TECHNICAL FIELD
[0001] The present invention relates to a damper for a combustor assembly of a gas turbine
and to a combustor assembly of a gas turbine comprising said damper. In particular,
the present invention relates to a damper for a sequential combustor assembly.
BACKGROUND
[0002] As known, a gas turbine power plant comprises a compressor, a combustor assembly
and a turbine.
[0003] In particular, the compressor is supplied with air and comprises a plurality of blades
compressing the supplied air. The compressed air leaving the compressor flows into
a plenum, i.e. a closed volume delimited by an outer casing, and from there into the
combustor assembly. In the combustor assembly the compressed air and at least one
fuel are combusted.
[0004] The resulting hot gas leaves the combustor assembly and is expanded in the turbine
performing work.
[0005] In order to achieve a high efficiency, high temperatures are required during combustion.
However, due to these high temperatures, high NOx emissions are generated.
[0006] In order to reduce these emissions and to increase operational flexibility, sequential
combustor assemblies can be used.
[0007] In general, a sequential combustor assembly comprises two combustors in series: a
first-stage combustor and a second-stage combustor, which is arranged downstream the
first-stage combustor along the gas flow.
[0008] Of course, a combustor assembly with a single combustion stage can be also used.
[0009] During operation, inside the combustor assembly pressure oscillations may occur causing
mechanical damages and limiting the operating regime. Mostly combustor assemblies,
in fact, have to operate in lean mode for compliance to pollution emissions. The burner
flame during this mode of operation is extremely sensitive to flow perturbations and
can easily couple with dynamics of the combustor to lead to thermo-acoustic instabilities.
For this reason, usually combustor assemblies are provided with damping devices, in
order to damp these pressure oscillations.
[0010] Known dampers comprise one damper volume that acts as a resonator volume and a neck
fluidly connecting the damper volume to at least one inner chamber of the combustor
assembly.
[0012] However, this kind of dampers are not sufficiently flexible. In some applications,
in fact, it is necessary to damp oscillations having frequencies very far from each
other.
SUMMARY
[0013] The object of the present invention is therefore to provide a damper for a combustor
assembly, which is flexible, simple and economical, both from the functional and the
constructive point of view.
[0014] According to the present invention, there is provided a damper for a combustor assembly
of a gas turbine plant comprising a first damper body, which defines at least one
first damping volume and comprises at least one opening; a neck coupled to the opening
of the first damper body and configured for fluidly connecting the first damping volume
with a combustion chamber of the combustor assembly; and a second damper body, which
extends, at least in part, about at least a portion of the neck and defines at least
one second damping volume; the second damper body comprising at least one opening
configured for fluidly connecting the second damping volume to the combustion chamber
of the combustor assembly; the second damper body comprises a plurality of second
damping volumes, each of which is fluidly connected to the combustion chamber of the
combustor assembly by means of a respective plurality of openings.
[0015] The structure of the damper according to the invention is very compact and flexible.
[0016] The flexibility is given by the possibility of damping different frequencies, as
the damping volumes can be sized opportunely depending on the needs.
[0017] The compact structure allows satisfying the strict dimensional constraints of the
modern combustor assemblies. In modern combustor assemblies, in fact, the spaces available
for traditional dampers installation are few and, additionally, these spaces are not
always arranged where acoustic damping is really needed. The compact structure of
the damper according to the present invention allows also the installation in positions
closer to the zones where damping is really needed. Moreover, thanks to its compactness,
the damper according to the present invention can be used for replacing most of the
existing dampers.
[0018] In other words, thanks to the damper according to the present invention a broadband
damping of combustion dynamics is obtained with a very compact structure.
[0019] Moreover, the second damper body has a more flexible structure as each second damping
volume can be opportunely configured and sized so as to damp one or more frequency.
[0020] According to a variant of the present invention, the second damper body is annular.
In this way the structure of the damper is simple and easy to manufacture.
[0021] According to a variant of the present invention, the neck has a first end connected
to the opening and a second end facing an area in fluid communication with the combustion
chamber; the second damper body extending about the second end. In this way the second
damper body is closer to the area in fluid communication with the combustion chamber.
