ABSTRACT
[0001] The present invention discloses a flexible transparent conductive electrode. The
flexible transparent conductive electrode is made of transparent flexible base materials
and a transparent flexible substrate coated with a silver nanowire coating. The process
of fabricating the flexible transparent conductive electrode comprises a few steps
as followings: adding silver nanowire aqueous dispersion, aqueous acrylic resin, triethylenetetramine,
1-2 parts of p-methylsulfonyl toluene, 0.1-0.3 pars of hydrogenated castor oil and
a mixture solvent into a vacuum mixer where evenly mixed, vacuum defoamed, and thus
the coating is prepared. The concentration of the silver nanowire in the coating is
2-10mg/mL and the mixture solvents used are the mixture of alcohol and ketone. The
film is coated with above coating and moved into a vacuum dryer to be dried at 150°C
for 3-10min so that the solvents in the coating are completely volatilized and the
flexible transparent conductive electrode is obtained. The flexible transparent conductive
electrode of the invention has characteristics of the lower conductive resistivity,
less stacks of silver nanowires, higher uniformity of conductivity and better optical
transmittance comparison with the existing products.
FLEXIBLE TRANSPARENT CONDUCTIVE ELECTRODE
FIELD OF THE INVENTION
[0002] The present invention relates to a technology of silver nanowires, particularly relates
to a flexible transparent conductive electrode. insert content of description insertion
page 1a here
BACKGROUND OF THE INVENTION
[0003] US 2015/166798 A1 discloses a transparent conductive film including metal nanowires and a colored compound
adsorbed by the metal nanowires. The metal nanowires are a material which absorbs
light in the visible light region, and also each has a functional group which is bound
to a metal constituting the metal nanowire.
[0004] Metal oxides, especially ITO, has the characteristics of good optical transmittance
in visible region and low resistivity which have been hot spots in researches and
applications of transparent conductive electrodes in the past 5 decades. However,
metal oxides have the disadvantages as limited conductivity, brittle and hard to deform.
Concurrently, scarce resources and risen prices are unable to meet the requirements
for developing the modern optoelectronic devices. Two dimensional micro-nano new materials
and structured thin film electrodes are new fields of transparent conductive electrodes
with the development of micro nanotechnology in recent years, such as conductive thin
film of polymers, carbon nanotube film, graphene film and metal nanowire film. Unique
morphology contributes great flexibility and electron mobility to graphene film, but
large scale of production is not mature; uniform dispersion and resistance between
carbon tubes limit the inner surface conductivity of carbon tubes film which need
a little bit large aspect ratio. Transparent conductive film has advantages of not
only great conductivity but also good optical transmission while nanometallic silver
wire electrode's are excellent. Micro-nano silver wires can be used as electrode materials
with less energy consumption (compared with electrode of oxide thin film) since silver
is an electric conductor with great electrical conductivity. At the same time, micro
nano structure of metal with plasma effect increases transmittance while diameters
of micro silver nanowires' particles are smaller than the incident wavelength of visible
light, and perfect photoelectric properties are achieved for electrodes. Simultaneously,
micro silver nanowire electrode is benefit for flexible industries and large scale
productions with lower cost. Therefore, the micro silver nanowire electrode will be
a favorable alternative to ITO transparent conductive electrode. The additives for
preparing coating fluid of micro silver nanowires determines performances of the electrode.
Therefore, various additives are used to prepare different coating fluid for different
properties in order to get better performances. Properties as conductivity and flexural
endurance are still to be improved by using current formula. To overcome the problems
and go on improving in the prior art are directions for those skilled in this field.
SUMMARY OF THE INVENTION
[0005] The object of the present invention is to provide a flexible transparent conductive
electrode, in which silver nanowire coating is used. It can not only reduce the content
of silver nanowires, effectively disperse silver nanowires, reduce the conductive
resistivity, but also improve the bending resistance to be more than 5000 bending
times .
