modules 60 include a steel pipe 61 and a buoyancy unit 62, wherein
the steel pipe 61 is provided with API pin and box connections 63, 64 and defines
a passage 66 for drilling fluid.
[0079] In the illustration of Fig. 4, the details of the drillpipe modules 60 in terms of
the connection units are not shown, while, however, the connection 63, 64 extend beyond
a shoulder form by or in the respective connection unit, while the modules 60 are
provided with a sleeve 67.
[0080] As shown in Fig. 4
- a), the steel pipe 61 projects from the shoulders of the drillpipe module on both
sides in lengthwise direction. In Fig. 4
- b), the sleeve 67 is provided, such that also in the area of projection of the steel
pipe 61 in comparison to the remaining portion of the drillpipe module 60 there is
a rather smooth surface, substantially without a recess or a projection beyond the
periphery of the module 60 otherwise. Fig. 4
- c) shows a simplified cross section of the arrangement shown in Fig. 4b).
[0081] The sleeve 67 is provided in the form of two halves, which are bolted in place in
the recess formed between the shoulders of the neighboring modules 60.
[0082] Such arrangement allows, for example, a re-cutting of the pin and box connections
63, 64 in case these may be damaged. Furthermore, it is contemplated that that the
shoulders or disc-shaped elements bridging the area between the inner pipe and the
outer pipe on both sides of the buoyancy unit are provided with standardized pin and
box connections, which may thus be used despite their outer diameter being smaller
than the outer diameter of the drillpipe module. In other words, a connection unit
may be formed by combining (e.g. welding together) a conventional (and standardized)
drillpipe of comparative small diameter with a flange of larger diameter.
[0083] Figs. 5 to 7 show schematic representations of buoyancy enhanced drillpipe modules
70, 80, 90 according to further embodiments of the invention.
[0084] Again similar to the drillpipe modules 40, 50 and 60 shown in Fig. 2, Fig. 3 and
Fig. 4, the buoyancy enhanced drillpipe modules 70, 80, 90 each include a steel pipe
71, 81, 91 and a buoyancy unit 72, 82, 92, wherein there is also provided a passage
76, 86, 96 for drilling fluid.
[0085] In the case of Fig. 4, the steel pipe 71 also projects beyond the buoyancy unit 72,
while here the pipe 71 is provided, at each end respectively, with a pin connection
73 and a box connection 74 (including, as illustrated, trapezoid threads and sealing
shoulders), which form the connection units between which the buoyancy unit 72 is
provided.
[0086] As it is the case with the embodiments shown in Fig. 2, 3 and 4, the buoyancy unit
72 surrounds the pipe 71.
[0087] In comparison to the case of Fig. 5, in the embodiment shown in Fig. 6, there is
additionally provided a further pipe 81', which surrounds the buoyancy unit 82 and
partially the connection units 83, 84.
[0088] If the contacts between the connection units 83, 84 and the pipes 81, 81' are sufficiently
tight, instead of a buoyancy body 82 is the form of a plastic or foam material, there
might also be provided just gas, e.g. air, in the compartment thus formed. While evacuating
the compartment (e.g. providing a reduced pressure therein) might be possible, the
resulting gain in weight reduction is insignificant. The provision of gas instead
of a solid material allows for a reduced overall weight.
[0089] Fig. 7 shows an embodiment where the buoyancy unit 92 is provided inside the pipe
91, i.e. the relative positions are exchanged in comparison to the embodiment shown
in Fig. 6.
[0090] Fig. 8 shows a schematic representation of a system 1 for drilling a borehole in
ground according to an embodiment of the invention.
[0091] The pump 10, the drill rig 12, the drillpipe 16 (made of drillpipe modules as discussed
above), the mud motor 18, the transmission 20 and the drilling head 22 discussed above
with reference to Fig. 1 are part of the system 1, wherein the pump 10 and the drill
rig 12 are part of an operation unit 37, which further includes a drilling fluid conditioning
and recycling unit 38.
[0092] The drilling head 22 is additionally provided with a density sensor 35 for detecting
the density of the debris laden drilling fluid returning to the surface from the working
face.
[0093] The system furthermore includes a control unit 36.
[0094] During the drilling, the control unit 36 receives data from the density sensor 35
and uses this data for determining whether the rate of advancement of the drillpipe
16 or the composition (and thus density) of the drilling fluid provided to the drillpipe
16 are to be changed in order to provide for a desired ratio between the density of
the debris laden drilling fluid and the drillpipe (including fresh drilling fluid).
In accordance therewith, the drill rig 12 and/or the drilling fluid conditioning and
recycling unit 38 are controlled by the control unit 36.
[0095] Fig. 9 shows a schematic flow diagram of an exemplary embodiment of a method for
drilling a borehole in ground according to the invention.
