Technical Field of the Invention
[0001] The present invention relates generally to a centrifugal fan which is intended to
be used in extractor hoods. The present invention is particularly related to an improved
structure of a centrifugal fan in order to increase energy efficiency in extractor
hoods.
Background of the Invention
[0002] A centrifugal fan is a mechanical device for moving air or other gases. These fans
increase the speed of air stream with the rotating impellers. They use the kinetic
energy of the impellers or the rotating blade to increase the pressure of the air/gas
stream which in turn move them against the resistance caused by ducts, dampers and
other components. Centrifugal fans accelerate air radially, changing the direction
of the airflow.
[0003] Centrifugal fan structures are designed by taking into account four important factors
which are volumetric flow rate, pressure, power and noise. Said centrifugal fans provide
very different structures in order to improve these factors. Generally, centrifugal
fans are consisted of a fan housing, an impeller, inlet and outlet ducts, a drive
shaft and a drive mechanism. The impeller is linked directly to the shaft of an electric
motor. Thus, the motor's rotational speed determines the impeller speed. There are
three types of impellers whose blades are arranged in there different ways such as
forward-curved, backward-curved or radial.
[0004] Its operation principle is that the centrifugal fan uses the centrifugal power supplied
from the rotation of impellers to increase the kinetic energy of air/gases. When the
impellers rotate, the gas particles near the impellers are thrown off from the impellers,
and then moves into the fan casing. Therefore, the kinetic energy of gas is measured
as pressure because of the system resistance offered by the casing and duct. The gas
is then guided to the exit via outlet ducts. After the gas is thrown off, the gas
pressure in the middle region of the impellers decreases. The gas from the impeller
eye rushes in to normalize this. This cycle repeats and therefore the gas can be continuously
transferred.
[0005] In these devices, volute tongue has an important effect in order to increase the
speed of air/gas stream which causes the increase in energy efficiency. Therefore,
in order to reach the best energy efficiency in these centrifugal ventilation fans,
manufacturers test different volute tongue angles in the centrifugal ventilation fans.
One of the studies done in this field is expressed in the utility model document
CN202581616. Said document discloses a dehumidifier comprising a shell, a snail shaped fan, an
air inlet, an air outlet and a snail tongue angle. In this document, the snail tongue
angle is determined between 20-40° in order to improve the performance of the dehumidifier.
Another patent document which discloses a centrifugal fan is
DE2556614. Said centrifugal fan expresses the volute tongue angle between 25-65°. Other prior
art centrifugal fans are known from
EP1375925 A2 and
EP1701041 A2.
[0006] The present invention aims to provide a centrifugal fan in order to overcome the
deficiencies in the prior studies done in this field as well as to provide a centrifugal
fan with more energy efficiency. In addition, it is aimed that the centrifugal fan
of the invention generates lower noise while operating.
Brief Description of the Figures
[0007]
Figure 1 is a representative view of the centrifugal fan from one perspective angle
in which one of the housing parts is shown with a motor body, and impellers.
Figure 2 is a representative view of the centrifugal fan from another angle in which
one of the housing parts is shown with the impellers.
Figure 3 is a unidimensional drawing of the centrifugal fan which shows the curvatures
clearly.
Figure 4 is a unidimensional drawing of the centrifugal fan which shows the circles
belonging to the curvatures.
Figure 5 shows a simulation demonstrating suction of air/gas in the centrifugal fan.
Figure 6 is a graph which shows the simulation results of the centrifugal fan.
Detailed Description of the Invention
[0008] The present invention is related to a centrifugal fan (1), in particular a snail
type centrifugal fan (1), particularly for extractor hoods. Said centrifugal fan (1)
structure is intended to be used particularly, but not exclusively, in the ventilation
systems for extractor hoods for evacuation of fumes, vapors, or other air-like gases
mostly from domestic environments.
[0009] The centrifugal fan (1) of the present invention comprises two separate housing parts
(2) which can be coupled to each other in a connection plane K in order to protect
the inner parts of the centrifugal fan (1). Preferably, said housing parts (2) can
be produced by plastic materials. One of the housing parts (2) is not shown in the
figures, while the other which comprises a motor body (3) of the centrifugal fan (1)
is presented in Figs. 1 and 2. Said motor body (3) is mounted to the housing part
(2) so as to be able to rotate axially and is located substantially in the middle
of said housing part (2). In addition, said housing parts (2) are preferably arranged
in a substantially symmetrical manner with respect to the connection plane K.
