(19)
(11) EP 3 726 126 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
16.03.2022 Bulletin 2022/11

(21) Application number: 19211941.0

(22) Date of filing: 27.11.2019
(51) International Patent Classification (IPC): 
F21K 9/27(2016.01)
F21V 5/04(2006.01)
F21V 5/00(2018.01)
(52) Cooperative Patent Classification (CPC):
F21K 9/27; F21V 5/004; F21V 5/007; F21V 5/043; F21Y 2103/10; F21Y 2115/10

(54)

TUBULAR LED LIGHT FIXTURE

ROHRFÖRMIGE LED-LAMPE

APPAREIL D'ÉCLAIRAGE À DIODE ÉLECTROLUMINESCENTE TUBULAIRE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 19.04.2019 CN 201910320227

(43) Date of publication of application:
21.10.2020 Bulletin 2020/43

(73) Proprietors:
  • Self Electronics Co., Ltd.
    Ningbo City, Zhejiang 315103 (CN)
  • SELF ELECTRONICS Germany GmbH
    51149 Köln (DE)
  • Lin, Wanjiong
    Ningbo City, Zhejiang 315103 (CN)

(72) Inventors:
  • Zheng, Zhaoyong
    Ningbo, 315103 (CN)
  • Ji, Feng
    Ningbo, 315103 (CN)
  • PAN, Huangfeng
    Ningbo, 315103 (CN)

(74) Representative: 2K Patentanwälte Blasberg Kewitz & Reichel 
Partnerschaft mbB Schumannstrasse 27
60325 Frankfurt am Main
60325 Frankfurt am Main (DE)


(56) References cited: : 
WO-A1-2012/147653
US-A1- 2010 271 818
US-A1- 2009 323 334
US-A1- 2012 057 353
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE TECHNOLOGY



    [0001] The present invention relates to lighting technology field, with particular emphasis on a tubular LED light fixture.

    BACKGROUND OF THE INVENTION



    [0002] Under the background of energy conservation and environmental protection, LED lamps are more and more applied in the field of home and commercial lighting due to their high light emitting efficiency and good focusing performance.

    [0003] At present, LED lamps on the market mainly use point source illumination. This type of illumination has problems of glare and reflection glare. In order to solve the above problems, researchers have tried to replace the point source with linear light source, generally adopting a method of adding a diffusion lamp cover, the diffusion lamp cover diffuses light from the LED, but because the diffusion direction is not single, the linear light source is imaged and blurred, and the formed linear light source is directly used to illuminate the illuminated surface, the light distribution effect is not good, and the energy attenuation is more, so that the formation linear light source is dim and cluttered, and the illumination that is ultimately projected onto the illuminated surface is uneven, resulting in poor illumination.

    [0004] At the same time, the existing improved linear light source lamps are either bulky, or in order to achieve the linear light source effect, the LED lamps used are more numerous, which increases the production cost. A LED fixture according to the prior art can be found in document US 2012/057353 A1.

    BRIEF SUMMARY OF THE INVENTION



    [0005] In view of this, the present invention provides a tubular LED light fixture to solve the above technical problems.

    [0006] A tubular LED light fixture comprises:

    a lamp holder;

    printed circuit board, disposed on the lamp holder;

    a plurality of point light sources, disposed on the light source mounting surface of the printed circuit board along a length direction of the tubular LED light fixture;

    a lens, disposed on the lamp holder in a light-emitting direction of the point light source for adjusting light distribution of the point light source on a plane perpendicular to the length direction of the tubular LED light fixture;

    further comprising:

    a strip-shaped convex lens array, disposed on the lamp holder and located between the lens and the printed circuit board and arranged along the length direction of the tubular LED light fixture for converting each point light source into a plurality of consecutive sub point light sources, and the sub point light source converted by the adjacent point light source is connected or overlapped.



    [0007] For ease of manufacture and for consideration of size, the strip-shaped convex lens array is a positive cylindrical lens microarray arranged on an optical thin film.

    [0008] For ease of manufacture, the strip-shaped convex lens array is a positive cylindrical lens microarray array.

    [0009] The strip-shaped convex lens array being positive cylindrical lens array, the structure is flat, in order to adapt to different lamp structure, advantageously, the strip-shaped convex lens array is a curved surface that is curved in the length direction of the strip-shaped convex lens. The strip-shaped convex lens array can be used directly as a lamp shade.

