[0001] The invention relates to a dive computer and to a method of operating a dive computer.
[0002] Underwater a diver is exposed to an increased ambient pressure. Each ten meters of
depth, the ambient pressure rises by approximately 1 bar. A self-contained underwater
breathing apparatus (SCUBA) allows divers to breathe underwater. Breathing gases under
higher ambient pressure, causes a gas uptake of the body. The physics of the gas uptake
is described in Henry's law. Of major concern during diving is the uptake of inert
gases in the body, as these gases will be released during ascent and after the dive,
which may cause the formation of inert gas bubbles within the body. This may cause
decompression sickness (DCS) or "the bends".
[0003] Decompression models are used to simulate and calculate inert gas uptake in the body
and to calculate ascend profiles so that a diver can safely ascend to the surface
with minimized risk of suffering DCS. Common practice is to perform one or more decompression
stops during the ascent. While in the early years of diving a depth gauge, a watch
and decompression tables were used for diving and to manage decompression obligations,
today is common practice to use a diver worn dive computer.
[0004] A user interface may be provided for a dive computer on the one hand to perform user
settings like setting date and time, setting the dive computer to imperial or metric
units, selecting a personalized dive computer conservatism, select the altitude or
for instance set the oxygen content of the breathing gas mixture.
[0005] On the other hand, a user interface can be used to switch between different menus
and screens, in particular to switch the dive computer to logbook mode, where previous
dive data are displayed or to a dive planner mode.
[0006] Some recreational diving computers also allow the diver to switch between different
breathing gases under water during the dive, which is of particular interest, when
carrying multiple gas supplies and using oxygen rich decompression gases.
[0007] More advanced dive computers, typically linked to technical diving activities, allow
on the one hand more personalized settings, like for instance which decompression
model is used, or allow modification of parameters of the decompression model. In
technical diving, breathing gas mixtures containing helium are used as bottom gas
for deep diving. Such breathing gas is usually referred to TRIMIX (i.e. mixture between
O
2, He and N
2). Technical divers use several different breathing gases to handle decompression
obligations. Therefore technical diving computers usually can be programmed with different
breathing gas mixtures - typically 3-16 breathing gases, where for each gas the O
2 and the He fraction is set. Underwater, during the dive, the diver can set the dive
computer to the breathing gas he is actually breathing so that the dive computer can
perform the decompression calculations accordingly.
[0008] Conventional dive computers are disclosed in
US6904382B2,
DE102007047133A1,
DE102007047144A1,
US7600430B2,
DE102004007986A1,
US2009085865A1,
WO2009/046906A3,
DE19649418A1,
DE102006028085A1,
GB2455389A,
US5503145A,
US5806514A,
US2005/205092A1,
US2007/283953A1,
USD541179S1.
[0009] Some recreational dive computers have additional features. They can display pictures,
can store information about the user, may display maps or display the heart rate of
the diver (see
EP1878654A1).
[0010] Multiple features and settings require a user interface with an input capability,
which allows the user to perform inputs to the diver.
[0011] Dive computers found on the market today are operated with buttons. Different types
of buttons are used, but the majority of manufacturers are using mechanical O-ring
sealed push buttons. Some manufacturers use piezo buttons, which do not require an
O-ring seal of a moving part, thus are believed to be more robust. Some manufactures
use an accelerometers (
GB2455389A,
US5899204A) instead of buttons, where the divers tap on the dive computer instead of pressing
a button.
[0012] Especially when a dive computer features many functions, allows many user settings,
and/or features different screens and user menus, several buttons are required to
implement an efficient user interface. Dive computers usually feature between 1 to
5 push buttons. In some models short and long button pushes are used to call different
functions. This increases the input capability of the dive computer, but also increases
the complexity of the operation of a dive computer. Especially when some buttons are
used to implement different functions - like when one button is used to increment
or decrement a value with a short button press, but confirms a value with a long button
press, operation becomes less intuitive, the user interface is not self-explaining
and the user usually needs to read the user manual before being able to perform user
settings.
[0013] This is a problem especially in diving, where divers possibly also need to perform
settings on the dive computer in a stress or emergency situation, like changing the
gas settings in the case of equipment failure. Especially in such situations an intuitive
user interface is an important safety feature.
[0014] In case of a dive accident, the rescue team usually also examines the dive computer
to understand the dive profile and to decide which treatment is used. Also here, an
intuitive user interface of the dive computer is a safety benefit.
[0015] An alternative to operating a dive computer with push buttons is disclosed in
WO 2012/035021A1, where a touchscreen is described, which can be used underwater, and which can be
used as an intuitive user input device. One challenge of this device is however the
manufacturing process, where a resistive touchscreen needs to be filled with silicon
oil.
[0016] The document
DE 10 2008 058131 A1 discloses also a dive computer and a method to perform it, which is considered the
closest prior art.
[0017] It is an object of the invention to provide a user input device for a dive computer,
which allows intuitive operation of a dive computer, can be manufactured in a simple
way and at low cost, and has a reliable mechanical design
[0018] In order to achieve the object defined above, a dive computer and a method of operating
a dive computer according to the independent claims are provided.
[0019] According to an exemplary embodiment of the invention, a dive computer for displaying
output data to a user during a dive is provided, wherein the dive computer comprises
a user input unit configured for inputting input data to the dive computer by rotating
a rotatable input device.
[0020] According to another exemplary embodiment of the invention, a method of operating
a dive computer for displaying output data to a user is provided, wherein the method
comprises inputting input data to the dive computer by actuating a rotatable input
device of the dive computer.
