(19)
(11) EP 3 493 323 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
11.05.2022 Bulletin 2022/19

(21) Application number: 17205070.0

(22) Date of filing: 04.12.2017
(51) International Patent Classification (IPC): 
H01Q 13/08(2006.01)
H01Q 1/12(2006.01)
(52) Cooperative Patent Classification (CPC):
H01Q 1/125; H01Q 13/085

(54)

ANTENNA MEASUREMENT SYSTEM AND METHOD FOR POSITIONING AN ANTENNA

ANTENNENMESSSYSTEM UND VERFAHREN ZUM POSITIONIEREN EINER ANTENNE

SYSTÈME DE MESURE D'ANTENNE ET PROCÉDÉ POUR POSITIONNER UNE ANTENNE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
05.06.2019 Bulletin 2019/23

(73) Proprietor: Rohde & Schwarz GmbH & Co. KG
81671 München (DE)

(72) Inventor:
  • Rowell, Dr., Corbett
    81545 München (DE)

(74) Representative: Rupp, Christian et al
Mitscherlich PartmbB Patent- und Rechtsanwälte Sonnenstraße 33
80331 München
80331 München (DE)


(56) References cited: : 
WO-A2-2013/040274
US-A1- 2002 165 002
US-A1- 2005 128 137
US-A1- 2002 164 945
US-A1- 2005 035 920
US-A1- 2017 272 140
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to an antenna measurement system especially comprising an antenna with an integrated light emitting unit and an antenna measurement method for positioning an antenna especially with the aid of the light emitting unit being integrated in the antenna.

    [0002] Generally, in times of an increasing number of wireless communication applications employing directional antenna technologies, there is a growing need of an antenna measurement system and method for positioning an antenna with respect to such systems in order to ensure optimum signal quality and reliable measurement results.

    [0003] US 6,611,696 B2 discloses an apparatus an method for aligning the antennas of two transceivers of a point-to-point wireless millimeter wave communications link. In preferred embodiments, said antennas are pre-aligned using a signaling mirror or a narrow beam search light or laser. In this context, said light source has to be fixed to the antenna mounting in a first step. After having aligned the arrangement with the aid of the light beam of the light source, the latter has to be replaced by the antenna, which costs time and makes the positioning process quite inefficient.

    [0004] US 2005/035920 A1 discloses an antenna system in which a light source in the feed horn of the antenna projects light onto a focus point on the antenna reflector to aid alignment in order to optimise antenna gain.

    [0005] There is the object to provide an antenna measurement system and an antenna measurement method for positioning an antenna in an efficient and time-saving manner.

    [0006] This object is solved by the features of claim 1 for an antenna measurement system and claim 13 for an antenna measurement method. The dependent claims contain further developments.

    [0007] According to a first aspect of the invention, an antenna measurement system according to claim 1 is provided. The antenna measurement system comprises an antenna, and a device under test. In this context, the antenna comprises a light emitting unit which is integrated in the antenna. Advantageously, the antenna can be positioned with respect to the device under test in an efficient and cost-saving manner.

    [0008] According to a first preferred implementation form of the first aspect, the antenna comprises an aperture, wherein the light emitting unit is directly integrated in the center of the aperture. Advantageously, antenna characteristics are not negatively influenced by the integrated light emitting unit.

    [0009] According to a further preferred implementation form of the first aspect, the antenna comprises a feed wire across a gap of the aperture of the antenna.

    [0010] According to a further preferred implementation of the first aspect, the light emitting unit is a laser light emitting unit, preferably a laser diode. Advantageously, said laser allows positioning the antenna over long distances.

    [0011] According to a further preferred implementation form of the first aspect, the light emitting unit, especially the light beam of the light emitting unit, points in main radiation direction of the antenna or in a direction having a predefined offset angle with respect to the main radiation direction of the antenna. Advantageously, the antenna can be positioned with special respect to its main radiation direction in an efficient manner.

    [0012] According to a further preferred implementation form of the first aspect, the light beam of the light emitting unit passes the center of the main radiation direction beam of the antenna. Advantageously, the antenna can be precisely positioned with special respect to the center of its main radiation direction beam in an efficient manner.

