TECHNICAL FIELD
[0001] The present invention relates to a highly corrosion-resistant copper tube, and more
particularly relates to a copper tube suitably usable as a heat transfer tube and
a refrigerant tube in air-conditioning equipment and refrigerating equipment. The
present invention also relates to a technique of improving resistance of the copper
tube against ant nest corrosion (or formicary corrosion).
BACKGROUND ART
[0002] A seamless copper tube has been generally employed as the heat transfer tube, the
refrigerant tube and the like (tubes arranged inside desired equipment), which are
used, for example, in the refrigerating equipment as well as the air-conditioning
equipment such as a room air conditioner and a packaged air conditioner. Among others,
a tube made of a phosphorous deoxidized copper (JIS-H3300-C1220) having excellent
properties in terms of corrosion resistance, brazeability, heat conductivity and bending
workability, for example, has been mainly used as the seamless copper tube.
[0003] However, it is recognized that the above-described phosphorous deoxidized copper
tube used in the air-conditioning equipment and the refrigerating equipment suffers
from generation of so-called "ant nest corrosion" (or "formicary corrosion") which
is an unusual corrosion that progresses in the form of an ants' nest from a surface
of the tube in a direction of the wall thickness. The ant nest corrosion is considered
to be generated in a damp environment by a corrosive medium in the form of a lower
carboxylic acid such as a formic acid and an acetic acid. Further, it is recognized
that such corrosion is also generated in the presence of a chlorine-based organic
solvent such as 1,1,1-trichloroethane, particular kinds of lubricating oil, and formaldehyde,
for example. It is known that generation of the ant nest corrosion is particularly
remarkable where the phosphorous deoxidized copper tube is used as a conduit in the
air-conditioning equipment and the refrigerating equipment, which conduit is liable
to dewing. Once the ant nest corrosion is generated, it progresses rapidly and penetrates
through the wall of the copper tube in a short time, giving rise to a problem that
the equipment becomes unworkable.
[0004] To solve the above-described problems,
WO2014/148127 (Patent Document 1) proposes a highly corrosion-resistant copper tube formed of a
copper material comprising 0.05-1.0% by weight of P (phosphorus) and the balance consisting
of Cu (copper) and inevitable impurities, and discloses that the copper tube enjoys
resistance to the ant nest corrosion. More particularly, it indicates that a copper
tube having a higher resistance to the ant nest corrosion than that of the conventional
tube material made of the phosphorous deoxidized copper in an area with a larger P
content can be practically advantageously obtained.
JP2002146454 discloses a heat transfer tube formed from a copper alloy containing one or more
elements selected from Cr, Zr, Ti, Mg, Ni, Fe, Co, Si, Al, Sn, P and Zn by 0.01 to
10 % by weight, with an average thermal conductivity of 0.5 to 0.9 cal/cm sec °C.
[0005] However, even the copper tube obtained with an increased P content may suffer from
generation of the ant nest corrosion under a severer corrosive environment. Therefore,
it is desired to develop a copper tube which can exhibit an even higher resistance
to the ant nest corrosion than the conventional copper tube.
PRIOR ART DOCUMENT
PATENT DOCUMENT
SUMMARY OF THE INVENTION
TECHNICAL PROBLEM
[0007] The present invention was made in view of the background art described above. It
is therefore an object of the invention to provide a copper tube which can exhibit
a higher resistance to the ant nest corrosion, and which has an excellent anti-corrosion
property and is suitably usable as the heat transfer tube and the refrigerant tube
in the air-conditioning equipment and the refrigerating equipment. It is another object
of the invention to provide a process for advantageously producing such a copper tube.
It is a further object of the invention to advantageously extend a service life of
equipment produced by using such a copper tube.
SOLUTION TO PROBLEM
[0008] The inventors of the present invention made further intensive studies on the ant
nest corrosion generated in the copper tube used in the air-conditioning equipment,
the refrigerating equipment and the like, and found that the corrosion resistance
of the copper tube can be further improved not only by setting the P content within
a predetermined range but also by controlling a value of electric conductivity of
the copper tube after plastic working for tube-making. The present invention was completed
based on this finding, and is disclosed in the appended claims.
ADVANTAGEOUS EFFECTS OF THE INVENTION
[0009] By making a copper tube which is formed of a Cu material comprising a predetermined
amount of P and includes a recrystallized structure or a deformation structure so
as to have electric conductivity which satisfies the formulas (1) or (2) according
to the invention, the obtained copper tube has a concentration of a solid-solubilized
or dissolved P in a matrix phase of Cu within an optimum range of 0.15-0.50% by weight.
For this reason, even when corrosion is generated in the obtained copper tube under
an environment vulnerable to the ant nest corrosion, the corrosion effectively shifts
not to the form of the ant nest corrosion, but to the form of general corrosion or
pitting corrosion, so that the resistance of the copper tube against the ant nest
corrosion is further improved. Thus, a practically useful copper tube which exhibits
a more excellent corrosion resistance than that of the conventional copper tube with
respect to the resistance to ant nest corrosion can be provided.
[0010] According to the process for producing the copper tube according to the invention,
the copper tube having the above-described properties can be industrially advantageously
and easily produced.
[0011] Furthermore, by using the copper tube according to the invention as the heat transfer
tube, the refrigerant tube (tubes arranged inside desired equipment) and the like
in the air-conditioning equipment and the refrigerating equipment, the service life
of the equipment can be further effectively extended.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012]
Fig. 1 is a schematic fragmentary enlarged view showing, in transverse cross section,
a part of an internally grooved tube produced in one embodiment of the invention.
Fig. 2 is a schematic fragmentary view showing the internally grooved tube of Fig.
1 in longitudinal cross section including the tube axis.
Fig. 3 is a schematic cross sectional view showing an apparatus used for a corrosion
resistance test of the tube in the illustrated embodiments.
MODE FOR CARRYING OUT THE INVENTION
[0013] A highly corrosion-resistant copper tube according to the invention is formed of
a copper tube which is made of a copper material or alloy (molten metal, ingot or
the like) having a P content held within a range of 0.15-0.6% by weight and comprising
the balance of Cu and impurities. In the case where the copper tube is subjected to
cold working and then final annealing so as to include a recrystallized structure
as a material structure, electric conductivity (Y1) of the copper tube is set to satisfy
formula (1), while in the case where the copper tube is not subjected to the final
annealing and a deformation structure remains, electric conductivity (Y2) of the copper
tube is set to satisfy formula (2). Owing to these characteristics, even under a severer
corrosive environment, the type of corrosion generated in the copper tube shifts from
a selective corrosion in the form of the ants' nest which progresses in a direction
perpendicular to an axial direction of the copper tube (i.e., in a direction of a
wall thickness of the copper tube) to a surface corrosion which progresses in a direction
parallel to the axial direction of the copper tube (i.e., in a direction along the
surface of the copper tube) so that the ant nest corrosion is effectively suppressed
or prevented, whereby the copper tube can exhibit a corrosion resistance which is
considerably higher than that of the conventional copper tube.
