[0001] The object of the invention is a ski jump and
wingsuit free flight simulator, simulating both the first and second aforementioned types
of jumps. It is designed for recreation/pleasure purposes and for trainings preparing
for ski jumps or for
wingsuit free jumps.
[0002] Several solutions are known enabling the simulation of ski jumps or
wingsuit free flights.
[0003] From the description of a German invention
DE4241574C1 (applied for protection on 10.12.1992) a solution is known entitled
"Flying with closed flying chamber and mesh floor -
comprises track with fans under flight path producing air currents upwardly and forwardly
inclined through floor and lateral limiting walls". The ring-shaped closed flying track has fans producing upwardly and forwardly inclined
air current enabling controlled flight through the flying chamber, horizontally over
the floor of the flying track. The boundaries - the side limiting walls, include the
net tunnel stretched over the floor, grid walls or transparent plastic walls. The
grid or tunnel floor being a mesh grid or mesh wall may be made of soft rubber or
foam plastic. The installation provides individual, though limited, possibilities
of flying for a man. The appliance's advantage is the possibility of universal adjustment
for any user.
[0004] In turn, from the description of a New Zealand invention ref.
NZ568424A (applied for protection on 21.05.2008) a solution is known entitled
"Closed circuit wind tunnel with inclined section". In this filed invention a closed circuit wind tunnel is disclosed, destined primarily
for recreation/pleasure purposes. The tunnel contains a fan producing a circulating
air stream and at least one flight chamber with a take-off area at one, and landing
area at the other end. The landing area is lower than the take-off area. The flight
chamber has the inclined floor leading from the take-off to the landing site. The
roof is also inclined parallelly to the floor - hence the air chamber's cross-section
is constant throughout the inclination. The tunnel may be used for gliding in the
air and may contain equipment for carrying over the glider from the landing area back
to the take-off site.
[0005] Additionally, from the description of a Swedish invention ref.
WO2017142461A1 (applied for protection on 15.02.2016) a solution is known entitled
"Wind tunnel for human flight". The invention is an aerodynamic tunnel for a stable, durable flight of man - for
research or recreation purposes - containing a tunnel with a first part having a first
centre axis and a second part with a second centre axis, the second part being a test
section. The first centre axis and the second centre axis are arranged at a certain
angle (angle one) towards each other. There is at least one fan causing air flow in
the test section, in which the second centre axis is arranged at an angle (angle two)
in relation to the horizontal plane. The angle two amounts 5° to 85°. The invention
also comprises the safety system of the inclined aerodynamic tunnel ensuring a stable
and durable flight of the user, including:
- the inclined test section of the aerodynamic section, the latter being arranged at
5°- 85° angle in relation to the horizontal plane,
- at least one fan causing the air flow in the test section, the air flow being directed
from the upper end towards the low end of the test section,
- the limiting system placed in the test section to prevent the user to leave the test
section.
[0006] The solutions known that far provided one-tunnel simulators, hence - having only
one air circulation. The simulators of this type feature a significant height of the
construction.
[0007] The objective of the invention was to create a ski jump and
wingsuit free flight simulator, in a close-knit, compact form, making it possible to set it
in the ground without deep digging. The height of the simulator shall be lower than
8 m over the ground level, meaning the construction shall fit into the height bracket
set for low buildings.
[0008] The gist of the ski jump and
wingsuit free flight simulator developed here, with the flight chamber and fans directing
the air stream upwards and enabling universal settlement and adjustment of the device
for any user's size, consists in its having two mutually parallel side tunnels, i.e.:
the first horizontal tunnel with the first drive system assembly and the second horizontal
tunnel with the second drive system assembly, forcing two separate air flows, i.e.
in the first and in the second horizontal tunnels respectively.
[0009] The developed simulator also comprises yet another tunnel - a middle, oblique tunnel
with a floor, a part of which is a movable, oscillatorily tilting platform being the
way into and out of the simulator.
[0010] The platform is oscillatorily affixed to the lower part of the floor of the oblique
tunnel. The axis of platform rotation is situated transversely in regard to the floor.
