(19)
(11) EP 3 824 978 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
12.10.2022 Bulletin 2022/41

(21) Application number: 19460061.5

(22) Date of filing: 20.11.2019
(51) International Patent Classification (IPC): 
A63B 69/18(2006.01)
A63B 37/00(2006.01)
A63B 71/02(2006.01)
A63B 71/00(2006.01)
A63B 69/00(2006.01)
A63B 71/06(2006.01)
(52) Cooperative Patent Classification (CPC):
A63B 69/18; A63B 2069/185; A63B 2225/09; A63B 2071/0638; A63B 71/0054; A63B 69/0064; A63B 69/00; A63B 71/02

(54)

SKI JUMP AND WINGSUIT FREE FLIGHT SIMULATOR

EINRICHTUNG ZUM SIMULIEREN DES SCHISPRUNGES UND DES FREIEN WINGSUIT-FLIEGENS

SIMULATEUR DE SAUT À SKI ET DE VOL LIBRE EN COMBINAISON AILÉE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
26.05.2021 Bulletin 2021/21

(73) Proprietor: 40MS Spolka z ograniczona odpowiedzialnoscia
42-217 Czestochowa (PL)

(72) Inventors:
  • Kossowski, Tomasz
    42-200 Czestochowa (PL)
  • Porada, Robert
    42-200 Czestochowa (PL)

(74) Representative: Korbela, Anna 
ul. Kilinskiego 30 lok. 2
42-202 Czestochowa
42-202 Czestochowa (PL)


(56) References cited: : 
JP-A- S5 535 662
KR-A- 20170 135 363
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The object of the invention is a ski jump and wingsuit free flight simulator, simulating both the first and second aforementioned types of jumps. It is designed for recreation/pleasure purposes and for trainings preparing for ski jumps or for wingsuit free jumps.

    [0002] Several solutions are known enabling the simulation of ski jumps or wingsuit free flights.

    [0003] From the description of a German invention DE4241574C1 (applied for protection on 10.12.1992) a solution is known entitled "Flying with closed flying chamber and mesh floor - comprises track with fans under flight path producing air currents upwardly and forwardly inclined through floor and lateral limiting walls". The ring-shaped closed flying track has fans producing upwardly and forwardly inclined air current enabling controlled flight through the flying chamber, horizontally over the floor of the flying track. The boundaries - the side limiting walls, include the net tunnel stretched over the floor, grid walls or transparent plastic walls. The grid or tunnel floor being a mesh grid or mesh wall may be made of soft rubber or foam plastic. The installation provides individual, though limited, possibilities of flying for a man. The appliance's advantage is the possibility of universal adjustment for any user.

    [0004] In turn, from the description of a New Zealand invention ref. NZ568424A (applied for protection on 21.05.2008) a solution is known entitled "Closed circuit wind tunnel with inclined section". In this filed invention a closed circuit wind tunnel is disclosed, destined primarily for recreation/pleasure purposes. The tunnel contains a fan producing a circulating air stream and at least one flight chamber with a take-off area at one, and landing area at the other end. The landing area is lower than the take-off area. The flight chamber has the inclined floor leading from the take-off to the landing site. The roof is also inclined parallelly to the floor - hence the air chamber's cross-section is constant throughout the inclination. The tunnel may be used for gliding in the air and may contain equipment for carrying over the glider from the landing area back to the take-off site.

    [0005] Additionally, from the description of a Swedish invention ref. WO2017142461A1 (applied for protection on 15.02.2016) a solution is known entitled "Wind tunnel for human flight". The invention is an aerodynamic tunnel for a stable, durable flight of man - for research or recreation purposes - containing a tunnel with a first part having a first centre axis and a second part with a second centre axis, the second part being a test section. The first centre axis and the second centre axis are arranged at a certain angle (angle one) towards each other. There is at least one fan causing air flow in the test section, in which the second centre axis is arranged at an angle (angle two) in relation to the horizontal plane. The angle two amounts 5° to 85°. The invention also comprises the safety system of the inclined aerodynamic tunnel ensuring a stable and durable flight of the user, including:
    • the inclined test section of the aerodynamic section, the latter being arranged at 5°- 85° angle in relation to the horizontal plane,
    • at least one fan causing the air flow in the test section, the air flow being directed from the upper end towards the low end of the test section,
    • the limiting system placed in the test section to prevent the user to leave the test section.