    [0010] In order to further improve the utilization of light, advantageously, on the plane perpendicular to the length direction of the LED light fixture, the reflection wall is provided on both sides of the point light source for reflecting the lateral light from the point light source to the light incident plane of the strip-shaped convex lens array.

    [0011] To direct as much deflected light as possible to the strip-shaped convex lens array, advantageously, the reflection wall and the mounting surface of the point light source is arranged at an obtuse angle.

    [0012] The shape of the lens can be designed according to the light output effect. In order to improve the uniformity of the light output, advantageously, the lens is a polarizing lens.

    [0013] For manufacturing and design convenience, advantageously, the lens is a symmetrical lens.

    [0014] In order to make the structure more compact, easy to manufacture and install, advantageously, the lamp holder comprises two end seats, a strip base and a strip bed plate, and the lens, the reflection wall and the strip bed plate are integrally formed and enclosed to form an mounting cavity.

    [0015] In order to make the structure more compact, easy to manufacture and install, advantageously, the lamp holder comprises two end seats, a strip base and a strip bed plate, the reflection wall and the strip bed plate are integrally formed, and the inner side of the top of the two reflection walls is provided with a first mounting groove for fixing the strip-shaped convex lens array, and the outer side of the top of the two reflection walls is provided with a buckle structure for fixing the lens, and the bottom of the strip bed plate is provided with a second mounting groove for fixing the printed circuit board.

    [0016] For manufacturing and installation , advantageously, the lamp holder comprises:

    end seats;

    a strip base, two ends of which are connected with the end seats to form a first accommodating cavity;

    a strip bed plate, disposed at a bottom of the first accommodating cavity; and the strip bed plate is connected with the end seats to form a second accommodating cavity for accommodating the printed circuit board and the reflection wall.



    [0017] For manufacturing and installation, advantageously, the inner side of the upper end of the strip base is provided with a first mounting groove, and the outer side of the reflection wall is provided with a convex edge that matches with the first mounting groove.

    [0018] For manufacturing and installation, advantageously, the strip-shaped convex lens array is disposed on a top end of the reflection wall.

    [0019] For manufacturing and installation, advantageously, the lens fits with the strip base by clasping.

    [0020] Technical effects of the present invention:

    [0021] The tubular LED light fixture of the present invention adopts a strip-shaped convex lens array which forms linear light source only by diffusing light from point light source only in the length direction of the light fixture, then it can well prevent the light from diffusing in multiple directions, so that the linear light source is purified, and the arrangement of the lens can perform light distribution on the linear light source in the other direction, thereby reducing the energy attenuation effect, and the secondary light distribution effect of the lens can realize uniform distribution of light as needed, so that the uniformity of illumination tends to 1, thereby improving the light-sweeping effect. The setting of the reflection wall can further improve the light utilization and better ensure the lighting effect.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0022] Embodiments of the present invention are described below in conjunction with the accompanying drawings, as follows:

    FIG.1 is a schematic view showing the principle structure of a tubular LED light fixture of the present invention.

    FIG.2 is a schematic view showing the lighting direction of light rays in the length direction of the tubular LED light fixture of the present invention.

    FIG.3 is a schematic structural view of a positive cylindrical lens array.

    FIG.4 is a schematic diagram of the three-dimensional structure of a tubular LED light fixture of the first embodiment.

    FIG.5 is a schematic view showing the internal structure of the tubular LED light fixture of the first embodiment.

    FIG.6 is an enlarged view of an elliptical light diffusion film used in the first embodiment.

    FIG.7 is an explosion schematic diagram of the partial structure of the tubular LED light fixture of the second embodiment.

    FIG.8 is a sectional schematic diagram of the tubular LED light fixture of the second embodiment.

    FIG.9 is an explosion schematic diagram of the partial structure of the tubular LED light fixture of the third embodiment.

    FIG.10 is a sectional schematic diagram of the tubular LED light fixture of the third embodiment.


    DETAILED DESCRIPTION OF THE INVENTION



    [0023] Specific embodiments of the present invention will be further described in detail below based on the drawings. It should be understood that the description of the embodiments herein is not intended to limit the scope of the invention.

    embodiment 1:



    [0024] As shown in FIG.1 to 6, the tubular LED light fixture of the present embodiment comprises lamp holder 100, printed circuit board 200, a plurality of point light sources 300, lens 400, strip-shaped convex lens array 500, and reflection wall 600.