[0022] According to a variant of the present invention, the second damper body comprises
a plurality of openings fluidly connecting the second damping volume to the combustion
chamber of the combustor assembly. In this way, the vortices created at the openings
maximize acoustic energy absorption.
[0023] According to a variant of the present invention, the second damping volumes are evenly
distributed in the second damper body. In this way the structure of the damper is
simple and easy to manufacture.
[0024] According to a variant of the present invention, the second damping volumes are identical
to each other. In this way the absorption is maximized in a given frequency band.
[0025] According to a variant of the present invention, the second damper body having an
axial length, which is smaller than the axial length of the neck.
[0026] According to a variant of the present invention, the second damper body comprises
at least one auxiliary opening fluidly connecting the second damping volume to a source
of air. This air has two functions: cooling the damper surface (which is typically
facing the flame), and avoiding hot gas ingestion (which would de-tune the second
damper body and could cause damages to the second damping body itself).
[0027] According to a variant of the present invention, the first damper body and the neck
are configured and dimensioned so as to damp at least one first frequency comprised
in a first frequency band and the second damper body is configured and dimensioned
so as to damp at least one second frequency comprised in a second frequency band;
the first frequency and the second frequency are different from each other. Preferably,
the first frequency band is 50-1000 Hz and the second frequency band is 1000-10000
Hz.
[0028] According to a variant of the present invention, the first damper body and the neck
are made as a single body.
[0029] According to a variant of the present invention, the first damper body, the neck
and the second damper body are made as a single body.
[0030] It is also another object of the present invention to provide a reliable combustor
assembly for a gas turbine plant where acoustic oscillations are reduced.
[0031] According to this object the present invention relates to a combustor assembly comprising
at least one damper as described above.
[0032] According to a variant of the present invention, the combustor assembly extends along
a longitudinal axis and comprises at least one center hollow body arranged along the
longitudinal axis and a plurality of lobes extending radially from the center hollow
body; the damper is arranged, at least in part, in the center hollow body.
[0033] The integration of the damper into the central hollow body has several advantages:
it is an ideal location to damp combustion dynamics as it is close to the flame and
it is the best location to damp radial acoustic modes.
BRIEF DESCRIPTION OF THE DRAWINGS
[0034] The present invention will now be described with reference to the accompanying drawings,
which illustrate some non-limitative embodiment, in which:
- Figure 1 is a schematic representation of a gas turbine assembly;
- Figure 2 is a perspective view, with parts removed for clarity, of a damper according
to the present invention;
- Figure 3 is a lateral section view, with parts removed for clarity, of the damper
of figure 2;
- Figure 4 is a lateral schematic view, with parts in section and parts removed for
clarity, of a detail of a combustor assembly according to the present invention;
- Figure 5 is a lateral schematic view, with parts in section and parts removed for
clarity, of a detail of a combustor assembly according to a first variant of the present
invention;
- Figure 6 is a lateral schematic view, with parts in section and parts removed for
clarity, of a detail of a combustor assembly according to a second variant of the
present invention;
- Figure 7 is a lateral schematic view, with parts in section and parts removed for
clarity, of a detail of a combustor assembly according to a third variant of the present
invention.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
[0035] In figure 1 reference numeral 1 indicates a gas turbine assembly. The gas turbine
assembly 1 comprises a compressor 2, a sequential combustor assembly 3 and a turbine
5. The compressor 2 and the turbine 3 extend along a main axis A.
[0036] In use, an airflow compressed in the compressor 2 is mixed with fuel and is burned
in the sequential combustor assembly 3. The burned mixture is then expanded in the
turbine 5 and converted in mechanical power by a shaft 6, which is connected to an
alternator (not shown).
[0037] The sequential combustor assembly 3 comprises a first-stage combustor 8 and a second-stage
combustor 9 sequentially arranged along the gas flow direction G. In other words,
the second stage combustor 9 is arranged downstream the first stage combustor 8 along
the gas flow direction G.