    [0006] The solutions known that far provided one-tunnel simulators, hence - having only one air circulation. The simulators of this type feature a significant height of the construction.

    [0007] The objective of the invention was to create a ski jump and wingsuit free flight simulator, in a close-knit, compact form, making it possible to set it in the ground without deep digging. The height of the simulator shall be lower than 8 m over the ground level, meaning the construction shall fit into the height bracket set for low buildings.

    [0008] The gist of the ski jump and wingsuit free flight simulator developed here, with the flight chamber and fans directing the air stream upwards and enabling universal settlement and adjustment of the device for any user's size, consists in its having two mutually parallel side tunnels, i.e.: the first horizontal tunnel with the first drive system assembly and the second horizontal tunnel with the second drive system assembly, forcing two separate air flows, i.e. in the first and in the second horizontal tunnels respectively.

    [0009] The developed simulator also comprises yet another tunnel - a middle, oblique tunnel with a floor, a part of which is a movable, oscillatorily tilting platform being the way into and out of the simulator.

    [0010] The platform is oscillatorily affixed to the lower part of the floor of the oblique tunnel. The axis of platform rotation is situated transversely in regard to the floor. In the upper part of the movable platform the simulator has an oscillatorily attached threshold whose position is always horizontal irrespectively of the current platform position in relations to the ground.

    [0011] The simulator is also fitted with a vertical tunnel connecting with the upper ending of the oblique tunnel which is set at 90° angle against both first horizontal tunnel and the second horizontal tunnel parallel to the first one. The lower end of the vertical tunnel is inserted into the middle upper part of the longitudinal tunnel going along between the horizontal tunnels.

    [0012] The above described first and second horizontal tunnels connect with the longitudinal, transversely running tunnel.

    [0013] In the vertical tunnel, on the air flow way there are obstacles causing both air flows break.

    [0014] One of the ends of each of the mutually parallel horizontal tunnels as well as of the oblique tunnel, are connected with the tunnel running transversely against them, which constitutes a confusor.

    [0015] At the conjunction of the particular tunnels, and in the vicinity of their junction, i.e.:

    the first horizontal tunnel with the confusor,

    the second horizontal tunnel with the confusor,

    the first horizontal tunnel with the longitudinal tunnel,

    the second horizontal tunnel with the longitudinal tunnel,

    the oblique tunnel with the confusor,

    the oblique tunnel with the vertical tunnel, and

    the vertical tunnel with the longitudinal tunnel - at least one flow guide is located.



    [0016] Each flow is controlled by the change of the turning speed of the respective drive system assembly.

    [0017] Preferably, the confusor, the longitudinal tunnel, and the two external side tunnels, i.e. both horizontal tunnels, are located in the ground.

    [0018] Optimally, in the simulator, the angle between the parallel axis of the horizontal tunnels and the axis of the oblique tunnel, i.e. the α angle, is the angle of the alteration of the direction of the running flow and amounts 115° to 175°.

    [0019] Usually, the floor or a side wall of the oblique tunnel, is a jumbothrone or a screen.

    [0020] More often than not, the side walls of the oblique tunnel are see-through jumbothrones.

    [0021] Preferably, the ceiling of the oblique tunnel is equipped all along with a rail enabling the shuffling of the safety system.

    [0022] Usually, the distances between the sequential flow guides grow, the ones close to the external edges of the simulator being the most distant to each other.

    [0023] It is possible to equip at least one flow guide with the means enabling heat transmission.

    [0024] Likewise, it is possible to equip at least one obstacle with means enabling heat transmission.

    [0025] The advantage of the ski jump and wingsuit free flight simulator being the subject of the invention, is its compact size; that was possible to achieve by introducing two separate air flow circulations.

    [0026] Placing the simulator in the ground does not require deep digging. The height of the simulator over the ground level shall be lower than 8 meters (usually it is approximately 6 meters over the ground level) meaning it shall fall within the height range set for low buildings.

    [0027] The developed simulator enables safe performance of ski jumps and free flights in the tunnel; they simulate the natural-environment practice even better when during the jump or flight a movie is projected showing ski jumping hill or natural outdoor scenery.