[0014] With respect to the Cu material to provide the above-described copper tube according
to the invention, the P content is set so as to be not lower than 0.15% by weight,
because where the P content of the copper tube is lower than 0.15% by weight, the
selective corrosion which progresses in the form of the ants' nest is likely to be
generated under a severer corrosive environment. On the other hand, an excessive amount
of the P content does not permit substantially effective improvement in the resistance
of the copper tube against the ant nest corrosion, and even causes deterioration of
workability of the copper tube during production, giving rise to a problem of cracking
of the copper tube, for example. For this reason, the upper limit of the P content
needs to be 0.6% by weight to optimize the amount of the solid-solubilized P with
respect to Cu, as described later.
[0015] The highly corrosion-resistant copper tube according to the invention is formed of
the material comprising the balance of Cu and impurities in addition to the above-described
amount of P. In the invention, a content of a group of specific impurity elements
consisting of Cr, Mn, Fe, Co, Zr and Mo, among the impurities, is controlled so as
to be not higher than 0.01% by weight in total, so that the corrosion resistance of
the copper tube is further improved. It is because the group of the specific impurity
elements is likely to form a compound with P by annealing or other heat treatments,
resulting in deterioration of the corrosion resistance of the copper tube due to a
generated P-based precipitation.
[0016] Furthermore, as inevitable impurities contained with Cu in the copper tube material,
there are S, Si, Ti, Ag, Pb, Se, Te, Bi, Sn, Sb, As and the like in addition to the
above-described group of the specific impurity elements. The total amount of such
inevitable impurities is controlled so as to be not higher than 0.005% by weight.
[0017] As the Cu material in which a content of the above-described group of the specific
impurity elements and other inevitable impurity elements is reduced, a commercially
pure copper whose purity is increased by a conventional smelting technique, such as
an electrolytic copper obtained by increasing the purity so as to include not lower
than 99.99% by weight of Cu, is advantageously used.
[0018] In the copper tube obtained by forming the Cu material controlled to have the above-described
P content, the electric conductivity, which relates to the amount of solid-solubilized
P, is held within a predetermined range in accordance with the amount of deformation
by working of the copper tube, so that a remarkable resistance to the ant nest corrosion
is exhibited. Namely, in the case were the tube-making step comprises an annealing
(final) step after hot extrusion of the Cu material to form a Cu blank tube and plastic
working (cold working) processes of the blank tube such as rolling and drawing, and
a grooving process such as inner grooving, whereby a crystal structure of the copper
tube takes the form of a recrystallized structure, the electric conductivity (Y1:
%IACS) of the tube satisfies formula (1). On the other hand, in the case where the
annealing is not performed and the crystal structure of the copper tube remains to
be the deformation structure which is formed during the cold working (including a
case where the annealing (intermediate annealing) is performed during the drawing
process, and a case where the annealing is performed after the drawing and then the
cold working like the grooving is further performed), the electric conductivity (Y2:
%IACS) of the tube satisfies formula (2). By controlling the electric conductivity
as described above, a sufficient amount of solid- solubilized P required for the resistance
to the ant nest corrosion is assured, so that a high degree of corrosion resistance
can be stably achieved. It is noted that tubes having the deformation structure also
include ones which have a mixture of the deformation structure and the recrystallized
structure wherein the recrystallized structure formed by annealing is lightly processed
so that the surface portion is the deformation structure while the inner portion remains
to be the recrystallized structure.
[0019] In summary, the most vital point of the invention is to control the electric conductivity
so as to satisfy either formula (1) or formula (2) depending upon whether the copper
tube is subjected to the final annealing or not, that is, whether the microstructure
of the copper tube is the recrystallized structure or the microstructure which includes
the deformation structure, so that even under a severer corrosive environment, the
type of corrosion generated in the copper tube shifts from the selective corrosion
which progresses in the direction perpendicular to the axial direction of the copper
tube (i.e., in the direction of the wall thickness of the copper tube) to the surface
corrosion which progresses in the direction parallel to the axial direction of the
copper tube (i.e., in the direction along the surface of the copper tube) , whereby
the copper tube can exhibit a corrosion resistance which is considerably higher than
that of the conventional copper tube.
[0020] When the electric conductivity (Y1) of the copper tube subjected to the final annealing
so as to include the recrystallized structure is lower than (50-75X), or the electric
conductivity (Y2) of the copper tube including the deformation structure is lower
than (47-75X), the form of the generated corrosion shifts from the surface corrosion
to the selective corrosion, namely the ant nest corrosion, causing deterioration of
the corrosion resistance. On the other hand, when the electric conductivities (Y1,
Y2) have higher values than those of the right member of the above-described formulae
(1) and (2), namely (60-75X) and (57-75X) respectively, the corrosion resistance becomes
saturated, and rather the workability of the tubes may be deteriorated when they are
fixed to equipment as a heat transfer tube or a refrigerant tube.
[0021] By setting the electric conductivities (Y1 or Y2) as described above, the copper
tube formed of the material wherein the concentration of the solid- solubilized P
in the matrix phase of Cu is held within an optimum range of 0.15-0.50% by weight
is realized, so that even when the corrosion is generated under an environment vulnerable
to the ant nest corrosion, the corrosion progresses in the form of the general corrosion
or the pitting corrosion, not in the ant nest corrosion, so that the corrosion resistance
to the ant nest corrosion is further improved.
[0022] As described above, in the invention, the concentration of the solid-solubilized
P in the matrix phase of Cu is defined depending on the electric conductivity, whereby
an excellent resistance to the ant nest corrosion is achieved. The electric conductivity
is measured by an eddy current conductivity meter, which is easy to carry and permits
stable measurement of the concentration of the solid-solubilized P. To calculate the
amount of solid-solution of additive elements in a metal, a method wherein the amount
of the additive elements in a compound including the additive elements is subtracted
from a component value of the additive elements is generally employed. The amount
of the compound is determined by a method wherein the amount is calculated referring
to a metal photograph by a transmission electron microscope and the like, a method
wherein constituents other than the compound are dissolved by an acidic solution so
as to calculate the amount from the weight of the residue, and the like. However,
each of these methods requires considerable time and labor, so that the calculation
is difficult to perform.
