FIELD OF THE TECHNOLOGY
[0001] The present invention relates to lighting technology field, with particular emphasis
on a tubular LED light fixture.
BACKGROUND OF THE INVENTION
[0002] Under the background of energy conservation and environmental protection, LED lamps
are more and more applied in the field of home and commercial lighting due to their
high light emitting efficiency and good focusing performance.
[0003] At present, LED lamps on the market mainly use point source illumination. This type
of illumination has problems of glare and reflection glare. In order to solve the
above problems, researchers have tried to replace the point source with linear light
source, generally adopting a method of adding a diffusion lamp cover, the diffusion
lamp cover diffuses light from the LED, but because the diffusion direction is not
single, the linear light source is imaged and blurred, and the formed linear light
source is directly used to illuminate the illuminated surface, the light distribution
effect is not good, and the energy attenuation is more, so that the formation linear
light source is dim and cluttered, and the illumination that is ultimately projected
onto the illuminated surface is uneven, resulting in poor illumination.
[0004] At the same time, the existing improved linear light source lamps are either bulky,
or in order to achieve the linear light source effect, the LED lamps used are more
numerous, which increases the production cost. A LED fixture according to the prior
art can be found in document
US 2012/057353 A1.
BRIEF SUMMARY OF THE INVENTION
[0005] In view of this, the present invention provides a tubular LED light fixture to solve
the above technical problems.
[0006] A tubular LED light fixture comprises:
a lamp holder;
printed circuit board, disposed on the lamp holder;
a plurality of point light sources, disposed on the light source mounting surface
of the printed circuit board along a length direction of the tubular LED light fixture;
a lens, disposed on the lamp holder in a light-emitting direction of the point light
source for adjusting light distribution of the point light source on a plane perpendicular
to the length direction of the tubular LED light fixture;
further comprising:
a strip-shaped convex lens array, disposed on the lamp holder and located between
the lens and the printed circuit board and arranged along the length direction of
the tubular LED light fixture for converting each point light source into a plurality
of consecutive sub point light sources, and the sub point light source converted by
the adjacent point light source is connected or overlapped.
[0007] For ease of manufacture and for consideration of size, the strip-shaped convex lens
array is a positive cylindrical lens microarray arranged on an optical thin film.
[0008] For ease of manufacture, the strip-shaped convex lens array is a positive cylindrical
lens microarray array.
[0009] The strip-shaped convex lens array being positive cylindrical lens array, the structure
is flat, in order to adapt to different lamp structure, advantageously, the strip-shaped
convex lens array is a curved surface that is curved in the length direction of the
strip-shaped convex lens. The strip-shaped convex lens array can be used directly
as a lamp shade.
[0010] In order to further improve the utilization of light, advantageously, on the plane
perpendicular to the length direction of the LED light fixture, the reflection wall
is provided on both sides of the point light source for reflecting the lateral light
from the point light source to the light incident plane of the strip-shaped convex
lens array.
[0011] To direct as much deflected light as possible to the strip-shaped convex lens array,
advantageously, the reflection wall and the mounting surface of the point light source
is arranged at an obtuse angle.
[0012] The shape of the lens can be designed according to the light output effect. In order
to improve the uniformity of the light output, advantageously, the lens is a polarizing
lens.
[0013] For manufacturing and design convenience, advantageously, the lens is a symmetrical
lens.
[0014] In order to make the structure more compact, easy to manufacture and install, advantageously,
the lamp holder comprises two end seats, a strip base and a strip bed plate, and the
lens, the reflection wall and the strip bed plate are integrally formed and enclosed
to form an mounting cavity.
[0015] In order to make the structure more compact, easy to manufacture and install, advantageously,
the lamp holder comprises two end seats, a strip base and a strip bed plate, the reflection
wall and the strip bed plate are integrally formed, and the inner side of the top
of the two reflection walls is provided with a first mounting groove for fixing the
strip-shaped convex lens array, and the outer side of the top of the two reflection
walls is provided with a buckle structure for fixing the lens, and the bottom of the
strip bed plate is provided with a second mounting groove for fixing the printed circuit
board.