    [0028] The realization of the object of the invention, i.e. the ski jump and wingsuit free flight simulator has been more closely shown on drawings showing:

    fig.1 - axonometric view, at an angle from above of the developed simulator,

    fig.2 - longitudinal cross section of the horizontal tunnel, with the simulator's central part visible in the background,

    fig.3 - longitudinal cross section of the oblique tunnel with the closed platform and the horizontal tunnel, i.e. simulator's side part, visible in the background,

    fig.4 - longitudinal cross section of the oblique tunnel with the platform shown during platform's opening or closing and the horizontal tunnel, i.e. simulator's side part, visible in the background,

    fig.5 - longitudinal cross section of the oblique tunnel with the open platform and the horizontal tunnel, i.e. simulator's side part, visible in the background,

    fig.6 - projection of the simulator's lower part, whilst

    fig.7 - the cross section of the vertical tunnel, the lower part of which is embedded in the ground and the made embankment is even,

    fig.8 - cross section of the simulator's vertical tunnel, the lower part of which is embedded in the ground, and the made embankment is lower in the simulator's central part.



    [0029] The invention refers to the simulator of ski jumps performed in a ski jumps suit, with skis, or to wingsuit free flights.

    [0030] The developed simulator has two external side tunnels, i.e. - a first horizontal tunnel 1a complete with first drive system assembly 2a, and a parallelly running second horizontal tunnel 1b complete with second drive system assembly 2b.

    [0031] The first drive system assembly 2a and the second drive system assembly 2b enforce two separate air flows, and namely: first flow 3a in the first horizontal tunnel 1a, and second flow 3b in the parallelly running second horizontal tunnel 1b. The first flow 3a and the second flow 3b which merge with each other in the pre-planned area of the oblique tunnel 4 (described below), induce lifting force; they therefore constitute the agent enabling wingsuit flights and ski jumps in a suitable suit.

    [0032] The part of the oblique tunnel's 4 floor 5 is a movable platform 6 being a way into and out of the simulator.

    [0033] The platform 6 is oscillatorily affixed in the lower part of the floor 5 of the oblique tunnel 4 and its turning axis is situated transversely in relation to the floor 5 being the place of a tilting connection of the floor 5 with the platform 6. When the simulator is open the platform 6 is dropped and parallel to the ground, "lying" on it.

    [0034] During the simulation of the jump the platform 6 is closed and constitutes a lower part of the oblique tunnel 4.

    [0035] The threshold 7 is oscillatorily affixed to the upper part of the movable platform 6. The threshold 7 position is always horizontal irrespectively of the angle of the platform 6 - being the way into, and out of, the simulator - towards the ground.

    [0036] The threshold 7 is a place where the jumper stands on having entered the open platform 6.

    [0037] The jumper standing on the threshold 7 moves up together with the platform 6 which is oscillatorily closing.

    [0038] When the platform 6 is closed and stowed in thus constituting a uniform lower part of the oblique tunnel 4, the jumper may leap out of the threshold 7 towards the lower part of the oblique tunnel 4.

    [0039] The air flow 3a and the air flow 3b which are already merged in this place and flow in the oblique tunnel 4 from down up, cause the lifting force. The jumper may now perform a jump as long-lasting as he wishes, as the created lifting force evens up the gravity.

    [0040] Thus created combination of forces enables the simulation of the ski jump in a ski suit, or a free flight in a wingsuit.

    [0041] During the flight the platform 6 starts to open gradually thus decreasing the air flow - i.e. the first flow 3a and the second flow 3b. The opening of the platform 6 forces the jumper to land on the open platform 6, and it being the way both in and out of the simulator makes the jumper leave the simulator in a convenient and easy way.

    [0042] Other components of the developed design also play important roles for enforcing the proper air flow in the invented ski jump and wingsuit free flights simulator.

    [0043] First of all, the simulator's part is a vertical tunnel 8 connecting with the upper ending of the oblique tunnel 4. The vertical tunnel 8 is arranged at 90° angle against the horizontally situated: first horizontal tunnel 1a and second horizontal tunnel 1b.

    [0044] The vertical tunnel 8 has in its upper segment at least one flow guide 9 and - preferably - a set of flow guides 9, as shown on fig. 3, fig. 4 and fig. 5. The flow guides 9 reflect the air jet, i.e. first air flow 3a and second air flow 3b, directing the jet in the desired indicated course to the next tunnel - down the vertical tunnel 8.