[0023] In production of the copper tube according to the invention described above, usually
a cast body such as an ingot or a billet formed of the Cu material having the above-described
P content (concentration) is subjected to conventional processes such as casting,
homogenization treatment, hot extrusion, rolling, drawing and grooving of the tube,
so as to obtain a desired copper tube. In order that the conductivity (Y1) of the
copper tube subjected to annealing so as to include the recrystallized structure and
the conductivity (Y2) of the copper tube not subjected to the final annealing so as
to include the deformation structure satisfy the above-described formula (1) and formula
(2) respectively, a method wherein a preliminary heating in the hot extrusion step,
which is a hot plastic working, serves also as the homogenization treatment is preferably
employed. The preliminary heating is performed at a temperature of 750-950°C and held
for at least 30 minutes, and subsequently the hot extrusion is performed at a temperature
of 750-950°C. However, where the homogenization treatment is performed in a separate
step, the heating is performed at a temperature of 750-950°C for at least 30 minutes,
whereby a P segregation layer is effectively removed. Furthermore, by performing the
subsequent hot extrusion at a temperature of at least 750°C, the structure of cast
metal is effectively destroyed so that the added P is uniformly solid- solubilized
in the material. In this respect, it is noted that the upper limit of the length of
time for which the above-described heating temperature is kept is set to be 12 hours
from the economical viewpoint. If the heating is performed at a temperature higher
than 950°C, the material may suffer from cracking during the hot extrusion, giving
rise to a problem of difficulty in assuring safe working.
[0024] It is also possible to employ methods such as a casting-and-rolling process and an
upcasting (continuous casting) process, which have been proposed in recent years,
to produce the highly corrosion-resistant copper tube according to the invention.
In these methods, a Cu molten metal which is controlled to have the above-described
P content is formed into the copper tube directly by casting, while conditions at
the time of casting such as speeds of stirring of the components and cooling are appropriately
controlled and steps such as subsequent drawing and annealing are employed as necessary,
whereby the desired highly corrosion-resistant copper tube can be obtained. These
methods are not part of the invention.
[0025] Furthermore, in the above-described production process, a desired size of copper
tube formed by the drawing, which is cold working, is used without or after subjection
to the predetermined final annealing, for a desired purpose. The copper tube obtained
in the drawing step is further subjected to a grooving step, for example an internal
grooving, external grooving and the like, as necessary, so as to obtain a desired
size of copper tube. The copper tube is then used without or after subjection to the
predetermined final annealing, for a desired purpose.
[0026] The final annealing to the copper tube as described above is performed for changing
the microstructure from the deformation structure to the recrystallized structure
so as to enhance the workability of the tube during a bending process, for example.
In the invention, the final annealing is performed at an annealing temperature of
300-600°C, and an annealing time is set within a range of 5-120 minutes. The annealing
temperature lower than 300°C causes difficulty to achieve sufficient effects of annealing,
while the annealing temperature higher than 600°C has a risk of deterioration of the
corrosion resistance of the copper tube. Furthermore, the annealing time shorter than
5 minutes provides almost no effect of annealing, while the effect of annealing is
saturated and the economy of production is deteriorated where the annealing time exceeds
120 minutes.
[0027] Sizes such as an outside diameter and a thickness (wall thickness of the tube) of
the copper tube obtained according to the invention as described above are suitably
set according to the use of the copper tube. In the case where the copper tube according
to the invention is used as the heat transfer tube, the copper tube may have smooth
(or non-grooved) inner and outer surfaces which are formed by the tube extrusion.
Alternatively, the heat transfer tube may advantageously have internal or external
grooves of various shapes formed by various known internal or external working. When
the copper tube is used as the refrigerant tube, the refrigerant tube generally has
smooth inner and outer surfaces.
[0028] As described above, the copper tube according to the invention is obtained by tube-making
the Cu material whose P content is 0.15-0.6% by weight, and is formed to have the
electric conductivity (Y1 or Y2) which satisfies formula (1) or formula (2) depending
upon whether it has been subjected to the final annealing or not (namely, the form
of the microstructure), so that the tube advantageously exhibits a high degree of
resistance to the ant nest corrosion.
[0029] By utilizing such characteristics according to the invention, the copper tube is
advantageously used as a tube which is disposed in a damp environment and subjected
to corrosion that progresses in the form of an ants' nest from the surface of the
tube in the direction of the wall thickness due to a corrosive medium in the form
of the lower carboxylic acid.
[0030] The above-described copper tube according to the invention is advantageously used
as a heat transfer tube or refrigerant tube in air-conditioning equipment, and also
as a heat transfer tube or refrigerant tube (tubes arranged inside desired equipment)
in refrigerating equipment.
EXAMPLES
[0031] To clarify the present invention more specifically, some examples according to the
present invention will be described. It is to be understood that the invention is
by no means limited by details of the illustrated examples, but may be embodied with
various changes, modifications and improvements which are not described herein, and
which may occur to those skilled in the art, without departing from the appended claims.
[0032] Initially, billets Nos. 1-15 corresponding to respective copper tubes Nos. 1-15 were
cast by adding P in ratios shown in Table 1 to an highly pure electrolytic copper
whose Cu content is not lower than 99.999% by weight, while billets Nos. 20-31 corresponding
to respective copper tubes Nos. 20-31 were cast by adding, in addition to P in ratios
shown in Table 1, any one of Cr, Mn, Fe Co, Zr and Mo constituting a group of specific
impurity elements in ratios shown in Table 1, so as to examine effects of inclusion
of the group of the specific impurity elements. Further, billets Nos. 16-19 corresponding
to respective copper tubes Nos. 16-19 were cast by adding Si or Ti, which are inevitable
impurity elements other than the group of the specific impurity elements, in ratios
shown in Table 1.