[0006] To achieve the above purpose, the present invention is defined in independent claim
1. The dependent claims define embodiments of the invention. In other words, the technical
scheme adopted by the present invention is a flexible transparent conductive electrode
consisting of a transparent flexible substrate and a silver nanowire coating, which
the coating is coated on the surface of the transparent flexible substrate and the
thickness of the silver nanowire coating is 20-100 microns after dried. The silver
nanowire coating comprises following compounds by weight: 100 parts of silver nanowire
aqueous dispersion, 5-8 parts of aqueous acrylic resin, 2-5 parts of triethylenetetramine,
1-2 parts of p-methylsulfonyl toluene, 0.2-0.5 parts of polyvinyl alcohol aqueous
solution, 0.2-0.4 parts of alkanolamide, 0.3-0.5 parts of isopropoxyethanol, 0.1-0.3
parts of hydrogenated castor oil, 30-40 parts of mixture solvents.
[0007] The process of fabricating the flexible transparent conductive electrode comprises
a few steps as followings:
The first step: 100 parts of silver nanowire aqueous dispersion, 5-8 parts of aqueous
acrylic resin, 2-5 parts of triethylenetetramine, 0.1-0.3 parts of hydrogenated castor
oil and 30-40 parts of mixture slovents are all added into a vacuum mixer where evenly
mixed, vacuum defoamed, and then the mixture solution is prepared, in which the concentration
of the silver nanowire in the aqueous dispersion is 2-10mg/mL and the mixture solvent
is a mixture of alcohol solvents and ketone solvents;
The second step: 1-2 parts of p-methylsulfonyl toluene and 0.2-0.5 parts of polyvinyl
alcohol aqueous solution are added into the mixture solution during the process of
stirring. The water-soluble resin fluid is water-soluble polyester resin fluid after
evenly mixed for 10min stirring;
The third step: 0.2-0.4 parts of alkanolamide and 0.3-0.5 parts of isopropoxyethanol
are added into a vacuum mixer to be continually stirred and evenly mixed. The coating
based on the silver nanowires is prepared ;
The fourth step: Transparent flexible substrate is PET film which uniformly coated
with the silver nanowire coating by using miceo gravure. The distances between the
bars are 15µm and the rolling speed for coating is 80cm/min, a uniform wet film is
formed on the surface of the transparent flexible substrate;
The fifth step: The wet film coated with above coating is completely volatilized after
dried in a vacuum dryer at 150 °C for 3-10min,and the flexible transparent conductive
electrode is obtained.
[0008] Further improvements of the invention are as follows:
- 1. In according with the invention, the silver nanowires in the silver nanowire aqueous
dispersion has the diameters of 20-150nm and lengths of 50-500mm.
- 2. In according with the invention, the alcohols is one of methanol, ethanol and isopropanol.
- 3. In according with the invention, the ketones solvent is one of acetone, butanone,
cyclohexanone and isophorone.
- 4. In according with the invention, the mixture solution is a mixture of alcohols
and ketones with 10:(2-4) by weight.
[0009] The invention has the following advantages and characteristics in comparison with
the prior art:
The flexible transparent conductive electrode of the invention contains 100 parts
of silver nanowire aqueous dispersion, 5-8 parts of water-borne acrylic resin, 0.2-0.5
parts of polyvinyl alcohol aqueous solution, 0.2-0.4 parts of alkyholamide, 0.3-0.5
parts of isopropoxyethylanol as a primary formula, and further adds with 2-5 parts
of triethylenetetramine and 1-2 parts of p-methylsulfonyl toluene which reduces the
content of silver nanowires, effectively disperses the silver nanowires, reduces the
resistivity and improve the bending resistance to be more than 5000 bending times.