In the upper part of the movable platform the simulator has an oscillatorily attached
threshold whose position is always horizontal irrespectively of the current platform
position in relations to the ground.
[0011] The simulator is also fitted with a vertical tunnel connecting with the upper ending
of the oblique tunnel which is set at 90° angle against both first horizontal tunnel
and the second horizontal tunnel parallel to the first one. The lower end of the vertical
tunnel is inserted into the middle upper part of the longitudinal tunnel going along
between the horizontal tunnels.
[0012] The above described first and second horizontal tunnels connect with the longitudinal,
transversely running tunnel.
[0013] In the vertical tunnel, on the air flow way there are obstacles causing both air
flows break.
[0014] One of the ends of each of the mutually parallel horizontal tunnels as well as of
the oblique tunnel, are connected with the tunnel running transversely against them,
which constitutes a confusor.
[0015] At the conjunction of the particular tunnels, and in the vicinity of their junction,
i.e.:
the first horizontal tunnel with the confusor,
the second horizontal tunnel with the confusor,
the first horizontal tunnel with the longitudinal tunnel,
the second horizontal tunnel with the longitudinal tunnel,
the oblique tunnel with the confusor,
the oblique tunnel with the vertical tunnel, and
the vertical tunnel with the longitudinal tunnel - at least one flow guide is located.
[0016] Each flow is controlled by the change of the turning speed of the respective drive
system assembly.
[0017] Preferably, the confusor, the longitudinal tunnel, and the two external side tunnels,
i.e. both horizontal tunnels, are located in the ground.
[0018] Optimally, in the simulator, the angle between the parallel axis of the horizontal
tunnels and the axis of the oblique tunnel, i.e. the α angle, is the angle of the
alteration of the direction of the running flow and amounts 115° to 175°.
[0019] Usually, the floor or a side wall of the oblique tunnel, is a jumbothrone or a screen.
[0020] More often than not, the side walls of the oblique tunnel are see-through jumbothrones.
[0021] Preferably, the ceiling of the oblique tunnel is equipped all along with a rail enabling
the shuffling of the safety system.
[0022] Usually, the distances between the sequential flow guides grow, the ones close to
the external edges of the simulator being the most distant to each other.
[0023] It is possible to equip at least one flow guide with the means enabling heat transmission.
[0024] Likewise, it is possible to equip at least one obstacle with means enabling heat
transmission.
[0025] The advantage of the ski jump and
wingsuit free flight simulator being the subject of the invention, is its compact size; that
was possible to achieve by introducing two separate air flow circulations.
[0026] Placing the simulator in the ground does not require deep digging. The height of
the simulator over the ground level shall be lower than 8 meters (usually it is approximately
6 meters over the ground level) meaning it shall fall within the height range set
for low buildings.
[0027] The developed simulator enables safe performance of ski jumps and free flights in
the tunnel; they simulate the natural-environment practice even better when during
the jump or flight a movie is projected showing ski jumping hill or natural outdoor
scenery.
[0028] The realization of the object of the invention, i.e. the ski jump and
wingsuit free flight simulator has been more closely shown on drawings showing:
fig.1 - axonometric view, at an angle from above of the developed simulator,
fig.2 - longitudinal cross section of the horizontal tunnel, with the simulator's
central part visible in the background,
fig.3 - longitudinal cross section of the oblique tunnel with the closed platform
and the horizontal tunnel, i.e. simulator's side part, visible in the background,
fig.4 - longitudinal cross section of the oblique tunnel with the platform shown during
platform's opening or closing and the horizontal tunnel, i.e. simulator's side part,
visible in the background,
fig.5 - longitudinal cross section of the oblique tunnel with the open platform and
the horizontal tunnel, i.e. simulator's side part, visible in the background,
fig.6 - projection of the simulator's lower part, whilst
fig.7 - the cross section of the vertical tunnel, the lower part of which is embedded
in the ground and the made embankment is even,
fig.8 - cross section of the simulator's vertical tunnel, the lower part of which
is embedded in the ground, and the made embankment is lower in the simulator's central
part.
[0029] The invention refers to the simulator of ski jumps performed in a ski jumps suit,
with skis, or to
wingsuit free flights.