Table 1
Billet No. |
Content of chemical components (% by weight) |
P |
Si |
Ti |
Cr |
Mn |
Fe |
Co |
Zr |
Mo |
Cu |
1 |
0.20 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
2 |
0.20 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
3 |
0.22 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
4 |
0.22 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
5 |
0.50 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
6 |
0.50 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
7 |
0.23 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
8 |
0.23 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
9 |
0.38 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
10 |
0.38 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
11 |
0.13 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
12 |
0.13 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
13 |
0.22 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
14 |
0.22 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
15 |
0.65 |
- |
- |
- |
- |
- |
- |
- |
- |
balance |
16 |
0.30 |
0.08 |
- |
- |
- |
- |
- |
- |
- |
balance |
17 |
0.30 |
0.08 |
- |
- |
- |
- |
- |
- |
- |
balance |
18 |
0.31 |
- |
0.08 |
- |
- |
- |
- |
- |
- |
balance |
19 |
0.31 |
- |
0.08 |
- |
- |
- |
- |
- |
- |
balance |
20 |
0.28 |
- |
- |
0.07 |
- |
- |
- |
- |
- |
balance |
21 |
0.28 |
- |
- |
0.07 |
- |
- |
- |
- |
- |
balance |
22 |
0.29 |
- |
- |
- |
0.10 |
- |
- |
- |
- |
balance |
23 |
0.29 |
- |
- |
- |
0.10 |
- |
- |
- |
- |
balance |
24 |
0.30 |
- |
- |
- |
- |
0.05 |
- |
- |
- |
balance |
25 |
0.30 |
- |
- |
- |
- |
0.05 |
- |
- |
- |
balance |
26 |
0.31 |
- |
- |
- |
- |
- |
0.10 |
- |
- |
balance |
27 |
0.31 |
- |
- |
- |
- |
- |
0.10 |
- |
- |
balance |
28 |
0.29 |
- |
- |
- |
- |
- |
- |
0.05 |
- |
balance |
29 |
0.29 |
- |
- |
- |
- |
- |
- |
0.05 |
- |
balance |
30 |
0.29 |
- |
- |
- |
- |
- |
- |
- |
0.08 |
balance |
31 |
0.29 |
- |
- |
- |
- |
- |
- |
- |
0.08 |
balance |
[0033] Next, the billets nos. 1-31 were heated to a temperature of 700, 820 or 825°C respectively,
as shown in Table 2, held at the temperature for 1 hour, and then subjected to hot
extrusion at a temperature of 700, 820 or 825°C so as to obtain various extruded blank
tubes with an outside diameter of 102mm and an inside diameter of 75mm. Further, the
obtained extruded blank tubes were subjected to cold rolling by a Pilger mill rolling
machine so as to obtain rolled blank tubes with an outside diameter of 46mm and an
inside diameter of 39.8mm. A working ratio (reduction of area) at the time of the
cold rolling was 88.9%. The reduction of area is calculated according to the following
formula:

[0034] Then, the various rolled blank tubes obtained as described above were subjected to
cold drawing for a plurality of times so as to obtain drawn blank tubes having an
outside diameter of 7.8-10.0mm and a thickness of 0.25-0.30mm. The working ratio in
the entire cold drawing is 95.1-97.0% based on the reduction of area. The total working
ratio in the cold rolling and cold drawing, namely the total working ratio in the
cold working is 98.9-99.3% based on the reduction of area. Furthermore, during the
above-described drawing process, one or a plurality of intermediate annealing processes
was/were performed. After the final drawing, the intermediate annealing was performed
to produce a base tube prepared for component rolling. The intermediate annealing
was performed at a temperature of 600°C.
[0035] Each of the obtained various base tubes was subjected to conventional ball-rolling
(cold working) process, so that internally grooved tubes (copper tubes Nos. 1-31)
which have a plurality of spiral grooves formed in an inner circumferential surface
were prepared as seamless tubes used as heat transfer tubes to be used in a cross-fin
tube type heat exchanger. These internally grooved tubes have the following specifications:
outside diameter of 7.0mm; groove-bottom wall thickness (t) of 0.23mm; fin height
(h) of 0.22mm; fin apical angle (γ) of 13°; 44 spiral grooves; and lead angle (α)
of 28°.
[0036] Among the obtained internally grooved tubes, each of the copper tubes Nos. 1, 3,
5, 7, 9, 11, 13, 16, 18, 20, 22, 24, 26, 28 and 30 was formed into a level wound coil
(LWC) wherein the tube is multiply and regularly wound in a cylindrical coil and uncoiled
from the inner circumference of the coil. Then, each level wound coil was subjected
to the final annealing in a roller-hearth continuous annealing furnace at a temperature
of 500°C for 20 minutes.
[0037] It is noted that, in production of the above-described internally grooved tubes (copper
tubes), the copper tube No. 15 was made of a Cu material containing an excessive amount
of P, so that the tube suffered from deficiencies such as a crack during tube-making,
and the working could not be finished so as to obtain a copper tube to be subjected
to the corrosion test.
[0038] To calculate a content of impurities in the copper tubes Nos. 1-14, each copper tube
was dissolved into an acid (aqua regia) and analyzed by a high-frequency inductively
coupled plasma emission spectrometric analysis method (ICP-OES) with respect to contents
of elements included as the impurities in the tube. As a result, it was confirmed
with respect to all of the copper tubes that the total content of the group of the
specific impurity elements (Cr, Mn, Fe, Co, Zr and Mo) was less than 0.010% by weight,
and also the total content of the inevitable impurities other than the group of the
specific impurity elements (S, Si, Ti, Ag, Pb, Se, Te, Bi, Sn, Sb and As) was less
than 0.005% by weight.
[0039] With respect to each of the obtained internally grooved tubes (copper tubes) subjected
to the final annealing and those not subjected to the final annealing, the electric
conductivity was measured with an eddy current conductivity meter. Results are shown
in Table 2 given below.