Furthermore, the formula added with 0.3-0.5 parts of isopropoxyethanol and a mixture
solvent of alcohols and ketones with 10: (2-4) by weight, which has advantages of
effectively adjusting viscosity and drying rate of the coating further avoiding stacks
of silver nanowires, ensuring uniformity of conductivity and improving transmittance.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[0010] The following is detailed description of certain embodiments of the present invention.
formulations 1-4: a flexible transparent conductive electrode is comprised of a transparent
flexible substrate coated with a silver nanowires coating at a thickness of 20-100µm
after the silver nanowire coating is dried. The silver nanowire coating is consist
of the following ingredients by weight as shown in Table 1:
Table 1
Ingredients |
formulation 1 (parts) |
formulation 2 (parts) |
formulation 3 (parts) |
formulation 4 (parts) |
Silver Nanowire Aqueous Dispersion |
100 |
100 |
100 |
100 |
aqueous Acrylic Resin |
6 |
5 |
6.2 |
7 |
Triethylenetetramine |
3 |
2.2 |
5 |
4 |
p-methylsulfonyl toluene |
1. 8 |
1 |
1.5 |
1.2 |
PVA Aqueous Solution |
0.24 |
0.4 |
0. 3 |
0. 45 |
Alkanolamide |
0.3 |
0.35 |
0.4 |
0. 26 |
Isopropoxyethanol |
0.4 |
0. 5 |
0.35 |
0.42 |
Hydrogenated Castor Oil |
0. 15 |
0. 25 |
0.1 |
0.2 |
Mixture Solvents |
35 |
32 |
38 |
35 |
[0011] In the formulation 1, wherein the mixture solution is a mixture of methanol and cyclohexanone
of 10:2 by weight; In the formulation 2, wherein the mixture solution a mixture of
isopropanol and butanone of 10:2.5 by weight; In the formulation 3, wherein the mixture
solution is a mixture of ethanol and cyclohexanone of 10:3 by weight in; In the formulation
4, wherein the mixture solution is a mixture of methanol and isophorone of 10:3.8
by weight.
[0012] The process of fabricating the flexible transparent conductive electrode comprises
a few steps as followings:
The first step: 100 parts of silver nanowire aqueous dispersion, 5-8 parts of aqueous
acrylic resin, 2-5 parts of triethylenetetramine, 0.1-0.3 parts of hydrogenated castor
oil and 30-40 parts of mixture slovents are all added into a vacuum mixer where evenly
mixed, vacuum defoamed, and then the mixture solution is prepared, in which the concentration
of the silver nanowire in the aqueous dispersion is 2-10mg/mL and the mixture solvent
is a mixture of alcohol solvent and ketone solvent.
The second step: 1-2 parts of p-methylsulfonyl toluene and 0.2-0.5 parts of polyvinyl
alcohol aqueous solution are added into the mixture solution during the process of
stirring. The water-soluble resin fluid is water-soluble polyester resin fluid after
evenly mixed for 10min stirring;
The third step: 0.2-0.4 parts of alkanolamide and 0.3-0.5 parts of isopropoxyethanol
are added into a vacuum mixer to be continually stirred and evenly mixed. The coating
based on the silver nanowires is prepared;
The fourth step: Transparent flexible substrate is PET film which uniformly coated
with the silver nanowire coating by using miceo gravure. The distances between the
bars are 15µm and the rolling speed for coating is 80cm/min, a uniform wet film is
formed on the surface of the transparent flexible substrate;
The fifth step: The wet film coated with above coating is completely volatilized after
dried in a vacuum dryer at 150 °C for 3-10min,and the flexible transparent conductive
electrode is obtained.
[0013] The silver nanowires in the above coating have the diameters of 20-150nm and lengths
of 50-500mm:
The tested results of the flexible transparent conductive electrode in the Embodiment
1-4 are shown in Table 2:
Table 2
|
Embodiment 1 |
Embodiment 2 |
Embodiment 3 |
Embodiment 4 |
Resistance(Ω/square) (Four-probe Resistance Tester) |
31 |
30 |
30 |
32 |
Adhesion(Vertical Pulled with 3M600) |
No shedding |
No shedding |
No shedding |
No shedding |
Transmittance(%)(WG W Optical Haze Meter) |
92 |
92 |
91 |
92 |
Haze(WGW Optical Haze Meter) |
1. 2 |
1. 3 |
1. 2 |
1. 3 |
Flexural Endurance(time) |
>5000 |
>5000 |
>5000 |
>5000 |
[0014] The characteristics of the flexible transparent electrode which is provided in the
present invention have thus been shown in Table 2 to be achieved in reducing the content
of silver nanowires, effectively dispersing the silver nanowires, reducing resistivity
and improve the bending resistance to be more than 5000 bending times; and effectively
adjusting the viscosity and drying rate of coating fluid, further avoiding stacks
of the silver nanowires, ensuring uniformity of the conductivity and improving transmittance.