[0030] The developed simulator has two external side tunnels, i.e. - a first horizontal
tunnel 1a complete with first drive system assembly 2a, and a parallelly running second
horizontal tunnel 1b complete with second drive system assembly 2b.
[0031] The first drive system assembly 2a and the second drive system assembly 2b enforce
two separate air flows, and namely: first flow 3a in the first horizontal tunnel 1a,
and second flow 3b in the parallelly running second horizontal tunnel 1b. The first
flow 3a and the second flow 3b which merge with each other in the pre-planned area
of the oblique tunnel 4 (described below), induce lifting force; they therefore constitute
the agent enabling
wingsuit flights and ski jumps in a suitable suit.
[0032] The part of the oblique tunnel's 4 floor 5 is a movable platform 6 being a way into
and out of the simulator.
[0033] The platform 6 is oscillatorily affixed in the lower part of the floor 5 of the oblique
tunnel 4 and its turning axis is situated transversely in relation to the floor 5
being the place of a tilting connection of the floor 5 with the platform 6. When the
simulator is open the platform 6 is dropped and parallel to the ground, "lying" on
it.
[0034] During the simulation of the jump the platform 6 is closed and constitutes a lower
part of the oblique tunnel 4.
[0035] The threshold 7 is oscillatorily affixed to the upper part of the movable platform
6. The threshold 7 position is always horizontal irrespectively of the angle of the
platform 6 - being the way into, and out of, the simulator - towards the ground.
[0036] The threshold 7 is a place where the jumper stands on having entered the open platform
6.
[0037] The jumper standing on the threshold 7 moves up together with the platform 6 which
is oscillatorily closing.
[0038] When the platform 6 is closed and stowed in thus constituting a uniform lower part
of the oblique tunnel 4, the jumper may leap out of the threshold 7 towards the lower
part of the oblique tunnel 4.
[0039] The air flow 3a and the air flow 3b which are already merged in this place and flow
in the oblique tunnel 4 from down up, cause the lifting force. The jumper may now
perform a jump as long-lasting as he wishes, as the created lifting force evens up
the gravity.
[0040] Thus created combination of forces enables the simulation of the ski jump in a ski
suit, or a free flight in a
wingsuit.
[0041] During the flight the platform 6 starts to open gradually thus decreasing the air
flow - i.e. the first flow 3a and the second flow 3b. The opening of the platform
6 forces the jumper to land on the open platform 6, and it being the way both in and
out of the simulator makes the jumper leave the simulator in a convenient and easy
way.
[0042] Other components of the developed design also play important roles for enforcing
the proper air flow in the invented ski jump and
wingsuit free flights simulator.
[0043] First of all, the simulator's part is a vertical tunnel 8 connecting with the upper
ending of the oblique tunnel 4. The vertical tunnel 8 is arranged at 90° angle against
the horizontally situated: first horizontal tunnel 1a and second horizontal tunnel
1b.
[0044] The vertical tunnel 8 has in its upper segment at least one flow guide 9 and - preferably
- a set of flow guides 9, as shown on fig. 3, fig. 4 and fig. 5. The flow guides 9
reflect the air jet, i.e. first air flow 3a and second air flow 3b, directing the
jet in the desired indicated course to the next tunnel - down the vertical tunnel
8.
[0045] This is possible due to the placement of a set of flow guides 9 in the spot where
the oblique tunnel 4 connects with the vertical tunnel 8.
[0046] In the vertical segment of the vertical tunnel 8 the combined jets of the first air
flow 3a and of the second air flow 3b meet the obstacles 10 which break down the jets
of the first air flow 3a and of the second air flow 3b. Thanks to these obstacles
10 the air flows are mixed, repeatedly separated and repeatedly merged again.
[0047] In this way the first air flow 3a and the second air flow 3b broken by obstacles
10 into smaller jets partly merge with each other forming one air jet.
[0048] In the lower part of the vertical tunnel 8 the set of flow guides 9 divides again
the mixed air jet forming separate jets: first air flow 3a and second air flow 3b.