[0021] According to an exemplary embodiment, a system for intuitive operation of a dive
computer is provided, where a wheel is used as input device. A wheel, mounted on the
outside of the dive computer may be connected with an O-ring sealed axis to a rotational
encoder inside the dive computer. The wheel may be used to increment and decrement
parameters and to switch between different screens, menus and menu items. Optionally,
the wheel may have a push button function.
[0022] An embodiment relates to a method of intuitive operation of a dive computer, wherein
a wheel is used in a dive computer as input device. Using a wheel is an intuitive
method to increment or decrement values or to switch between different menus, screens
or menu items. Such one or more wheels can be used to switch between different menus
and for selecting.
[0023] In the following, further exemplary embodiments of the dive computer and the method
will be explained.
[0024] In an embodiment, the dive computer comprises at least one of a depth sensor, a clock,
a microcontroller (or processor), and a display. It may measure the depth and may
use a decompression model to calculate inert gas uptake in the body in real time,
and may perform decompression calculations. Such a dive computer may show on the screen
or display depth, dive time, remaining no decompression time, time to surface and/or
required decompression stops/ceiling.
[0025] In an embodiment, the rotatable input device is a wheel. Such a wheel may be mounted
at a housing of the dive computer so as to be rotatable around a predefined rotation
axis, in particular a symmetry axis of the wheel. The wheel may be substantially cylindrically
shaped and may be rotatable around its central axis. Additionally or alternatively,
the rotational input device may be rotatable or pivotable, in a lever type, around
a rotation or pivoting axis which does not correspond to a central or symmetry axis
of the rotational input device body. The wheel may be mounted on the outside of the
dive computer and may be connected with an O-ring sealed axis to a rotational encoder
or potentiometer inside the dive computer. A wheel based input device allows a simple
and intuitive way of operating a dive computer. The rotational function of the wheel
can be used to switch between different screen layouts (like surface screen, settings
screen, logbook screen, dive screen, etc.) Using the push function of the menu or
using a separate button can then be used to confirm a screen setting.
[0026] In an embodiment, the dive computer further comprises a rotational detector configured
for detecting a detection signal from the rotatable input device indicative of the
data inputted by the user. The rotational detector may be mounted statically in a
housing of the dive computer and may be configured for detecting a rotation state
or position of the rotatable input device. A processor of the dive computer may be
programmed so as to assign a corresponding control command to certain positional or
rotational states or rotation patterns of the rotational input device. Rotational
encoders or potentiometers can be read out in a very simple way with microcontrollers.
Such a rotational encoder may for instance be based on two outputs, which can provide
a square signal when the encoder is turned. The signals of the two outputs may have
a phase shift dependent on the direction of rotation of the encoder. Potentiometers
can be read with an analog to digital converter input of a microcontroller. Other
rotary or rotational encoders may be based on absolute positions, quadrature output,
digital binary output or digital output on a bus interface like I2C. Alternatively,
optical encoders may be used, wherein a pattern is printed, engraved, molded and/or
milled into the wheel and then read with an optical photo sensor like found in a computer
mouse.
[0027] In an embodiment, the rotational detector is configured as one of the group consisting
of an optical detector configured for detecting an optical detection signal as light
propagating from the rotating input device, a magnetic detector configured for detecting
a magnetic detection signal from at least one magnetic element forming part of the
rotational input device, a potentiometer configured for detecting a resistance signal
depending on a rotational state of the rotational input device. When configured as
an optical detector, a photocell or the like may be statically mounted at a housing
of the dive computer and may capture optical data from the rotating input device body.
For this purpose, the input device body may be provided with an optically detectable
marker or pattern so that the optical detector can determine a positional or rotational
state of the rotational input device body by processing the captured optical data.
Alternatively, one or more magnetic elements may be arranged at, for instance attached
to, the input device body so that, when the body rotates as a result of a user actuation,
a magnetic detector may detect the presence of magnetic elements passing the detector
during the rotation. A potentiometer as a rotation detector can determine a value
of a resistance which changes in accordance with a rotation of the input device body.
The detector may also comprise or consist of an encoder (in particular a rotational
encoder) with an output signal indicative of turning angle (i.e. rotation angle) and
direction (i.e. rotation direction) of the wheel.
[0028] According to the invention, the user input unit is further configured for inputting
further input data to the dive computer by pushing or pulling the rotational input
device, in particular by pushing or pulling along a rotational axis around which the
rotational input device is rotatable. Highly advantageously, the functionality may
hence be further extended by allowing a user to input a control command not only by
rotating the rotational input device, but to input additional control commands by
using the input device body as a push button or as a pull button. Highly advantageously,
a push or pull axis may correspond to a rotation axis. Hence, the mechanical wheel
may also be designed with a push button function. Therefore the axis can not only
be rotated but also moved in axial direction.
[0029] Implementing a push button function is simple, wherein such a push button may be
electrically closed when the axis of the encoder is pressed.
[0030] In an embodiment, the user input unit is further configured for inputting further
input data to the dive computer by touching the rotational input device
[0031] According to the invention, the pushable rotational input device comprises a biasing
mechanism configured for applying a predefined biasing force to the rotational input
device for biasing the rotational input device into a non-pushed position. When a
push button shall be operated under water, i.e. in a sub-merged state of the dive
computer during a dive, it has to be considered that the water pressure at a certain
diving depth may generate a pushing force onto the push button rotational input device.