[0016] For manufacturing and installation , advantageously, the lamp holder comprises:
end seats;
a strip base, two ends of which are connected with the end seats to form a first accommodating
cavity;
a strip bed plate, disposed at a bottom of the first accommodating cavity; and the
strip bed plate is connected with the end seats to form a second accommodating cavity
for accommodating the printed circuit board and the reflection wall.
[0017] For manufacturing and installation, advantageously, the inner side of the upper end
of the strip base is provided with a first mounting groove, and the outer side of
the reflection wall is provided with a convex edge that matches with the first mounting
groove.
[0018] For manufacturing and installation, advantageously, the strip-shaped convex lens
array is disposed on a top end of the reflection wall.
[0019] For manufacturing and installation, advantageously, the lens fits with the strip
base by clasping.
[0020] Technical effects of the present invention:
[0021] The tubular LED light fixture of the present invention adopts a strip-shaped convex
lens array which forms linear light source only by diffusing light from point light
source only in the length direction of the light fixture, then it can well prevent
the light from diffusing in multiple directions, so that the linear light source is
purified, and the arrangement of the lens can perform light distribution on the linear
light source in the other direction, thereby reducing the energy attenuation effect,
and the secondary light distribution effect of the lens can realize uniform distribution
of light as needed, so that the uniformity of illumination tends to 1, thereby improving
the light-sweeping effect. The setting of the reflection wall can further improve
the light utilization and better ensure the lighting effect.
BRIEF DESCRIPTION OF THE DRAWINGS
[0022] Embodiments of the present invention are described below in conjunction with the
accompanying drawings, as follows:
FIG.1 is a schematic view showing the principle structure of a tubular LED light fixture
of the present invention.
FIG.2 is a schematic view showing the lighting direction of light rays in the length
direction of the tubular LED light fixture of the present invention.
FIG.3 is a schematic structural view of a positive cylindrical lens array.
FIG.4 is a schematic diagram of the three-dimensional structure of a tubular LED light
fixture of the first embodiment.
FIG.5 is a schematic view showing the internal structure of the tubular LED light
fixture of the first embodiment.
FIG.6 is an enlarged view of an elliptical light diffusion film used in the first
embodiment.
FIG.7 is an explosion schematic diagram of the partial structure of the tubular LED
light fixture of the second embodiment.
FIG.8 is a sectional schematic diagram of the tubular LED light fixture of the second
embodiment.
FIG.9 is an explosion schematic diagram of the partial structure of the tubular LED
light fixture of the third embodiment.
FIG.10 is a sectional schematic diagram of the tubular LED light fixture of the third
embodiment.
DETAILED DESCRIPTION OF THE INVENTION
[0023] Specific embodiments of the present invention will be further described in detail
below based on the drawings. It should be understood that the description of the embodiments
herein is not intended to limit the scope of the invention.
embodiment 1:
[0024] As shown in FIG.1 to 6, the tubular LED light fixture of the present embodiment comprises
lamp holder 100, printed circuit board 200, a plurality of point light sources 300,
lens 400, strip-shaped convex lens array 500, and reflection wall 600.
[0025] The lamp holder 100 is used for fixing and mounting, and can be assembled by a plurality
of components according to installation requirements, or can be a single component.
In this embodiment, the lamp holder 100 comprises two end seats 101, a strip base
102 and a strip bed plate 103. Both ends of the strip base 102 are fixedly connected
to the end seat 101. The strip base 102 is provided with a cavity for accommodating
the printed circuit board 200, the lens 400 and the reflection wall 600, and the printed
circuit board 200, the lens 400 and the reflection wall 600 can be fixed by screws,
glue and clasp structure. In this embodiment, the two ends of the strip base 102 are
connected with the end seat 101 to form a first accommodating cavity 108. The strip
bed plate 103 is located at the bottom of the first accommodating cavity 108, and
the strip bed plate 103 is connected with the end seat to form a second accommodating
cavity 109. The second accommodating cavity 109 is provided for accommodating the
printed circuit board 200 and the reflection wall 600. The reflection wall 600 is
located above the printed circuit board and on either side of the point light source.