    [0025] The lamp holder 100 is used for fixing and mounting, and can be assembled by a plurality of components according to installation requirements, or can be a single component. In this embodiment, the lamp holder 100 comprises two end seats 101, a strip base 102 and a strip bed plate 103. Both ends of the strip base 102 are fixedly connected to the end seat 101. The strip base 102 is provided with a cavity for accommodating the printed circuit board 200, the lens 400 and the reflection wall 600, and the printed circuit board 200, the lens 400 and the reflection wall 600 can be fixed by screws, glue and clasp structure. In this embodiment, the two ends of the strip base 102 are connected with the end seat 101 to form a first accommodating cavity 108. The strip bed plate 103 is located at the bottom of the first accommodating cavity 108, and the strip bed plate 103 is connected with the end seat to form a second accommodating cavity 109. The second accommodating cavity 109 is provided for accommodating the printed circuit board 200 and the reflection wall 600. The reflection wall 600 is located above the printed circuit board and on either side of the point light source. The inner side of the upper end of the strip base 102 is provided with a first mounting groove 105. The outer side of the reflection wall 600 is provided with a convex edge 601 matching with the first mounting groove 105. The strip-shaped convex lens array 500 is arranged on the top end of the reflection wall 600, and the Lens 400 fits with the strip base 102 by clamping.

    [0026] A plurality of point light sources 300 are spaced apart from each other along the length direction of the tubular LED light fixture on the light source mounting surface of the printed circuit board 200. Thus, the visual effect of the discontinuous point light source is formed. In the background of energy saving and environmental protection, the LED lamp is more and more applied to the home and commercial lighting field due to its high light extraction efficiency and good light collecting performance, and the point light source 300 is adopted LED chip.

    [0027] In this embodiment, the optical axis direction of the point light source 300 is set as the z direction, and the mounting surface of the point light source 300 is a plane perpendicular to the z direction. On the mounting surface, the point light source 300 is arranged in the x direction, and y direction is perpendicular to the x direction. The printed circuit board 200 is also disposed on the mounting surface, and the xyz coordinate system can define an x-y plane, a y-z plane, and an x-z plane.

    [0028] The lens 400 is disposed on the lamp holder 100, specifically, the lens 400 is connected with the strip base 102 by clasping and located in a light-emitting direction of the point light source 300 for adjusting the light distribution of the point light source 300 on the plane (y-z plane) perpendicular to the length direction of the tubular LED light fixture, that is, the dimming in a single plane, and the lens 400 can be easily manufactured by extrusion process or other ways. Since the light distribution of the LED chip itself is not uniform, this causes the linear light source imaged by the strip-shaped convex lens array 500 to have a region with strong brightness and weak brightness. It is easy to understand that the less luminous areas emitted light with less energy, while the more luminous areas emitted light with more energy. In order to make the final emergent light evenly distributed, the lens 400 preferably adopts an asymmetric lens, and the light in the weak brightness region of the linear light source is emitted from the part of the asymmetric lens that has a strong ability to focus light, while the light in the strong brightness region is emitted from the part of the asymmetric lens that has a weak ability to focus light, in this way, the consistent effect of the emergent light can be reasonably achieved. However, this does not mean that the lens 400 can only adopt an asymmetrical form, and a symmetrical form can also be used. In this case, the brightness of the two ends of the linear light source is brighter, and the brightness toward the middle position is weaker. When a symmetrical lens is used, the middle protruding portion of the lens 400 corresponds to the middle position of the linear light source, and both ends correspond to both ends of the linear light source, so that the light can be uniform.

    [0029] The strip-shaped convex lens array 500 is disposed on the lamp holder 100 and located between the lens 400 and the printed circuit board 200. The strip-shaped convex lens array 500 is arranged along the length direction of the tubular LED light fixture for converting each point light source 300 into a plurality of continuous sub-point light sources, the sub-point light sources converted by the adjacent point source 300 is connected or coincident. It can be seen that before using the strip-shaped convex lens array 500, the point light sources 300 are still point light sources after passing through the lens 400 and become linear light sources while adding the strip-shaped convex lens array 500 they, as shown in FiG.2.