In order to prevent undesired triggering of commands by this artificial pushing pressure,
a biasing element such as a loaded spring may bias the rotational input device body
towards a position at which it is located in the absence of a pushing operation of
a user. This biasing force is predefined so as to prevent undesired triggering of
a pushing operation by water pressure at the maximum diving depth. Since the hydrostatic
pressure in diving will perform a force on the axis, the axis can be spring loaded,
wherein the force of the spring shall be greater than the cross section area of the
axis multiplied by the hydrostatic pressure found at maximum depth.
[0032] In an embodiment, the dive computer comprises a housing at which the rotational input
device is mounted, and a sealing, in particular one or more O-rings, mounted for sealing
a gap between the housing and the input device. Thus, one or more O-rings may be arranged
along an axis of the input device body so as to ensure a waterproof bearing of the
input device body at and/or in the housing. Sealing an axis with an O-ring is a robust
and reliable method, it is however also possible to select an implementation of a
wheel input device without a mechanical O-ring sealed connection. This may be specially
of interest, when the electronics of the dive computer is potted or encapsulated,
like for instance in silicone gel, polyurethane or resin.
[0033] According to the invention, the dive computer comprises a housing at which the rotational
input device is rotatably mounted, and a magnetic coupling configured for coupling
the housing to the rotational input device in a waterproof way. A magnetic coupling
may render the provision of sealing rings or the like dispensable, since corresponding
magnetic elements may cooperate functionally even through a (in particular non-magnetic)
housing hermetically sealing an interior of the dive computer (for instance electronics,
etc.) with regard to the aqueous environment. An alternative way of implementing a
wheel without an O-ring sealed axis can hence be the use of magnetic sensors. The
wheel may include several magnets, and a magnetic sensor inside the dive computer
housing may detect the position of the magnets and based on that the position of the
wheel.
[0034] In an embodiment, the dive computer comprises a processor (such as a microcontroller)
configured for processing the data input by the user input unit for determining the
data to be displayed to the user based on the processed input data. Such a processor,
for instance a microprocessor, may interpret the data input via the rotational input
device in terms of a pre-stored set of control commands, each assigned to a respective
actuation state of the input device. For instance, data displayed to a user (such
as a diver) may be selected and configured in accordance with the assigned rotational
input device states/control commands. Displaying the data to the user may be performed
via an LCD display, or any other electronic display.
[0035] In an embodiment, the dive computer comprises a housing, wherein the processor is
potted within the housing. When the electronics (such as the processor, parts of the
display, etc.) is encapsulated into a solid-state body (such as a mold), the dive
computer can be rendered waterproof even when no sealing is provided. In other words,
a sealing function may be provided by the encapsulation.
[0036] In an embodiment, the processor is configured for incrementing a displayed value,
in particular breathing gas fractions, upon rotating the rotational input device in
one direction and for decrementing the displayed value upon rotating the rotational
input device in the opposite direction. Hence, turning the rotational input device
in one direction may increase a number or other value displayed on the display of
the dive computer, whereas rotating the rotational input device in a counter-direction
will decrease the displayed value. By taking this measure, an intuitive way of adjusting
parameters by wheel actuation is provided. The wheel can hence be used to change numerical
values of the dive computer by rotation. A rotation in one direction increments a
parameter. A rotation in the opposite direction decrements a parameter. This can be
applied for instance to setting hours, minutes, year, month, day of month, O
2 fraction of a breathing gas, He fraction of a breathing gas, pO
2 setpoint in closed circuit rebreather diving, maximum pO
2, maximum depth, maximum dive time or GPS coordinates. A push or pull button function
of the wheel (in addition to the actuation by rotation mechanism) or a separate button
can be used to confirm a selection.
[0037] In an embodiment, the processor is configured for switching between a plurality of
displayed menu items in accordance with a rotation of the rotational input device.
For instance, a scrollbar may be displayed on a display of the dive computer, wherein
the scrollbar allows to select between different menu items. Rotating the rotational
input device in a direction will move a highlighted one of the menu items upwardly,
whereas rotating the wheel in a counter-direction will move the highlighted menu item
in a downward direction on the display. In a wheel based menu user interface the wheel
can be used to switch between different menu items. The menu item, which is currently
selected is highlighted, like for instance displayed with a different color, displayed
inverted, displayed blinking or underlined.
[0038] In an embodiment, the processor is configured for selecting (for activating a corresponding
function) a menu item, to which the processor has switched as a result of a rotation
of the rotational input device, in response to a push operation of the rotational
input device. Thus, after having selected a screen or menu item by rotating the wheel
to a desired position corresponding to a menu item to be activated, a selection of
the highlighted menu item or screen can be triggered by a push or pull operation of
the wheel.
[0039] In an embodiment, the processor is configured for switching between a plurality of
displayed menu items or between a plurality of screens in response to a push operation
of the rotational input device. As an alternative to a switch between different screens
or menu items by a rotation actuation, it is also possible to interpret a push of
the actuator wheel as the control command for switching between different menu items
or different screens. In such an embodiment, selection of a switched menu item or
screen can then be initiated by a rotation of the rotational input device.
[0040] In an embodiment, the processor is configured for switching between a plurality of
screens in accordance with a rotation of the rotational input device. Such different
screens may be a setting screen for time and date, another screen for adjusting breathing
gas properties, a further screen for displaying logbook data, etc.