    [0045] This is possible due to the placement of a set of flow guides 9 in the spot where the oblique tunnel 4 connects with the vertical tunnel 8.

    [0046] In the vertical segment of the vertical tunnel 8 the combined jets of the first air flow 3a and of the second air flow 3b meet the obstacles 10 which break down the jets of the first air flow 3a and of the second air flow 3b. Thanks to these obstacles 10 the air flows are mixed, repeatedly separated and repeatedly merged again.

    [0047] In this way the first air flow 3a and the second air flow 3b broken by obstacles 10 into smaller jets partly merge with each other forming one air jet.

    [0048] In the lower part of the vertical tunnel 8 the set of flow guides 9 divides again the mixed air jet forming separate jets: first air flow 3a and second air flow 3b.

    [0049] The front, low part of the simulator is a tunnel in a shape of a confusor 11.

    [0050] Into the tunnel one of the ends of each of the parallelly running tunnels are inserted, i.e.: the ending of the first horizontal tunnel 1a, of the oblique tunnel 4, and the ending of the second horizontal tunnel 1b. In this way they enter the tunnel in a shape of a confusor 11 which is transversely situated.

    [0051] In the place where the confusor 11 connects with:
    • the first horizontal tunnel 1a,
    • likely, with the oblique tunnel 4, and with
    • the second horizontal tunnel 1b,
    there is at least one flow guide 9 and - preferably - a set of flow guides 9.

    [0052] In the confusor 11 the first air flow 3a and the second air flow 3b accelerate and meet in the middle part of the confusor 11 and ascend up through the oblique tunnel 4.

    [0053] The α angle, that is the angle of alteration of the direction of air flowing through amounts advantageously 115° to 175° (it is shown on drawings: fig. 2, fig. 3, fig. 4 and fig. 5) and is set by the angle between the parallel axis of the horizontal tunnels 1a and 1b, and the axis of the oblique tunnel 4.

    [0054] The ends of the first horizontal tunnel 1a and of the second horizontal tunnel 1b - situated in the high rear end of the simulator - connect with the longitudinal tunnel 12 spreading between them, opposite to the ends connecting with the confusor 11.

    [0055] The lower end of the vertical tunnel 8 is also connected with the longitudinal tunnel 12, and specifically, it is inserted from above to the middle part of the longitudinal tunnel 12.

    [0056] The longitudinal tunnel 12 has at least one flow guide 9 - and advantageously a set of flow guides 9 - in both the spot where it connects with the first horizontal tunnel 1a and in the spot where it connects with the second horizontal tunnel 1b.

    [0057] The confusor 11, the longitudinal tunnel 12 and the two side tunnels - i.e. the first horizontal tunnel 1a and the second horizontal tunnel 1b, are located under the ground and their upper planes usually are totally under the ground level (i.e. under zero-level). Consequently, the simulator stays situated in the ground - advantageously at the depth of approximately 4 meters.

    [0058] The first air flow 3a is controlled by the change of the turning speed of the first drive system assembly 2a, whilst the second air flow 3b is controlled by the change of the turning speed of the second drive system assembly 2b. The turning speed is adjusted by at least one frequency transformer.

    [0059] Summing up: the first drive system assembly 2a and the second drive system assembly 2b generate two air jets - i.e. the first air flow 3a and the second air flow 3b which, having passed the first horizontal tunnel 1a and the second horizontal tunnel 1b respectively, and the confusor 11, in which they accelerate, are directed by flow guides 9 towards the oblique tunnel 4.

    [0060] The first air flow 3a and the second air flow 3b are the lifting force similar to that which lifts the jumper during the 'classic' ski jumps performed in natural conditions on the ski jumping hill, and - similarly - imitates the lifting force affecting the jumper during the wingsuit free flight.

    [0061] The floor 5 and the side walls of the oblique tunnel 4 are preferably jumbotrons or screens, e.g. 4K resolution screens (high resolution standard of digital movies and computer graphics).

    [0062] The side walls of the oblique tunnel 4 may be the see-through jumbotrons. During the jump or flight, a projection simulating e.g. the ski jumping hill or natural scenery in VR (virtual reality) may be shown on the floor 5 and on side walls of the oblique tunnel 4.