    [0030] The strip-shaped convex lens in the strip-shaped convex lens array 500 is in the form of a plane of a positive cylindrical lens, or can be a curved surface curved in the length direction of the strip-shaped convex lens, and the effect to be achieved is that the point light source is stretched in the arrangement direction (x direction) of the point light source, so that the point light source forms the line light source while minimizing or eliminating the influence on the point source 300 in other directions. The cross-sectional dimension of the strip-shaped convex lens can be set as needed, and the strip-shaped convex lens array 500 can be obtained by a process such as 3D printing, extrusion or injection molding. The distance between the strip-shaped convex lens array 500 and the point light source 300 and the distance between the adjacent point light sources 300 are controlled by adjusting the radian and radius of the strip-shaped convex lens. The strip-shaped convex lens array 500 can also achieve the same effect by using optical film.

    [0031] According to the invention, the strip-shaped convex lens array 500 is a positive cylindrical lens microarray arranged on the optical thin film, specifically, the optical film is an elliptical light diffusing film, and the model used is E-6010. Of course, other models can be selected as long as the point light source 300 is stretched in the arrangement direction (x direction) of the point light source 300. For example, E-1560, E-0160/6001, E-0190 can also be used. In order to achieve a better tensile diffusion effect, when the diffusion film is selected, the stretching ratio in both directions is greater than 4. In the present embodiment, the elliptical light diffusing film is a positive cylindrical lens microarray, the length direction of the positive cylindrical lens is perpendicular to the arrangement direction (x direction) of the point light source 300 when used. The strip-shaped convex lens array 500 in the form of film has a small volume, is easy to install, and can be bent to meet different lamp structure requirements.

    [0032] In order to further improve the light utilization rate of the LED light fixture, on the plane perpendicular to the length direction of the LED light fixture, the reflection wall 600 is provided on both sides of the point light source 300 for reflecting the lateral light from the point light source 300 to the light incident plane of the strip-shaped convex lens array 500. Of course, the absence of the reflection wall 600 does not affect the use of the tubular LED light fixture, that is, the reflection wall 600 is not an essential functional component, the upper end of the reflection wall 600 extends to the bottom surface of the strip-shaped convex lens array 500, and the point light source 300 is disposed on the printed circuit board 200, most of the light is emitted toward the strip-shaped convex lens array 500, but a small portion of the lateral light is deflected away from the main beam and directed to other directions, and such light is often not utilized, so that the effective utilization rate of the light is reduced, which is a common problem in which the light source emits radiation in a radial manner. When the above design is adopted, it can make good use of the reflection effect to direct the deviated lateral light to the strip-shaped convex lens array 500, thereby concentrating the light beam, and the luminous flux which is truly formed by the strip-shaped convex lens array 500 per unit area is more. Moreover, it improves the effective utilization of light, and reduces the number of point light sources 300 to reduce costs.

    [0033] At the same time, in order to guide the deflecting light to the direction of the strip-shaped convex lens array 500 as much as possible, according to the light propagation path and the light radiation angle principle of the point light source 300, in the embodiment, the reflection wall 600 and the printed circuit board 200 is disposed at an obtuse angle, and the specific angle is adjusted according to the distance between the point light source 300 and the strip-shaped convex lens array 500.

    embodiment 2



    [0034] As shown in FIG.7 and 8, the main components and positional relationship of the tubular LED light fixture of this embodiment are the same as those of the first embodiment, except for the shape of the lens 400 and the connection manner of the respective members.

    [0035] In this embodiment, the lens 400, the reflection wall 600 and the strip bed plate 103 are integrally formed and enclosed to form an mounting cavity 104. An extrusion process can be used for integral forming. The lens 400 adopts a symmetrical lens and has a radian change on both the inside and outside surfaces, which is easier to manufacture. In the mounting cavity 104, a first mounting groove 105 for fixing the strip-shaped convex lens array 500 is disposed near the lens 400, and the bottom portion of the mounting cavity 104 is provided a second mounting groove 106 for fixing the printed circuit board 200, the side wall between the first mounting groove 105 and the second mounting groove 106 is the reflection wall 600, and the reflection wall 600 is of the arc structure, so that the reflection angle is smaller and the efficiency is higher.