The inner side of the upper end of the strip base 102 is provided with a first mounting
groove 105. The outer side of the reflection wall 600 is provided with a convex edge
601 matching with the first mounting groove 105. The strip-shaped convex lens array
500 is arranged on the top end of the reflection wall 600, and the Lens 400 fits with
the strip base 102 by clamping.
[0026] A plurality of point light sources 300 are spaced apart from each other along the
length direction of the tubular LED light fixture on the light source mounting surface
of the printed circuit board 200. Thus, the visual effect of the discontinuous point
light source is formed. In the background of energy saving and environmental protection,
the LED lamp is more and more applied to the home and commercial lighting field due
to its high light extraction efficiency and good light collecting performance, and
the point light source 300 is adopted LED chip.
[0027] In this embodiment, the optical axis direction of the point light source 300 is set
as the z direction, and the mounting surface of the point light source 300 is a plane
perpendicular to the z direction. On the mounting surface, the point light source
300 is arranged in the x direction, and y direction is perpendicular to the x direction.
The printed circuit board 200 is also disposed on the mounting surface, and the xyz
coordinate system can define an x-y plane, a y-z plane, and an x-z plane.
[0028] The lens 400 is disposed on the lamp holder 100, specifically, the lens 400 is connected
with the strip base 102 by clasping and located in a light-emitting direction of the
point light source 300 for adjusting the light distribution of the point light source
300 on the plane (y-z plane) perpendicular to the length direction of the tubular
LED light fixture, that is, the dimming in a single plane, and the lens 400 can be
easily manufactured by extrusion process or other ways. Since the light distribution
of the LED chip itself is not uniform, this causes the linear light source imaged
by the strip-shaped convex lens array 500 to have a region with strong brightness
and weak brightness. It is easy to understand that the less luminous areas emitted
light with less energy, while the more luminous areas emitted light with more energy.
In order to make the final emergent light evenly distributed, the lens 400 preferably
adopts an asymmetric lens, and the light in the weak brightness region of the linear
light source is emitted from the part of the asymmetric lens that has a strong ability
to focus light, while the light in the strong brightness region is emitted from the
part of the asymmetric lens that has a weak ability to focus light, in this way, the
consistent effect of the emergent light can be reasonably achieved. However, this
does not mean that the lens 400 can only adopt an asymmetrical form, and a symmetrical
form can also be used. In this case, the brightness of the two ends of the linear
light source is brighter, and the brightness toward the middle position is weaker.
When a symmetrical lens is used, the middle protruding portion of the lens 400 corresponds
to the middle position of the linear light source, and both ends correspond to both
ends of the linear light source, so that the light can be uniform.
[0029] The strip-shaped convex lens array 500 is disposed on the lamp holder 100 and located
between the lens 400 and the printed circuit board 200. The strip-shaped convex lens
array 500 is arranged along the length direction of the tubular LED light fixture
for converting each point light source 300 into a plurality of continuous sub-point
light sources, the sub-point light sources converted by the adjacent point source
300 is connected or coincident. It can be seen that before using the strip-shaped
convex lens array 500, the point light sources 300 are still point light sources after
passing through the lens 400 and become linear light sources while adding the strip-shaped
convex lens array 500 they, as shown in FiG.2.
[0030] The strip-shaped convex lens in the strip-shaped convex lens array 500 is in the
form of a plane of a positive cylindrical lens, or can be a curved surface curved
in the length direction of the strip-shaped convex lens, and the effect to be achieved
is that the point light source is stretched in the arrangement direction (x direction)
of the point light source, so that the point light source forms the line light source
while minimizing or eliminating the influence on the point source 300 in other directions.
The cross-sectional dimension of the strip-shaped convex lens can be set as needed,
and the strip-shaped convex lens array 500 can be obtained by a process such as 3D
printing, extrusion or injection molding. The distance between the strip-shaped convex
lens array 500 and the point light source 300 and the distance between the adjacent
point light sources 300 are controlled by adjusting the radian and radius of the strip-shaped
convex lens. The strip-shaped convex lens array 500 can also achieve the same effect
by using optical film.