Table 2
Copper tube No. |
Hot extrusion |
Annealing temperature (°C) |
Electric conductivity (%IACS) |
Heating temperature (°C) |
Holding time (min) |
Extruding temperature (°C) |
1 |
820 |
60 |
820 |
500 |
37 |
2 |
820 |
60 |
820 |
No annealing |
36 |
3 |
820 |
60 |
700 |
500 |
40 |
4 |
820 |
60 |
700 |
No annealing |
38 |
5 |
820 |
60 |
820 |
500 |
13 |
6 |
820 |
60 |
820 |
No annealing |
12 |
7 |
825 |
60 |
825 |
500 |
40 |
8 |
825 |
60 |
825 |
No annealing |
38 |
9 |
825 |
60 |
825 |
500 |
26 |
10 |
825 |
60 |
825 |
No annealing |
25 |
11 |
820 |
60 |
820 |
500 |
40 |
12 |
820 |
60 |
820 |
No annealing |
38 |
13 |
700 |
60 |
700 |
500 |
48 |
14 |
700 |
60 |
700 |
No annealing |
46 |
15 |
820 |
60 |
820 |
- |
- |
16 |
820 |
60 |
820 |
500 |
42 |
17 |
820 |
60 |
820 |
No annealing |
41 |
18 |
820 |
60 |
820 |
500 |
41 |
19 |
820 |
60 |
820 |
No annealing |
40 |
20 |
820 |
60 |
820 |
500 |
43 |
21 |
820 |
60 |
820 |
No annealing |
42 |
22 |
820 |
60 |
820 |
500 |
40 |
23 |
820 |
60 |
820 |
No annealing |
39 |
24 |
820 |
60 |
820 |
500 |
46 |
25 |
820 |
60 |
820 |
No annealing |
45 |
26 |
820 |
60 |
820 |
500 |
43 |
27 |
820 |
60 |
820 |
No annealing |
41 |
28 |
820 |
60 |
820 |
500 |
46 |
29 |
820 |
60 |
820 |
No annealing |
45 |
30 |
820 |
60 |
820 |
500 |
49 |
31 |
820 |
60 |
820 |
No annealing |
48 |
[0040] Subsequently, each of the thus prepared internally grooved tubes (copper tubes Nos.
1-31) was subjected to an ant nest corrosion test by using a test apparatus shown
in Fig. 3. In Fig. 3, 2 represents a plastic container which has a capacity of 2L
and which can be hermetically sealed with a cap 4. Silicone plugs 6 are attached to
the cap 4 such that the plugs 6 extend through the cap 4. Copper tubes 10 are inserted
into the plastic container 2 by a predetermined length, such that the copper tubes
10 extend through the respective silicone plugs 6. Lower open ends of the copper tubes
10 are closed with silicone plugs 8. In this case, the length of the copper tubes
is 18cm, and the length of the portion exposed to the inside of the plastic container
is 15cm. Furthermore, 100mL of a formic acid aqueous solution having a predetermined
concentration is accommodated in the plastic container 2, such that the copper tubes
10 do not contact with the aqueous solution.
[0041] In the ant nest corrosion test, the concentration of the formic acid aqueous solution
12 was set to be 0.1%. The copper tubes 10 were set in the plastic container 2 in
which the formic acid aqueous solution 12 was accommodated, and the plastic container
2 was left within a constant temperature bath at a temperature of 40°C. The plastic
container 2 with the copper tubes 10 was taken out of the bath and left for two hours
at room temperature (15°C) each day, to cause dewing on surfaces of the copper tubes
10 due to a difference between the temperature of the constant temperature bath and
the room temperature. The copper tubes 10 were subjected to the corrosion test under
the above-described conditions for 80 days.
[0042] Each of the copper tubes subjected to the corrosion test was examined in the cross
section of its part which was exposed to the inside of the plastic container 2, and
measured of the maximum corrosion depth from the outer surface of the tube. Results
of the measurement are indicated in Table 3 given below.
Table 3
Copper tube No. |
Characteristics of ant nest corrosion |
Maximum corrosion depth (mm) |
Evaluation |
1 |
0.08 |
Good |
2 |
0.09 |
Good |
3 |
0.06 |
Good |
4 |
0.06 |
Good |
5 |
0.02 |
Good |
6 |
0.03 |
Good |
7 |
0.07 |
Good |
8 |
0.07 |
Good |
9 |
0.04 |
Good |
10 |
0.03 |
Good |
11 |
0.14 |
Poor |
12 |
0.14 |
Poor |
13 |
0.13 |
Poor |
14 |
0.14 |
Poor |
15 |
- |
- |
16 |
≧0.3 (penetrated) |
Poor |
17 |
≧0.3 (penetrated) |
Poor |
18 |
≧0.3 (penetrated) |
Poor |
19 |
≧0.3 (penetrated) |
Poor |
20 |
≧0.3 (penetrated) |
Poor |
21 |
≧0.3 (penetrated) |
Poor |
22 |
≧0.3 (penetrated) |
Poor |
23 |
≧0.3 (penetrated) |
Poor |
24 |
≧0.3 (penetrated) |
Poor |
25 |
≧0.3 (penetrated) |
Poor |
26 |
≧0.3 (penetrated) |
Poor |
27 |
≧0.3 (penetrated) |
Poor |
28 |
≧0.3 (penetrated) |
Poor |
29 |
≧0.3 (penetrated) |
Poor |
30 |
≧0.3 (penetrated) |
Poor |
31 |
≧0.3 (penetrated) |
Poor |
[0043] As is apparent from the results indicated in Table 3, in the corrosion test using
the aqueous formic acid solution having the concentration of 0.1%, any of the copper
tubes Nos. 1-10 formed of the Cu billet comprising P within the range of 0.15-0.6%
by weight according to the invention wherein the electric conductivity (Y1) satisfies
the above-described formula (1) for the tube subjected to the final annealing, and
the electric conductivity (Y2) satisfies the above-described formula (2) for the tube
not subjected to the final annealing, did not suffer from the ant nest corrosion,
and merely had a slight corrosion generated on the outer surface of the tube.
[0044] On the contrary, although the copper tubes Nos. 11 and 12, which were the comparative
examples, had the electric conductivity satisfying the formula (1) or (2), their content
of P was less than 0.15% by weight, so that a remarkable ant nest corrosion was recognized
in the tubes. Furthermore, the copper tubes Nos. 13, 14 and 16-31 had a content of
P within the range of the invention, but their value of the electric conductivity
was outside the range of the invention, so that a remarkable ant nest corrosion was
recognized in each of the tubes. In particular, the copper tubes Nos. 16-31 suffered
from the corrosion penetrating the tube walls. It is noted that the copper tube No.
15 was made of the Cu material (billet) containing an excessive amount of P, so that
the tube could not be subjected to the entire tube-making process so as to obtain
a valid copper tube to be subjected to the corrosion test. Thus, the intended corrosion
test could not be performed with respect to the copper tube No. 15.