    [0036] The strip base 102 is made of metal with better heat dissipation effect, and is provided with a curved mounting groove 107 for fixing the strip bed plate 103. The bottom surface of the strip bed plate 103 is a curved surface that fits the curved mounting groove 107, thereby improving the heat dissipation effect.

    [0037] The strip-shaped convex lens array 500 of the present embodiment also employs an elliptical light diffusing film, and both sides in the width direction are inserted into the first mounting groove 105 for assembly.

    embodiment 3



    [0038] As shown in FIG. 9 and 10, the main components and positional relationship of the tubular LED light fixture in this embodiment are the same as those of the first embodiment, except for the shape of the lens 400 and the connection manner of the respective members.

    [0039] In this embodiment, the reflection wall 600 and the strip bed plate 103 are integrally formed. The inner side of the top of the two reflection walls 600 is provided with a first mounting groove 105 for fixing the strip-shaped convex lens array 500, and the outer side of the top of the two reflection walls 600 is provided with a buckle structure for fixing the lens 400, and a second mounting groove 106 for fixing the printed circuit board 200 is provided at the bottom of the strip bed plate 103.

    [0040] The strip-shaped convex lens array 500 of the present embodiment also employs an elliptical light diffusing film, and both sides in the width direction are inserted into the first mounting groove 105 for assembly.

    [0041] In this embodiment, the lens 400 is a polarizing lens for adjusting the light distribution of the point light source 300 on a plane (y-z plane) perpendicular to the length direction of the tubular LED light fixture. The viewing angle in the figure is that the light is polarized to the left.

    [0042] The above disclosure has been described by way of example and in terms of exemplary embodiment, and it is to be understood that the disclosure is not limited thereto.


    Claims

    1. A tubular LED light fixture comprising:

    a lamp holder (100);

    a printed circuit board (200), disposed on the lamp holder (100);

    a plurality of point light sources (300), disposed on the light source mounting surface of the printed circuit board (200) along a length direction of the tubular LED light fixture;

    wherein the tubular LED light fixture further comprises: a lens (400), disposed on the lamp holder (100) in a light-emitting direction of the point light source (300) for adjusting light distribution of the point light source (300) on a plane perpendicular to the length direction of the tubular LED light fixture; and

    a strip-shaped convex lens array (500), disposed on the lamp holder (100) and located between the lens (400) and the printed circuit board (200) and arranged along the length direction of the tubular LED light fixture, characterized in that the strip-shaped convex lens array (500) is

    a positive cylindrical lens microarray arranged on an optical thin film for converting each point light source (300) into a plurality of consecutive sub point light sources, and the sub point light source converted by the adjacent point light source (300) is connected or overlapped.


     
    2. The tubular LED light fixture as claimed in the claim 1, wherein the strip-shaped convex lens array (500) is a positive cylindrical lens microarray array.
     
    3. The tubular LED light fixture as claimed in the claim 1, wherein the strip-shaped convex lens array (500) is a curved surface that is curved in the length direction of the strip-shaped convex lens.
     
    4. The tubular LED light fixture as claimed in any one of claims 1 to 3, wherein the point
    light source (300) adopts LED chip.
     
    5. The tubular LED light fixture as claimed in any one of claims 1 to 3, wherein on the plane
    perpendicular to the length direction of the LED light fixture, the reflection wall (600) is provided on both sides of the point light source (300) for reflecting the lateral light from the point light source (300) to the light incident plane of the strip-shaped convex lens array (500).
     
    6. The tubular LED light fixture as claimed in claim 5, wherein the reflection wall (600) and
    the mounting surface of the point light source (300) is arranged at an obtuse angle.
     
    7. The tubular LED light fixture as claimed in any one of claims 1 to 3, wherein the lens (400)
    is a polarizing lens.
     
    8. The tubular LED light fixture as claimed in any one of claims 1 to 3, wherein the lens (400)
    is a symmetrical lens.
     
    9. The tubular LED light fixture as claimed in claim 5, wherein the lamp holder (100)
    comprises two end seats (101), a strip base (102) and a strip bed plate (103), and the lens (400), the reflection wall (600) and the strip bed plate (103) are integrally formed and enclosed to form an mounting cavity (104).
     