[0041] In an embodiment, the processor is configured for activating different switching
functions in accordance with a duration of a push operation of the rotational input
device. In such an embodiment, a short-term push (for instance less than a predefined
threshold value of for instance 1 s) may initiate a first function, whereas a long-term
duration (for instance longer than the predefined threshold value of for instance
1 s) may trigger another function. It is also possible to assign more than two functions
to more than two pushing time intervals (for instance by predefining a plurality of
threshold values). Optionally the software of the dive computer may also be designed
in a way that allows measurement of the length of the push of push button function
the wheel, to implement more functions with one switching function, like for instance
a short push enables or disables a particular breathing gas, and a long push selects
that particular breathing gas as breathing gas actually used. Alternatively the long
push can also be used to restore default settings.
[0042] In an embodiment, the method comprises displaying output data during a dive. Additionally
or alternatively, the method comprises displaying output data when the dive computer
is located in an air atmosphere. Thus, the display of output data as well as the actuation
of the rotatable/rotational input device for inputting input data may be performed
outside of the water or inside the water.
[0043] It is possible that the dive computer is configured as a mask-mountable dive computer,
i.e. a dive computer having mounting provisions for mounting it on a dive mask. In
an embodiment, the dive computer is configured as a mask-mounted dive computer, i.e.
a dive computer mounted on a dive mask. By mounting the wheel operated dive computer
on a mask, a user simply has to operate the rotational input device by one hand which
she or he can even do without visually seeing the rotational input device, i.e. by
a tactile recognition of the rotational input device. This helps a diver to concentrate
on the diving tasks when operating the dive computer.
[0044] The wheel can also be used as character and text input device. By rotating the wheel,
the different characters may be displayed. Pushing a separate button or pushing the
optional wheel push button function selects the displayed character. For instance,
the characters are displayed on the display in a consecutive way, like for instance
following the ASCII table.
[0045] Rotating the wheel during the dive may be used to display different preprogrammed
gas settings. By pushing a separate button or pushing the optional wheel push button
function, displayed gas can be selected as breathing gas which is currently breathed
by the diver and which should be used for calculation inert gas uptake and release
in the body.
[0046] In an embodiment, a dive computer with a wheel is provided. The wheel may be connected
to a rotational encoder inside the dive computer. The wheel may be connected to a
potentiometer inside the dive computer. The mechanical connection may be established
with an O-ring sealed axis. The wheel may be also used as push button input device.
Instead, a mechanical connection with a magnetic coupling may be used. Magnetic sensors
may be used. The position of the wheel may be read out with a photo sensor. Furthermore,
a method of intuitive operation of a dive computer is provided, where a wheel is used
as input device. The wheel may be used to increment and decrement breathing gas fractions.
The wheel may be used to switch between menu items. The wheel may be used to switch
between screens. A push function of the wheel may be used to implement a switching
function. The switching function may be used to confirm a highlighted menu item. The
duration of the push may be measured to implement different switching functions.
[0047] The aspects defined above and further aspects of the invention are apparent from
the examples of embodiment to be described hereinafter and are explained with reference
to these examples of embodiment.
[0048] The invention will be described in more detail hereinafter with reference to examples
of embodiment but to which the invention is not limited.
Figure 1 illustrates a three-dimensional view of a dive computer with a rotational
input device wheel according to an exemplary embodiment of the invention.
Figure 2 illustrates a cross-sectional view of the dive computer according to Figure
1 illustrating details of the wheel-shaped rotational input device.
Figure 3 illustrates a three-dimensional view of a mask mounted dive computer according
to an exemplary embodiment of the invention.
Figure 4 is a block diagram illustrating functional blocks of a dive computer according
to an exemplary embodiment of the invention.
[0049] The illustrations in the drawings are schematical. In different drawings, similar
or identical elements are provided with the same reference signs.
[0050] Figure 1 shows a dive computer 1 with a wheel 2 according to an exemplary embodiment of the
invention. The wheel 2 is mounted on the dive computer 1. The dive computer 1 is configured
for displaying dive-related output data to a user, i.e. a diver, during a dive. The
dive computer 1 displays this output data via a display 9, such as an LCD display.
The dive computer 1 comprises a housing 10 in which the display 9 is integrated. Furthermore,
a rotatable input device embodied as the wheel 2 is mounted at the housing 10 of the
dive computer 1. The rotatable wheel 2 serves as a user input unit configured for
inputting control commands to the dive computer 1. In the embodiment of Figure 1,
the rotatable wheel 2 can be turned (in clockwise direction and in counterclockwise
direction, see double arrow 17) around a rotation axis 18 corresponding to its symmetry
axis.
[0051] Furthermore, the wheel 2 is configured as a push button which can be activated for
inputting additional user commands into the dive computer 1 by pushing the rotational
input device 2 by applying pressure along its rotational axis 18 (see pushing direction
19). Thus, multiple commands can be input by a user by the very intuitive single wheel
2 allowing to be rotated clockwise, counterclockwise and being pushed.
[0052] Figure 2 shows a cross section of the dive computer 1 of Figure 1. The cross-sectional view
of the dive computer 1 in Figure 2 shows details of the rotatable and pushable rotational
input device embodied as wheel 2.
[0053] The wheel 2 is connected with an axis or shaft 3 to an encoder 4 inside the dive
computer 1. O-rings 5 seal the axis or shaft 3. Hence, O-rings 5 are mounted for sealing
a gap between the housing 10 and the wheel 2.