[0096] In a provision step 101, a system as illustrated in Fig. 8 is provided, including
in particular a buoyancy enhanced drillpipe made of a plurality of drillpipe module
as discussed above and a drilling head. For the drilling, drilling fluid is used,
which - when laden with debris and returning from the working face - in operation
immerses the drillpipe. The buoyancy unit has a lower density than the drilling fluid
and the dimensions of the buoyancy unit and the passage are set such that the overall
drillpipe module is dimensioned such a ratio between an absolute value of an effective
weight force per meter of the drillpipe module in debris laden drilling fluid, with
drilling fluid in the passage, and a total cross section of those elements of the
drillpipe module that are due to transfer axial force is < 10,000 N/m
3.
[0097] In an advancing step 102, the drillpipe is advanced upon pushing and/or turning the
drilling head. In the course of this, i.e. in parallel, the rate of advancement or
drilling is controlled in a control step 103 and, in an adjustment step 104, the density
of the fresh drilling fluid is adjusted.
[0098] In a further detecting step 105, the density of the debris laden drilling fluid is
detected, wherein this data is then used in the control step 103 and/or the adjustment
step 104.
[0099] The proportions shown in the figures are merely for illustrative purposes and the
illustrations are not to scale.
[0100] Even if in the drawings different aspects or features of the invention are shown
in combination, the skilled person will appreciate - unless indicated otherwise -
that the combinations shown and discussed are not exhaustive and variations thereof
are possible. In particular, corresponding elements or feature complexes may be mutually
exchanges between different embodiments. The scope of the invention is defined by
the appended claims.
List of reference signs
[0101]
- 1
- system
- 10
- pump
- 12
- drill rig
- 14
- ground
- 16
- drillpipe
- 18
- mud motor
- 20
- transmission
- 22
- drilling head
- 24
- drive shaft
- 26
- drilling bit
- 28
- fresh drilling fluid
- 30
- debris laden drilling fluid
- 32
- pipe
- 34
- buoyancy body
- 35
- density sensor
- 36
- control unit
- 37
- operation unit
- 38
- drilling fluid conditioning and recycling unit
- 40, 50, 60, 70, 80, 90
- buoyancy enhanced drillpipe module
- 41, 41', 51, 61, 71, 81, 81' 91
- steel pipe
- 42, 52, 62, 72, 82, 92
- buoyancy unit
- 53, 63, 73, 83, 93
- pin connection
- 54, 65, 74, 84, 94
- box connection
- 45, 55
- steel shoulder
- 46, 56, 66, 76, 86, 96
- passage
- 67
- sleeve
- 101
- provision step
- 102
- advancing step
- 103
- control step
- 104
- adjustment step
- 105
- detecting step
1. A buoyancy enhanced drillpipe module (40, 50, 60, 70, 80, 90) for drilling a borehole
in ground (14) and being immersed in debris laden drilling fluid (30), comprising:
a pipe (41, 41', 51, 61, 71, 81, 81', 91),
a first and a second connection unit (45, 55, 73, 74, 83, 84, 93, 94) fixed to the
respective ends of the pipe, the connection units (45, 55, 73, 74, 83, 84, 93, 94)
each allowing a connection of the drillpipe module (40, 50, 60, 70, 80, 90) respectively
with another drillpipe module (40, 50, 60, 70, 80, 90), and
a passage (46, 56, 66, 76, 86, 96) for drilling fluid (28),
wherein at least in a part of the space between the first and second connection unit
(45, 55, 73, 74, 83, 84, 93, 94) a buoyancy unit (42, 52, 62, 72, 82, 92) is provided,
and
wherein, for a drilling fluid (28) having a density in the range of 1.0 to 1.1 kg/l
and/or a debris laden drilling fluid (30) having a density in the range of 1.1 to
1.5 kg/l, the buoyancy unit (42, 52, 62, 72, 82, 92) has a lower density than the
drilling fluid (28, 30)
characterized in that the drillpipe module (40, 50, 60, 70, 80, 90) is dimensioned such that a ratio between
an absolute value of an effective weight force per unit length of the drillpipe module
(40, 50, 60, 70, 80, 90) in debris laden drilling fluid (30), with drilling fluid
(28) in the passage (46, 56, 66, 76, 86, 96), and a total cross sectional area of
those elements of the drillpipe module (40, 50, 60, 70, 80, 90) that are due to transfer
axial force is < 10,000 N/m3.
2. The buoyancy enhanced drillpipe module (40, 50, 60, 70, 80, 90) according to claim
1, wherein, in the area of the buoyancy unit (42, 52, 62, 72, 82, 92), the elements
of the drillpipe module (40, 50, 60, 70, 80, 90) that are due to transfer axial force
have a compressive strength of 50 MPa or more, averaged over the total cross sectional
area.