[0010] As seen in Fig. 1, said centrifugal fan (1) preferably comprises two radial fan impellers
(4) which are connected to each other concentrically in a connection plane L. Said
radial fan impellers (4) are mounted substantially into the middle of the housing
part (2) around the motor body (3), coaxial with the rotation of the motor body (3).
Preferably, the centrifugal fan (1) of the invention is constructed such that the
connection planes K and L are substantially in alignment in order to provide symmetry
in the centrifugal fan (1) when the housing parts (2) are coupled to each other.
[0011] There is also defined an outlet (5) for evacuation of the air-like gases in the centrifugal
fan (1). Said outlet (5) evacuates the air-like gases substantially in the direction
of (y) which is indicated in the figures, and perpendicular to the rotation of the
motor body (3).
[0012] Each housing part (2) comprises a structure in semi-cylindrical form in order to
define the outlet (5) and throat section (6) of the housing part (2). When the housing
parts (2) are coupled to each other in the connection plane K, corresponding parts
of said throat section (6) are also coupled to each other in a fluid-tight manner
and form a cylindrical outlet (5).
[0013] Said centrifugal fan (1) sucks the air-like gases towards the inside by rotation
of said radial fan impellers (4) by using kinetic energy. There is provided an air
inlet section comprising some holes to ensure air flow inside the centrifugal fan
(1). Said air inlet section is defined on another housing part which is not shown
in the figures. The centrifugal fan structure (1) is configured such that when the
two housing parts (2) are coupled to each other in the connection plane K, said air
inlet section faces with the open side (7) of the radial fan impellers (4). Consequently,
the air-like gas is drawn inside via the rotation of the radial fan impellers (4)
driven by the motor body (3).
[0014] As seen in Fig. 2, the open side (7) of the radial fan impeller (4) comprises a main
opening (8) preferably in a cylindrical form being also coaxial with the rotation
axis of the motor body (3).
[0015] Preferably, said housing part (2) of the centrifugal fan structure (1) also comprises
some protrusions (9) along the connection plane K in order to provide the tight connection
between the two housing parts (2), when they are coupled in the connection plane K
and twisted around said connection plane K. Also, there may be provided some teeth
(10) along the connection plane K which are able to couple with the corresponding
teeth on the other housing part which is not shown in the figures. Consequently, the
housing parts (2) can be fixed to each other from these teeth (10). Preferably, the
housing part (2) also comprises a connection seat (11) which is able to couple with
the corresponding seat of the other housing part in the state of engagement.
[0016] In addition, the centrifugal fan (1) comprises a tongue section (12) in the region
of the outlet (5), which defines the throat section (6) as conventionally known in
the snail type fans. Said tongue section (12) causes the cross-section of the air
flow channel to be narrowed locally, upon which the said cross section expands again
above tongue section (12), and in this expanded region in close proximity to the outlet
(5), the pressure of the air flow considerably drops. Said tongue section (12) facilitates
also a connection between the two housing parts (2) with the connection spots (13)
in the state of engagement. According to new regulations all over the world, it is
required and highly preferred that extractor hoods have the A+ energy efficiency which
is hardly achieved by way of the conventional snail fans. The inventors have surprisingly
noted that the curvatures in said tongue section (12) are of vital importance for
increasing the energy efficiency, and it is found that by optimizing the curvatures
in the tongue section (12) of the throat, the required level of energy efficiency
can be obtained without the undue burden of changing overall design of the conventional
snail type fans.
[0017] As seen in Fig. 3, said tongue section (12) comprises the curvature B, which plays
an important role in behavior of the air flow in the centrifugal fan (1). As seen
in the Fig. 4, the curvature B forms the extreme point of the tongue section (12)
in the horizontal direction (x). As the impeller (4) rotates in counter-clockwise
direction according to Figs. 3-5, for instance, the curvature B convexly facing the
rigorous air flow causes a disturbance which deteriorates a laminar flow regime and
causes local vortexes to be formed around the periphery of the tongue section (12).
The conventional snail type fans comprise a tongue section with a sharp or smoothly
curved structure of the above type and therefore are not responsive to the drawbacks
such as deterioration of the laminar flow and creating vortexes. It is known that
irregular flow regimen in a snail type fan causes energy consumption to increase per
volume of the air discharged through the outlet.