[0054] The encoder 4 can feature a mechanical push button function. The dive computer 1
comprises a rotational detector in form of the encoder 4 configured for detecting
a detection signal from the rotatable and pushable rotational input device wheel 2
which is indicative of a control command of a user input by rotating and/or pushing
the wheel 2 around or along the symmetry axis 18 thereof. In the shown embodiment,
the encoder 4 is configured as an optical detector for detecting an optical detection
signal, i.e. light originating from the rotating wheel 2 and propagating to the encoder
4. For this purpose, a photocell is arranged close to the surrounding lateral surface
of the wheel 2.
[0055] To be able to use the mechanical push button function also during the dive and to
be able to compensate for the hydrostatic pressure pushing the axis or shaft 3 inwards
the dive computer 1, a spring 6 is used to apply a counterforce (i.e. antiparallel
to the pushing direction 19).The biasing spring 6 applies a predefined spring force
for biasing the wheel 2 into a non-pushed position, thereby preventing undesired triggering
of a pushing operation by water pressure when the dive computer 1 is sub-merged during
a dive.
[0056] Figure 3 shows a mask mounted dive computer 7 with a wheel 2 according to an exemplary embodiment
of the invention. The mask mounted dive computer 7 comprises a diver mask 20 (only
shown schematically/partially in Figure 3) and a dive computer 1 mounted thereon.
The dive computer 1 is mechanically connected with the mask 20 (detachably or non-detachably).
[0057] Figure 4 shows a block diagram 30 of various functional components of a dive computer 1 according
to an exemplary embodiment of the invention.
[0058] The rotatable and pushable wheel 2 is functionally connected to a detector embodied
as optical encoder 4 for detecting rotation and/or pushing operations by a user. A
processor 11 (such as a microcontroller) is supplied with corresponding detector data
and assigns, by using data and algorithms from a database 12 (such as a storage memory)
control commands assigned to each of the detected rotation and/or pushing operations.
Correspondingly, the processor 11 calculates, based on input data input by the user
via the wheel 2, output data to be displayed on the display 9 which is subsequently
displayed to the user.
[0059] A first control command may be assigned to a rotation of the wheel 2 in a clockwise
direction, a second control command may be assigned to a rotation of the wheel 2 in
a counterclockwise direction, and a third control command may be assigned to a pushing
actuation of the wheel 2. Optionally, different control commands may be assigned to
different pushing durations.
[0060] It should be noted that the term "comprising" does not exclude other elements or
steps and the "a" or "an" does not exclude a plurality. Also elements described in
association with different embodiments may be combined.
[0061] It should also be noted that reference signs in the claims shall not be construed
as limiting the scope of the claims.
[0062] Implementation of the invention is not limited to the preferred embodiments shown
in the figures and described above. Instead, a multiplicity of variants are possible
which use the solutions shown and the principle according to the invention even in
the case of fundamentally different embodiments.
1. A dive computer (1) for displaying output data to a user during a dive,
wherein the dive computer (1) comprises a user input unit configured for inputting
input data to the dive computer (1) by rotating a rotational input device (2),
wherein the user input unit is further configured for inputting further input data
to the dive computer by pushing or pulling the rotational input device (2),
wherein the dive computer further comprises a housing (10) at which the rotational
input device (2) is rotatably mounted,
characterized in that
the pushable rotational input device (2) comprises a biasing mechanism (6) configured
for applying a predefined biasing force to the rotational input device (2) for biasing
the rotational input device (2) into a non-pushed position, wherein the biasing force
is predefined so as to prevent undesired triggering of a pushing operation by water
pressure at the maximum diving depth,
wherein the dive computer further comprises a magnetic coupling configured for coupling
the housing (10) to the rotational input device (2) in a waterproof way.
2. The dive computer (1) according to claim 1, wherein the rotational input device (2)
is a wheel.
3. The dive computer (1) according to claim 1 or 2, further comprising a detector (4)
configured for detecting a detection signal from the rotational input device (2) indicative
of the input data inputted by the user.
4. The dive computer (1) according to claim 3, wherein the detector (4) is configured
as one of the group consisting of:
a rotational encoder;
an encoder with an output signal indicative of turning angle and direction;
an optical detector configured for detecting an optical detection signal as light
originating from the rotational input device (2);
a magnetic detector configured for. detecting a magnetic detection signal from at
least one magnetic element forming part of the rotational input device (2);
a potentiometer configured for detecting a signal indicative of an electrical resistance
which depends on a rotational state of the rotational input device (2).
5. The dive computer (1) according to any of claims 1 to 4, wherein the user input unit
is further configured for inputting further input data to the dive computer by pushing
or pulling the rotational input device (2) along a rotational axis around which the
rotational input device (2)·is rotatable.
6. The dive computer (1) according to any of Claims 1 to 5, comprising:
a housing (10) at which the rotational input device (2) is rotatably mounted;
a sealing (5), in particular an O-ring, mounted for sealing a gap between the housing
(10) and the rotational input device (2).
7. The dive computer (1) according to any of claims 1 to 6, comprising a processor (11)
configured for processing the input data input via the user input unit for determining
the output data to be displayed based on the processed input data, wherein in particular
the dive computer (1) comprises a housing (10), wherein the processor (11) is encapsulated
within the housing (10).
8. The dive computer (1) according to any of Claims 1 to 7, wherein the processor (11)
is configured for incrementing a displayed value, in particular of one or more breathing
gas fractions, upon rotating the rotational input device (2) in one direction and
for decrementing the displayed value upon rotating the rotational input device (2)
in the opposite direction.
9. The dive computer (1) according to any of Claims 1 to 8, wherein the processor (11)
is configured for switching between a plurality of displayed menu items in accordance
with a rotation of the rotational input device (2), wherein in particular the processor
(11) is configured for selecting a menu item, to which the processor (11) has switched
as a result of a rotation of the rotational input device (2), in response to a push
operation or a pull operation of the rotational input device (2).