[0049] The front, low part of the simulator is a tunnel in a shape of a confusor 11.
[0050] Into the tunnel one of the ends of each of the parallelly running tunnels are inserted,
i.e.: the ending of the first horizontal tunnel 1a, of the oblique tunnel 4, and the
ending of the second horizontal tunnel 1b. In this way they enter the tunnel in a
shape of a confusor 11 which is transversely situated.
[0051] In the place where the confusor 11 connects with:
- the first horizontal tunnel 1a,
- likely, with the oblique tunnel 4, and with
- the second horizontal tunnel 1b,
there is at least one flow guide 9 and - preferably - a set of flow guides 9.
[0052] In the confusor 11 the first air flow 3a and the second air flow 3b accelerate and
meet in the middle part of the confusor 11 and ascend up through the oblique tunnel
4.
[0053] The α angle, that is the angle of alteration of the direction of air flowing through
amounts advantageously 115° to 175° (it is shown on drawings: fig. 2, fig. 3, fig.
4 and fig. 5) and is set by the angle between the parallel axis of the horizontal
tunnels 1a and 1b, and the axis of the oblique tunnel 4.
[0054] The ends of the first horizontal tunnel 1a and of the second horizontal tunnel 1b
- situated in the high rear end of the simulator - connect with the longitudinal tunnel
12 spreading between them, opposite to the ends connecting with the confusor 11.
[0055] The lower end of the vertical tunnel 8 is also connected with the longitudinal tunnel
12, and specifically, it is inserted from above to the middle part of the longitudinal
tunnel 12.
[0056] The longitudinal tunnel 12 has at least one flow guide 9 - and advantageously a set
of flow guides 9 - in both the spot where it connects with the first horizontal tunnel
1a and in the spot where it connects with the second horizontal tunnel 1b.
[0057] The confusor 11, the longitudinal tunnel 12 and the two side tunnels - i.e. the first
horizontal tunnel 1a and the second horizontal tunnel 1b, are located under the ground
and their upper planes usually are totally under the ground level (i.e. under zero-level).
Consequently, the simulator stays situated in the ground - advantageously at the depth
of approximately 4 meters.
[0058] The first air flow 3a is controlled by the change of the turning speed of the first
drive system assembly 2a, whilst the second air flow 3b is controlled by the change
of the turning speed of the second drive system assembly 2b. The turning speed is
adjusted by at least one frequency transformer.
[0059] Summing up: the first drive system assembly 2a and the second drive system assembly
2b generate two air jets - i.e. the first air flow 3a and the second air flow 3b which,
having passed the first horizontal tunnel 1a and the second horizontal tunnel 1b respectively,
and the confusor 11, in which they accelerate, are directed by flow guides 9 towards
the oblique tunnel 4.
[0060] The first air flow 3a and the second air flow 3b are the lifting force similar to
that which lifts the jumper during the 'classic' ski jumps performed in natural conditions
on the ski jumping hill, and - similarly - imitates the lifting force affecting the
jumper during the
wingsuit free flight.
[0061] The floor 5 and the side walls of the oblique tunnel 4 are preferably jumbotrons
or screens, e.g. 4K resolution screens (high resolution standard of digital movies
and computer graphics).
[0062] The side walls of the oblique tunnel 4 may be the see-through jumbotrons. During
the jump or flight, a projection simulating e.g. the ski jumping hill or natural scenery
in VR (
virtual reality) may be shown on the floor 5 and on side walls of the oblique tunnel 4.
[0063] The rail 14 runs along the entire length of the ceiling 13 of the oblique tunnel
4, on which the safety system 15 slides.
[0064] The safety system 15, preferably a single-point one, slides along the rail 14 in
accordance with the jumper's location. The safety system 15 collaborates with the
computer which traces the jumper and projects respective images in classic VR (
virtual reality) mode.
[0065] The jumper is attached to the safety system 15 by a rope, usually a spring-shaped
one.
[0066] At the moment when the jump's - or flight's - trajectory alters so that the jumper
dangerously closes to the side wall, the floor or the ceiling of the oblique tunnel
4, the safety system 15 activates the lock and prevents jumper's hitting them.