    10. The tubular LED light fixture as claimed in claim 5, wherein the lamp holder (100)
    comprises two end seats (101), a strip base (102) and a strip bed plate (103), the reflection wall (600) and the strip bed plate (103) are integrally formed, and the inner side of the top of the two reflection walls (600) is provided with a first mounting groove (105) for fixing the strip-shaped convex lens array (500), and the outer side of the top of the two reflection walls (600) is provided with a buckle structure for fixing the lens (400), and the bottom of the strip bed plate (103) is provided with a second mounting groove (106) for fixing the printed circuit board (200).
     
    11. The tubular LED light fixture as claimed in claim 5, wherein the lamp holder (100)
    comprises:

    end seats (101);

    strip base (102), two ends of which are connected with the end seats (101) to form a first accommodating cavity (108);

    strip bed plate (103), disposed at a bottom of the first accommodating cavity (108); and the strip bed plate (103) is connected with the end seats (101) to form a second accommodating cavity (109) for accommodating the printed circuit board (200) and the reflection wall (600).


     
    12. The tubular LED light fixture as claimed in claim 11, wherein the inner side of the upper
    end of the strip base (102) is provided with a first mounting groove (105), and the outer side of the reflection wall (600) is provided with a convex edge (601) that matches with the first mounting groove (105).
     
    13. The tubular LED light fixture as claimed in claim 12, wherein the strip-shaped convex
    lens array (500) is disposed on a top end of the reflection wall (600).
     
    14. The tubular LED light fixture as claimed in any one of claims 11 to 13, wherein the lens (400) fits with the strip base (102) by clasping.
     


    Ansprüche

    1. Rohrförmige LED-Lampe, umfassend:

    eine Lampenfassung (100);

    eine gedruckte Leiterplatte (200), die auf der Lampenfassung (100) angeordnet ist;

    eine Vielzahl von Punktlichtquellen (300), die auf der Lichtquellenmontagefläche der Leiterplatte (200) entlang einer Längsrichtung der röhrenförmigen LED-Leuchte angeordnet sind;

    wobei die rohrförmige LED-Lampe weiterhin umfasst:

    eine Linse (400), die an der Lampenfassung (100) in einer Lichtabstrahlungsrichtung der Punktlichtquelle (300) angeordnet ist, um die Lichtverteilung der Punktlichtquelle (300) in einer Ebene senkrecht zur Längsrichtung der rohrförmigen LED-Lampe einzustellen; und

    ein streifenförmiges konvexes Linsenarray (500), das auf dem Lampenhalter (100) angeordnet ist und sich zwischen der Linse (400) und der Leiterplatte (200) befindet und

    entlang der Längsrichtung der rohrförmigen LED-Lampe angeordnet ist, dadurch gekennzeichnet, dass das streifenförmige konvexe Linsenarray (500) ein positives zylindrisches Linsenmikroarray ist, das auf einem optischen Dünnfilm angeordnet ist, um jede Punktlichtquelle (300) in eine Vielzahl von aufeinanderfolgenden Sub-Punktlichtquellen umzuwandeln, und die Sub-Punktlichtquelle, die durch die benachbarte Punktlichtquelle (300) umgewandelt wird, verbunden oder überlappt ist.


     
    2. Rohrförmige LED-Lampe nach Anspruch 1, wobei das streifenförmige konvexe Linsenarray (500) ein positives Zylinderlinsen-Mikroarray ist.
     
    3. Rohrförmige LED-Lampe nach Anspruch 1, wobei die streifenförmige konvexe Linsenanordnung (500) eine gekrümmte Oberfläche ist, die in der Längsrichtung der streifenförmigen konvexen Linse gekrümmt ist.
     
    4. Rohrförmige LED-Lampe nach einem der Ansprüche 1 bis 3, wobei die Punktlichtquelle (300) einen LED-Chip verwendet.
     
    5. Rohrförmige LED-Lampe nach einem der Ansprüche 1 bis 3, wobei in der Ebene senkrecht zur Längsrichtung der LED-Leuchte die Reflexionswand (600) auf beiden Seiten der Punktlichtquelle (300) vorgesehen ist, um das seitliche Licht von der Punktlichtquelle (300) in die Lichteinfallsebene der streifenförmigen konvexen Linsenanordnung (500) zu reflektieren.
     