10. The dive computer (1) according to any of claims 1 to 9,
wherein the processor (11) is configured for switching between a plurality of displayed
menu items or between a plurality of screens in response to a push operation or a
pull operation of the rotational input device (2), and/or
wherein the processor (11) is configured for switching between a plurality of screens
in accordance with a rotation of the rotational input device (2), and/or wherein the
processor (11) is configured for activating a selectable one of different switching
functions in accordance with a duration of a push operation or a pull Operation of
the rotational input device (2).
11. The dive computer (1) according to any of claims 1 to 10, configured as a mask-mountable
or mask-mounted dive computer (7).
12. A method of operating a dive computer (1) for displaying output data to a user, wherein
the method comprises
inputting input data to the dive computer (1) by actuating a rotational input device
(2) of the dive computer (1), wherein the rotational input device (2) is rotatably
mounted at a housing (10) of the dive computer,
inputting further input data to the dive computer by pushing or pulling the rotational
input device (2),
characterized in that
the pushable rotational input device (2) comprises a biasing mechanism (6) configured
for applying a predefined biasing force to the rotational input device (2) for biasing
the rotational input device (2) into a non-pushed position, wherein the biasing force
is predefined so as to prevent undesired triggering of a pushing operation by water
pressure at the maximum diving depth,
wherein the housing (10) is coupled to the rotational input device (2) with a magnetic
coupling of the drive computer in a waterproof way.
13. The method according to claim 12, wherein the method comprises displaying output data
during a dive.
14. The method according to claim 13, wherein the method comprises displaying output data
when the dive computer (1) is located in an air atmosphere.
1. Tauchcomputer (1) zum Anzeigen von Ausgabedaten für einen Benutzer während eines Tauchgangs,
wobei der Tauchcomputer (1) eine Benutzereingabeeinheit umfasst, die zur Eingabe von
Eingabedaten in den Tauchcomputer (1) durch Drehen einer Dreheingabevorrichtung (2)
konfiguriert ist,
wobei die Benutzereingabeeinheit ferner zur Eingabe weiterer Eingabedaten in den Tauchcomputer
durch Drücken oder Ziehen der Dreheingabevorrichtung (2) konfiguriert ist, wobei der
Tauchcomputer ferner ein Gehäuse (10) aufweist, an dem die Dreheingabevorrichtung
(2) drehbar angebracht ist,
dadurch gekennzeichnet, dass
die drückbare Dreheingabevorrichtung (2) einen Vorspannmechanismus (6) umfasst, der
zum Ausüben einer vordefinierten Vorspannkraft auf die Dreheingabevorrichtung (2)
konfiguriert ist, um die Dreheingabevorrichtung (2) in eine nicht gedrückte Position
vorzuspannen, wobei die Vorspannkraft so vordefiniert ist, dass sie ein unerwünschtes
Auslösen einer Drückbetätigung durch den Wasserdruck bei der maximalen Tauchtiefe
verhindert,
wobei der Tauchcomputer ferner eine magnetische Kopplung umfasst, die zur wasserdichten
Kopplung des Gehäuses (10) an die Dreheingabevorrichtung (2) konfiguriert ist.
2. Tauchcomputer (1) nach Anspruch 1, wobei die Dreheingabevorrichtung (2) ein Rad ist.
3. Tauchcomputer (1) nach Anspruch 1 oder 2, ferner umfassend einen Detektor (4), der
zum Erfassen eines Erfassungssignals von der Dreheingabevorrichtung (2), welches indikativ
für die vom Benutzer eingegebenen Daten ist, konfiguriert ist.
4. Tauchcomputer (1) nach Anspruch 3, wobei der Detektor (4) konfiguriert ist als ein
Element der Gruppe bestehend aus:
einem Rotationsgeber;
einem Encoder mit einem Ausgangssignal, welches indikativ für den Drehwinkel und die
Drehrichtung ist;
einem optischen Detektor, der zum Erfassen eines optischen Erfassungssignals als Licht,
welches von der Dreheingabevorrichtung (2) ausgeht, konfiguriert ist;
einem magnetischen Detektor, der zum Erfassen eines magnetischen Erfassungssignals
von mindestens einem magnetischen Element, welches einen Teil der Dreheingabevorrichtung
(2) bildet, konfiguriert ist;
einem Potentiometer, das zum Erfassen eines Signals, welches indikativ für einen von
einem Drehzustand der Dreheingabevorrichtung (2) abhängigen elektrischen Widerstand
ist, konfiguriert ist.
5. Tauchcomputer (1) nach einem der Ansprüche 1 bis 4, wobei die Benutzereingabeeinheit
ferner zur Eingabe weiterer Eingabedaten in den Tauchcomputer durch Drücken oder Ziehen
der Dreheingabevorrichtung (2) entlang einer Drehachse, um die die Dreheingabevorrichtung
(2) drehbar ist, konfiguriert ist.
6. Tauchcomputer (1) nach einem der Ansprüche 1 bis 5, umfassend:
ein Gehäuse (10), an dem die Dreheingabevorrichtung (2) drehbar angebracht ist;
eine Dichtung (5), insbesondere einen O-Ring, die zur Abdichtung eines Spalts zwischen
dem Gehäuse (10) und der Dreheingabevorrichtung (2) angebracht ist.