[0031] According to the invention, the strip-shaped convex lens array 500 is a positive
cylindrical lens microarray arranged on the optical thin film, specifically, the optical
film is an elliptical light diffusing film, and the model used is E-6010. Of course,
other models can be selected as long as the point light source 300 is stretched in
the arrangement direction (x direction) of the point light source 300. For example,
E-1560, E-0160/6001, E-0190 can also be used. In order to achieve a better tensile
diffusion effect, when the diffusion film is selected, the stretching ratio in both
directions is greater than 4. In the present embodiment, the elliptical light diffusing
film is a positive cylindrical lens microarray, the length direction of the positive
cylindrical lens is perpendicular to the arrangement direction (x direction) of the
point light source 300 when used. The strip-shaped convex lens array 500 in the form
of film has a small volume, is easy to install, and can be bent to meet different
lamp structure requirements.
[0032] In order to further improve the light utilization rate of the LED light fixture,
on the plane perpendicular to the length direction of the LED light fixture, the reflection
wall 600 is provided on both sides of the point light source 300 for reflecting the
lateral light from the point light source 300 to the light incident plane of the strip-shaped
convex lens array 500. Of course, the absence of the reflection wall 600 does not
affect the use of the tubular LED light fixture, that is, the reflection wall 600
is not an essential functional component, the upper end of the reflection wall 600
extends to the bottom surface of the strip-shaped convex lens array 500, and the point
light source 300 is disposed on the printed circuit board 200, most of the light is
emitted toward the strip-shaped convex lens array 500, but a small portion of the
lateral light is deflected away from the main beam and directed to other directions,
and such light is often not utilized, so that the effective utilization rate of the
light is reduced, which is a common problem in which the light source emits radiation
in a radial manner. When the above design is adopted, it can make good use of the
reflection effect to direct the deviated lateral light to the strip-shaped convex
lens array 500, thereby concentrating the light beam, and the luminous flux which
is truly formed by the strip-shaped convex lens array 500 per unit area is more. Moreover,
it improves the effective utilization of light, and reduces the number of point light
sources 300 to reduce costs.
[0033] At the same time, in order to guide the deflecting light to the direction of the
strip-shaped convex lens array 500 as much as possible, according to the light propagation
path and the light radiation angle principle of the point light source 300, in the
embodiment, the reflection wall 600 and the printed circuit board 200 is disposed
at an obtuse angle, and the specific angle is adjusted according to the distance between
the point light source 300 and the strip-shaped convex lens array 500.
embodiment 2
[0034] As shown in FIG.7 and 8, the main components and positional relationship of the tubular
LED light fixture of this embodiment are the same as those of the first embodiment,
except for the shape of the lens 400 and the connection manner of the respective members.
[0035] In this embodiment, the lens 400, the reflection wall 600 and the strip bed plate
103 are integrally formed and enclosed to form an mounting cavity 104. An extrusion
process can be used for integral forming. The lens 400 adopts a symmetrical lens and
has a radian change on both the inside and outside surfaces, which is easier to manufacture.
In the mounting cavity 104, a first mounting groove 105 for fixing the strip-shaped
convex lens array 500 is disposed near the lens 400, and the bottom portion of the
mounting cavity 104 is provided a second mounting groove 106 for fixing the printed
circuit board 200, the side wall between the first mounting groove 105 and the second
mounting groove 106 is the reflection wall 600, and the reflection wall 600 is of
the arc structure, so that the reflection angle is smaller and the efficiency is higher.
[0036] The strip base 102 is made of metal with better heat dissipation effect, and is provided
with a curved mounting groove 107 for fixing the strip bed plate 103. The bottom surface
of the strip bed plate 103 is a curved surface that fits the curved mounting groove
107, thereby improving the heat dissipation effect.
[0037] The strip-shaped convex lens array 500 of the present embodiment also employs an
elliptical light diffusing film, and both sides in the width direction are inserted
into the first mounting groove 105 for assembly.
embodiment 3
[0038] As shown in FIG. 9 and 10, the main components and positional relationship of the
tubular LED light fixture in this embodiment are the same as those of the first embodiment,
except for the shape of the lens 400 and the connection manner of the respective members.