[0015] The embodiments are only to illustrate the technical conception and characteristics
of the present invention, the purpose of which is to enable people familiar with the
technology to understand the contents of the present invention and to implement it,
and not to limit the scope of protection of the present invention as defined by the
claims.
1. A flexible transparent conductive electrode is
characterized in that the flexible transparent conductive electrode comprises a transparent flexible substrate
and a silver nanowire coating which is coated on the surface of the substrate; The
coating on the surface of the transparent flexible substrate is dried in a oven and
the thickness of the silver nanowire coating is 20-100µm after dried. The silver nanowires
coating comprises following ingredients by weight: 100 parts of silver nanowire aqueous
dispersion, 5-8 parts of aqueous acrylic resin, 2-5 parts of triethylenetetramine,
1-2 parts of p-methylsulfonyl toluene, 0.2-0.5 parts of polyvinyl alcohol (PVA) aqueous
solution,0.2-0.4 parts of alkanolamide, 0.3-0.5 parts of isopropoxyethanol, 0.1-0.3
parts of hydrogenated castor oil and 30-40 parts of a mixture of solvents;
the process of fabricating the flexible transparent conductive electrode comprises
following steps:
step 1, 100 parts of silver nanowire aqueous dispersion, 5-8 parts of aqueous acrylic
resin, 2-5 parts of triethylenetetramine, 0.1-0.3 parts of hydrogenated castor oil
and 30-40 parts of a mixture of slovents are all added into a vacuum mixer where evenly
mixed, vacuum defoamed, and then the mixture solution is prepared, in which the concentration
of the silver nanowire in the aqueous dispersion is 2-10mg/mL and the mixture solvent
is a mixture of alcohol solvent and ketone solvent;
step 2, 1-2 parts of p-methylsulfonyl toluene and 0.2-0.5 parts of polyvinyl alcohol
aqueous solution are added into the mixture solution during the process of stirring.
The water-soluble resin fluid is water-soluble polyester resin fluid after evenly
mixed for 10min stirring;
step 3, 0.2-0.4 parts of alkanolamide and 0.3-0.5 parts of isopropoxyethanol are added
into a vacuum mixer to be continually stirred and evenly mixed. The coating based
on the silver nanowires is prepared ;
step 4,Transparent flexible substrate is PET film which uniformly coated with the
silver nanowire coating by using a method of wire rod rolling. The distances between
the wire and rod are 15µm and the rolling speed for coating is 80cm/min, a uniform
wet film is formed on the surface of the transparent flexible substrate;
step 5,The wet film coated with above coating is completely volatilized after dried
in a vacuum dryer at 150 °C for 3-10min,and the flexible transparent conductive electrode
is obtained.
2. The flexible conductive film of claim 1, wherein: the silver nanowires of the silver
nanowire aqueous dispersion with diameters of 20-150nm and lengths of 50-500mm.
3. The flexible conductive film of claim 1, wherein: the alcohol solvent is one of methanol,
ethanol and isopropanol.
4. The flexible conductive film of claim 1, wherein: the ketone solvent is one of acetone,
butanone, cyclohexanone and isophorone.
5. The flexible conductive film of claim 1, wherein: the mixture solvent is a mixture
of alcohol solvent and ketone solvent of 10:(2-4) by weight.