[0038] Preferably, between the first stage combustor 8 and the second stage combustor 9
a mixer 11 is arranged.
[0039] The first stage combustor 8 defines a first combustion chamber 14, the second stage
combustor 9 defines a second combustion chamber 16, while the mixer 11 defines a mixing
chamber 17.
[0040] The first combustion chamber 14, the second combustion chamber 16 and the mixing
chamber 17 are in fluidic communication and are defined by a liner 18 (see figure
4 wherein it is partially visible), which extends along a longitudinal axis B, preferably
parallel to the main axis A.
[0041] With reference to figure 4, in the second combustion chamber 16 of the second stage
combustor 9 a supply assembly 20 is arranged.
[0042] The supply assembly 20 comprises a central hollow body 21 and a plurality of lobes
22 (schematically represented in figure 4), each of which extends radially about the
central hollow body 21. In the energy field the central hollow body 21 can be called
also "central nose".
[0043] The lobes 22 are preferably defined by streamlined bodies, each of which is provided
with a plurality of nozzles 24 and is supplied with air and at least one fuel.
[0044] Preferably, a connection 25 between an inner air channel 26 of at least one lobe
22 and an inner chamber 27 of the central hollow body 21 is realized in order to allow
air entering in the inner chamber 27. In figure 4 the connection 25 is represented
schematically.
[0045] In the inner chamber 27 of the central hollow body 21 a damper 30 is arranged. As
will be discussed later on, the damper 30 is arranged inside the inner chamber 27
to damp the fluctuations inside the second stage combustor 9.
[0046] Referring to figures 2 and 3, damper 30 extends along an extension axis C and comprises
a first damper body 31, a neck 33 and a second damper body 34 extending, at least
in part, about the neck 33.
[0047] The first damper body 31 defines at least one first damping volume 35 and comprises
at least one opening 36 (only visible in figure 3) connected to the neck 33. Preferably,
the first damper body 31 is a cylindrical body and comprises at least one further
opening 37 for the passage of air.
[0048] Air, in fact, contributes to cool the first damper body 31, and avoid hot gas ingestion
(which would de-tune the first damper body 31 and could cause damages to the first
damping body 31 itself) .Preferably, the opening 36 and the further opening 37 are
arranged on opposite faces of the first damper body 31.
[0049] The neck 33 is configured for fluidly connecting the first damping volume 35 with
a combustion chamber. In the non-limiting example here disclosed and illustrated,
the neck 33 fluidly connects the first damping volume 35 to the second combustion
chamber 16.
[0050] In particular, the neck 33 has a first end 40 connected to the opening 36 and a second
end 41 facing an area in fluid communication with a combustion chamber. In the non-limiting
example here illustrated the second end 41 faces into the second combustion chamber
16.
[0051] The second damper body 34 is preferably annular and extends about at least a portion
of the neck 33.
[0052] Preferably, the second damper body 34 extends about the second end 41 of the neck
33 and has an axial length L1 smaller that the axial length L2 of the neck 33.
[0053] The second damper body 34 comprises at least one second damping volume 44 and comprises
at least one opening 45 fluidly connecting the second damping volume 44 to a combustion
chamber (i.e. the second combustion chamber 16 in the non-limiting example here illustrated).
[0054] Preferably, the second damper body 34 comprises a plurality of openings 45 fluidly
connecting the second damping volume 44 to a combustion chamber.
[0055] The plurality of openings 45 can be sized (diameter and axial inner length) and arranged
so as to obtain the maximum resonance absorption. In the non-limiting example here
illustrated the openings 45 are substantially arranged as a matrix. The openings 45
can alternatively be arranged in a circumferential pattern.
[0056] The openings 45 can also have different sizes and shapes (rectangular, slots, oval,
etc.)
[0057] Preferably, the second damper body 34 comprises a plurality of second damping volumes
44 evenly distributed. Preferably the second damping volumes 44 are identical to each
other.
[0058] According to a variant not shown, the second damping volumes 44 have different volumes
in order to maximize the absorption bandwidth.