[0018] It is now found that the aforesaid drawbacks of the conventional fans can be eliminated
by the new design of the instant invention whereby the said tongue section (12) defined
by the horizontal width H comprises a further curvature D convexly formed through
the throat of the outlet (5) which is connected to the first curvature B by way of
a longitudinal surface C. It is thereby ensured that the air flow impinging upon said
first curvature B neighboring the impeller (4), flows over the surface C and arrives
to curvature D whereby said airflow expands smoothly through the area defined by the
width G. It is also unexpectedly found that the surface C, if it is formed as a concavely
extending curvature, advantageously ensures preserving of the laminar flow through
the curvature D and outlet (5).
[0019] Referring now to Fig. 4, the curvature B mentioned above is realized with a circle
whereby its radius (r
B) is perfectly designed in the range of 2,9 mm to 3,6 mm. The closest vertical distance
(A) between the center of the circle belonging to curvature B and the connection plane
L of the impellers (4) is preferably arranged inbetween 7-9 mm. As it is shown in
Fig. 4, the transverse distance between the center of the circle belonging to curvature
B and the center of the impeller (4) is designated as x
b, whereas the longitudinal distance between the center of the circle belonging to
curvature B and the center of the impeller (4) is designated as y
b. In the scope of the invention, the x
b/y
b ratio is preferably determined inbetween 0,6 and 0,8.
[0020] As noted above, the surface C is preferably formed as a concave curvature which is
realized with a circle where its radius (r
c) is advantageously arranged inbetween 55 and 70 mm. The circle of the curvature B
is tangent to the circle of the curvature C. The curvature D can be envisaged with
a circle whereby its radius (r
d) is advantageously arranged inbetween 10 mm and 25 mm. The circle of the curvature
D is again tangent to the circle of curvature C. The inventors are of the opinion
that the condition of r
c being substantially bigger than r
d ensures the fact that curvature D does not disturb the air flow and instead a smooth
passage of the flow is guaranteed through the outlet (5) defined by the width G. The
results of the simulation as demonstrated in Fig. 5 verify that a perfect flow regime
is obtained by the arrangement comprising at least two curvatures (B, D) and a surface
C extending therebetween substantially in vertical direction.
[0021] The tongue section (12) further comprises a surface S which is tangential to the
circle of the curvature D. Said surface S is preferably formed as a straight line
which is inclined and has an angle with the horizontal axis (x) which is 10 to 15°.
The horizontal distance H between the imaginary plane P which is tangential to the
curvature B and the imaginary plane T which is tangential to one end of the throat
section (6) is preferably determined between 70 mm and 85 mm in the axis of (x). In
addition, the horizontal distance G between the vertical plane defined by the center
of the circle (D) and the imaginary plane T which is tangential to one end of the
outlet section (5) is determined between 55 mm and 62 mm in the axis of (x). Besides
these, the vertical distance F between the point where surface S is tangential to
the circle of the curvature D and the uppermost horizontal line of the outlet section
(5) is advantageously determined between 35 mm and 45 mm in the vertical axis of (y).
[0022] With the centrifugal fan (1) of the foregoing explanations, it is noted that A+ energy
efficiency in extractor hoods. Therefore, according to a further aspect, the present
invention presents extractor hoods comprising the centrifugal fan (1) of the present
invention, and also a method for producing the same comprising placing of said centrifugal
fan (1) into a hood structure.
[0023] In the scope of the invention, in order to manufacture the most efficient centrifugal
fan (1) the optimization studies are performed with the ANSYS CFX software. The effect
of the values mentioned above to the flow rate and to the pressure of the motor body
(3) is calculated with said software whereby the optimum values are verified by experimental
analysis. The flow rate and the pressure of the motor body (3) are considered in these
changes.
[0024] In one of the embodiments of the invention, said values are preferably determined
as follows:
A= 8,1 mm, r
B=2,9 mm, r
C=60 mm, r
D=15 mm, E=11,3°, F=37,7 mm, G=58,4 mm, H=72,3 mm, x
b=47,5 mm and y
b=71,9 mm. The best results are obtained with these values whereby the turbulences
in the outlet (5) of the centrifugal fan structure (1) are minimized.