3. The buoyancy enhanced drillpipe module (40, 50, 60, 70, 80, 90) according to any one
of the preceding claims, wherein the first and second connection unit (45, 55, 73,
74, 83, 84, 93, 94) are arranged such that, when the drillpipe module (40, 50, 60,
70, 80, 90) is connected with another drillpipe module (40, 50, 60, 70, 80, 90), the
axial force transferrable by the elements of the drillpipe that are due to transfer
axial force at each point along the length of the drillpipe module (40, 50, 60, 70,
80, 90), except a shoulder portion of the connection units (45, 55, 73, 74, 83, 84,
93, 94) having a higher strength, does not vary by more than 20 %, preferably by no
more than 5%.
4. The buoyancy enhanced drillpipe module (40, 50, 60, 70, 80, 90) according to any one
of the preceding claims, wherein
(i) the pipe is an inner pipe (41, 81) and encloses the passage (46, 86), wherein
the drillpipe module (40, 80) further includes an outer pipe (41', 81') fixed to the
first and second connection unit (45, 83, 84), wherein the buoyancy unit (42, 82)
is provided in the space between the outer pipe (41', 81') and the inner pipe (41,
81), wherein the buoyancy unit (42, 82) is preferably formed by gaseous material,
(ii) the pipe (71) encloses the passage (76) and the buoyancy unit (72) at least partially
encloses the pipe (71), wherein the buoyancy unit (72) is formed by solid material,
(iii) the pipe (91) encloses the buoyancy unit (92) formed by solid material, wherein
the buoyancy unit (92) encloses the passage (96), or
(iv) the buoyancy unit is formed by solid material and includes a first unit and a
second unit, wherein the first unit encloses the passage and the second unit encloses
the pipe, which encloses the first unit.
5. The buoyancy enhanced drillpipe module (40, 80) according to aspect (i) of claim 4,
wherein between the inner pipe (41, 81) and the outer pipe (41', 81') one or more
stiffeners (48) are provided, wherein the one or more stiffeners (48) preferably extend
along the whole length of the buoyancy unit (42, 82) and in radial direction from
the inner pipe (41, 81) to the outer pipe (41', 81').
6. The buoyancy enhanced drillpipe module (40, 80) according to claim 5, wherein at least
one of the one or more stiffeners (48) is arranged to fix the inner pipe (41, 81)
and the outer pipe (41', 81') together and/or the outer pipe (41, 81) is releasably
fixed to the connection units (45, 83, 84).
7. The buoyancy enhanced drillpipe module (40, 50, 60, 70, 80, 90) according to any one
of the preceding claims, wherein the connection units (45, 55, 73, 74, 83, 84, 93,
94) are arranged for allowing a releasable connection with the other drillpipe module
(40, 50, 60, 70, 80, 90), wherein the releasable connection is preferably a screwed
connection, wherein the connection units (45, 55, 73, 74, 83, 84, 93, 94) most preferably
include a pin connection unit and a box connection unit.
8. A system (1) for drilling a borehole in ground (14), comprising:
a plurality of buoyancy enhanced drillpipe modules (40, 50, 60, 70, 80, 90) according
to any one of the preceding claims, and
a drilling head (22) arranged for being attached to a drillpipe (16) formed by the
plurality of drillpipe modules (40, 50, 60, 70, 80, 90).
9. The system (1) according to claim 8, further comprising
a control unit (36) for use in drilling a borehole in ground (14) with a drillpipe
(16) including a plurality of buoyancy enhanced drillpipe modules (40, 50, 60, 70,
80, 90), wherein drilling fluid (28) is provided through the passage (46, 56, 66,
76, 86, 96) of the drillpipe (16) to a drilling head (22) and the drillpipe (16) is
immersed in debris laden drilling fluid (30) returning from a work face of the drilling
head (22),
wherein the control unit (36) is arranged for outputting control signals for controlling
the density of the debris laden drilling fluid (30) for adjusting the effective weight
of the drillpipe (16) by adjusting a density of the drilling fluid (28) provided through
the passage (46, 56, 66, 76, 86, 96), adjusting a pump rate of the drilling fluid
(28) through the passage (46, 56, 66, 76, 86, 96) and/or adjusting a rate of advancement
of the drillpipe (16), and
an operation unit (37) for use in drilling a borehole in ground (14) with a drillpipe
(16) including a plurality of buoyancy enhanced drillpipe modules (40, 50, 60, 70,
80, 90), wherein drilling fluid (28) is provided through the passage (46, 56, 66,
76, 86, 96) of the drillpipe (16) to a drilling head (22) and the drillpipe (16) is
immersed in debris laden drilling fluid (30) returning from a work face of the drilling
head (22),
wherein the operation unit (37) includes means for adjusting a density of the drilling
fluid (28) provided through the passage (46, 56, 66, 76, 86, 96), adjusting a pump
rate of the drilling fluid (28) through the passage (46, 56, 66, 76, 86, 96) and/or
adjusting a rate of advancement of the drillpipe (16), so to control the density of
the debris laden drilling fluid (30) for adjusting the effective weight of the drillpipe
(16),
wherein the operation unit (37) is arranged to operate the means in response to control
signals.