    [0063] The rail 14 runs along the entire length of the ceiling 13 of the oblique tunnel 4, on which the safety system 15 slides.

    [0064] The safety system 15, preferably a single-point one, slides along the rail 14 in accordance with the jumper's location. The safety system 15 collaborates with the computer which traces the jumper and projects respective images in classic VR (virtual reality) mode.

    [0065] The jumper is attached to the safety system 15 by a rope, usually a spring-shaped one.

    [0066] At the moment when the jump's - or flight's - trajectory alters so that the jumper dangerously closes to the side wall, the floor or the ceiling of the oblique tunnel 4, the safety system 15 activates the lock and prevents jumper's hitting them.

    [0067] Therefore the safety system 15 monitors the jumper.

    [0068] In the set of the flow guides 9, the distances between the successive flow guides 9 grow, the largest distance between the two neighbouring flow guides 9 is that at the external edges of the simulator.

    [0069] The sets of the flow guides 9 for each simulator are adjusted, arranged and calibrated before the completion of the simulator, at the stage of appointment of its parameters.

    [0070] The flow guides 9 are vertical obstacles reflecting the air jets of the first air flow 3a and the second air flow 3b.

    [0071] The flow guides 9 installed in the confusor 11 and in the longitudinal tunnel 12 are elements fixed permanently to the lower and upper walls of the respective tunnel, i.e. of the confusor 11 and the longitudinal tunnel 12.

    [0072] The flow guides 9 fixed in the vertical tunnel 8 are elements permanently fixed to the side walls of the vertical tunnel 8.

    [0073] The flow guides 9 are usually hollow, to enable the flow of media cooling the tunnel.

    The list of elements:



    [0074] 

    1a - first horizontal tunnel,

    1b - second horizontal tunnel,

    2a - first drive system assembly,

    2b - second drive system assembly,

    3a - first air flow,

    3b - second air flow,

    4 - oblique tunnel,

    5 - floor,

    6 - platform,

    7 - threshold,

    8 - vertical tunnel,

    9 - flow guide,

    10 - obstacle,

    11 - confusor,

    12 - longitudinal tunnel,

    13 - ceiling,

    14 - rail,

    15 - safety system.




    Claims

    1. A ski jump and wingsuit free flight simulator, with a flight chamber and fans directing air jets upwards, providing the possibility to universally control and adjust the simulator to any user's size, having two mutually parallel side tunnels, i.e. first horizontal tunnel (1a) with a first drive system assembly (2a) and a second horizontal tunnel (1b) with a second drive system assembly (2b) enforcing two separate air flows respectively, i.e. first air flow (3a) in the first horizontal tunnel (1a) and a second air flow (3b) in the second horizontal tunnel (1b), the simulator also having, situated between the horizontal tunnels, a middle, oblique tunnel (4) with a floor (5), a part of which is a movable oscillatorily tilting platform (6) being the way into and out of the simulator, affixed in the lower part of the floor (5) of the oblique tunnel (4), the turning axis of the tilting platform being situated transversely in relation to the floor (5), and in the upper part of the movable platform (6) the simulator being equipped with an oscillatorily affixed threshold (7) always maintaining horizontal position irrespectively of the angle the platform (6) currently takes against the ground, the simulator also having a vertical tunnel (8) connecting with the upper ending of the oblique tunnel (4) and placed at 90° angle in relations to the parallel first horizontal tunnel (1a) and second horizontal tunnel (1b), the lower end of the vertical tunnel (8) being inserted into the medium upper part of a longitudinal tunnel (12) conducted between the I first horizontal tunnel (1a) and the second horizontal tunnel (1b), the first horizontal tunnel (1a) and the second horizontal tunnel (1b) connecting with the longitudinal tunnel (12) transversely, obstacles (10) being placed in the vertical tunnel (8) on the way of the first and second air flows (3a, 3b), breaking the air jets of the first and second air flows (3a, 3b), one of the ends of each of the first horizontal tunnel (1a), the oblique tunnel (4) and the second horizontal tunnel (1b) being connected with a tunnel running transversely against them, which constitutes a confusor (11), where in the spot of the conjunction of the individual tunnels, and in the vicinity of their junction, i.e.:

    the first horizontal tunnel (1a) with the confusor (11),

    the second horizontal tunnel (1b) with the confusor (11),

    the first horizontal tunnel (1a) with the longitudinal tunnel (12),

    the second horizontal tunnel (1b) with the longitudinal tunnel (12),

    the oblique tunnel (4) with the confusor (11),

    the oblique tunnel (4) with the vertical tunnel (8), and

    the vertical tunnel (8) with the longitudinal tunnel (12),

    at least one flow guide (9) is placed, and the first air flow (3a) is controlled by the

    change of the turning speed of the first drive system assembly (2a) and the second air flow (3b) is controlled by the change of the turning speed of the second drive system assembly (2b).