Table I. The simulation results of the centrifugal fan (1) done with the ANSYS CFX
|
Flow Rate (m3/h) |
Static Pressure (Pa) |
Voltage (V) |
Current (A) |
Power (W) |
1 |
723.4 |
0.6 |
231.6 |
1.1 |
256.3 |
2 |
699.4 |
20 |
232.0 |
1.1 |
253.1 |
3 |
708.8 |
39.2 |
232.2 |
1.1 |
247.6 |
4 |
681.3 |
56.2 |
232.3 |
1.1 |
243.9 |
5 |
691.0 |
78.5 |
232.8 |
1.0 |
238.4 |
6 |
661.9 |
97.2 |
232.6 |
1.0 |
235.2 |
7 |
671.3 |
118.5 |
232.9 |
1.0 |
232.1 |
8 |
660.3 |
137.0 |
232.7 |
1.0 |
226.9 |
9 |
652.8 |
158.5 |
233.4 |
1.0 |
224.4 |
10 |
642.2 |
179.3 |
233.1 |
1.0 |
220.5 |
11 |
634.6 |
198.4 |
233.9 |
0.9 |
217.6 |
12 |
623.1 |
219.6 |
233.9 |
0.9 |
213.6 |
13 |
610.1 |
239.4 |
233.5 |
0.9 |
208.5 |
14 |
595.0 |
262.5 |
233.7 |
0.9 |
205.0 |
15 |
582.2 |
281.5 |
233.5 |
0.9 |
199.9 |
16 |
567.5 |
301.2 |
233.2 |
0.8 |
196.1 |
17 |
553.5 |
318.9 |
233.5 |
0.8 |
192.1 |
18 |
536.6 |
340.2 |
233.2 |
0.8 |
186.8 |
19 |
518.3 |
361.5 |
234.1 |
0.8 |
183.0 |
20 |
500.8 |
379.9 |
234.1 |
0.8 |
178.7 |
21 |
482.4 |
399.5 |
234.1 |
0.7 |
173.2 |
22 |
460.5 |
418.1 |
232.3 |
0.7 |
168.6 |
23 |
436.9 |
441.0 |
232.9 |
0.7 |
162.5 |
24 |
418.6 |
458.7 |
232.9 |
0.7 |
158.6 |
25 |
397.3 |
478.5 |
232.3 |
0.7 |
152.9 |
26 |
371.5 |
500.7 |
233.2 |
0.7 |
149.0 |
27 |
338.9 |
522.1 |
233.3 |
0.6 |
142.1 |
28 |
275.7 |
538.3 |
233.6 |
0.5 |
124.4 |
29 |
192.5 |
561.3 |
233.6 |
0.5 |
113.5 |
30 |
145.8 |
579.3 |
232.5 |
0.5 |
108.5 |
31 |
61.3 |
598.1 |
232.8 |
0.5 |
104.1 |
32 |
48.8 |
608.5 |
232.7 |
0.4 |
96.8 |
[0025] In Table I, the simulation results of the prototypes produced in consideration of
the values mentioned above are presented. Said values are obtained according to the
EN 61591 and EN 60704 standards. The best efficiency points (bep) and the maximum
points of the flow rate, the pressure, and the power values obtained according to
these measurements are as follows:

[0026] In Figure 6, a graph which shows the simulation results is presented. The flow rate,
the pressure, and the power results obtained by said software shows that FDE (Fluid
Dynamic Efficiency) value of the centrifugal fan structure (1) is 35 and its EEI (Energy
Efficiency Class) value is 44,5 (A+).
1. A snail type centrifugal fan (1) comprising two housing parts (2) which can be coupled
to each other in a connection plane K, a motor body (3) mounted in one of the housing
parts (2), at least one radial fan impeller (4) mounted around the motor body (3)
being coaxial with the rotation axis of the motor body (3), and a tongue section (12)
in the region of an outlet (5) of the housing part (2) defining a throat section (6)
narrowing the air passageway cross-section in horizontal axis (x) wherein said tongue
section (12) comprises;
- a convexly formed first curvature (B) neighboring the impeller (4) forming an extreme
point in horizontal direction (x) within the inner volume of the centrifugal fan (1),
and
- a further curvature (D) convexly formed through the outlet (5) at an upper position
of the first curvature (B) with respect to the vertical axis (y) of the centrifugal
fan (1),
whereby, said first curvature (B) extends to the second curvature (D) through a surface
(C) which is tangential to the first and second curvatures (B, D), and said surface
(C) comprises a concavely formed structure extending between the first and second
curvatures (B, D).
2. A centrifugal fan (1) according to claim 1, wherein radius of the first curvature
(B) ranges between 2,9 mm and 3,6 mm.
3. A centrifugal fan (1) according to claim 1, wherein radius of the second curvature
(D) ranges between 10 mm and 25 mm.