1. Flexible transparente leitfähige Elektrode,
dadurch gekennzeichnet, dass die flexible transparente leitfähige Elektrode ein transparentes flexibles Substrat
und eine Silbernanodrahtbeschichtung umfasst, die auf die Oberfläche des Substrats
beschichtet ist, wobei die Beschichtung auf der Oberfläche des transparenten flexiblen
Substrats in einem Ofen getrocknet ist, und die Dicke der Silbernanodrahtbeschichtung
nach dem Trocknen 20 bis 100 µm ist; wobei die Silbernanodrahtbeschichtung folgende
Inhaltsstoffe nach Gewicht umfasst: 100 Teile von wässriger Silbernanodrahtdispersion,
5-8 Teile von wässrigem Acrylharz, 2-5 Teile von Triethylentetramin, 1-2 Teile von
p-Methylsulfonyltoluol, 0,2-0,5 Teile von wässriger Polyinylalkohol-(PVA-) Lösung,
0,2-0,4 Teile von Alkanolamid, 0,3-0,5 Teile von Isopropoxyethanol, 0,1-0,3 Teile
von hydriertem Castoröl, und 30-40 Teile von einer Mischung von Lösungsmitteln;
wobei der Prozess des Herstellens der flexiblen transparenten leitfähigen Elektrode
folgende Schritte umfasst:
Schritt 1: 100 Teile von wässriger Silbernanodrahtdispersion, 5-8 Teile von wässrigem
Acrylharz, 2-5 Teile von Triethylentetramin, 0,1-0,3 Teile von hydriertem Castoröl
und 30-40 Teile von einer Mischung von Lösungsmitteln werden alle in einen Vakuummischer
hinzugegeben, dort gleichmäßig gemischt, vakuumentschäumt, und dann wird die Mischlösung
präpariert, wobei die Konzentration des Silbernanodrahts in der wässrigen Dispersion
2-10 mg/mL ist, und die Mischlösung eine Mischung von Alkohollösungsmittel und Ketonlösungsmittel
ist;
Schritt 2: 1-2 Teile von p-Methylsulfonyltoluol und 0,2-0,5 Teile von wässriger Polyvinylalkohollösung
werden in die Mischlösung während des Prozesses des Rührens hinzugefügt; wobei das
wasserlösliche Harzfluid ein wasserlösliches Polyesterharzfluid nach gleichmäßiger
Mischung während 10 min Rührens ist;
Schritt 3: 0,2-0,4 Teile von Alkanolamid und 0,3-0,5 Teile von Isopropoxyethanol werden
in einen Vakuummischer zum kontinuierlichen Rühren und gleichmäßigen Mischen hinzugefügt,
wobei die Beschichtung basierend auf den Silbernanodrähten präpariert wird;
Schritt 4: ein transparentes flexibles Substrat ist ein PET-Film, der gleichmäßig
mit der Silbernanodrahtbeschichtung unter Verwendung eines Walzdrahtwalzverfahrens
beschichtet wird, wobei die Abstände zwischen dem Draht und dem Stab 15 µm sind, und
die Walzgeschwindigkeit zur Beschichtung 80 cm/min ist, wobei ein gleichmäßiger Nassfilm
auf der Oberfläche des transparenten flexiblen Substrats gebildet wird;
Schritt 5: der Nassfilm, beschichtet mit der obigen Beschichtung, wird nach einem
Trocknen in einem Vakuumtrockner bei 150° C für 3-10 min vollständig volatilisiert,
und die flexible transparente leitfähige Elektrode wird erhalten.
2. Flexibler leitfähiger Film nach Anspruch 1, wobei die Silbernanodrähte der wässrigen
Silbernanodrahtdispersion Durchmesser von 20-150 nm und Längen von 50-500 mm haben.
3. Flexibler leitfähiger Film nach Anspruch 1, wobei das Alkohollösungsmittel Methanol,
Ethanol oder Isopropanol ist.
4. Flexibler leitfähiger Film nach Anspruch 1, wobei das Ketonlösungsmittel Aceton, Butanon,
Cyclohexanon oder Isophoron ist.