7. Tauchcomputer (1) nach einem der Ansprüche 1 bis 6, umfassend einem Prozessor (11),
der zur Verarbeitung der über die Benutzereingabeeinheit eingegebenen Eingabedaten
konfiguriert ist, um auf Grundlage der verarbeiteten Eingabedaten die anzuzeigenden
Ausgabedaten zu bestimmen, wobei der Tauchcomputer (1) insbesondere ein Gehäuse (10)
umfasst, wobei der Prozessor (11) in dem Gehäuse (10) verkapselt ist.
8. Tauchcomputer (1) nach einem der Ansprüche 1 bis 7, wobei der Prozessor (11) zum Erhöhen
eines angezeigten Werts, insbesondere einer oder mehrerer Atemgasanteile, beim Drehen
der Dreheingabevorrichtung (2) in eine Richtung, und zum Erniedrigen des angezeigten
Werts beim Drehen der Dreheingabevorrichtung (2) in die entgegengesetzte Richtung
konfiguriert ist.
9. Tauchcomputer (1) nach einem der Ansprüche 1 bis 8, wobei der Prozessor (11) zum Umschalten
zwischen mehreren angezeigten Menüpunkten entsprechend einer Drehung der Dreheingabeeinrichtung
(2) konfiguriert ist, wobei der Prozessor (11) insbesondere zum Auswählen eines Menüpunktes,
zu dem der Prozessor (11) infolge einer Drehung der Dreheingabeeinrichtung (2) umgeschaltet
hat, in Reaktion auf eine Drückbetätigung oder eine Ziehbetätigung der Dreheingabeeinrichtung
(2) konfiguriert ist.
10. Tauchcomputer (1) nach einem der Ansprüche 1 bis 9,
wobei der Prozessor (11) zum Umschalten zwischen mehreren angezeigten Menüpunkten
oder zwischen mehreren Bildschirmen in Reaktion auf eine Drückbetätigung oder eine
Ziehbetätigung der Dreheingabevorrichtung (2) konfiguriert ist, und/oder
wobei der Prozessor (11) zum Umschalten zwischen mehreren Bildschirmen entsprechend
einer Drehung der Dreheingabevorrichtung (2) konfiguriert ist, und/oder
wobei der Prozessor (11) zur Aktivierung einer auswählbaren Umschaltfunktion aus verschiedenen
Umschaltfunktionen entsprechend einer Dauer einer Drückbetätigung oder einer Ziehbetätigung
der Dreheingabevorrichtung (2) konfiguriert ist.
11. Tauchcomputer (1) nach einem der Ansprüche 1 bis 10, konfiguriert als maskenmontierbarer
oder maskenmontierter Tauchcomputer (7).
12. Verfahren zum Betreiben eines Tauchcomputers (1) zum Anzeigen von Ausgabedaten für
einen Benutzer, wobei das Verfahren umfasst:
Eingabe von Eingabedaten in den Tauchcomputer (1) durch Betätigen einer Dreheingabevorrichtung
(2) des Tauchcomputers (1), wobei die Dreheingabevorrichtung (2) drehbar an einem
Gehäuse (10) des Tauchcomputers angebracht ist,
Eingabe weiterer Eingabedaten in den Tauchcomputer durch Drücken oder Ziehen der Dreheingabevorrichtung
(2),
dadurch gekennzeichnet, dass
die drückbare Dreheingabevorrichtung (2) einen Vorspannmechanismus (6) umfasst, der
zum Ausüben einer vordefinierten Vorspannkraft auf die Dreheingabevorrichtung (2)
konfiguriert ist, um die Dreheingabevorrichtung (2) in eine nicht gedrückte Position
vorzuspannen, wobei die Vorspannkraft so vordefiniert ist, dass sie ein unerwünschtes
Auslösen einer Drückbetätigung durch den Wasserdruck bei der maximalen Tauchtiefe
verhindert,
wobei das Gehäuse (10) mit einer magnetischen Kopplung des Tauchcomputers wasserdicht
an die Dreheingabevorrichtung (2) gekoppelt ist.
13. Verfahren nach Anspruch 12, wobei das Verfahren das Anzeigen von Ausgabedaten während
eines Tauchgangs umfasst.
14. Verfahren nach Anspruch 13, wobei das Verfahren das Anzeigen von Ausgabedaten umfasst,
wenn sich der Tauchcomputer (1) in einer Luftatmosphäre befindet.
1. Un ordinateur de plongée (1) pour afficher des données de sortie à un utilisateur
pendant une plongée,
dans lequel l'ordinateur de plongée (1) comprend une unité d'entrée utilisateur configurée
pour entrer des données d'entrée dans l'ordinateur de plongée (1) en faisant tourner
un dispositif d'entrée rotatif (2),
dans lequel l'unité d'entrée utilisateur est en outre configurée pour entrer d'autres
données d'entrée dans l'ordinateur de plongée en poussant ou en tirant le dispositif
d'entrée rotatif (2), dans lequel l'ordinateur de plongée comprend en outre un boîtier
(10) sur lequel le dispositif d'entrée rotatif (2) est monté de manière rotative,
caractérisé en ce que
le dispositif d'entrée rotatif poussable (2) comprend un mécanisme de sollicitation
(6) configuré pour appliquer une force de sollicitation prédéfinie au dispositif d'entrée
rotatif (2) pour solliciter le dispositif d'entrée rotatif (2) dans une position non
poussée, dans lequel la force de sollicitation est prédéfinie de manière à empêcher
le déclenchement indésirable d'une opération de poussée par la pression de l'eau à
la profondeur de plongée maximale,
dans lequel l'ordinateur de plongée comprend en outre un couplage magnétique configuré
pour coupler le boîtier (10) au dispositif d'entrée rotatif (2) de manière étanche.