    [0013] According to a further preferred implementation form of the first aspect, the antenna is a horn antenna or a Vivaldi antenna.

    [0014] According to a further preferred implementation form of the first aspect, the antenna is an unbalanced antenna and/or a measurement feed antenna.

    [0015] According to the first aspect, the light emitting unit is configured to project a shadow, especially from the feed line of the antenna, outlined by bands of light onto the device under test.

    [0016] According to a further preferred implementation form of the first aspect, the antenna is dual-polarized.

    [0017] According to a further preferred implementation form of the first aspect, the light emitting unit is configured to project a cross for more precise alignment of the device under test.

    [0018] According to a further preferred implementation form of the first aspect, the antenna measurement system comprises signal analysis measurement equipment. Additionally or alternatively, the antenna measurement system comprises signal generation measurement equipment.

    [0019] According to a second aspect of the invention, an antenna measurement method according to claim 13 is provided. The antenna measurement method comprises the steps of using an antenna measurement system according to the first aspect of the invention and its preferred implementation forms, and aligning the antenna of the antenna measurement system with respect to the device under test of the antenna measurement system with the aid of the light emitting unit integrated in the antenna. Advantageously, the antenna can be positioned with respect to the device under test in an efficient and cost-saving manner.

    [0020] According to a first preferred implementation form of the second aspect, the light emitting unit of the antenna is operated before or during the measurement.

    [0021] According to a further preferred implementation form of the second aspect, the light emitting unit of the antenna is operated in real-time together with the measurement. Advantageously, further time and costs can be saved.

    [0022] Exemplary embodiments of the invention are now further explained with respect to the drawings by way of example only, and not for limitation. In the drawings:
    Fig. 1
    shows an exemplary embodiment of an antenna measurement system;
    Fig. 2
    shows a first exemplary embodiment of an antenna comprised by a system in a front- and back-view with hidden absorbers;
    Fig. 3
    shows a second view of the first embodiment of the antenna in a front- and back-view;
    Fig. 4
    shows a second exemplary embodiment of an antenna comprised by the system in a front- and back-view with hidden absorbers;
    Fig. 5
    shows an implementation form of an embodiment of the invention;
    Fig. 6
    shows a third exemplary embodiment of an antenna;
    Fig. 7
    shows an exemplary embodiment of an antenna system comprised by the antenna measurement system in a front- and back-view;
    Fig. 8
    shows a further implementation form of an embodiment of the antenna system according to the invention;
    Fig. 9
    shows an exemplary cross being projected by the further implementation form of the fourth exemplary embodiment of the antenna for more precise alignment;
    Fig. 10
    shows an embodiment of a measurement chamber comprising the inventive antenna measurement system; and
    Fig. 11
    shows a flow chart of an exemplary embodiment of an antenna measurement method.


    [0023] In Fig. 1, an exemplary embodiment of an antenna measurement system 200 according to a first aspect is shown. The antenna measurement system 200 comprises an antenna 201 and a device under test 202, wherein the antenna 201 comprises a light emitting unit 203, preferably a laser light emitting unit, more preferably a laser diode. In this context, the light beam 204 emitted by the light emitting unit 203 is also illustrated.

    [0024] Furthermore, the light emitting unit 203 is integrated in the antenna 201. Further advantageously, the antenna 201 comprises an aperture, wherein the light emitting unit 203 is directly integrated in the aperture, especially in the center of the aperture. Additionally, the antenna 201 may comprise a feed wire across a gap of the aperture of the antenna 201.

    [0025] Moreover, the light emitting unit 203, especially the light beam 204 of the light emitting unit 203, advantageously points in main radiation direction of the antenna 201 or in a direction having a predefined offset angle with respect to the main radiation direction of the antenna 201. Further advantageously, the light beam 204 of the light emitting unit 203 passes the center of the main radiation direction beam of the antenna 201. Additionally, the light emitting unit 203 is configured to project a shadow, especially from the feed line of the antenna 201, outlined by band of light onto the device under test 202. In addition to this, the light emitting unit 203 may further be configured to project a cross for more precise alignment of the device under test 202.