     
    2. The simulator according to claim 1, characterized in that the confusor (11), the longitudinal tunnel (12), and the two external side tunnels, i.e. the first horizontal tunnel (1a) and the second horizontal tunnel (1b), are placed in the ground.
     
    3. The simulator according to one of the claims from 1 to 2, characterized in that the angle (α), formed between the parallel axes of the first horizontal tunnel (1a) and of the second horizontal tunnel (1b) and the axis of the oblique tunnel (4), is the angle of alteration of the direction of the running flow, and amounts from 115° to 175°.
     
    4. The simulator according to one of the claims from 1 to 3, characterized in that the floor (5) is a jumbotron or a screen, or the side wall of the oblique tunnel (4) is a jumbotron or a screen.
     
    5. The simulator according to one of the claims from 1 to 4, characterized in that the side walls of the oblique tunnel (4) are the see-through jumbotrons.
     
    6. The simulator according to one of the claims from 1 to 5, characterized in that along the entire length of the ceiling of the oblique tunnel (4) there is a rail (14) enabling the sliding of the safety system (15).
     
    7. The simulator according to one of the claims from 1 to 6, characterized in that the distances between the consecutive flow guides (9) grow, the flow guides (9) at the outer ends of the simulator being the most distant from each other.
     
    8. The simulator according to one of the claims from 1 to 7, characterized in that a medium enabling heat transmission is introduced into at least one flow guide (9).
     
    9. The simulator according to one of the claims from 1 to 8, characterized in that a medium enabling heat transmission is introduced into at least one obstacle (10).
     


    Ansprüche

    1. Einrichtung zum Simulieren des Schisprunges und des freien Wingsuit-Fliegens, mit Flugkammer und Lüftern, die die Luftzüge nach oben lenken, universelle Einstellbarkeit garantieren und die Anpassung der Einrichtung zum Simulieren an die Größe jedes Benutzers ermöglichen, umfassend zwei parallel zueinander verlaufende Seitentunnel, d. h. einen ersten horizontalen Tunnel (1a) mit einem ersten Antriebssystem (2a) und einen zweiten horizontalen Tunnel (1b) mit einem zweiten Antriebssystem (2b), die zwei getrennte Luftströme erzeugen, nämlich einen ersten Luftstrom (3a) im ersten horizontalen Tunnel (1a) und einen zweiten Luftstrom (3b) im zweiten horizontalen Tunnel (1b), Einrichtung zum Simulieren verfügt auch über einen sich zwischen den horizontalen Tunneln befindenden, mittleren diagonalen Tunnel (4) mit einem Boden (5), dessen Teil eine mobile, schwingende Plattform (6) ist, die als Einrichtung zum Simulieren -Ein- und Ausgang dient, und an der Unterseite des Bodens (5) des diagonalen Tunnels (4) befestigt ist, die Drehachse der schwenkbaren Plattform ist quer zum Boden (5) angeordnet und die Einrichtung zum Simulieren ist an der Oberseite der mobilen Plattform (6) mit einer pendelartig aufgehängten Schwelle (7) ausgestattet, deren Lage immer horizontal ist, unabhängig davon, unter welchem Winkel zum Boden sich gerade die Plattform (6) befindet, Einrichtung zum Simulieren weist auch einen vertikalen Tunnel (8) auf, der sich an das obere Ende des diagonalen Tunnels (4) anschließt und in einem Winkel von 90° zu dem ersten parallel verlaufenden, horizontalen Tunnel (1a) und zu dem zweiten horizontalen Tunnel (1b) angeordnet ist, und das untere Ende des vertikalen Tunnels (8) ist in den mittleren oberen Teil eines Längstunnels (12) eingeführt, der zwischen dem ersten horizontalen Tunnel (1a) und dem zweiten horizontalen Tunnel (1b) verläuft, der erste horizontale Tunnel (1a) und der zweite horizontale Tunnel (1b), die querartig mit dem Längstunnel verbunden sind (12), Hindernisse (10) im vertikalen Tunnel (8) auf dem Weg des ersten und zweiten Luftstroms (3a, 3b), an denen sich die Luftzüge des ersten und des zweiten Luftstroms (3a, 3b) brechen, jeweils ein Ende des ersten horizontalen Tunnels (la), des diagonalen Tunnels (4) und des zweiten horizontalen Tunnels (1b) mit einem gegenüberliegenden Tunnel, dem Konfusor (11) verbunden ist, wobei an der Verbindungsstelle der einzelnen Tunnel und in der Nähe derer Verbindung, d. h.