[0039] In this embodiment, the reflection wall 600 and the strip bed plate 103 are integrally
formed. The inner side of the top of the two reflection walls 600 is provided with
a first mounting groove 105 for fixing the strip-shaped convex lens array 500, and
the outer side of the top of the two reflection walls 600 is provided with a buckle
structure for fixing the lens 400, and a second mounting groove 106 for fixing the
printed circuit board 200 is provided at the bottom of the strip bed plate 103.
[0040] The strip-shaped convex lens array 500 of the present embodiment also employs an
elliptical light diffusing film, and both sides in the width direction are inserted
into the first mounting groove 105 for assembly.
[0041] In this embodiment, the lens 400 is a polarizing lens for adjusting the light distribution
of the point light source 300 on a plane (y-z plane) perpendicular to the length direction
of the tubular LED light fixture. The viewing angle in the figure is that the light
is polarized to the left.
[0042] The above disclosure has been described by way of example and in terms of exemplary
embodiment, and it is to be understood that the disclosure is not limited thereto.
1. A tubular LED light fixture comprising:
a lamp holder (100);
a printed circuit board (200), disposed on the lamp holder (100);
a plurality of point light sources (300), disposed on the light source mounting surface
of the printed circuit board (200) along a length direction of the tubular LED light
fixture;
wherein the tubular LED light fixture further comprises: a lens (400), disposed on
the lamp holder (100) in a light-emitting direction of the point light source (300)
for adjusting light distribution of the point light source (300) on a plane perpendicular
to the length direction of the tubular LED light fixture; and
a strip-shaped convex lens array (500), disposed on the lamp holder (100) and located
between the lens (400) and the printed circuit board (200) and arranged along the
length direction of the tubular LED light fixture, characterized in that the strip-shaped convex lens array (500) is
a positive cylindrical lens microarray arranged on an optical thin film for converting
each point light source (300) into a plurality of consecutive sub point light sources,
and the sub point light source converted by the adjacent point light source (300)
is connected or overlapped.
2. The tubular LED light fixture as claimed in the claim 1, wherein the strip-shaped
convex lens array (500) is a positive cylindrical lens microarray array.
3. The tubular LED light fixture as claimed in the claim 1, wherein the strip-shaped
convex lens array (500) is a curved surface that is curved in the length direction
of the strip-shaped convex lens.
4. The tubular LED light fixture as claimed in any one of claims 1 to 3, wherein the
point
light source (300) adopts LED chip.
5. The tubular LED light fixture as claimed in any one of claims 1 to 3, wherein on the
plane
perpendicular to the length direction of the LED light fixture, the reflection wall
(600) is provided on both sides of the point light source (300) for reflecting the
lateral light from the point light source (300) to the light incident plane of the
strip-shaped convex lens array (500).
6. The tubular LED light fixture as claimed in claim 5, wherein the reflection wall (600)
and
the mounting surface of the point light source (300) is arranged at an obtuse angle.
7. The tubular LED light fixture as claimed in any one of claims 1 to 3, wherein the
lens (400)
is a polarizing lens.
8. The tubular LED light fixture as claimed in any one of claims 1 to 3, wherein the
lens (400)
is a symmetrical lens.
9. The tubular LED light fixture as claimed in claim 5, wherein the lamp holder (100)
comprises two end seats (101), a strip base (102) and a strip bed plate (103), and
the lens (400), the reflection wall (600) and the strip bed plate (103) are integrally
formed and enclosed to form an mounting cavity (104).
10. The tubular LED light fixture as claimed in claim 5, wherein the lamp holder (100)
comprises two end seats (101), a strip base (102) and a strip bed plate (103), the
reflection wall (600) and the strip bed plate (103) are integrally formed, and the
inner side of the top of the two reflection walls (600) is provided with a first mounting
groove (105) for fixing the strip-shaped convex lens array (500), and the outer side
of the top of the two reflection walls (600) is provided with a buckle structure for
fixing the lens (400), and the bottom of the strip bed plate (103) is provided with
a second mounting groove (106) for fixing the printed circuit board (200).