10. A method for drilling a borehole in ground, comprising the steps of:
providing (101) a plurality of buoyancy enhanced drillpipe modules forming a drillpipe
and a drilling head attached to the drillpipe,
advancing (102) the drillpipe with the drilling head being pushed and/or turned,
wherein drilling fluid is provided through the combined passages of the plurality
of drillpipe modules to the drilling head, the drilling fluid returning as debris
laden drilling fluid immersing the drillpipe,
characterized in that the buoyancy enhanced drillpipe modules are buoyancy enhanced drillpipe modules according
to any one of claims 1 to 7.
11. The method according to claim 10, further comprising:
adjusting (104) a density of the drilling fluid provided through the passage,
adjusting (104) a pump rate of the drilling fluid through the passage, and/or
adjusting (104) a rate of advancement of the drillpipe,
so to control the density of the debris laden drilling fluid for adjusting the effective
weight of the drillpipe.
12. A computer program with computer program code means for causing the system (1) according
to claim 9 to carry out the steps of the method according to claim 11, when the computer
program is run on the system (1).
1. Bohrgestängemodul (40, 50, 60, 70, 80, 90) mit verbessertem Auftrieb zum Bohren eines
Bohrlochs im Boden (14) und zum Eintauchen in Bohrklein führende Bohrflüssigkeit (30),
mit:
einem Rohr (41, 41', 51, 61, 71, 81, 81', 91),
einer ersten und einer zweiten Verbindungseinheit (45, 55, 73, 74, 83, 84, 93, 94),
die an jeweiligen Enden des Rohres fixiert sind, wobei die Verbindungseinheiten (45,
55, 73, 74, 83, 84, 93, 94) jeweils eine Verbindung des Bohrgestängemoduls (40, 50,
60, 70 80, 90) mit einem jeweiligen anderen Bohrgestängemodul (40, 50, 60, 70, 80,
90) erlauben, und
einem Durchgang (45, 56, 66, 76, 86, 96) für Bohrflüssigkeit (28),
wobei wenigstens in einem Teil des Raums zwischen der ersten und zweiten Verbindungseinheit
(45, 55, 73, 74, 83, 84, 93, 94) eine Auftriebseinheit (42, 52, 62, 72, 82, 92) vorgesehen
ist, und
wobei für eine Bohrflüssigkeit (28) mit einer Dichte im Bereich von 1,0 bis 1,1 kg/l
und/oder eine Bohrklein führende Flüssigkeit (30) mit einer Dichte im Bereich von
1,1 bis 1,5 kg/l die Auftriebseinheit (42, 52, 62, 72, 82, 92) eine geringere Dichte
als die Bohrflüssigkeit (28, 30) aufweist,
gekennzeichnet dadurch, dass das Bohrgestängemodul (40, 50, 60, 70, 80, 90) derart dimensioniert ist, das ein
Verhältnis zwischen einem Absolutwert einer effektiven Gewichtskraft pro Längeneinheit
des Bohrgestängemoduls (40, 50, 60, 70, 80, 90) in Bohrklein führender Bohrflüssigkeit
(30) mit Bohrflüssigkeit (28) in den Durchgang (46, 56, 66, 76, 86, 96) und einem
Gesamtquerschnittsbereich der Elemente des Bohrgestängemoduls (40, 50, 60, 70, 80,
90), die zum Übertragen einer axialen Kraft dienen, < 10.000 N/m3 ist.
2. Bohrgestängemodul (40, 50, 60, 70, 80, 90) mit verbessertem Auftrieb nach Anspruch
1, wobei die Elemente des Bohrgestängemodul (40, 50, 60, 70, 80, 90), die zum Übertragen
einer axialen Kraft dienen, in dem Bereich der Auftriebseinheit (42, 52, 62, 72, 82,
92) gemittelt über den Gesamtquerschnittsbereich eine Druckfestigkeit von 50 MPa oder
mehr aufweisen.