2. L'ordinateur de plongée (1) selon la revendication 1, dans lequel le dispositif d'entrée
rotatif (2) est une roue.
3. L'ordinateur de plongée (1) selon la revendication 1 ou 2, comprenant en outre un
détecteur (4) configuré pour détecter un signal de détection provenant du dispositif
d'entrée rotatif (2) indicatif des données d'entrée entrées par l'utilisateur.
4. L'ordinateur de plongée (1) selon la revendication 3, dans lequel le détecteur (4)
est configuré comme un élément du groupe constitué par :
un codeur rotatif ;
un codeur avec un signal de sortie indicatif d'angle et de sens de rotation ;
un détecteur optique configuré pour détecter un signal de détection optique en tant
que lumière provenant du dispositif d'entrée rotatif (2) ;
un détecteur magnétique configuré pour détecter un signal de détection magnétique
provenant d'au moins un élément magnétique faisant partie du dispositif d'entrée rotatif
(2) ;
un potentiomètre configuré pour détecter un signal indicatif d'une résistance électrique
qui dépend d'un état rotatif du dispositif d'entrée rotatif (2).
5. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 4, dans
lequel l'unité d'entrée utilisateur est en outre configurée pour entrer d'autres données
d'entrée dans l'ordinateur de plongée en poussant ou en tirant le dispositif d'entrée
rotatif (2) le long d'un axe de rotation autour duquel le dispositif d'entrée rotatif
(2) peut tourner.
6. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 5, comprenant
:
un boîtier (10) sur lequel le dispositif d'entrée rotatif (2) est monté de manière
rotative ;
un joint (5), en particulier un joint torique, monté pour rendre étanche un espace
entre le boîtier (10) et le dispositif d'entrée rotatif (2).
7. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 6, comprenant
un processeur (11) configuré pour traiter les données d'entrée entrées via l'unité
d'entrée utilisateur pour déterminer les données de sortie à être affichée sur la
base des données d'entrée traitées, dans lequel en particulier l'ordinateur de plongée
(1) comprend un boîtier (10), dans lequel le processeur (11) est encapsulé dans le
boîtier (10).
8. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 7, dans
lequel le processeur (11) est configuré pour incrémenter une valeur affichée, en particulier
d'une ou plusieurs fractions de gaz respiratoire, lors de la rotation du dispositif
d'entrée rotatif (2) dans un sens et pour décrémenter la valeur affichée lors de la
rotation du dispositif d'entrée rotatif (2) dans le sens opposé.
9. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 8, dans
lequel le processeur (11) est configuré pour commuter entre une pluralité d'éléments
de menu affichés en conformité avec une rotation du dispositif d'entrée rotatif (2),
dans lequel en particulier le processeur (11) est configuré pour sélectionner un élément
de menu, vers lequel le processeur (11) a commuté à la suite d'une rotation du dispositif
d'entrée rotatif (2), en réponse à une opération de poussée ou une opération de tirage
du dispositif d'entrée rotatif (2).
10. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 9,
dans lequel le processeur (11) est configuré pour commuter entre une pluralité d'éléments
de menu affichés ou entre une pluralité d'écrans en réponse à une opération de poussée
ou une opération de tirage du dispositif d'entrée rotatif (2), et/ou
dans lequel le processeur (11) est configuré pour commuter entre une pluralité des
écrans en conformité avec une rotation du dispositif d'entrée rotatif (2), et/ou
dans lequel le processeur (11) est configuré pour activer une fonction de commutation
sélectionnable parmi différentes fonctions de commutation en conformité avec une durée
d'une opération de poussée ou d'une opération de tirage du dispositif d'entrée rotatif
(2).
11. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 10, configuré
comme un ordinateur de plongée (7) montable sur un masque ou monté sur un masque.
12. Un procédé de fonctionnement d'un ordinateur de plongée (1) pour afficher des données
de sortie à un utilisateur, dans lequel le procédé comprend
l'entrée des données d'entrée dans l'ordinateur de plongée (1) en actionnant un dispositif
d'entrée rotatif (2) de l'ordinateur de plongée (1), dans lequel le dispositif d'entrée
rotatif (2) est monté de manière rotative sur un boîtier (10) de l'ordinateur de plongée,
l'entrée des autres données d'entrée dans l'ordinateur de plongée en poussant ou en
tirant le dispositif d'entrée rotatif (2),
caractérisé en ce que
le dispositif d'entrée rotatif poussable (2) comprend un mécanisme de sollicitation
(6) configuré pour appliquer une force de sollicitation prédéfinie au dispositif d'entrée
rotatif (2) pour solliciter le dispositif d'entrée rotatif (2) dans une position non
poussée, dans lequel la force de sollicitation est prédéfinie de manière à empêcher
le déclenchement indésirable d'une opération de poussée par la pression de l'eau à
la profondeur de plongée maximale,
dans lequel le boîtier (10) est couplé au dispositif d'entrée rotatif (2) avec un
couplage magnétique de l'ordinateur de plongée de manière étanche.
13. Le procédé selon la revendication 12, dans lequel le procédé comprend l'affichage
de données de sortie pendant une plongée.
14. Le procédé selon la revendication 13, dans lequel le procédé comprend l'affichage
de données de sortie lorsque l'ordinateur de plongée (1) est situé dans une atmosphère
d'air.