[0059] Each second damping volume 44 is fluidly connected to a combustion chamber by means
of a plurality of openings 45 (arranged as a matrix in the example here illustrated).
[0060] Preferably, the second damper body 34 is provided with at least one auxiliary opening
48 for the passage of air into the second damping volume 44.
[0061] Preferably, the second damper body 34 comprises one auxiliary opening 48 for each
second damping volume 44.
[0062] According to a variant not disclosed, the second damper body 34 is provided with
at least one fluidic connection between the damping volume 44 and the neck 33, preferably
instead of the auxiliary opening. In this way the air distribution layout is simplified
and there is also the possibility of having a near wall cooling feature.
[0063] Preferably, the damper 30 is dimensioned to damp planar waves and transverse waves.
[0064] In particular, the first damper body 31 and the neck 33 are configured and dimensioned
to damp planar waves, while the second damper body 34 is configured and dimensioned
to damp transverse waves.
[0065] Planar waves are waves having a planar wave front and a constant amplitude in the
planar wave front, while transverse waves have a non-planar wave front.
[0066] The damper 30 is preferably dimensioned so as to damp at least two different frequencies.
In particular the damper 30 is dimensioned to damp at least one frequency comprised
in a first band (50-1000 Hz) and at least one second frequency comprised in a second
frequency band (1000-10000 Hz).
[0067] In particular, the first damper body 31 and the neck 33 are configured and dimensioned
so as to damp a frequency comprised in the first band, while the second damper body
34 is configured and dimensioned so as to damp a frequency comprised in the second
band.
[0068] Preferably, the first damper body 31 and the neck 33 are made as a single body.
[0069] More preferably, the first damper body 31, the neck 33 and the second damper body
34 are made as a single body.
[0070] Preferably, the damper 30 is realized by means of an additive manufacturing technique.
[0071] The definition "additive manufacturing technique" here means all the rapid manufacturing
techniques using layer-by-layer constructions or additive fabrication. This definition
includes, but it is not limited to, selective laser melting (SLM), selective laser
sintering (SLS), Direct Metal Laser Sintering (DMLS), 3D printing, sterolithography,
direct selective laser sintering (DSLS), electron beam sintering (EBS), electron beam
melting (EBM) laser engineered net shaping (LENS), laser net shape manufacturing (LNSM)
and direct metal deposition (DMD).
[0072] It is understood that damper 30 can be arranged also in another portion of the combustor
assembly 3.
[0073] For example, damper 30 can be coupled to the liner 18, preferably to the portion
of the liner 18 facing the second combustion chamber 16.
[0074] In figure 5 it is shown a first variant of the combustor assembly 3, comprising at
least two dampers 30 coupled to a combustor front panel 28 around the supply assembly
20. The dampers 30 are arranged so as the extension axis C is parallel to the longitudinal
axis B.
[0075] In figure 6 it is shown a second variant of the combustor assembly 3, comprising
at least two dampers 30a, coupled to the combustor liner 18 and arranged on opposite
sides of the liner 18 with respect to the longitudinal axis B, and at least one damper
30b arranged inside the inner chamber 27. Damper 30b is arranged inside the inner
chamber 27 so as the extension axis C is transversal to the longitudinal axis B, while
dampers 30a are arranged so as the extension axis C is orthogonal to the longitudinal
axis B.
[0076] In figure 7 it is shown a third variant of the combustor assembly 3 wherein the supply
assembly 20 is defined by at least two burners 29 axially extending in the combustor
assembly 3 which are supported by a combustor front panel 28.
[0077] The combustor assembly 3 comprises a damper 30 arranged substantially along the longitudinal
axis B between the burners 29. Extension axis C of the damper 30 preferably coincides
with longitudinal axis B.