3. Bohrgestängemodul (40, 50, 60, 70, 80, 90) mit verbessertem Auftrieb nach einem der
vorstehenden Ansprüche, wobei die erste und zweite Verbindungseinheit (45, 55, 73,
74, 83, 84, 93, 94) derart angeordnet sind, dass, wenn das Bohrgestängemodul (40,
50, 60, 70, 80, 90) mit einem anderen Bohrgestängemodul (40, 50, 60, 70, 80, 90) verbunden
ist, die durch die Elemente des Bohrgestänges, die zum Übertragen einer axialen Kraft
dienen, übertragbare Kraft an jedem Punkt entlang der Länge des Bohrgestängemoduls
(40, 50, 60, 70, 80, 90), mit Ausnahme eines Schulterbereichs der Verbindungseinheiten
(45, 55, 73, 74, 83, 84, 93, 94) mit einer höheren Stärke, um nicht mehr als 20% variiert,
vorzugsweise um nicht mehr als 5%.
4. Bohrgestängemodul (40, 50, 60, 70, 80, 90) mit verbessertem Auftrieb nach einem der
vorstehenden Ansprüche, wobei
(i) das Rohr ein inneres Rohr (41, 81) ist und den Durchgang (46, 86) umschließt,
wobei das Bohrgestängemodul (40, 80) ferner ein äußeres Rohr (41', 81') aufweist,
das an der ersten und zweiten Verbindungseinheit (45, 83, 84) fixiert ist, wobei die
Auftriebseinheit (42, 82) in dem Raum zwischen dem äußeren Rohr (41', 81') und dem
inneren Rohr (41, 81) vorgesehen ist, wobei die Auftriebseinheit (42, 82) vorzugsweise
durch ein gasförmiges Material gebildet ist,
(ii) das Rohr (71) den Durchgang (76) umschließt und die Auftriebseinheit (72) wenigstens
teilweise das Rohr (71) umschließt, wobei die Auftriebseinheit (72) durch ein festes
Material gebildet ist,
(iii) das Rohr (91) die Auftriebseinheit (92) umschließt, die durch ein festes Material
gebildet ist, wobei die Auftriebseinheit (92) den Durchgang (96) umschließt, oder
(iv) die Auftriebseinheit durch ein festes Material gebildet ist und eine erste Einheit
und eine zweite Einheit bildet, wobei die erste Einheit den Durchgang umschließt und
die zweite Einheit das Rohr umschließt, das die erste Einheit umschließt.
5. Bohrgestängemodul (40, 80) mit verbessertem Auftrieb nach Aspekt (i) von Anspruch
4, wobei zwischen dem inneren Rohr (41, 81) und dem äußeren Rohr (41', 81') ein oder
mehrere Versteifungselemente (48) vorgesehen sind, wobei sich das eine oder die mehreren
Versteifungselemente (48) vorzugsweise entlang der gesamten Länge der Auftriebseinheit
(42, 82) und in radialer Richtung von dem inneren Rohr (41, 81) zu dem äußeren Rohr
(41', 81') erstrecken.
6. Bohrgestängemodul (40, 80) mit verbessertem Auftrieb nach Anspruch 5, wobei wenigstens
eines des einen oder der mehreren Versteifungselemente (48) angeordnet ist, das innere
Rohr (41, 81) und das äußere Rohr (41', 81') zusammen zu fixieren, und/oder das äußere
Rohr (41, 81) an den Verbindungseinheiten (45, 83, 84) lösbar fixiert ist.
7. Bohrgestängemodul (40, 50, 60, 70, 80, 90) mit verbessertem Auftrieb nach einem der
vorstehenden Ansprüche, wobei die Verbindungseinheiten (45, 55, 73, 74, 83, 84, 93,
94) zum Erlauben einer lösbaren Verbindung mit dem anderen Bohrgestängemodul (40,
50, 60, 70, 80, 90) ausgestaltet sind, wobei die lösbare Verbindung vorzugsweise eine
Schraubverbindung ist, wobei die Verbindungseinheiten (45, 55, 73, 74, 83, 84, 93,
94) besonders bevorzugt eine Nippelverbindungseinheit und eine Muffenverbindungseinheit
umfassen.
8. System (1) zum Bohren eines Bohrlochs im Boden (14), mit:
mehreren Bohrgestängemodulen (40, 50, 60, 70, 80, 90) mit verbessertem Auftrieb nach
einem der vorstehenden Ansprüche, und
einem Bohrkopf (22), der ausgestaltet ist, an einem Bohrgestänge (16) angebracht zu
werden, das von den mehreren Bohrgestängemodulen (40, 50, 60, 70, 80, 90) gebildet
ist.