5. Flexibler leitfähiger Film nach Anspruch 1, wobei die Mischlösung eine Mischung von
Alkohollösungsmittel und Ketonlösungsmittel mit 10:(2-4) nach Gewicht ist.
1. Electrode conductrice transparente flexible,
caractérisée en ce que l'électrode conductrice transparente flexible comprend un substrat flexible transparent
et un revêtement de nanofils d'argent qui est appliqué sur la surface du substrat;
le revêtement sur la surface du substrat flexible transparent est séché dans un four
et l'épaisseur du revêtement de nanofils d'argent est de 20 à 100 µm après séchage.
Le revêtement de nanofils d'argent comprend les ingrédients suivants en poids: 100
parties de dispersion aqueuse de nanofils d'argent, 5-8 parties de résine acrylique
aqueuse, 2-5 parties de triéthylènetétramine, 1-2 parties de p-méthyl-sulfonyltoluène,
0,2-0,5 partie de solution aqueuse d'alcool polyvinylique (PVA), 0,2-0,4 partie d'alcanolamide,
0,3-0,5 partie d'isopropoxyéthanol, 0,1-0,3 partie d'huile de ricin hydrogénée et
30-40 parties d'un mélange de solvants;
le procédé de fabrication de l'électrode conductrice transparente flexible comprend
les étapes suivantes:
étape 1 - 100 parties de dispersion aqueuse de nanofils d'argent, 5 à 8 parties de
résine acrylique aqueuse, 2 à 5 parties de triéthylènetétramine, 0,1 à 0,3 partie
d'huile de ricin hydrogénée et 30 à 40 parties d'un mélange de solvants sont toutes
ajoutées dans un mélangeur sous vide où elles sont mélangées uniform-mément, démoussées
sous vide, puis la solution de mélange est préparée, dans laquelle la concentration
de nanofils d'argent dans la dispersion aqueuse est de 2 à 10 mg/ml et le solvant
du mélange est un mélange de solvant alcoolique et de solvant cétonique;
étape 2 - 1-2 parties de p-méthylsulfonyl toluène et 0,2-0,5 parties de solution aqueuse
d'alcool polyvinylique sont ajoutées dans la solution de mélange pendant le processus
d'agitation. Le fluide de résine soluble dans l'eau est un fluide de résine polyester
soluble dans l'eau après avoir été mélangé uniformément pendant 10 minutes d'agitation;
étape 3 - 0,2-0,4 parties d'alcanolamide et 0,3-0,5 parties d'isopropoxyéthanol sont
ajoutées dans un mélangeur sous vide pour être continuellement agitées et mélangées
uniformément. Le revêtement à base de nanofils d'argent est préparé;
étape 4 - le substrat flexible transparent est un film PET qui est uniformément revêtu
du revêtement de nanofils d'argent en utilisant un procédé de laminage de tige de
fil. Les distances entre le fil et la tige sont de 15 µmi et la vitesse de roulement pour le revêtement est de 80 cm/min, un film humide uniforme
est formé sur la surface du substrat flexible transparent;
étape 5 - le film humide revêtu de l'enduit ci-dessus est complètement volatilisé
après avoir été séché dans un séchoir à vide à 150° C pendant 3-10 min, et l'électrode
conductrice transparente flexible est obtenue.
2. Film conducteur flexible selon la revendication 1, dans lequel : les nanofils d'argent
de la dispersion aqueuse de nanofils d'argent ont des diamètres de 20-150 nm et des
longueurs de 50-500 mm.
3. Film conducteur flexible selon la revendication 1, dans lequel : le solvant alcoolique
est l'un des méthanol, éthanol et isopropanol.
4. Film conducteur flexible selon la revendication 1, dans lequel : le solvant cétonique
est l'un des solvants suivants : acétone, butanone, cyclohexanone et isophorone.
5. Film conducteur flexible selon la revendication 1, dans lequel : le solvant du mélange
est un mélange de solvant alcoolique et de solvant cétonique de 10 :(2-4) en poids.