1. Damper for a combustor assembly (3) of a gas turbine plant comprising:
- a first damper body (31), which defines at least one first damping volume (35) and
comprises at least one opening (36);
- a neck (33) coupled to the opening (36) of the first damper body (31) and configured
for fluidly connecting the first damping volume (35) with a combustion chamber (15;
14) of the combustor assembly (3);
- a second damper body (34), which extends, at least in part, about at least a portion
of the neck (33) and defines at least one second damping volume (44); the second damper
body (34) comprising at least one opening (45) configured for fluidly connecting the
second damping volume (44) to the combustion chamber (15;14) of the combustor assembly
(3);
the damper being
characterized in that the second damper body (34) comprises a plurality of second damping volumes (44),
each of which is configured to be fluidly connected to the combustion chamber (15;
14) of the combustor assembly (3) by means of a respective plurality of openings (45).
2. Damper according to claim 1, wherein the second damper body (34) is annular.
3. Damper according to claim 1 or 2, wherein the neck (33) has a first end (40) connected
to the opening (36) and a second end (41) which is configured for facing an area in
fluid communication with the combustion chamber; the second damper body (34) extending
about the second end (41) .
4. Damper according to anyone of the foregoing claims, wherein the second damper body
(34) comprises a plurality of openings (45) configured for fluidly connecting the
second damping volume (44) to the combustion chamber (15; 14) of the combustor assembly
(3).
5. Damper according to anyone of the foregoing claims, wherein the second damping volumes
(44) are evenly distributed in the second damper body (34).
6. Damper according to anyone of the foregoing claims, wherein the second damping volumes
(44) are identical to each other.
7. Damper according to anyone of the foregoing claims, extending along an extension axis
(B); the second damper body (34) having an axial length (L1) which is smaller than
the axial length (L2) of the neck (33).
8. Damper according to anyone of the foregoing claims, wherein the second damper body
(34) comprises at least one auxiliary opening (48) fluidly connecting the second damping
volume (44) to a source of air.
9. Damper according to anyone of the foregoing claims, wherein the first damper body
(31) and the neck (33) are configured and dimensioned so as to damp at least one first
frequency comprised in a first frequency band and the second damper body (34) is configured
and dimensioned so as to damp at least one second frequency comprised in a second
frequency band; the first frequency and the second frequency are different from each
other.
10. Damper according to claim 9, wherein the first frequency band is 50-1000 Hz and the
second frequency band is 1000-10000 Hz.
11. Damper according to anyone of the foregoing claims, wherein the first damper body
(31) and the neck (33) are made as a single body.
12. Damper according to anyone of the foregoing claims, wherein the first damper body
(31), the neck (33) and the second damper body (34) are made as a single body.
13. Combustor assembly for a gas turbine plant comprising at least one damper (30) as
claimed in anyone of the foregoing claims.
14. Combustor assembly according to claim 13, extending along a longitudinal axis (B)
and comprising at least one center hollow body (21) arranged along the extension axis
(B) and a plurality of lobes (22) extending radially from the center hollow body (21);
the damper (30) being arranged, at least in part, in the center hollow body (21).
1. Dämpfer für eine Brenneranordnung (3) einer Gasturbinenanlage, umfassend:
- einen ersten Dämpferkörper (31), der mindestens ein erstes Dämpfungsvolumen (35)
bildet und mindestens eine Öffnung (36) umfasst;
- einen Hals (33), der mit der Öffnung (36) des ersten Dämpferkörpers (31) gekoppelt
ist und dafür konfiguriert ist, das erste Dämpfungsvolumen (35) mit einer Brennkammer
(15; 14) der Brenneranordnung (3) fluidisch zu verbinden;
- einen zweiten Dämpferkörper (34), der sich zumindest teilweise über mindestens einen
Teil des Halses (33) erstreckt und mindestens ein zweites Dämpfungsvolumen (44) bildet;
wobei der zweite Dämpferkörper (34) mindestens eine Öffnung (45) umfasst, die dafür
konfiguriert ist, das zweite Dämpfungsvolumen (44) mit der Brennkammer (15; 14) der
Brenneranordnung (3) fluidisch zu verbinden;
wobei der Dämpfer
dadurch gekennzeichnet ist, dass der zweite Dämpferkörper (34) eine Vielzahl von zweiten Dämpfungsvolumina (44) umfasst,
von welchen jedes dafür konfiguriert ist, mit der Brennkammer (15; 14) der Brenneranordnung
(3) mittels einer jeweiligen Vielzahl von Öffnungen (45) fluidisch verbunden zu werden.