[0067] Therefore the safety system 15 monitors the jumper.
[0068] In the set of the flow guides 9, the distances between the successive flow guides
9 grow, the largest distance between the two neighbouring flow guides 9 is that at
the external edges of the simulator.
[0069] The sets of the flow guides 9 for each simulator are adjusted, arranged and calibrated
before the completion of the simulator, at the stage of appointment of its parameters.
[0070] The flow guides 9 are vertical obstacles reflecting the air jets of the first air
flow 3a and the second air flow 3b.
[0071] The flow guides 9 installed in the confusor 11 and in the longitudinal tunnel 12
are elements fixed permanently to the lower and upper walls of the respective tunnel,
i.e. of the confusor 11 and the longitudinal tunnel 12.
[0072] The flow guides 9 fixed in the vertical tunnel 8 are elements permanently fixed to
the side walls of the vertical tunnel 8.
[0073] The flow guides 9 are usually hollow, to enable the flow of media cooling the tunnel.
The list of elements:
[0074]
1a - first horizontal tunnel,
1b - second horizontal tunnel,
2a - first drive system assembly,
2b - second drive system assembly,
3a - first air flow,
3b - second air flow,
4 - oblique tunnel,
5 - floor,
6 - platform,
7 - threshold,
8 - vertical tunnel,
9 - flow guide,
10 - obstacle,
11 - confusor,
12 - longitudinal tunnel,
13 - ceiling,
14 - rail,
15 - safety system.
1. A ski jump and
wingsuit free flight simulator, with a flight chamber and fans directing air jets upwards,
providing the possibility to universally control and adjust the simulator to any user's
size, having two mutually parallel side tunnels, i.e. first horizontal tunnel (1a)
with a first drive system assembly (2a) and a second horizontal tunnel (1b) with a
second drive system assembly (2b) enforcing two separate air flows respectively, i.e.
first air flow (3a) in the first horizontal tunnel (1a) and a second air flow (3b)
in the second horizontal tunnel (1b), the simulator also having, situated between
the horizontal tunnels, a middle, oblique tunnel (4) with a floor (5), a part of which
is a movable oscillatorily tilting platform (6) being the way into and out of the
simulator, affixed in the lower part of the floor (5) of the oblique tunnel (4), the
turning axis of the tilting platform being situated transversely in relation to the
floor (5), and in the upper part of the movable platform (6) the simulator being equipped
with an oscillatorily affixed threshold (7) always maintaining horizontal position
irrespectively of the angle the platform (6) currently takes against the ground, the
simulator also having a vertical tunnel (8) connecting with the upper ending of the
oblique tunnel (4) and placed at 90° angle in relations to the parallel first horizontal
tunnel (1a) and second horizontal tunnel (1b), the lower end of the vertical tunnel
(8) being inserted into the medium upper part of a longitudinal tunnel (12) conducted
between the I first horizontal tunnel (1a) and the second horizontal tunnel (1b),
the first horizontal tunnel (1a) and the second horizontal tunnel (1b) connecting
with the longitudinal tunnel (12) transversely, obstacles (10) being placed in the
vertical tunnel (8) on the way of the first and second air flows (3a, 3b), breaking
the air jets of the first and second air flows (3a, 3b), one of the ends of each of
the first horizontal tunnel (1a), the oblique tunnel (4) and the second horizontal
tunnel (1b) being connected with a tunnel running transversely against them, which
constitutes a confusor (11), where in the spot of the conjunction of the individual
tunnels, and in the vicinity of their junction, i.e.:
the first horizontal tunnel (1a) with the confusor (11),
the second horizontal tunnel (1b) with the confusor (11),
the first horizontal tunnel (1a) with the longitudinal tunnel (12),
the second horizontal tunnel (1b) with the longitudinal tunnel (12),
the oblique tunnel (4) with the confusor (11),
the oblique tunnel (4) with the vertical tunnel (8), and
the vertical tunnel (8) with the longitudinal tunnel (12),
at least one flow guide (9) is placed, and the first air flow (3a) is controlled by
the
change of the turning speed of the first drive system assembly (2a) and the second
air flow (3b) is controlled by the change of the turning speed of the second drive
system assembly (2b).