NOMENCLATURE OF REFERENCE SIGNS
[0045]
2: Plastic container |
4: Cap |
6: Silicone plugs |
8: Silicone plugs |
10: Copper tubes |
12: Formic acid aqueous solution |
1. A highly corrosion-resistant copper tube formed of a copper material consisting of
0.15-0.6% by weight of phosphorus and the balance being copper and impurities,
characterized in that the tube includes a recrystallized structure and has electric conductivity measured
by an eddy current conductivity meter (Y1: %IACS) which satisfies the following formula

wherein X (% by weight) represents a content of phosphorus, wherein a content of
a group of specific impurity elements consisting of Cr, Mn, Fe, Co, Zr and Mo among
the impurities is not higher than 0.01% by weight in total, wherein a content of inevitable
impurity elements other than the group of the specific impurity elements among said
impurities is not higher than 0.005% by weight in total.
2. A highly corrosion-resistant copper tube formed of a copper material consisting of
0.15-0.6% by weight of phosphorus and the balance being copper and impurities,
characterized in that the tube includes a deformation structure and has electric conductivity measured
by an eddy current conductivity meter (Y2: %IACS) which satisfies the following formula

wherein X (% by weight) represents a content of phosphorus, wherein a content of
a group of specific impurity elements consisting of Cr, Mn, Fe, Co, Zr and Mo among
the impurities is not higher than 0.01% by weight in total, wherein a content of inevitable
impurity elements other than the group of the specific impurity elements among said
impurities is not higher than 0.005% by weight in total.
3. Use of the highly corrosion-resistant copper tube according to claim 1 or claim 2
in a damp environment in which the copper tube is subjected to corrosion that progresses
in the form of an ants' nest from a surface of the tube in a direction of a wall thickness
of the tube by a corrosive medium in the form of a lower carboxylic acid
4. A process for producing a highly corrosion-resistant copper tube comprising:
a step of providing a copper ingot consisting of 0.15-0.6% by weight of phosphorus
and the balance being copper and impurities;
a step of heat-treating the copper ingot at a temperature of 750-950°C for 0.5-12
hours;
a step of hot-extruding the heat-treated copper ingot at a temperature of 750-950°C
so as to obtain a copper blank tube;
a step of cold-working the copper blank tube by a drawing process and further a grooving
process as necessary to form a desired size of copper tube; and
a step of subjecting the copper tube obtained by the cold working to final annealing
at a temperature of 300-600 °C for 5-120 minutes so as to obtain the copper tube including
a recrystallized structure and having electric conductivity measured by an eddy current
conductivity meter (Y1: %IACS) which satisfies the following formula:

wherein X (% by weight) represents a content of phosphorus, wherein a content of
a group of specific impurity elements consisting of Cr, Mn, Fe, Co, Zr and Mo among
the impurities is not higher than 0.01% by weight in total, wherein a content of inevitable
impurity elements other than the group of the specific impurity elements among said
impurities is not higher than 0.005% by weight in total.
5. A process for producing a highly corrosion-resistant copper tube comprising:
a step of providing a copper ingot consisting of 0.15-0.6% by weight of phosphorus
and the balance being copper and impurities;
a step of heat-treating the copper ingot at a temperature of 750-950°C for 0.5-12
hours;
a step of hot-extruding the heat-treated copper ingot at a temperature of 750-950°C
so as to obtain a copper blank tube; and
a step of cold-working the copper blank tube by a drawing process and further a grooving
process as necessary to form a desired size of copper tube including a deformation
structure and having electric conductivity measured by an eddy current conductivity
meter (Y2: %IACS) which satisfies the following formula:

wherein X (% by weight) represents a content of phosphorus, wherein a content of
a group of specific impurity elements consisting of Cr, Mn, Fe, Co, Zr and Mo among
the impurities is not higher than 0.01% by weight in total, wherein a content of inevitable
impurity elements other than the group of the specific impurity elements among said
impurities is not higher than 0.005% by weight in total.
6. The process for producing a highly corrosion-resistant copper tube according to claim
4 or 5, wherein the heat-treating step of the copper ingot is a homogenization process.
7. The process for producing a highly corrosion-resistant copper tube according to claim
4 or 5, wherein the heat-treating of the copper ingot is a preliminary heat treatment
performed in advance of the extrusion.
8. A heat transfer tube for air-conditioning equipment or refrigerating equipment, consisting
of the highly corrosion-resistant copper tube according to claim 1 or claim 2.
9. A refrigerant tube for air-conditioning equipment or refrigerating equipment, consisting
of the highly corrosion-resistant copper tube according to claim 1 or claim 2.
10. A method of improving a corrosion resistance of a copper tube against ant nest corrosion
which is generated by a corrosive medium in the form of a lower carboxylic acid in
a damp environment and progresses from a surface of the copper tube used for air-conditioning
equipment or refrigerating equipment in the damp environment, wherein the copper tube
is the highly corrosion-resistant copper tube according to claim 1 or claim 2.
1. Ein hochgradig korrosionsbeständiges Kupferrohr, das aus einem Kupfermaterial gebildet
ist, das zu 0,15-0,6 Gewichts-% aus Phosphor besteht, und wobei der Rest sich aus
Kupfer und Verunreinigungen zusammensetzt,
dadurch gekennzeichnet, dass das Rohr eine umkristallisierte Struktur umfasst und eine durch ein Wirbelstrom-Leitfähigkeitsmessgerät
gemessene elektrische Leitfähigkeit (Y1: %IACS) aufweist, die der folgenden Formel
genügt:

wobei X (Gewichts-%) einen Gehalt an Phosphor darstellt, wobei ein Gehalt an einer
Gruppe von spezifischen Verunreinigungselementen, die aus Cr, Mn, Fe, Co, Zr und Mo
besteht, unter den Verunreinigungen insgesamt nicht mehr als 0,01 Gewichts-% beträgt,
wobei ein Gehalt an unvermeidlichen Verunreinigungselementen außer der Gruppe der
spezifischen Verunreinigungselemente unter den Verunreinigungen insgesamt nicht mehr
als 0,005 Gewichts-% beträgt.
2. Ein hochgradig korrosionsbeständiges Kupferrohr, das aus einem Kupfermaterial gebildet
ist, das zu 0,15-0,6 Gewichts-% aus Phosphor besteht, und wobei der Rest sich aus
Kupfer und Verunreinigungen zusammensetzt,
dadurch gekennzeichnet, dass das Rohr eine Verformungsstruktur umfasst und eine durch ein Wirbelstrom-Leitfähigkeitsmessgerät
gemessene elektrische Leitfähigkeit (Y2: %IACS) aufweist, die der folgenden Formel
genügt:

wobei X (Gewichts-%) einen Gehalt an Phosphor darstellt, wobei ein Gehalt an einer
Gruppe von spezifischen Verunreinigungselementen, bestehend aus Cr, Mn, Fe, Co, Zr
und Mo, unter den Verunreinigungen insgesamt nicht mehr als 0,01 Gewichts-% beträgt,
wobei ein Gehalt an unvermeidlichen Verunreinigungselementen außer der Gruppe der
spezifischen Verunreinigungselemente unter den Verunreinigungen insgesamt nicht mehr
als 0,005 Gewichts-% beträgt.