    des ersten horizontalen Tunnels (1a) mit Konfusor (11),

    des zweiten horizontalen Tunnels (1b) mit Konfusor (11),

    des ersten horizontalen Tunnels (1a) mit dem Längstunnel (12),

    des zweiten horizontalen Tunnels (1b) mit dem Längstunnel (12),

    des diagonalen Tunnels (4) mit Konfusor (11),

    des diagonalen Tunnels (4) mit dem vertikalen Tunnel (8) und des vertikalen Tunnels (8) mit dem Längstunnel (12)

    mindestens ein Lenkrad (9) angebracht ist, wobei der erste Luftstrom (3a) durch Änderung der Drehzahl des ersten Antriebssystems (2a) und der zweite Luftstrom (3b) durch Änderung der Drehzahl des zweiten Antriebssystems (2b) geregelt wird.


     
    2. Einrichtung zum Simulieren nach Anspruch 1 dadurch gekennzeichnet, dass der Konfusor (11), der Längstunnel (12) und die beiden äußeren Seitentunnel, d. h. der erste horizontale Tunnel (1a) und der zweite horizontale Tunnel (1b) im Boden untergebracht sind.
     
    3. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 2 dadurch gekennzeichnet, dass der zwischen den parallelen Achsen des ersten horizontalen Tunnels (1a) und des zweiten horizontalen Tunnels (1b) und der Achse des diagonalen Tunnels (4) gebildete Winkel α der Winkel der Richtungsänderung des fließenden Stroms ist, der zwischen 115°und 175°liegt.
     
    4. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass der Boden (5) ein Jumbotron oder ein Bildschirm oder die Seitenwand des diagonalen Tunnels (4) ein Jumbotron oder ein Bildschirm bildet.
     
    5. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass Seitenwände des diagonalen Tunnels (4) Head-up Displays sind.
     
    6. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass die Decke des diagonalen Tunnels (4) über ihre gesamte Länge eine Führungsschiene (14) aufweist, die Verschiebung des Sicherheitssystems (15) ermöglicht.
     
    7. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass die Abstände zwischen den einzelnen Lenkrädern (9) steigen, wobei sich die voneinander weitentferntesten Lenkräder (9) an den äußeren Rändern der Einrichtung zum Simulieren befinden.
     
    8. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass mindestens in ein Lenkrad (9) ein Wärmeübertragungsmedium eingeführt wird.
     
    9. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass in mindestens ein Hindernis (10) ein Wärmeübertragungsmedium eingebracht wird.
     


    Revendications

    1. Simulateur de saut à ski et de vol libre en combinaison ailée avec une chambre de vol et ventilateurs dirigeant des courants d'air vers le haut, assurant la possibilité de réglage universel et d'adaptation du simulateur à la taille de chaque utilisateur, présentant deux tunnels latéraux parallèles l'un par rapport à l'autre, c'est-à-dire :

    un premier tunnel horizontal (1a) avec une première unité de propulsion (2a) et un second tunnel horizontal (1b) avec une seconde unité de propulsion (2b) forçant deux flux d'air séparés, à savoir respectivement : un premier flux d'air (3a) dans le premier tunnel horizontal (1a) et un second flux d'air (3b) dans le second tunnel horizontal (1b),