2. The simulator according to claim 1, characterized in that the confusor (11), the longitudinal tunnel (12), and the two external side tunnels,
i.e. the first horizontal tunnel (1a) and the second horizontal tunnel (1b), are placed
in the ground.
3. The simulator according to one of the claims from 1 to 2, characterized in that the angle (α), formed between the parallel axes of the first horizontal tunnel (1a)
and of the second horizontal tunnel (1b) and the axis of the oblique tunnel (4), is
the angle of alteration of the direction of the running flow, and amounts from 115°
to 175°.
4. The simulator according to one of the claims from 1 to 3, characterized in that the floor (5) is a jumbotron or a screen, or the side wall of the oblique tunnel
(4) is a jumbotron or a screen.
5. The simulator according to one of the claims from 1 to 4, characterized in that the side walls of the oblique tunnel (4) are the see-through jumbotrons.
6. The simulator according to one of the claims from 1 to 5, characterized in that along the entire length of the ceiling of the oblique tunnel (4) there is a rail
(14) enabling the sliding of the safety system (15).
7. The simulator according to one of the claims from 1 to 6, characterized in that the distances between the consecutive flow guides (9) grow, the flow guides (9) at
the outer ends of the simulator being the most distant from each other.
8. The simulator according to one of the claims from 1 to 7, characterized in that a medium enabling heat transmission is introduced into at least one flow guide (9).
9. The simulator according to one of the claims from 1 to 8, characterized in that a medium enabling heat transmission is introduced into at least one obstacle (10).
1. Einrichtung zum Simulieren des Schisprunges und des freien Wingsuit-Fliegens, mit
Flugkammer und Lüftern, die die Luftzüge nach oben lenken, universelle Einstellbarkeit
garantieren und die Anpassung der Einrichtung zum Simulieren an die Größe jedes Benutzers
ermöglichen, umfassend zwei parallel zueinander verlaufende Seitentunnel, d. h. einen
ersten horizontalen Tunnel (1a) mit einem ersten Antriebssystem (2a) und einen zweiten
horizontalen Tunnel (1b) mit einem zweiten Antriebssystem (2b), die zwei getrennte
Luftströme erzeugen, nämlich einen ersten Luftstrom (3a) im ersten horizontalen Tunnel
(1a) und einen zweiten Luftstrom (3b) im zweiten horizontalen Tunnel (1b), Einrichtung
zum Simulieren verfügt auch über einen sich zwischen den horizontalen Tunneln befindenden,
mittleren diagonalen Tunnel (4) mit einem Boden (5), dessen Teil eine mobile, schwingende
Plattform (6) ist, die als Einrichtung zum Simulieren -Ein- und Ausgang dient, und
an der Unterseite des Bodens (5) des diagonalen Tunnels (4) befestigt ist, die Drehachse
der schwenkbaren Plattform ist quer zum Boden (5) angeordnet und die Einrichtung zum
Simulieren ist an der Oberseite der mobilen Plattform (6) mit einer pendelartig aufgehängten
Schwelle (7) ausgestattet, deren Lage immer horizontal ist, unabhängig davon, unter
welchem Winkel zum Boden sich gerade die Plattform (6) befindet, Einrichtung zum Simulieren
weist auch einen vertikalen Tunnel (8) auf, der sich an das obere Ende des diagonalen
Tunnels (4) anschließt und in einem Winkel von 90° zu dem ersten parallel verlaufenden,
horizontalen Tunnel (1a) und zu dem zweiten horizontalen Tunnel (1b) angeordnet ist,
und das untere Ende des vertikalen Tunnels (8) ist in den mittleren oberen Teil eines
Längstunnels (12) eingeführt, der zwischen dem ersten horizontalen Tunnel (1a) und
dem zweiten horizontalen Tunnel (1b) verläuft, der erste horizontale Tunnel (1a) und
der zweite horizontale Tunnel (1b), die querartig mit dem Längstunnel verbunden sind
(12), Hindernisse (10) im vertikalen Tunnel (8) auf dem Weg des ersten und zweiten
Luftstroms (3a, 3b), an denen sich die Luftzüge des ersten und des zweiten Luftstroms
(3a, 3b) brechen, jeweils ein Ende des ersten horizontalen Tunnels (la), des diagonalen
Tunnels (4) und des zweiten horizontalen Tunnels (1b) mit einem gegenüberliegenden
Tunnel, dem Konfusor (11) verbunden ist, wobei an der Verbindungsstelle der einzelnen
Tunnel und in der Nähe derer Verbindung, d. h.