3. Verwendung des hochgradig korrosionsbeständigen Kupferrohrs nach Anspruch 1 oder Anspruch
2 in einer feuchten Umgebung, in der das Kupferrohr einer in Form eines Ameisennests
von einer Oberfläche des Rohrs in einer Richtung einer Wanddicke des Rohrs fortschreitenden
Korrosion durch ein ätzendes Medium in Form einer niederen Carbonsäure ausgesetzt
ist.
4. Ein Verfahren zur Herstellung eines hochgradig korrosionsbeständigen Kupferrohrs,
das Folgendes beinhaltet:
einen Schritt des Bereitstellens eines Kupferblocks, der zu 0,15-0,6 Gewichts-% aus
Phosphor besteht, und wobei der Rest sich aus Kupfer und Verunreinigungen zusammensetzt;
einen Schritt der Wärmebehandlung des Kupferblocks bei einer Temperatur von 750-950°C
für 0,5-12 Stunden;
einen Schritt des Warmstrangpressens des wärmebehandelten Kupferblocks bei einer Temperatur
von 750-950°C, um somit einen Kupferrohrrohling zu erhalten;
einen Schritt des Kaltverformens des Kupferrohrrohlings durch ein Ziehverfahren und
ferner durch ein Ziehriefenbildungsverfahren, so wie dies zum Bilden einer gewünschten
Größe des Kupferrohrs erforderlich ist; und
einen Schritt des Unterziehens des Kupferrohrs, das durch das Kaltverformen erhalten
wurde, einem Schlussglühen bei einer Temperatur von 300-600°C für 5-120 Minuten, um
somit das Kupferrohr zu erhalten, das eine umkristallisierte Struktur umfasst und
eine durch ein Wirbelstrom-Leitfähigkeitsmessgerät gemessene elektrische Leitfähigkeit
(Y1: %IACS) aufweist, die der folgenden Formel genügt:

wobei X (Gewichts-%) einen Gehalt an Phosphor darstellt, wobei ein Gehalt an einer
Gruppe von spezifischen Verunreinigungselementen, die aus Cr, Mn, Fe, Co, Zr und Mo
besteht, unter den Verunreinigungen insgesamt nicht mehr als 0,01 Gewichts-% beträgt,
wobei ein Gehalt an unvermeidlichen Verunreinigungselementen außer der Gruppe der
spezifischen Verunreinigungselemente unter den Verunreinigungen insgesamt nicht mehr
als 0,005 Gewichts-% beträgt.
5. Ein Verfahren zum Herstellen eines hochgradig korrosionsbeständigen Kupferrohrs, das
Folgendes beinhaltet:
einen Schritt des Bereitstellens eines Kupferblocks, der zu 0,15-0,6 Gewichts-% aus
Phosphor besteht, und wobei der Rest sich aus Kupfer und Verunreinigungen zusammensetzt;
einen Schritt der Wärmebehandlung des Kupferblocks bei einer Temperatur von 750-950°C
für 0,5-12 Stunden;
einen Schritt des Warmstrangpressens des wärmebehandelten Kupferblocks bei einer Temperatur
von 750-950°C, um somit einen Kupferrohrrohling zu erhalten; und
einen Schritt des Kaltverformens des Kupferrohrrohlings durch ein Ziehverfahren und
ferner durch ein Ziehriefenbildungsverfahren, so wie dies zum Bilden einer gewünschten
Größe des Kupferrohrs erforderlich ist, das eine Verformungsstruktur umfasst und eine
durch ein Wirbelstrom-Leitfähigkeitsmessgerät gemessene elektrische Leitfähigkeit
(Y2: %IACS) aufweist, die der folgenden Formel genügt:

wobei X (Gewichts-%) einen Gehalt an Phosphor darstellt, wobei ein Gehalt an einer
Gruppe von spezifischen Verunreinigungselementen, bestehend aus Cr, Mn, Fe, Co, Zr
und Mo, unter den Verunreinigungen insgesamt nicht mehr als 0,01 Gewichts-% beträgt,
wobei ein Gehalt an unvermeidlichen Verunreinigungselementen außer der Gruppe der
spezifischen Verunreinigungselemente unter den Verunreinigungen insgesamt nicht mehr
als 0,005 Gewichts-% beträgt.
6. Verfahren zur Herstellung eines hochgradig korrosionsbeständigen Kupferrohrs nach
Anspruch 4 oder 5, wobei der Schritt der Wärmebehandlung des Kupferblocks ein Homogenisierungsverfahren
ist.
7. Verfahren zur Herstellung eines hochgradig korrosionsbeständigen Kupferrohrs nach
Anspruch 4 oder 5, wobei die Wärmebehandlung des Kupferblocks eine vorbereitende Wärmebehandlung
ist, die vor dem Strangpressen durchgeführt wird.
8. Ein Wärmeübertragungsrohr für Klimaanlagen oder Kühlgeräte, das aus dem hochgradig
korrosionsbeständigen Kupferrohr nach Anspruch 1 oder Anspruch 2 besteht.
9. Ein Kältemittelrohr für Klimaanlagen oder Kühlgeräte, das aus dem hochgradig korrosionsbeständigen
Kupferrohr nach Anspruch 1 oder Anspruch 2 besteht.
10. Eine Methode zum Verbessern einer Korrosionsbeständigkeit eines Kupferrohrs gegen
Ameisennestkorrosion, die durch ein ätzendes Medium in Form einer niederen Carbonsäure
in einer feuchten Umgebung erzeugt wird und von einer Oberfläche des Kupferrohrs fortschreitet,
das für Klimaanlagen oder Kühlgeräte in der feuchten Umgebung verwendet wird, wobei
das Kupferrohr das hochgradig korrosionsbeständige Kupferrohr nach Anspruch 1 oder
Anspruch 2 ist.