    [0026] With respect to the antenna 201, it is noted that the antenna 201 may be a horn antenna or a Vivaldi antenna. Furthermore, the antenna 201 may be an unbalanced antenna and/or a measurement feed antenna. Additionally, the antenna 201 may be dual-polarized.

    [0027] In addition to this, it is further noted that the antenna measurement system 200 may comprise signal analysis measurement equipment and/or signal generation measurement equipment.

    [0028] Fig. 2 shows an exemplary embodiment of an antenna 1 comprising a light emitting unit 203 integrated in the antenna 1. In Fig. 2, for reasons of clarity and comprehensibility, not all components of the antenna have been depicted. In Fig. 3, a view of the antenna showing all components is depicted. On the left side of the Fig. 2, a front-view of the antenna 1 is shown. On the right side, a back-view of the antenna 1 is shown.

    [0029] The antenna 1 comprises a circuit board 10 and two antenna elements 12, 13 formed in a metallization layer 11 on the front side of the circuit board 10. The antenna elements 12, 13 are not connected electrically. The antenna element 13 is directly connected to a connector 17, while the antenna element 12 is connected to the connector 17 through a wire 19 and a feed line 18. The connector 17 is for example a coaxial connector. The antenna element 13 in this case is connected to the shielding of the coaxial connector, while the antenna element 12 is connected to the center line of the coaxial connector 17.

    [0030] The antenna elements 12, 13 are arranged symmetrically on the front-side of the circuit board 10. The circuit board 10 extends outwardly from the symmetrical axis beyond the extent of the antenna elements 12, 13. Moreover, the antenna elements 12, 13 comprise recesses 14, 15 at their outer edges regarding the symmetry axis.

    [0031] In Fig. 3, the antenna 1 from Fig. 2 is shown including all relevant components. Identical elements have been partially omitted in the description of Fig. 3. Absorber elements 20, 21, 22 and 23 are mounted on two layers surrounding the antenna elements 12, 13. The absorber elements 20, 21, 22 and 23 are mounted on the front-side and the back-side of the circuit board 10. The absorber elements 20-23 are advantageously formed from a foam material having a dielectric constant εr between 10 and 100.

    [0032] The distance d1 between the absorber elements 20, 21 and 22, 23 advantageously is between 20mm and 100mm, most advantageously about 60 mm. Moreover d1 is in the range of 30% to 70% of the entire width of the antenna. Most advantageously, d1 is 50% of the width of the entire antenna.

    [0033] The entire width of the antenna W is between 50mm and 200mm, preferably between 80mm and 140mm, most advantageously about 120mm.

    [0034] The absorber elements 20-23 are mostly symmetrical regarding the circuit board 10 and regarding a symmetry axis of the antenna elements 12, 13.

    [0035] The absorber elements 20-23 are arranged in an outer section 35 of the circuit board 10 above and below the antenna elements. The outer section 35 is outer in regard to the central symmetry axis of the antenna elements 12, 13. The outer absorber element areas 110 of the absorber elements 20-23 extend further outwards than the antenna elements 12, 13 regarding the central symmetry axis.

    [0036] An inner section 34 regarding the central symmetry axis of the antenna elements 12, 13 is not covered by the absorber elements 20-23. Moreover, the absorber elements 20-23 form recesses 33 regarding an emitting edge of the antenna elements 12, 13. Also, the absorber elements 20-23 form recesses 24, 25, 28, 29 in the outer sections 35. These recesses 24, 25, 28, 29 can advantageously be used for mounting the antenna. Also, the absorber elements 20-23 form recesses 26, 27, 30, 31 at a non-emitting side of the antenna 1. These recesses 26, 27, 30, 31 can also be used for mounting the antenna 1.

    [0037] The metallization layer 11 shown in Fig. 2 is largely covered by a protective coating. The protective coating is therefore placed on the circuit board 10 directly where no antenna elements 12, 13 are formed and on the antenna elements 12, 13 where they are formed. The protective coating is advantageously placed on the top and bottom of the circuit board. Near a feed line connection area 39, a recess 32 within the protective coating is formed. This is done so that the protective coating does not influence the antenna radio frequency behavior in the especially sensitive section of the antenna, where the antenna elements 12, 13 have minimal distance. The recess 32 within the protective coating extends until the distance between the antenna elements 12, 13 towards the emitting side of the antenna reaches d2. Advantageously, d2 is between 2mm and 8mm, most advantageously 5 mm.