9. System (1) nach Anspruch 8, ferner mit
einer Steuereinheit (36) zur Verwendung beim Bohren eines Bohrlochs im Boden (14)
mit einem Bohrgestänge (16) mit mehreren Bohrgestängemodulen (40, 50, 60, 70, 80,
90) mit verbessertem Auftrieb, wobei Bohrflüssigkeit (28) durch den Durchgang (46,
56, 66, 76, 86, 96) des Bohrgestänges (16) zu einem Bohrkopf (22) geführt wird und
das Bohrgestänge (16) in Bohrklein führender Bohrflüssigkeit (30) eingetaucht ist,
die von einer Ortsbrust des Bohrkopfes (22) zurückkehrt,
wobei die Steuereinheit (36) ausgestaltet ist, zum Ausgeben von Steuersignalen zum
Steuern der Dichte der Bohrklein führenden Bohrflüssigkeit (30) zum Justieren des
effektiven Gewichts des Bohrgestänges (16) durch Justieren einer Dichte der Bohrflüssigkeit
(28) die durch den Durchgang (46, 56, 66, 76, 86, 96) geführt wird, Justieren einer
Pumpleistung der Bohrflüssigkeit (28) durch den Durchgang (46, 56, 66, 76, 86, 96)
und/oder Justieren einer Vortriebsleistung des Bohrgestänges (16), und
einer Betriebseinheit (37) zur Verwendung beim Bohren eines Bohrlochs im Boden (14)
mit einem Bohrgestänge (16) mit mehreren Bohrgestängemodulen (40, 50, 60, 70, 80,
90) mit verbessertem Auftrieb, wobei Bohrflüssigkeit (28) durch den Durchgang (46,
56, 66, 76, 86, 96) des Bohrgestänges (16) einem Bohrkopf (22) zugeführt wird und
das Bohrgestänge (16) in Bohrklein führender Bohrflüssigkeit (30) eingetaucht ist,
die von einer Ortsbrust des Bohrkopfes (22) zurückkehrt,
wobei die Betriebseinheit (37) Mittel zum Justieren einer Dichte der Bohrflüssigkeit
(28) die durch den Durchgang (46, 56, 66, 76, 86, 96) bereitgestellt wird, Justieren
einer Pumpleistung der Bohrflüssigkeit (28) durch den Durchgang (46, 56, 66, 76, 86,
96) und/oder Justieren einer Vortriebsleistung des Bohrgestänges (16) aufweist, um
die Dichte der Bohrklein führenden Bohrflüssigkeit (30) zum Justieren des effektiven
Gewichts des Bohrgestänges (16) zu steuern,
wobei die Betriebseinheit (37) ausgestaltet ist, die Mittel in Antwort auf Steuersignale
zu betreiben.
10. Verfahren zum Bohren eines Bohrlochs im Boden, mit den Schritten:
Bereitstellen (101) mehrerer Bohrgestängemodule mit verbessertem Auftrieb, die ein
Bohrgestänge bilden, und eines Bohrkopfes, der an dem Bohrgestänge angebracht ist,
Vortreiben (102) des Bohrgestänges mit dem Bohrkopf, der geschoben und/oder gedreht
wird,
wobei Bohrflüssigkeit durch die kombinierten Durchgänge der mehreren Bohrgestängemodule
dem Bohrkopf zugeführt wird, wobei die Bohrflüssigkeit als Bohrklein führende Bohrflüssigkeit
zurückkehrt, in der das Bohrgestänge eingetaucht ist,
gekennzeichnet dadurch, dass die Bohrgestängemodule mit verbessertem Auftrieb Bohrgestängemodule mit verbessertem
Auftrieb nach einem der Ansprüche 1 bis 7 sind.
11. Verfahren nach Anspruch 10, ferner mit:
Justieren (104) einer Dichte der Bohrflüssigkeit, die durch den Durchgang bereitgestellt
wird,
Justieren (104) einer Pumpleistung der Bohrflüssigkeit durch den Durchgang, und/oder
Justieren (104) einer Vortriebsleistung des Bohrgestänges, um die Dichte der Bohrklein
führenden Bohrflüssigkeit zum Justieren des effektiven Gewichts des Bohrgestänges
zu steuern.
12. Computerprogramm mit Computerprogrammitteln zum Veranlassen des Systems (1) nach Anspruch
9 zum Ausführen der Schritte des Verfahrens nach Anspruch 11, wenn das Computerprogramm
auf dem System (1) ausgeführt wird.