2. Dämpfer nach Anspruch 1, wobei der zweite Dämpferkörper (34) ringförmig ist.
3. Dämpfer nach Anspruch 1 oder 2, wobei der Hals (33) ein erstes Ende (40), das mit
der Öffnung (36) verbunden ist, und ein zweites Ende (41) hat, das so konfiguriert
ist, dass es einem in Fluidverbindung mit der Brennkammer stehenden Bereich gegenüberliegt,
wobei der zweite Dämpferkörper (34) sich um das zweite Ende (41) erstreckt
4. Dämpfer nach einem der vorstehenden Ansprüche, wobei der zweite Dämpferkörper (34)
eine Vielzahl von Öffnungen (45) umfasst, die für eine Fluidverbindung des zweiten
Dämpfungsvolumens (44) mit der Brennkammer (15; 14) der Brenneranordnung (3) konfiguriert
sind.
5. Dämpfer nach einem der vorstehenden Ansprüche, wobei die zweiten Dämpfungsvolumina
(44) in dem zweiten Dämpferkörper (34) gleichmäßig verteilt sind.
6. Dämpfer nach einem der vorstehenden Ansprüche, wobei die zweiten Dämpfungsvolumina
(44) einander identisch sind.
7. Dämpfer nach einem der vorstehenden Ansprüche, der entlang einer Erstreckungsachse
(B) verläuft, wobei der zweite Dämpferkörper (34) eine axiale Länge (L1) hat, die
kleiner ist als die axiale Länge (L2) des Halses (33).
8. Dämpfer nach einem der vorstehenden Ansprüche, wobei der zweite Dämpferkörper (34)
mindestens eine Hilfsöffnung (48) umfasst, die eine Fluidverbindung des zweiten Dämpfungsvolumens
(44) mit einer Luftquelle herstellt.
9. Dämpfer nach einem der vorstehenden Ansprüche, wobei der erste Dämpferkörper (31)
und der Hals (33) so konfiguriert und dimensioniert sind, dass sie mindestens eine
in einem ersten Frequenzband enthaltene erste Frequenz dämpfen, und der zweite Dämpferkörper
(34) so konfiguriert und dimensioniert ist, dass er mindestens eine in einem zweiten
Frequenzband enthaltene zweite Frequenz dämpft, wobei die erste Frequenz und die zweite
Frequenz voneinander verschieden sind.
10. Dämpfer nach Anspruch 9, wobei das erste Frequenzband 50 bis 1000 Hz ist und das zweite
Frequenzband 1000 bis 10.000 Hz ist.
11. Dämpfer nach einem der vorstehenden Ansprüche, wobei der erste Dämpferkörper (31)
und der Hals (33) als ein Körper hergestellt sind.
12. Dämpfer nach einem der vorstehenden Ansprüche, wobei der erste Dämpferkörper (31),
der Hals (33) und der zweite Dämpferkörper (34) als ein Körper hergestellt sind.
13. Brenneranordnung für eine Gasturbinenanlage, umfassend mindestens einen Dämpfer (30)
nach einem der vorhergehenden Ansprüche.
14. Brenneranordnung nach Anspruch 13, die sich entlang einer Längsachse (B) erstreckt
und mindestens einen Mittelhohlkörper (21), der entlang der Erstreckungsachse (B)
angeordnet ist, sowie eine Vielzahl von Lappen (22) umfasst, die sich von dem Mittelhohlkörper
(21) radial erstrecken, wobei der Dämpfer (30) mindestens teilweise in dem Mittelhohlkörper
(21) angeordnet ist.