11. The tubular LED light fixture as claimed in claim 5, wherein the lamp holder (100)
comprises:
end seats (101);
strip base (102), two ends of which are connected with the end seats (101) to form
a first accommodating cavity (108);
strip bed plate (103), disposed at a bottom of the first accommodating cavity (108);
and the strip bed plate (103) is connected with the end seats (101) to form a second
accommodating cavity (109) for accommodating the printed circuit board (200) and the
reflection wall (600).
12. The tubular LED light fixture as claimed in claim 11, wherein the inner side of the
upper
end of the strip base (102) is provided with a first mounting groove (105), and the
outer side of the reflection wall (600) is provided with a convex edge (601) that
matches with the first mounting groove (105).
13. The tubular LED light fixture as claimed in claim 12, wherein the strip-shaped convex
lens array (500) is disposed on a top end of the reflection wall (600).
14. The tubular LED light fixture as claimed in any one of claims 11 to 13, wherein the
lens (400) fits with the strip base (102) by clasping.
1. Rohrförmige LED-Lampe, umfassend:
eine Lampenfassung (100);
eine gedruckte Leiterplatte (200), die auf der Lampenfassung (100) angeordnet ist;
eine Vielzahl von Punktlichtquellen (300), die auf der Lichtquellenmontagefläche der
Leiterplatte (200) entlang einer Längsrichtung der röhrenförmigen LED-Leuchte angeordnet
sind;
wobei die rohrförmige LED-Lampe weiterhin umfasst:
eine Linse (400), die an der Lampenfassung (100) in einer Lichtabstrahlungsrichtung
der Punktlichtquelle (300) angeordnet ist, um die Lichtverteilung der Punktlichtquelle
(300) in einer Ebene senkrecht zur Längsrichtung der rohrförmigen LED-Lampe einzustellen;
und
ein streifenförmiges konvexes Linsenarray (500), das auf dem Lampenhalter (100) angeordnet
ist und sich zwischen der Linse (400) und der Leiterplatte (200) befindet und
entlang der Längsrichtung der rohrförmigen LED-Lampe angeordnet ist, dadurch gekennzeichnet, dass das streifenförmige konvexe Linsenarray (500) ein positives zylindrisches Linsenmikroarray
ist, das auf einem optischen Dünnfilm angeordnet ist, um jede Punktlichtquelle (300)
in eine Vielzahl von aufeinanderfolgenden Sub-Punktlichtquellen umzuwandeln, und die
Sub-Punktlichtquelle, die durch die benachbarte Punktlichtquelle (300) umgewandelt
wird, verbunden oder überlappt ist.
2. Rohrförmige LED-Lampe nach Anspruch 1, wobei das streifenförmige konvexe Linsenarray
(500) ein positives Zylinderlinsen-Mikroarray ist.
3. Rohrförmige LED-Lampe nach Anspruch 1, wobei die streifenförmige konvexe Linsenanordnung
(500) eine gekrümmte Oberfläche ist, die in der Längsrichtung der streifenförmigen
konvexen Linse gekrümmt ist.
4. Rohrförmige LED-Lampe nach einem der Ansprüche 1 bis 3, wobei die Punktlichtquelle
(300) einen LED-Chip verwendet.
5. Rohrförmige LED-Lampe nach einem der Ansprüche 1 bis 3, wobei in der Ebene senkrecht
zur Längsrichtung der LED-Leuchte die Reflexionswand (600) auf beiden Seiten der Punktlichtquelle
(300) vorgesehen ist, um das seitliche Licht von der Punktlichtquelle (300) in die
Lichteinfallsebene der streifenförmigen konvexen Linsenanordnung (500) zu reflektieren.
6. Rohrförmige LED-Lampe nach Anspruch 5, wobei die Reflexionswand (600) und die Montagefläche
der Punktlichtquelle (300) in einem stumpfen Winkel angeordnet sind.
7. Rohrförmige LED-Lampe nach einem der Ansprüche 1 bis 3, wobei die Linse (400) eine
polarisierende Linse ist.