1. Module de tube de forage (40, 50, 60, 70, 80, 90) à flottabilité améliorée pour forer
un trou de sonde dans le sol (14) et être immergé dans un fluide de forage (30) chargé
de débris, comprenant :
une conduite (41, 41', 51, 61, 71, 81, 81', 91),
une première et une deuxième unité de raccordement (45, 55, 73, 74, 83, 84, 93, 94)
fixées aux extrémités respectives de la conduite, les unités de raccordement (45,
55, 73, 74, 83, 84, 93, 94) permettant chacune un raccordement du module de tube de
forage (40, 50, 60, 70, 80, 90) respectivement avec un autre module de tube de forage
(40, 50, 60, 70, 80, 90), et
un passage (46, 56, 66, 76, 86, 96) pour un fluide de forage (28),
dans lequel une unité de flottabilité (42, 52, 62, 72, 82, 92) est prévue au moins
dans une partie de l'espace entre la première et la deuxième unité de raccordement
(45, 55, 73, 74, 83, 84, 93, 94), et
dans lequel, pour un fluide de forage (28) ayant une densité dans la plage de 1,0
à 1,1 kg/1 et/ou un fluide de forage (30) chargé de débris ayant une densité dans
la plage de 1,1 à 1,5 kg/l, l'unité de flottabilité (42, 52, 62, 72, 82, 92) a une
densité inférieure au fluide de forage (28, 30)
caractérisé en ce que le module de tube de forage (40, 50, 60, 70, 80, 90) est dimensionné de sorte qu'un
rapport entre une valeur absolue d'une force de poids effective par unité de longueur
du module de tube de forage (40, 50, 60, 70, 80, 90) dans le fluide de forage (30)
chargé de débris, avec un fluide de forage (28) dans le passage (46, 56, 66, 76, 86,
96), et une superficie de section transversale totale de ceux des éléments du module
de tube de forage (40, 50, 60, 70, 80, 90) en raison d'un transfert de force axiale
est < 10000 N/m3.
2. Module de tube de forage (40, 50, 60, 70, 80, 90) à flottabilité améliorée selon la
revendication 1, dans lequel, dans la superficie de l'unité de flottabilité (42, 52,
62, 72, 82, 92), les éléments du module de tube de forage (40, 50, 60, 70, 80, 90)
en raison d'un transfert de force axiale ont une résistance à la compression de 50
MPa ou plus, moyennée sur la superficie de section transversale totale.
3. Module de tube de forage (40, 50, 60, 70, 80, 90) à flottabilité améliorée selon l'une
quelconque des revendications précédentes, dans lequel la première et la deuxième
unité de raccordement (45, 55, 73, 74, 83, 84, 93, 94) sont agencées de sorte que,
lorsque le module de tube de forage (40, 50, 60, 70, 80, 90) est raccordé à un autre
module de tube de forage (40, 50, 60, 70, 80, 90), la force axiale transférable par
les éléments de la tige de forage en raison d'un transfert de force axiale en chaque
point sur la longueur du module de tube de forage (40, 50, 60, 70, 80, 90), à l'exception
d'une portion d'épaulement des unités de raccordement (45, 55, 73, 74, 83, 84, 93,
94) ayant une résistance plus élevée, ne varie pas de plus de 20 %, de préférence
de pas plus de 5 %.
4. Module de tube de forage (40, 50, 60, 70, 80, 90) à flottabilité améliorée selon l'une
quelconque des revendications précédentes, dans lequel
(i) la conduite est une conduite intérieure (41, 81) et entoure le passage (46, 86),
dans lequel le module de tube de forage (40, 80) comporte en outre une conduite extérieure
(41', 81') fixée à la première et à la deuxième unité de raccordement (45, 83, 84),
dans lequel l'unité de flottabilité (42, 82) est prévue dans l'espace entre la conduite
extérieure (41', 81') et la conduite intérieure (41, 81), dans lequel l'unité de flottabilité
(42, 82) est de préférence formée par un matériau gazeux,
(ii) la conduite (71) entoure le passage (76) et l'unité de flottabilité (72) entoure
au moins partiellement la conduite (71), dans lequel l'unité de flottabilité (72)
est formée par un matériau solide,
(iii) la conduite (91) entoure l'unité de flottabilité (92) formée par un matériau
solide, dans lequel l'unité de flottabilité (92) entoure le passage (96), ou
(iv) l'unité de flottabilité est formée par un matériau solide et comporte une première
unité et une deuxième unité, dans lequel la première unité entoure le passage et la
deuxième unité entoure la conduite, qui entoure la première unité.
5. Module de tube de forage à flottabilité améliorée (40, 80) selon l'aspect (i) de la
revendication 4, dans lequel un ou plusieurs raidisseurs (48) sont prévus entre la
conduite intérieure (41, 81) et la conduite extérieure (41', 81'), dans lequel les
un ou plusieurs raidisseurs (48) s'étendent de préférence sur toute la longueur de
l'unité de flottabilité (42, 82) et dans la direction radiale de la conduite intérieure
(41, 81) à la conduite extérieure (41', 81').
6. Module de tube de forage à flottabilité améliorée (40, 80) selon la revendication
5, dans lequel au moins l'un des un ou plusieurs raidisseurs (48) est agencé pour
fixer ensemble la conduite intérieure (41, 81) et la conduite extérieure (41', 81')
et/ou la conduite extérieure (41, 81) est fixée de manière amovible aux unités de
raccordement (45, 83, 84).