    [0038] In Fig. 4, a further exemplary embodiment of an antenna 2 comprising a light emitting unit 203 integrated in the antenna 2 is shown. In this embodiment, the antenna 2 does not necessarily comprise absorber elements. The circuit board 70 of the antenna 2 here furthermore comprises a recess 72 at the emitting side of the antenna 2. The shape of the circuit board 70 follows the shape of emitting edges 71 of the antenna elements. The circuit board 72 though extends beyond the shape of the antenna elements into the emitting direction of the antenna slightly. A current flowing in the antenna elements at the emitting edge of the antenna elements results in an electromagnetic field along the emitting edge of the antenna elements being present in the surround air and in the circuit board dielectric. These two media have different electrical permittivity creating dispersion effect. The cut 72 reduces the dispersion and increase radiation directivity.

    [0039] In addition to this, Fig. 5 illustrates a further inventive implementation form of the exemplary embodiment of an antenna according to Fig. 4, wherein the antenna 2 comprises an additional connection element 205. With the aid of said additional connection element 205, the light emitting unit 203 is configured to project a shadow, especially from the feed line of the antenna 2, outlined by bands of light onto the device under test 202. For this purpose, the additional connection element 205 is arranged within the light beam of the light emitting unit 203. Additionally, the additional connection element 205 may be arranged between the emitting edges 71 of the antenna elements. Advantageously, the additional connection element 205 may be configured not to influence the radio frequency characteristics of the antenna 2. Further advantageously, the additional connection element 205 may be transparent with respect to radio frequency signals, especially regarding radio frequency signals emitted by the antenna 2.

    [0040] In Fig. 6, a further exemplary embodiment of an antenna 83 comprising a light emitting unit 203 integrated in the antenna 83 is shown. The antenna 83 is part of an antenna system 3 which is comprised by the antenna 83, a base plate 80, on which the antenna 83 is mounted perpendicularly, an absorber base 81 mounted on the base plate 80 and a plurality of absorbers mounted on the absorber base 81. The absorbers 82 extend from a non-emitting side of the antenna towards the emitting side of the antenna 83 and are mounted parallel to the antenna. The absorbers advantageously are shorter than the antenna 83. The antenna 83 is an antenna according to one of the previously shown embodiments of the inventive antenna.

    [0041] In Fig. 7, an exemplary embodiment of an antenna system 4 comprising a light emitting unit 203 integrated in the antenna system 4 is shown. Two antennas 93 and 94 are arranged perpendicularly. They intersect at a central symmetry axis defined by the antenna elements. The antennas 93, 94 are mounted on a base plate 90, on which also an absorber base 91 and absorbers 92 are mounted. On the left side of Fig. 9, the antennas 93 and 94 and the absorber base 91 and the absorbers 92 are depicted. For reasons of clarity, on the right side of Fig. 9, the antennas 93, 94 and the base plate 90 are shown on their own.

    [0042] In addition to this, Fig. 8 illustrates a further inventive implementation form of the exemplary embodiment of an antenna system 4 according to Fig. 7, wherein the antenna system 4 comprises two additional connection elements 205 and 206. With the aid of said additional connection elements 205 and 206, the light emitting unit 203 is configured to project a cross for more precise alignment of the device under test 202. For this purpose, the additional connection elements 205 and 206 are arranged within the light beam of the light emitting unit 203. Additionally, the additional connection elements 205 and 206 may be arranged between the emitting edges of the antenna elements. In addition to this, the additional connection elements 205 and 206 may form a cross. Advantageously, the additional connection elements 205 and 206 may be configured not to influence the radio frequency characteristics of the antenna system 4. Further advantageously, the additional connection elements 205 and 206 may be transparent with respect to radio frequency signals, especially regarding radio frequency signals emitted by the antenna system 4.

    [0043] In Fig. 9, an exemplary projection of a cross 208 projected by the further implementation form of the exemplary embodiment of the antenna system 4 according to Fig. 8.