8. Rohrförmige LED-Lampe nach einem der Ansprüche 1 bis 3, wobei die Linse (400) eine
symmetrische Linse ist.
9. Rohrförmige LED-Lampe nach Anspruch 5, wobei die Lampenfassung (100) zwei Endsitze
(101), einen Streifensockel (102) und eine Streifensockelplatte (103) umfasst und
die Linse (400), die Reflexionswand (600) und die Streifensockelplatte (103) einstückig
geformt und eingeschlossen sind, um einen Montagehohlraum (104) zu bilden.
10. Rohrförmige LED-Lampe nach Anspruch 5, wobei die Lampenfassung (100) zwei Endsitze
(101), einen Streifensockel (102) und eine Streifensockelplatte (103) umfasst, die
Reflexionswand (600) und die Streifensockelplatte (103) einstückig ausgebildet sind
und die Innenseite der Oberseite der beiden Reflexionswände (600) mit einer ersten
Montagenut (105) zur Befestigung der streifenförmigen konvexen Linsenanordnung (500)
versehen ist, und die Außenseite der Oberseite der beiden Reflexionswände (600) ist
mit einer Schnallenstruktur zur Befestigung der Linse (400) versehen, und die Unterseite
der Streifensockelplatte (103) ist mit einer zweiten Montagenut (106) zur Befestigung
der gedruckten Leiterplatte (200) versehen.
11. Rohrförmige LED-Lampe nach Anspruch 5, wobei die Lampenfassung (100) umfasst:
Endsitze (101);
eine Streifenbasis (102), deren zwei Enden mit den Endsitzen (101) verbunden sind,
um einen ersten Aufnahmehohlraum (108) zu bilden;
eine Streifensockelplatte (103), die an einem Boden des ersten Aufnahmehohlraums (108)
angeordnet ist; und die Streifenbettplatte (103) ist mit den Endsitzen (101) verbunden,
um einen zweiten Aufnahmehohlraum (109) zum Aufnehmen der gedruckten Leiterplatte
(200) und der Reflexionswand (600) zu bilden.
12. Rohrförmige LED-Lampe nach Anspruch 11, wobei die Innenseite des oberen Endes der
Streifenbasis (102) mit einer ersten Montagenut (105) versehen ist und die Außenseite
der Reflexionswand (600) mit einer konvexen Kante (601) versehen ist, die mit der
ersten Montagenut (105) zusammenpasst.
13. Rohrförmige LED-Lampe nach Anspruch 12, wobei die streifenförmige konvexe Linsenanordnung
(500) an einem oberen Ende der Reflexionswand (600) angeordnet ist.
14. Rohrförmige LED-Lampe nach einem der Ansprüche 11 bis 13, wobei die Linse (400) durch
Verklammerung mit dem Sockelstreifen (102) zusammengefügt ist.
1. Un appareil d'éclairage à diode électroluminescente tubulaire comprenant :
un support de lampe (100);
une carte de circuit imprimé (200), disposée sur le support de lampe (100);
une pluralité de sources lumineuses ponctuelles (300), disposées sur la surface de
montage de source lumineuse de la carte de circuit imprimé (200) le long d'une direction
de longueur de d'éclairage à diode électroluminescente tubulaire;
une lentille (400), disposée sur le support de lampe (100) suivant une direction d'émission
de lumière de la source lumineuse ponctuelle (300) pour régler la répartition lumineuse
de la source lumineuse ponctuelle (300) sur un plan perpendiculaire à la direction
de la longueur de l'appareil d'éclairage à diode électroluminescente tubulaire ; et
un réseau de lentilles convexes en forme de bande (500), disposé sur le support de
lampe (100) et situé entre la lentille (400) et la carte de circuit imprimé (200)
et disposé le long de la direction de l'appareil d'éclairage à diode électroluminescente
tubulaire, caractérisé en ce que
le réseau de lentilles convexes en forme de bande (500) est un microréseau de lentilles
cylindriques positives disposé sur un film optique mince pour convertir chaque source
lumineuse ponctuelle (300) en une pluralité de sources lumineuses secondaires consécutives,
et la source lumineuse secondaire convertie par la source lumineuse ponctuelle adjacente
(300) est connectée ou superposée.
2. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication
1, dans lequel le réseau de lentilles convexes en forme de bande (500) est un réseau
de microréseaux de lentilles cylindriques positives.
3. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication
1, dans lequel le réseau de lentilles convexes en forme de bande (500) est une surface
incurvée qui est incurvée dans le sens de la longueur de la lentille convexe en forme
de bande.
4. L'appareil d'éclairage à diode électroluminescente tubulaire selon l'une quelconque
des revendications 1 à 3, dans lequel la source lumineuse ponctuelle (300) adopte
une puce LED.
5. L'appareil d'éclairage à diode électroluminescente tubulaire selon l'une quelconque
des revendications 1 à 3, dans lequel sur le plan perpendiculaire à la direction de
la longueur de l'appareil d'éclairage à diode électroluminescente tubulaire, la paroi
réfléchissante (600) est prévue des deux côtés de la source lumineuse ponctuelle (300)
pour réfléchir la lumière latérale de la source lumineuse ponctuelle (300) vers le
plan d'incidence de la lumière du réseau de lentilles convexes en forme de bande (500).
6. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication
5, dans lequel la paroi réfléchissante (600) et la surface de montage de la source
lumineuse ponctuelle (300) sont agencées à un angle obtus.
7. L'appareil d'éclairage à diode électroluminescente tubulaire selon l'une quelconque
des revendications 1 à 3, dans lequel la lentille (400) est une lentille polarisante.
8. L'appareil d'éclairage à diode électroluminescente tubulaire selon l'une quelconque
des revendications 1 à 3, dans lequel la lentille (400) est une lentille symétrique.
9. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication
5, dans lequel le support de lampe (100) comprend deux sièges d'extrémité (101), une
base en bande (102) et une plaque d'assise de bande (103), et la lentille (400), la
paroi de réflexion (600) et la plaque d'assise de bande (103) sont formées d'un seul
tenant et enfermées pour former une cavité de montage (104).
10. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication
5, dans lequel le support de lampe (100) comprend deux sièges d'extrémité (101), une
base de bande (102) et une plaque d'assise de bande (103), la paroi réfléchissante
(600) et la plaque d'assise de bande (103) sont formées d'un seul tenant, et le côté
intérieur du haut des deux parois réfléchissantes (600) est pourvu d'une première
rainure de montage (105) pour fixer le réseau de lentilles convexes en forme de bande
(500), et le côté extérieur du haut des deux parois réfléchissantes (600) est pourvu
d'une structure de boucle pour fixer la lentille (400), et le bas de la plaque d'assise
de bande (103) est pourvu d'une seconde rainure de montage (106) pour fixer le carte
de circuit imprimé (200).
11. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication
5, dans lequel le support de lampe (100) comprend :
des sièges d'extrémité (101) ;
une base de bande (102), dont deux extrémités sont reliées aux sièges d'extrémité
(101) pour former une première cavité de logement (108) ;
une plaque d'assise de bande (103), disposée au fond de la première cavité de logement
(108) ; et la plaque d'assise de bande (103) est reliée aux sièges d'extrémité (101)
pour former une seconde cavité de logement (109) pour loger la carte de circuit imprimé
(200) et la paroi réfléchissante (600).
12. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication
11, dans lequel le côté intérieur de l'extrémité supérieure de la base de bande (102)
est pourvu d'une première rainure de montage (105), et le côté extérieur de la paroi
réfléchissante (600) est pourvu d'un bord convexe (601) qui correspond à la première
rainure de montage (105).
13. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication
12, dans lequel le réseau de lentilles convexes en forme de bande (500) est disposé
sur une extrémité supérieure de la paroi réfléchissante (600).
14. L'appareil d'éclairage à diode électroluminescente tubulaire selon l'une quelconque
des revendications 11 à 13, dans lequel la lentille (400) s'adapte à la base de bande
(102) par serrage.