7. Module de tube de forage (40, 50, 60, 70, 80, 90) à flottabilité améliorée selon l'une
quelconque des revendications précédentes, dans lequel les unités de raccordement
(45, 55, 73, 74, 83, 84, 93, 94) sont agencées pour permettre un raccordement amovible
avec l'autre module de tube de forage (40, 50, 60, 70, 80, 90), dans lequel le raccordement
amovible est de préférence un raccordement vissé, dans lequel les unités de raccordement
(45, 55, 73, 74, 83, 84, 93, 94) comportent de manière davantage préférée une unité
de raccordement de broche et une unité de raccordement de boîte.
8. Système (1) pour forer un trou de sonde dans le sol (14), comprenant :
une pluralité de modules de tubes de forage (40, 50, 60, 70, 80, 90) à flottabilité
améliorée selon l'une quelconque des revendications précédentes, et
une tête de forage (22) agencée pour être attachée à une tige de forage (16) formée
par la pluralité de modules de tubes de forage (40, 50, 60, 70, 80, 90).
9. Système (1) selon la revendication 8, comprenant en outre
une unité de commande (36) destinée à être utilisée pour forer un trou de sonde dans
le sol (14) avec une tige de forage (16) comportant une pluralité de modules de tubes
de forage (40, 50, 60, 70, 80, 90) à flottabilité améliorée, dans lequel un fluide
de forage (28) est fourni à une tête de forage (22) à travers le passage (46, 56,
66, 76, 86, 96) de la tige de forage (16) et la tige de forage (16) est immergée dans
le fluide de forage (30) chargé de débris revenant d'une face de travail de la tête
de forage (22),
dans lequel l'unité de commande (36) est agencée pour émettre des signaux de commande
pour commander la densité du fluide de forage (30) chargé de débris pour régler le
poids effectif de la tige de forage (16) en réglant une densité du fluide de forage
(28) fourni à travers le passage (46, 56, 66, 76, 86, 96), régler un régime de pompage
du fluide de forage (28) à travers le passage (46, 56, 66, 76, 86, 96) et/ou régler
un régime d'avancement de la tige de forage (16), et
une unité d'actionnement (37) destinée à être utilisée pour forer un trou de sonde
dans le sol (14) avec une tige de forage (16) comportant une pluralité de modules
de tubes de forage (40, 50, 60, 70, 80, 90) à flottabilité améliorée, dans lequel
un fluide de forage (28) est fourni à une tête de forage (22) à travers le passage
(46, 56, 66, 76, 86, 96) de la tige de forage (16) et la tige de forage (16) est immergée
dans le fluide de forage (30) chargé de débris revenant d'une face de travail de la
tête de forage (22),
dans lequel l'unité d'actionnement (37) comporte des moyens pour régler une densité
du fluide de forage (28) fourni à travers le passage (46, 56, 66, 76, 86, 96), régler
un régime de pompage du fluide de forage (28) à travers le passage (46, 56, 66, 76,
86, 96) et/ou régler un régime d'avancement de la tige de forage (16), de sorte à
commander la densité du fluide de forage (30) chargé de débris pour régler le poids
effectif de la tige de forage (16),
dans lequel l'unité d'actionnement (37) est agencée pour actionner les moyens en réponse
à des signaux de commande.
10. Procédé de forage d'un trou de sonde dans le sol, comprenant les étapes consistant
à :
fournir (101) une pluralité de modules de tubes de forage à flottabilité améliorée
formant une tige de forage et une tête de forage attachée à la tige de forage,
faire avancer (102) la tige de forage avec la tête de forage qui est poussée et/ou
tournée,
dans lequel un fluide de forage est fourni à la tête de forage à travers les passages
combinés de la pluralité de modules de tubes de forage, le fluide de forage revenant
sous forme de fluide de forage chargé de débris immergeant la tige de forage,
caractérisé en ce que les modules de tubes de forage à flottabilité améliorée sont des modules de tubes
de forage à flottabilité améliorée selon l'une quelconque des revendications 1 à 7.
11. Procédé selon la revendication 10, comprenant en outre :
le réglage (104) d'une densité du fluide de forage fourni à travers le passage,
le réglage (104) d'un régime de pompage du fluide de forage à travers le passage,
et/ou
le réglage (104) d'un régime d'avancement de la tige de forage,
de sorte à commander la densité du fluide de forage chargé de débris pour régler le
poids effectif de la tige de forage.
12. Programme informatique avec des moyens de code de programme informatique pour amener
le système (1) selon la revendication 9 à effectuer les étapes du procédé selon la
revendication 11, lorsque le programme informatique est exécuté sur le système (1).