1. Tube en cuivre extrêmement résistant à la corrosion formé d'un matériau de cuivre
constitué par 0,15 à 0,6 % en poids de phosphore et le reste étant du cuivre et des
impuretés,
caractérisé en ce que le tube inclut une structure recristallisée et a une conductivité électrique mesurée
par un compteur de conductivité par courants de Foucault (Y1 : % IACS) qui répond
à la formule suivante

dans lequel X (% en poids) représente une teneur en phosphore, dans lequel une teneur
en un groupe d'éléments d'impuretés spécifiques constitué par Cr, Mn, Fe, Co, Zr et
Mo parmi les impuretés n'est pas supérieure à 0,01 % en poids au total, dans lequel
une teneur en éléments d'impuretés inévitables autres que le groupe d'éléments d'impuretés
spécifiques parmi lesdites impuretés n'est pas supérieure à 0,005 % en poids au total.
2. Tube en cuivre extrêmement résistant à la corrosion formé d'un matériau de cuivre
constitué par 0,15 à 0,6 % en poids de phosphore et le reste étant du cuivre et des
impuretés,
caractérisé en ce que le tube inclut une structure de déformation et a une conductivité électrique mesurée
par un compteur de conductivité par courants de Foucault (Y2 : % IACS) qui répond
à la formule suivante

dans lequel X (% en poids) représente une teneur en phosphore, dans lequel une teneur
en un groupe d'éléments d'impuretés spécifiques constitué par Cr, Mn, Fe, Co, Zr et
Mo parmi les impuretés n'est pas supérieure à 0,01 % en poids au total, dans lequel
une teneur en éléments d'impuretés inévitables autres que le groupe d'éléments d'impuretés
spécifiques parmi lesdites impuretés n'est pas supérieure à 0,005 % en poids au total.
3. Utilisation du tube en cuivre extrêmement résistant à la corrosion selon la revendication
1 ou la revendication 2 dans un environnement humide dans laquelle le tube en cuivre
est soumis à une corrosion qui progresse sous la forme d'une fourmilière à partir
d'une surface du tube dans une direction d'une épaisseur de paroi du tube par un milieu
corrosif sous la forme d'un acide carboxylique inférieur.
4. Procédé destiné à produire un tube en cuivre extrêmement résistant à la corrosion
comprenant :
une étape de fourniture d'un lingot de cuivre constitué par 0,15 à 0,6 % en poids
de phosphore et le reste étant du cuivre et des impuretés ;
une étape de traitement par la chaleur du lingot de cuivre à une température de 750
à 950 °C pendant 0,5 à 12 heures ;
une étape d'extrusion à la chaleur du lingot de cuivre traité par la chaleur à une
température de 750 à 950 °C de manière à obtenir un tube brut en cuivre ;
une étape de travail à froid du tube brut en cuivre par un procédé d'étirage et en
outre un procédé de rainurage selon les besoins pour former une dimension souhaitée
de tube en cuivre ; et
une étape de soumission du tube en cuivre obtenu par le travail à froid à un recuit
final obtenu à une température de 300 à 600 °C pendant 5 à 120 minutes de manière
à obtenir le tube en cuivre incluant une structure recristallisée et ayant une conductivité
électrique mesurée par un compteur de conductivité par courants de Foucault (Y1 :
% IACS) qui répond à la formule suivante :

dans lequel X (% en poids) représente une teneur en phosphore, dans lequel une teneur
en un groupe d'éléments d'impuretés spécifiques constitué par Cr, Mn, Fe, Co, Zr et
Mo parmi les impuretés n'est pas supérieure à 0,01 % en poids au total, dans lequel
une teneur en éléments d'impuretés inévitables autres que le groupe d'éléments d'impuretés
spécifiques parmi lesdites impuretés n'est pas supérieure à 0,005 % en poids au total.
5. Procédé destiné à produire un tube en cuivre extrêmement résistant à la corrosion
comprenant :
une étape de fourniture d'un lingot de cuivre constitué par 0,15 à 0,6 % en poids
de phosphore et le reste étant du cuivre et des impuretés ;
une étape de traitement par la chaleur du lingot de cuivre à une température de 750
à 950 °C pendant 0,5 à 12 heures ;
une étape d'extrusion à la chaleur du lingot de cuivre traité par la chaleur à une
température de 750 à 950 °C de manière à obtenir un tube brut en cuivre ;
une étape de travail à froid du tube brut en cuivre par un procédé d'étirage et en
outre un procédé de rainurage selon les besoins pour former une dimension souhaitée
de tube en cuivre incluant une structure de déformation et ayant une conductivité
électrique mesurée par un compteur de conductivité par courants de Foucault (Y2 :
% IACS) qui répond à la formule suivante :

dans lequel X (% en poids) représente une teneur en phosphore, dans lequel une teneur
en un groupe d'éléments d'impuretés spécifiques constitué par Cr, Mn, Fe, Co, Zr et
Mo parmi les impuretés n'est pas supérieure à 0,01 % en poids au total, dans lequel
une teneur en éléments d'impuretés inévitables autres que le groupe d'éléments d'impuretés
spécifiques parmi lesdites impuretés n'est pas supérieure à 0,005 % en poids au total.
6. Procédé destiné à produire un tube en cuivre extrêmement résistant à la corrosion
selon la revendication 4 ou 5, dans lequel l'étape de traitement par la chaleur du
lingot de cuivre est un procédé d'homogénéisation.
7. Procédé destiné à produire un tube en cuivre extrêmement résistant à la corrosion
selon la revendication 4 ou 5, dans lequel le traitement par la chaleur du lingot
de cuivre est un traitement par la chaleur préliminaire réalisé avant l'extrusion.
8. Tube de transfert de chaleur pour un équipement de climatisation de l'air ou un équipement
de réfrigération, constitué du tube en cuivre extrêmement résistant à la corrosion
selon la revendication 1 ou la revendication 2.
9. Tube réfrigérant pour un équipement de climatisation de l'air ou un équipement de
réfrigération, constitué du tube en cuivre extrêmement résistant à la corrosion selon
la revendication 1 ou la revendication 2.
10. Méthode d'amélioration d'une résistance à la corrosion d'un tube en cuivre contre
la corrosion de type fourmilière qui est générée par un milieu corrosif sous la forme
d'un acide carboxylique inférieur dans un environnement humide et progresse à partir
d'une surface du tube en cuivre utilisé pour un équipement de climatisation de l'air
ou un équipement de réfrigération dans le milieu humide, dans laquelle le tube en
cuivre tube est le tube en cuivre extrêmement résistant à la corrosion selon la revendication
1 ou la revendication 2.