    [0044] In Fig. 10, an inventive embodiment of a measurement chamber 5 is depicted. The measurement chamber 5 comprises a container 101, which is sealed against electromagnetic radiation and at least an antenna 100 or an antenna system according to one of the previous embodiments. The antenna 100 or the antenna system is mounted on an inner surface of the container 101. The device under test 102 is placed within the container 101. The inner surface of the container 101 is completely covered with absorbers. For reasons of clarity, only a part of these absorbers are depicted here. In this exemplary embodiment, the antenna 100 comprises an integrated light emitting unit 203 and an additional connection element 205 according to a combination of the above-mentioned embodiments of Fig. 5 and Fig. 6. In this context, with the aid of said additional connection element 205 and the light emitting unit 203, a shadow 207 is projected onto the device under test which is exemplary depicted as a mobile phone 102 for a precise alignment of said device 102.

    [0045] Finally, Fig. 11 shows a flow chart of an antenna measurement method. In a first step S1101, an antenna measurement system according to the first aspect of the invention or its exemplary embodiments is used. In a second step S1102, the antenna of the antenna measurement system is aligned with respect to the device under test of the antenna measurement system with the aid of the light emitting unit integrated in the antenna.

    [0046] While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the invention should be defined in accordance with the following claims.

    [0047] Although the invention has been illustrated and described with respect to one or more implementations, alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.


    Claims

    1. An antenna measurement system (200) comprising:

    an antenna (201), and

    a device under test (202),

    wherein the antenna (201) comprises a light emitting unit (203) which is integrated in the antenna (201), and wherein the light emitting unit (203) is configured to project a shadow (207) outlined by bands of light onto the device under test (202).
     
    2. The antenna measurement system (200) according to claim 1,
    wherein the antenna (201) comprises an aperture, wherein the light emitting unit (203) is directly integrated in the center of the aperture.
     
    3. The antenna measurement system (200) according to claim 2,
    wherein the antenna (201) comprises a feed wire across a gap of the aperture of the antenna (201).
     
    4. The antenna measurement system (200) according to any of the claims 1 to 3,
    wherein the light emitting unit (203) is a laser light emitting unit, preferably a laser diode.
     
    5. The antenna measurement system (200) according to any of the claims 1 to 4,
    wherein the light emitting unit (203), especially the light beam (204) of the light emitting unit (203), points in main radiation direction of the antenna (201) or in a direction having a predefined offset angle with respect to the main radiation direction of the antenna (201).
     
    6. The antenna measurement system (200) according to claim 5,
    wherein the light beam (204) of the light emitting unit (203) passes the center of the main radiation direction beam of the antenna (201).
     
    7. The antenna measurement system (200) according to any of the claims 1 to 6,
    wherein the antenna (201) is a horn antenna or a Vivaldi antenna.
     
    8. The antenna measurement system (200) according to any of the claims 1 to 7,
    wherein the antenna (201) is an unbalanced antenna and/or a measurement feed antenna.
     
    9. The antenna measurement system (200) according to any of the claims 1 to 8,
    wherein the shadow (207) is projected from the feed line of the antenna (201).
     
    10. The antenna measurement system (200) according to any of the claims 1 to 9,
    wherein the antenna (201) is dual-polarized.
     
    11. The antenna measurement system (200) according to any of the claims 1 to 10,
    wherein the light emitting unit (203) is configured to project a cross (208) for more precise alignment of the device under test (202).
     
    12. The antenna measurement system (200) according to any of the claims 1 to 11,

    wherein the antenna measurement system (200) comprises signal analysis measurement equipment and/or

    wherein the antenna measurement system (200) comprises signal generation measurement equipment.


     
    13. An antenna measurement method, the method comprising the steps of:

    using an antenna measurement system (200) according to any of the claims 1 to 12, and

    aligning the antenna (201) of the antenna measurement system (200) with respect to the device under test (202) of the antenna measurement system (200) with the aid of the shadow (207) outlined by bands of light emitted by the light emitting unit (203) integrated in the antenna (201).


     
    14. The antenna measurement method according to claim 13,
    wherein the light emitting unit (203) of the antenna (201) is operated before or during the measurement.
     