des ersten horizontalen Tunnels (1a) mit Konfusor (11),
des zweiten horizontalen Tunnels (1b) mit Konfusor (11),
des ersten horizontalen Tunnels (1a) mit dem Längstunnel (12),
des zweiten horizontalen Tunnels (1b) mit dem Längstunnel (12),
des diagonalen Tunnels (4) mit Konfusor (11),
des diagonalen Tunnels (4) mit dem vertikalen Tunnel (8) und des vertikalen Tunnels
(8) mit dem Längstunnel (12)
mindestens ein Lenkrad (9) angebracht ist, wobei der erste Luftstrom (3a) durch Änderung
der Drehzahl des ersten Antriebssystems (2a) und der zweite Luftstrom (3b) durch Änderung
der Drehzahl des zweiten Antriebssystems (2b) geregelt wird.
2. Einrichtung zum Simulieren nach Anspruch 1 dadurch gekennzeichnet, dass der Konfusor (11), der Längstunnel (12) und die beiden äußeren Seitentunnel, d. h.
der erste horizontale Tunnel (1a) und der zweite horizontale Tunnel (1b) im Boden
untergebracht sind.
3. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 2 dadurch gekennzeichnet, dass der zwischen den parallelen Achsen des ersten horizontalen Tunnels (1a) und des zweiten
horizontalen Tunnels (1b) und der Achse des diagonalen Tunnels (4) gebildete Winkel
α der Winkel der Richtungsänderung des fließenden Stroms ist, der zwischen 115°und
175°liegt.
4. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass der Boden (5) ein Jumbotron oder ein Bildschirm oder die Seitenwand des diagonalen
Tunnels (4) ein Jumbotron oder ein Bildschirm bildet.
5. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass Seitenwände des diagonalen Tunnels (4) Head-up Displays sind.
6. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass die Decke des diagonalen Tunnels (4) über ihre gesamte Länge eine Führungsschiene
(14) aufweist, die Verschiebung des Sicherheitssystems (15) ermöglicht.
7. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass die Abstände zwischen den einzelnen Lenkrädern (9) steigen, wobei sich die voneinander
weitentferntesten Lenkräder (9) an den äußeren Rändern der Einrichtung zum Simulieren
befinden.
8. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass mindestens in ein Lenkrad (9) ein Wärmeübertragungsmedium eingeführt wird.
9. Einrichtung zum Simulieren nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass in mindestens ein Hindernis (10) ein Wärmeübertragungsmedium eingebracht wird.