4. A centrifugal fan (1) according to claim 1, wherein radius of the concavely formed
surface (C) (rc) is bigger than radius of the second curvature (D) (rd).
5. A centrifugal fan (1) according to claim 4, wherein radius of the concavely formed
surface (C) (rc) ranges from 55 mm to 70 mm.
6. A centrifugal fan (1) according to claim 1 wherein the tongue section (12) further
comprises a surface (S) which is tangential to the circle of the curvature D, said
surface (S) being formed as a straight line which is inclined and having an angle
of 10° to 15° with respect to the horizontal axis (x) of the centrifugal fan (1).
7. A centrifugal fan (1) according to claim 1 wherein the horizontal distance (G) in
the horizontal axis (x) between the vertical plane defined by the center of the circle
belonging to curvature (D) and the imaginary plane T which is vertical plane defined
by one end of the outlet section (5) ranges from 55 mm to 62 mm.
8. A centrifugal fan (1) according to claim 1 wherein the fan comprises a transverse
distance (xb) between the center of the circle belonging to curvature B and the center of the
impeller (4), and a longitudinal distance (yb) between the center of the circle belonging to curvature B and the center of the
impeller (4), whereby xb/yb ratio ranges from 0,6 to 0,8.
9. An extractor hood comprising a snail type fan (1) according to claim 1.
10. A method for producing an extractor hood according to claim 9 comprising placing of
a snail type fan (1) according to claim 1 into the hood structure.
1. Schneckentyp-Zentrifugalgebläse (1) umfassend zwei Gehäuseteile (2), die in einer
Verbindungsebene K miteinander koppelbar sind, einen in einem der Gehäuseteile (2)
gelagerten Motorkörper (3), mindestens ein um den Motorkörper (3) gelagertes, zur
Drehachse des Motorkörpers (3) koaxiales Radialgebläselaufrad (4) und einen Zungenabschnitt
(12) im Bereich eines Auslasses (5) des Gehäuseteils (2), der einen den Luftdurchlassquerschnitt
in horizontaler Achse (x) verengenden Kehlabschnitt (6) definiert wobei der Zungenabschnitt
(12) umfasst;
- eine konvex geformte erste Krümmung (B), die an das Laufrad (4) angrenzt und einen
Extrempunkt in horizontaler Richtung (x) innerhalb des Innenvolumens des Zentrifugalgebläses
(1) bildet, und
- eine weitere Krümmung (D), die konvex durch den Auslass (5) an einer oberen Position
der ersten Krümmung (B) in Bezug auf die vertikale Achse (y) des Zentrifugalgebläses
(1) ausgebildet ist,
wobei sich die erste Krümmung (B) zu der zweiten Krümmung (D) durch eine Oberfläche
(C) erstreckt, die tangential zu den ersten und zweiten Krümmungen (B, D) ist, und
die Oberfläche (C) umfasst eine konkav geformte Struktur, die sich zwischen den ersten
und zweiten Krümmungen (B, D) erstreckt.
2. Zentrifugalgebläse (1) nach Anspruch 1, wobei der Radius der ersten Krümmung (B) sich
zwischen 2,9 mm und 3,6 mm bewegt.
3. Zentrifugalgebläse (1) nach Anspruch 1, bei dem der Radius der zweiten Krümmung (D)
sich zwischen 10 mm und 25 mm bewegt.
4. Zentrifugalgebläse (1) nach Anspruch 1, wobei der Radius der konkav geformten Oberfläche
(C) (rc) größer ist als der Radius der zweiten Krümmung (D) (rd).
5. Zentrifugalgebläse (1) nach Anspruch 4, wobei der Radius der konkav geformten Oberfläche
(C) (rc) von 55 mm bis 70 mm reicht.
6. Zentrifugalgebläse (1) nach Anspruch 1, wobei der Zungenabschnitt (12) ferner eine
Oberfläche (S) aufweist, die tangential zum Krümmungskreis D verläuft, wobei die Oberfläche
(S) als gerade Linie ausgebildet ist, die geneigt ist und einen Winkel von 10° bis
15° mit Bezug auf die horizontale Achse (x) des Zentrifugalgebläses (1) hat.
7. Zentrifugalgebläse (1) nach Anspruch 1, worin der horizontale Abstand (G) in der horizontalen
Achse (x) zwischen der vertikalen Ebene definiert durch den Mittelpunkt des zur Krümmung
(D) gehörenden Kreises und der imaginären Ebene T, die durch ein Ende des Auslassabschnitts
(5) definierte vertikale Ebene ist, von 55 mm bis 62 mm reicht.