1. Amortisseur pour un ensemble de combustion (3) d'une installation de turbine à gaz
comprenant :
- un premier corps d'amortisseur (31), qui définit au moins un premier volume d'amortissement
(35) et comprend au moins une ouverture (36) ;
- un col (33) couplé à l'ouverture (36) du premier corps d'amortisseur (31) et configuré
pour raccorder fluidiquement le premier volume d'amortissement (35) avec une chambre
de combustion (15 ; 14) de l'ensemble de combustion (3) ;
- un second corps d'amortisseur (34), qui s'étend, au moins en partie, autour d'au
moins une portion du col (33) et définit au moins un second volume d'amortissement
(44) ; le second corps d'amortisseur (34) comprenant au moins une ouverture (45) configurée
pour raccorder fluidiquement le second volume d'amortissement (44) à la chambre de
combustion (15 ; 14) de l'ensemble de combustion (3) ;
l'amortisseur étant
caractérisé en ce que le second corps d'amortisseur (34) comprend une pluralité de seconds volumes d'amortissement
(44), chacun d'entre eux étant configuré pour être raccordé fluidiquement à la chambre
de combustion (15; 14) de l'ensemble de combustion (3) au moyen d'une pluralité respective
d'ouvertures (45).
2. Amortisseur selon la revendication 1, dans lequel le second corps d'amortisseur (34)
est annulaire.
3. Amortisseur selon la revendication 1 ou 2, dans lequel le col (33) a une première
extrémité (40) raccordée à l'ouverture (36) et une seconde extrémité (41) qui est
configurée pour faire face à une zone en communication fluidique avec la chambre de
combustion ; le second corps d'amortisseur (34) s'étendant autour de la seconde extrémité
(41).
4. Amortisseur selon l'une quelconque des revendications précédentes, dans lequel le
second corps d'amortisseur (34) comprend une pluralité d'ouvertures (45) configurées
pour raccorder fluidiquement le second volume d'amortissement (44) à la chambre de
combustion (15 ; 14) de l'ensemble de combustion (3).
5. Amortisseur selon l'une quelconque des revendications précédentes, dans lequel les
seconds volumes d'amortissement (44) sont répartis de manière régulière dans le second
corps d'amortisseur (34).
6. Amortisseur selon l'une quelconque des revendications précédentes, dans lequel les
seconds volumes d'amortissement (44) sont identiques les uns aux autres.
7. Amortisseur selon l'une quelconque des revendications précédentes, s'étendant suivant
un axe d'extension (B) ; le second corps d'amortisseur (34) ayant une longueur axiale
(L1) qui est plus petite que la longueur axiale (L2) du col (33).
8. Amortisseur selon l'une quelconque des revendications précédentes, dans lequel le
second corps d'amortisseur (34) comprend au moins une ouverture auxiliaire (48) raccordant
fluidiquement le second volume d'amortissement (44) à une source d'air.
9. Amortisseur selon l'une quelconque des revendications précédentes, dans lequel le
premier corps d'amortisseur (31) et le col (33) sont configurés et dimensionnés de
manière à amortir au moins une première fréquence comprise dans une première bande
de fréquences et le second corps d'amortisseur (34) est configuré et dimensionné de
manière à amortir au moins une seconde fréquence comprise dans une seconde bande de
fréquences ; la première fréquence et la seconde fréquence sont différentes l'une
de l'autre.
10. Amortisseur selon la revendication 9, dans lequel la première bande de fréquences
est de 50 à 1 000 Hz et la seconde bande de fréquences est de 1 000 à 10 000 Hz.
11. Amortisseur selon l'une quelconque des revendications précédentes, dans lequel le
premier corps d'amortisseur (31) et le col (33) sont faits d'un seul corps.
12. Amortisseur selon l'une quelconque des revendications précédentes, dans lequel le
premier corps d'amortisseur (31), le col (33) et le second corps d'amortisseur (34)
sont faits d'un seul corps.
13. Ensemble de combustion pour une installation de turbine à gaz comprenant au moins
un amortisseur (30) selon l'une quelconque des revendications précédentes.
14. Ensemble de combustion selon la revendication 13, s'étendant suivant un axe longitudinal
(B) et comprenant au moins un corps creux central (21) agencé suivant l'axe d'extension
(B) et une pluralité de lobes (22) s'étendant radialement depuis le corps creux central
(21) ; l'amortisseur (30) étant agencé, au moins en partie, dans le corps creux central
(21).