    simulateur comportant également, situé entre les tunnels horizontaux, un tunnel central en pente (4) avec un plancher (5) comportant une partie qui est une plateforme articulée battante (6) constituant l'entrée et la sortie du simulateur, fixée dans la partie inférieure du plancher (5) du tunnel en pente (4), l'axe de battement de la plateforme articulée battante étant situé transversalement par rapport au plancher (5), et ce simulateur étant équipé, dans la partie supérieure de la plateforme articulée (6), d'un seuil (7) monté sur une articulation battante, dont la position est toujours maintenue horizontale, quel que soit l'angle sous lequel se trouve la plateforme (6) à un moment donné par rapport au sol,

    simulateur dotant également d'un tunnel vertical (8) relié à l'extrémité supérieure du tunnel en pente (4) et positionné à un angle de 90° par rapport au premier tunnel horizontal (1a) parallèle et au second tunnel horizontal (1b), l'extrémité inférieure du tunnel vertical (8) étant relié à la partie centrale supérieure d'un tunnel longitudinal (12) s'étendant entre le premier tunnel horizontal (la) et le second tunnel horizontal (1b),

    le premier tunnel horizontal (1a) et second tunnel horizontal (1b) se raccordant latéralement au tunnel longitudinal (12), des obstacles (10) étant situés dans le tunnel vertical (8) sur le trajet des premier et second flux d'air (3a, 3b), contre lesquels les courants d'air des premier et second flux d'air (3a, 3b) viennent se briser,

    l'une des extrémités respectives du premier tunnel horizontal (la), du tunnel en pente (4) et du second tunnel horizontal (1b) étant reliée au tunnel qui leur est transversal en formant un réducteur (11), tandis que

    à la confluence des différents tunnels et près de leur jonction, c'est-à-dire à la confluence :

    du premier tunnel horizontal (1a) au réducteur (11),

    du second tunnel horizontal (1b) au réducteur (11),

    du premier tunnel horizontal (1a) au tunnel longitudinal (12),

    du second tunnel horizontal (1b) au tunnel longitudinal (12),

    du tunnel en pente (4) au réducteur (11),

    du tunnel en pente (4) au tunnel vertical (8) et

    du tunnel vertical (8) au tunnel longitudinal (12)

    est prévu, au moins un ventilateur (9), le premier flux d'air (3a) étant commandé par la variation de la vitesse de la première unité de propulsion (2a) et le second flux d'air (3b) étant commandé par la variation de la vitesse de la seconde unité de propulsion (2b).


     
    2. Simulateur selon la revendication 1, caractérisé en ce que le réducteur (11), le tunnel longitudinal (12) ainsi que les deux tunnels latéraux extérieurs, à savoir le premier tunnel horizontal (1a) et le second tunnel horizontal (1b) sont aménagés sous la surface du sol.
     
    3. Simulateur selon l'une des revendications de 1 à 2, caractérisé en ce que l'angle α, formé entre les axes parallèles du premier tunnel horizontal (1a) et du second tunnel horizontal (1b) et l'axe du tunnel en pente (4), représente l'angle de changement de direction du flux d'écoulement et se trouve compris entre 115° et 175°.
     
    4. Simulateur selon l'une des revendications de 1 à 3, caractérisé en ce que le plancher (5) est constitué d'un écran géant ou d'un écran, ou la paroi latérale du tunnel en pente (4) est constituée d'un écran géant ou d'un écran.
     
    5. Simulateur selon l'une des revendications de 1 à 4, caractérisé en ce que les parois latérales du tunnel en pente (4) sont des écrans géants transparents.
     
    6. Simulateur selon l'une des revendications de 1 à 5, caractérisé en ce que le plafond du tunnel en pente (4) comporte sur toute sa longueur un rail (14) pour permettre le coulissement du système de sécurité (15).
     
    7. Simulateur selon l'une des revendications de 1 à 6, caractérisé en ce que les distances entre des ventilateurs (9) successifs sont croissantes, les ventilateurs (9) situés sur les bords extérieurs du simulateur étant les plus éloignés les uns des autres.
     
    8. Simulateur selon l'une des revendications de 1 à 7, caractérisé en ce qu'au moins par l'un des ventilateurs (9) est introduit un fluide permettant la transmission de chaleur.
     
    9. Simulateur selon l'une des revendications de 1 à 8, caractérisé en ce qu'au moins par l'un des obstacles (10) est introduit un fluide permettant la transmission de la chaleur.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description