8. Zentrifugalgebläse (1) nach Anspruch 1, wobei das Gebläse einen Querabstand (xb) zwischen dem Mittelpunkt des zur Krümmung B gehörenden Kreises und dem Mittelpunkt
des Laufrads (4) und einen Längsabstand (yb) zwischen dem Mittelpunkt des zur Krümmung B gehörenden Kreises und dem Mittelpunkt
des Laufrads (4) umfasst, wobei das Verhältnis xb/yb von 0,6 bis 0,8 reicht.
9. Dunstabzugshaube mit einem Schneckentyp-Gebläse (1) nach Anspruch 1.
10. Verfahren zur Herstellung einer Dunstabzugshaube nach Anspruch 9 umfassend Einsetzen
eines Schneckentyp-Gebläses (1) nach Anspruch 1 in die Haubenstruktur.
1. Ventilateur (1) centrifuge du type escargot comprenant deux parties de boîtier (2)
qui peuvent être accouplées l'une à l'autre dans un plan de connexion K, un corps
de moteur (3) monté dans l'une des parties de boîtier (2), au moins une roue (4) de
ventilateur radial montée autour du corps de moteur (3) qui est coaxiale avec l'axe
de rotation du corps de moteur (3), et une section languette (12) dans la région d'une
sortie (5) de la partie de boîtier (2) définissant une section gorge (6) rétrécissant
la coupe transversale de passage d'air dans un axe horizontal (x) dans lequel ladite
section languette (12) comprend ;
- une première courbure (B) formée de manière convexe avoisinant la roue (4) formant
un point extrême dans une direction horizontale (x) dans le volume intérieur du ventilateur
(1) centrifuge, et
- une courbure (D) supplémentaire formée de manière convexe à travers la sortie (5)
à une position supérieure de la première courbure (B) par rapport à l'axe vertical
(y) du ventilateur (1) centrifuge,
moyennant quoi, ladite première courbure (B) s'étend vers la seconde courbure (D)
à travers une surface (C) qui est tangentielle par rapport aux première et seconde
courbures (B, D), et ladite surface (C) comprend une structure formée de manière concave
s'étendant entre les première et seconde courbures (B, D).
2. Ventilateur (1) centrifuge selon la revendication 1, dans lequel le rayon de la première
courbure (B) est entre 2,9 mm et 3,6 mm.
3. Ventilateur (1) centrifuge selon la revendication 1, dans lequel le rayon de la seconde
courbure (D) est entre 10 mm et 25 mm.
4. Ventilateur (1) centrifuge selon la revendication 1, dans lequel le rayon de la surface
(C) formée de manière concave (rc) est plus grand que le rayon de la seconde courbure (D) (rd).
5. Ventilateur (1) centrifuge selon la revendication 4, dans lequel le rayon de la surface
(C) formée de manière concave (rc) est entre 55 mm et 70 mm.
6. Ventilateur (1) centrifuge selon la revendication 1 dans lequel la section languette
(12) comprend en outre une surface (S) qui est tangentielle par rapport au cercle
de la courbure D, ladite surface (S) étant formée comme une ligne droite qui est inclinée
et ayant un angle de 10° à 15° par rapport à l'axe horizontal (x) du ventilateur (1)
centrifuge.
7. Ventilateur (1) centrifuge selon la revendication 1 dans lequel la distance horizontale
(G) dans l'axe horizontal (x) entre le plan vertical défini par le centre du cercle
appartenant à la courbure (D) et le plan imaginaire T qui est un plan vertical défini
par une extrémité de la section sortie (5) est de 55 mm à 62 mm.
8. Ventilateur (1) centrifuge selon la revendication 1 dans lequel le ventilateur comprend
une distance transversale (xb) entre le centre du cercle appartenant à la courbure B et le centre de la roue (4),
et une distance longitudinale (yb) entre le centre du cercle appartenant à la courbure B et le centre de la roue (4),
moyennant quoi le rapport xb/yb est de 0,6 à 0,8.
9. Hotte à extraction comprenant un ventilateur (1) du type escargot selon la revendication
1.
10. Procédé pour produire une hotte à extraction selon la revendication 9 comprenant le
placement d'un ventilateur (1) du type escargot selon la revendication 1 dans la structure
de hotte.