    6. Rohrförmige LED-Lampe nach Anspruch 5, wobei die Reflexionswand (600) und die Montagefläche der Punktlichtquelle (300) in einem stumpfen Winkel angeordnet sind.
     
    7. Rohrförmige LED-Lampe nach einem der Ansprüche 1 bis 3, wobei die Linse (400) eine polarisierende Linse ist.
     
    8. Rohrförmige LED-Lampe nach einem der Ansprüche 1 bis 3, wobei die Linse (400) eine symmetrische Linse ist.
     
    9. Rohrförmige LED-Lampe nach Anspruch 5, wobei die Lampenfassung (100) zwei Endsitze (101), einen Streifensockel (102) und eine Streifensockelplatte (103) umfasst und die Linse (400), die Reflexionswand (600) und die Streifensockelplatte (103) einstückig geformt und eingeschlossen sind, um einen Montagehohlraum (104) zu bilden.
     
    10. Rohrförmige LED-Lampe nach Anspruch 5, wobei die Lampenfassung (100) zwei Endsitze (101), einen Streifensockel (102) und eine Streifensockelplatte (103) umfasst, die Reflexionswand (600) und die Streifensockelplatte (103) einstückig ausgebildet sind und die Innenseite der Oberseite der beiden Reflexionswände (600) mit einer ersten Montagenut (105) zur Befestigung der streifenförmigen konvexen Linsenanordnung (500) versehen ist, und die Außenseite der Oberseite der beiden Reflexionswände (600) ist mit einer Schnallenstruktur zur Befestigung der Linse (400) versehen, und die Unterseite der Streifensockelplatte (103) ist mit einer zweiten Montagenut (106) zur Befestigung der gedruckten Leiterplatte (200) versehen.
     
    11. Rohrförmige LED-Lampe nach Anspruch 5, wobei die Lampenfassung (100) umfasst:

    Endsitze (101);

    eine Streifenbasis (102), deren zwei Enden mit den Endsitzen (101) verbunden sind, um einen ersten Aufnahmehohlraum (108) zu bilden;

    eine Streifensockelplatte (103), die an einem Boden des ersten Aufnahmehohlraums (108) angeordnet ist; und die Streifenbettplatte (103) ist mit den Endsitzen (101) verbunden, um einen zweiten Aufnahmehohlraum (109) zum Aufnehmen der gedruckten Leiterplatte (200) und der Reflexionswand (600) zu bilden.


     
    12. Rohrförmige LED-Lampe nach Anspruch 11, wobei die Innenseite des oberen Endes der Streifenbasis (102) mit einer ersten Montagenut (105) versehen ist und die Außenseite der Reflexionswand (600) mit einer konvexen Kante (601) versehen ist, die mit der ersten Montagenut (105) zusammenpasst.
     
    13. Rohrförmige LED-Lampe nach Anspruch 12, wobei die streifenförmige konvexe Linsenanordnung (500) an einem oberen Ende der Reflexionswand (600) angeordnet ist.
     
    14. Rohrförmige LED-Lampe nach einem der Ansprüche 11 bis 13, wobei die Linse (400) durch Verklammerung mit dem Sockelstreifen (102) zusammengefügt ist.
     


    Revendications

    1. Un appareil d'éclairage à diode électroluminescente tubulaire comprenant :

    un support de lampe (100);

    une carte de circuit imprimé (200), disposée sur le support de lampe (100);

    une pluralité de sources lumineuses ponctuelles (300), disposées sur la surface de montage de source lumineuse de la carte de circuit imprimé (200) le long d'une direction de longueur de d'éclairage à diode électroluminescente tubulaire;

    une lentille (400), disposée sur le support de lampe (100) suivant une direction d'émission de lumière de la source lumineuse ponctuelle (300) pour régler la répartition lumineuse de la source lumineuse ponctuelle (300) sur un plan perpendiculaire à la direction de la longueur de l'appareil d'éclairage à diode électroluminescente tubulaire ; et

    un réseau de lentilles convexes en forme de bande (500), disposé sur le support de lampe (100) et situé entre la lentille (400) et la carte de circuit imprimé (200) et disposé le long de la direction de l'appareil d'éclairage à diode électroluminescente tubulaire, caractérisé en ce que

    le réseau de lentilles convexes en forme de bande (500) est un microréseau de lentilles cylindriques positives disposé sur un film optique mince pour convertir chaque source lumineuse ponctuelle (300) en une pluralité de sources lumineuses secondaires consécutives, et la source lumineuse secondaire convertie par la source lumineuse ponctuelle adjacente (300) est connectée ou superposée.