    15. The antenna measurement method according to claim 13 or 14,
    wherein the light emitting unit (203) of the antenna (201) is operated in real-time together with the measurement.
     


    Ansprüche

    1. Antennenmesssystem (200), das Folgendes umfasst:

    eine Antenne (201), und

    eine zu testende Vorrichtung (202),

    wobei die Antenne (201) eine lichtemittierende Einheit (203) umfasst, die in die Antenne (201) integriert ist, und

    wobei die lichtemittierende Einheit (203) dazu ausgelegt ist, einen Schatten (207), der von Lichtbändern umrandet ist, auf die zu testende Vorrichtung (202) zu projizieren.


     
    2. Antennenmesssystem (200) nach Anspruch 1,
    wobei die Antenne (201) eine Öffnung umfasst, wobei die lichtemittierende Einheit (203) direkt in die Mitte der Öffnung integriert ist.
     
    3. Antennenmesssystem (200) nach Anspruch 2,
    wobei die Antenne (201) einen Zuführungsdraht über einen Spalt der Öffnung der Antenne (201) umfasst.
     
    4. Antennenmesssystem (200) nach einem der Ansprüche 1 bis 3,
    wobei die lichtemittierende Einheit (203) eine Laserlicht emittierende Einheit, vorzugsweise eine Laserdiode, ist.
     
    5. Antennenmesssystem (200) nach einem der Ansprüche 1 bis 4,
    wobei die lichtemittierende Einheit (203), insbesondere der Lichtstrahl (204) der lichtemittierenden Einheit (203) in eine Hauptabstrahlrichtung der Antenne (201) oder in eine Richtung mit einem vordefinierten Versatzwinkel mit Bezug auf die Hauptabstrahlrichtung der Antenne (201) gerichtet ist.
     
    6. Antennenmesssystem (200) nach Anspruch 5,
    wobei der Lichtstrahl (204) der lichtemittierenden Einheit (203) durch die Mitte des Hauptabstrahlrichtungsstrahls der Antenne (201) verläuft.
     
    7. Antennenmesssystem (200) nach einem der Ansprüche 1 bis 6,
    wobei die Antenne (201) eine Hornantenne oder eine Vivaldiantenne ist.
     
    8. Antennenmesssystem (200) nach einem der Ansprüche 1 bis 7,
    wobei die Antenne (201) eine unsymmetrische Antenne und/oder eine Messzuführungsantenne ist.
     
    9. Antennenmesssystem (200) nach einem der Ansprüche 1 bis 8,
    wobei der Schatten (207) von der Zuleitung der Antenne (201) projiziert wird.
     
    10. Antennenmesssystem (200) nach einem der Ansprüche 1 bis 9,
    wobei die Antenne (201) doppelt polarisiert ist.
     
    11. Antennenmesssystem (200) nach einem der Ansprüche 1 bis 10,
    wobei die lichtemittierende Einheit (203) dazu ausgelegt ist, zur Verbesserung der Genauigkeit der Ausrichtung der zu testenden Vorrichtung (202) ein Kreuz (208) zu projizieren.
     
    12. Antennenmesssystem (200) nach einem der Ansprüche 1 bis 11,

    wobei das Antennenmesssystem (200) eine Signalanalysemessausrüstung umfasst und/oder

    wobei das Antennenmesssystem (200) eine Signalerzeugungsmessausrüstung umfasst.


     
    13. Antennenmessverfahren, wobei das Verfahren die folgenden Schritte umfasst:

    Verwenden eines Antennenmesssystems (200) nach einem der Ansprüche 1 bis 12, und

    Ausrichten der Antenne (201) des Antennenmesssystems (200) mit Bezug auf die zu testende Vorrichtung (202) des Antennenmesssystems (200) mithilfe des Schattens (207), der von Lichtbändern umrandet ist, die von der lichtemittierenden Einheit (203) emittiert werden, die in die Antenne (201) integriert ist.


     
    14. Antennenmessverfahren nach Anspruch 13,
    wobei die lichtemittierende Einheit (203) der Antenne (201) vor oder während der Messung betrieben wird.
     