1. Simulateur de saut à ski et de vol libre en combinaison ailée avec une chambre de
vol et ventilateurs dirigeant des courants d'air vers le haut, assurant la possibilité
de réglage universel et d'adaptation du simulateur à la taille de chaque utilisateur,
présentant deux tunnels latéraux parallèles l'un par rapport à l'autre, c'est-à-dire
:
un premier tunnel horizontal (1a) avec une première unité de propulsion (2a) et un
second tunnel horizontal (1b) avec une seconde unité de propulsion (2b) forçant deux
flux d'air séparés, à savoir respectivement : un premier flux d'air (3a) dans le premier
tunnel horizontal (1a) et un second flux d'air (3b) dans le second tunnel horizontal
(1b),
simulateur comportant également, situé entre les tunnels horizontaux, un tunnel central
en pente (4) avec un plancher (5) comportant une partie qui est une plateforme articulée
battante (6) constituant l'entrée et la sortie du simulateur, fixée dans la partie
inférieure du plancher (5) du tunnel en pente (4), l'axe de battement de la plateforme
articulée battante étant situé transversalement par rapport au plancher (5), et ce
simulateur étant équipé, dans la partie supérieure de la plateforme articulée (6),
d'un seuil (7) monté sur une articulation battante, dont la position est toujours
maintenue horizontale, quel que soit l'angle sous lequel se trouve la plateforme (6)
à un moment donné par rapport au sol,
simulateur dotant également d'un tunnel vertical (8) relié à l'extrémité supérieure
du tunnel en pente (4) et positionné à un angle de 90° par rapport au premier tunnel
horizontal (1a) parallèle et au second tunnel horizontal (1b), l'extrémité inférieure
du tunnel vertical (8) étant relié à la partie centrale supérieure d'un tunnel longitudinal
(12) s'étendant entre le premier tunnel horizontal (la) et le second tunnel horizontal
(1b),
le premier tunnel horizontal (1a) et second tunnel horizontal (1b) se raccordant latéralement
au tunnel longitudinal (12), des obstacles (10) étant situés dans le tunnel vertical
(8) sur le trajet des premier et second flux d'air (3a, 3b), contre lesquels les courants
d'air des premier et second flux d'air (3a, 3b) viennent se briser,
l'une des extrémités respectives du premier tunnel horizontal (la), du tunnel en pente
(4) et du second tunnel horizontal (1b) étant reliée au tunnel qui leur est transversal
en formant un réducteur (11), tandis que
à la confluence des différents tunnels et près de leur jonction, c'est-à-dire à la
confluence :
du premier tunnel horizontal (1a) au réducteur (11),
du second tunnel horizontal (1b) au réducteur (11),
du premier tunnel horizontal (1a) au tunnel longitudinal (12),
du second tunnel horizontal (1b) au tunnel longitudinal (12),
du tunnel en pente (4) au réducteur (11),
du tunnel en pente (4) au tunnel vertical (8) et
du tunnel vertical (8) au tunnel longitudinal (12)
est prévu, au moins un ventilateur (9), le premier flux d'air (3a) étant commandé
par la variation de la vitesse de la première unité de propulsion (2a) et le second
flux d'air (3b) étant commandé par la variation de la vitesse de la seconde unité
de propulsion (2b).
2. Simulateur selon la revendication 1, caractérisé en ce que le réducteur (11), le tunnel longitudinal (12) ainsi que les deux tunnels latéraux
extérieurs, à savoir le premier tunnel horizontal (1a) et le second tunnel horizontal
(1b) sont aménagés sous la surface du sol.
3. Simulateur selon l'une des revendications de 1 à 2, caractérisé en ce que l'angle α, formé entre les axes parallèles du premier tunnel horizontal (1a) et du
second tunnel horizontal (1b) et l'axe du tunnel en pente (4), représente l'angle
de changement de direction du flux d'écoulement et se trouve compris entre 115° et
175°.
4. Simulateur selon l'une des revendications de 1 à 3, caractérisé en ce que le plancher (5) est constitué d'un écran géant ou d'un écran, ou la paroi latérale
du tunnel en pente (4) est constituée d'un écran géant ou d'un écran.
5. Simulateur selon l'une des revendications de 1 à 4, caractérisé en ce que les parois latérales du tunnel en pente (4) sont des écrans géants transparents.
6. Simulateur selon l'une des revendications de 1 à 5, caractérisé en ce que le plafond du tunnel en pente (4) comporte sur toute sa longueur un rail (14) pour
permettre le coulissement du système de sécurité (15).
7. Simulateur selon l'une des revendications de 1 à 6, caractérisé en ce que les distances entre des ventilateurs (9) successifs sont croissantes, les ventilateurs
(9) situés sur les bords extérieurs du simulateur étant les plus éloignés les uns
des autres.
8. Simulateur selon l'une des revendications de 1 à 7, caractérisé en ce qu'au moins par l'un des ventilateurs (9) est introduit un fluide permettant la transmission
de chaleur.
9. Simulateur selon l'une des revendications de 1 à 8, caractérisé en ce qu'au moins par l'un des obstacles (10) est introduit un fluide permettant la transmission
de la chaleur.