     
    2. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication 1, dans lequel le réseau de lentilles convexes en forme de bande (500) est un réseau de microréseaux de lentilles cylindriques positives.
     
    3. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication 1, dans lequel le réseau de lentilles convexes en forme de bande (500) est une surface incurvée qui est incurvée dans le sens de la longueur de la lentille convexe en forme de bande.
     
    4. L'appareil d'éclairage à diode électroluminescente tubulaire selon l'une quelconque des revendications 1 à 3, dans lequel la source lumineuse ponctuelle (300) adopte une puce LED.
     
    5. L'appareil d'éclairage à diode électroluminescente tubulaire selon l'une quelconque des revendications 1 à 3, dans lequel sur le plan perpendiculaire à la direction de la longueur de l'appareil d'éclairage à diode électroluminescente tubulaire, la paroi réfléchissante (600) est prévue des deux côtés de la source lumineuse ponctuelle (300) pour réfléchir la lumière latérale de la source lumineuse ponctuelle (300) vers le plan d'incidence de la lumière du réseau de lentilles convexes en forme de bande (500).
     
    6. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication 5, dans lequel la paroi réfléchissante (600) et la surface de montage de la source lumineuse ponctuelle (300) sont agencées à un angle obtus.
     
    7. L'appareil d'éclairage à diode électroluminescente tubulaire selon l'une quelconque des revendications 1 à 3, dans lequel la lentille (400) est une lentille polarisante.
     
    8. L'appareil d'éclairage à diode électroluminescente tubulaire selon l'une quelconque des revendications 1 à 3, dans lequel la lentille (400) est une lentille symétrique.
     
    9. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication 5, dans lequel le support de lampe (100) comprend deux sièges d'extrémité (101), une base en bande (102) et une plaque d'assise de bande (103), et la lentille (400), la paroi de réflexion (600) et la plaque d'assise de bande (103) sont formées d'un seul tenant et enfermées pour former une cavité de montage (104).
     
    10. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication 5, dans lequel le support de lampe (100) comprend deux sièges d'extrémité (101), une base de bande (102) et une plaque d'assise de bande (103), la paroi réfléchissante (600) et la plaque d'assise de bande (103) sont formées d'un seul tenant, et le côté intérieur du haut des deux parois réfléchissantes (600) est pourvu d'une première rainure de montage (105) pour fixer le réseau de lentilles convexes en forme de bande (500), et le côté extérieur du haut des deux parois réfléchissantes (600) est pourvu d'une structure de boucle pour fixer la lentille (400), et le bas de la plaque d'assise de bande (103) est pourvu d'une seconde rainure de montage (106) pour fixer le carte de circuit imprimé (200).
     
    11. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication 5, dans lequel le support de lampe (100) comprend :

    des sièges d'extrémité (101) ;

    une base de bande (102), dont deux extrémités sont reliées aux sièges d'extrémité (101) pour former une première cavité de logement (108) ;

    une plaque d'assise de bande (103), disposée au fond de la première cavité de logement (108) ; et la plaque d'assise de bande (103) est reliée aux sièges d'extrémité (101) pour former une seconde cavité de logement (109) pour loger la carte de circuit imprimé (200) et la paroi réfléchissante (600).


     
    12. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication 11, dans lequel le côté intérieur de l'extrémité supérieure de la base de bande (102) est pourvu d'une première rainure de montage (105), et le côté extérieur de la paroi réfléchissante (600) est pourvu d'un bord convexe (601) qui correspond à la première rainure de montage (105).
     
    13. L'appareil d'éclairage à diode électroluminescente tubulaire selon la revendication 12, dans lequel le réseau de lentilles convexes en forme de bande (500) est disposé sur une extrémité supérieure de la paroi réfléchissante (600).
     
    14. L'appareil d'éclairage à diode électroluminescente tubulaire selon l'une quelconque des revendications 11 à 13, dans lequel la lentille (400) s'adapte à la base de bande (102) par serrage.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description