    15. Antennenmessverfahren nach Anspruch 13 oder 14,
    wobei die lichtemittierende Einheit (203) der Antenne (201) zusammen mit der Messung in Echtzeit betrieben wird.
     


    Revendications

    1. Système de mesure d'antenne (200) comprenant :

    une antenne (201), et

    un dispositif à l'essai (202),

    dans lequel l'antenne (201) comprend une unité d'émission de lumière (203) qui est intégrée dans l'antenne (201), et dans lequel l'unité d'émission de lumière (203) est configurée pour projeter une ombre (207) définie par des bandes de lumière sur le dispositif à l'essai (202).


     
    2. Système de mesure d'antenne (200) selon la revendication 1,
    dans lequel l'antenne (201) comprend une ouverture, dans lequel l'unité d'émission de lumière (203) est directement intégrée au centre de l'ouverture.
     
    3. Système de mesure d'antenne (200) selon la revendication 2,
    dans lequel l'antenne (201) comprend un fil d'alimentation à travers un espace de l'ouverture de l'antenne (201) .
     
    4. Système de mesure d'antenne (200) selon l'une quelconque des revendications 1 à 3,
    dans lequel l'unité d'émission de lumière (203) est une unité d'émission de lumière laser, de préférence une diode laser.
     
    5. Système de mesure d'antenne (200) selon l'une quelconque des revendications 1 à 4,
    dans lequel l'unité d'émission de lumière (203), en particulier le faisceau de lumière (204) de l'unité d'émission de lumière (203), pointe dans la direction de rayonnement principale de l'antenne (201) ou dans une direction ayant un angle de décalage prédéfini par rapport à la direction de rayonnement principale de l'antenne (201).
     
    6. Système de mesure d'antenne (200) selon la revendication 5,
    dans lequel le faisceau de lumière (204) de l'unité d'émission de lumière (203) passe par le centre du faisceau de direction de rayonnement principale de l'antenne (201).
     
    7. Système de mesure d'antenne (200) selon l'une quelconque des revendications 1 à 6,
    dans lequel l'antenne (201) est une antenne cornet ou une antenne Vivaldi.
     
    8. Système de mesure d'antenne (200) selon l'une quelconque des revendications 1 à 7,
    dans lequel l'antenne (201) est une antenne non équilibrée et/ou une antenne d'alimentation de mesure.
     
    9. Système de mesure d'antenne (200) selon l'une quelconque des revendications 1 à 8,
    dans lequel l'ombre (207) est projetée à partir de la ligne d'alimentation de l'antenne (201).
     
    10. Système de mesure d'antenne (200) selon l'une quelconque des revendications 1 à 9,
    dans lequel l'antenne (201) est à polarisation double.
     
    11. Système de mesure d'antenne (200) selon l'une quelconque des revendications 1 à 10,
    dans lequel l'unité d'émission de lumière (203) est configurée pour projeter un réticule (208) pour un alignement plus précis du dispositif à l'essai (202).
     
    12. Système de mesure d'antenne (200) selon l'une quelconque des revendications 1 à 11,

    dans lequel le système de mesure d'antenne (200) comprend un équipement de mesure d'analyse de signal et/ou

    dans lequel le système de mesure d'antenne (200) comprend un équipement de mesure de génération de signal.


     
    13. Procédé de mesure d'antenne, le procédé comprenant les étapes de :

    l'utilisation d'un système de mesure d'antenne (200) selon l'une quelconque des revendications 1 à 12, et

    l'alignement de l'antenne (201) du système de mesure d'antenne (200) par rapport au dispositif à l'essai (202) du système de mesure d'antenne (200) à l'aide de l'ombre (207) définie par des bandes d'une lumière émise par l'unité d'émission de lumière (203) intégrée dans l'antenne (201).


     
    14. Procédé de mesure d'antenne selon la revendication 13,
    dans lequel l'unité d'émission de lumière (203) de l'antenne (201) est actionnée avant ou pendant la mesure.
     
    15. Procédé de mesure d'antenne selon la revendication 13 ou 14,
    dans lequel l'unité d'émission de lumière (203) de l'antenne (201) est actionnée en temps réel conjointement avec la mesure.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description