[0001] The present invention relates to a method for surface hardening a cold deformed article
at least partially consisting of stainless steel or a nickel base alloy with a chromium
content of at least 10 % by weight. Moreover, the present invention relates to a surface
hardened cold deformed article obtainable with this method.
[0002] Articles, such as metal articles made of steel or a nickel base alloy, are often
shaped by means of cold deformation, such as extrusion or cold forging. Cold deformation
is a method for strengthening a metal by plastic deformation, which is usually performed
in the course of shaping an article at a temperature below the recrystallization temperature
of the material, from which the article is made. Stainless steels, such as austenitic
stainless steel, usually have an excellent corrosion resistance, toughness and weldability,
but have a comparable low yield strength as well as a comparable low wear resistance.
Cold forming improves the yield strength of such articles on account of structural
changes, i.e. in particular changes of the microstructure, such as the formation of
martensite and the like, in the steel occurring as consequence of the plastic deformation
occurring during the cold working.
[0003] In particular for improving the wear resistance and for increasing specifically the
surface hardness of articles made of stainless steel and comparable alloys, such articles
are often also diffusion hardened in addition to the cold working, by subjecting the
articles to a heat treatment at a temperature of typically 350 to 510°C in an atmosphere
comprising a chemical compound forming during the heat treatment a species, which
diffuses into the surface of the articles and thus improves the characteristics of
the articles. Most prominent diffusion hardening methods are carburizing, nitriding
and nitrocarburizing. While carbon diffuses during carburization into the surface
area of the article, nitrogen diffuses during nitriding, carbon and nitrogen diffuse
during nitrocarburizing and boron diffuses during boriding into the surface area of
the article. Carburization, for example, is performed by heat treating the article
in an atmosphere containing for instance an alkane, such as propane, and optionally
further including hydrogen at 500°C for 10 hours. The article has to be activated
during or better before the carburization, in order to remove the oxide layer of the
article, which would act during the carburization as barrier. Such an activation is
usually performed in a fluorine compound containing atmosphere, such as in a gaseous
atmosphere comprising NF
3 at a temperature of 250 to 500°C, such as for instance described in
EP 0 678 589 A1.
[0004] A major disadvantage of diffusion hardening cold worked articles made of stainless
steel or comparable alloys is that as consequence of the microstructural changes of
the stainless steel or alloy, respectively, occurred during the cold working, compounds
consisting of the diffusion element and of chromium from the stainless steel or alloy,
respectively, precipitate during the diffusion hardening. For instance, chromium carbide
precipitates in the surface area of a cold worked stainless steel article during the
carburization, chromium nitride precipitates in the surface area of a cold worked
stainless steel article during the nitridation and chromium carbide as well as chromium
nitride precipitate in the surface area of a cold worked stainless steel article during
the nitrocarburization. On account of this, however, the free chromium content is
reduced in the surface area of the cold worked and diffusion hardened stainless steel
article, which significantly reduces its corrosion resistance.
[0005] In order to overcome these disadvantages, it has been already proposed to use for
such cases specific stainless steel alloys, which are less prone to the formation
of chromium rich precipitates. However, these specific stainless steel alloys are
quite expensive so that they can be used only for expensive special products. Apart
from that, for certain applications only materials are admitted, which are not less
prone to the formation of chromium rich precipitates. The admission of the specific
stainless steel alloys for specific applications would last at least 5 to 10 years.
Apart from that, these specific stainless steel alloys are not readily available.
[0006] Furthermore, it was suggested to reduce the time and temperature of the diffusion
hardening in order to limit the amount of chromium rich precipitate formed during
the diffusion hardening process. However, this leads to only very thin diffusion hardened
surface areas, which is for many applications inacceptable.
[0007] Thirdly, it has been proposed to perform a solution annealing process with the cold
worked article before subjecting it to the diffusion hardening process at a comparable
high temperature of above 1.000°C. However, this process leads to a significant reduction
of the mechanical strength and hardness, namely of the surface hardness as well as
of the hardness beneath the surface area of the article, which is inacceptable for
most applications.
[0008] Finally, it has been suggested for this purpose for instance in
WO 2013/0159781 A1 to conduct a solution nitriding treatment with the cold worked article before subjecting
it to the diffusion hardening process. However, the effect of this method is comparable
low. More specifically, even if maintaining the surface hardness, this process leads
to a significant reduction of the hardness beneath the surface area of the article,
which is inacceptable for most applications.
[0009] WO 2012/146254 A1 relates to a method for formation of expanded austenite and/or expanded martensite
by solution hardening of a cold deformed workpiece of a passive alloy, which comprises
a first step of dissolving at least nitrogen in the workpiece at a first temperature,
which is higher than the solubility temperature for carbide and/or nitride and lower
than the melting point of the passive alloy, and a subsequent second step of dissolving
nitrogen and/or carbon in the workpiece at a second temperature, which is lower than
the temperature at which carbides and/or nitrides form in the passive alloy.
[0010] WO 2011/009463 A1 describes a method of activating an article of passive ferrous or non-ferrous metal,
wherein the activation comprises the steps of i) heating the article to a first temperature,
ii) heating at least one compound containing nitrogen and carbon to a second temperature
for providing one or more gaseous species, and iii) contacting the article with the
gaseous species, wherein the at least one compound containing nitrogen and carbon
comprises at least four atoms.
[0011] WO 2015/173380 A1 discloses a method of case hardening a workpiece made from a stainless steel comprising
at least 9% chromium and up to 5% nickel, wherein the method comprises the steps of
i) providing a workpiece punched from a sheet of the stainless steel, ii) optionally
embossing the workpiece, iii) dissolving in an atmosphere of a nitrogen containing
gas at least nitrogen in the workpiece at a first temperature, which is higher than
the solubility temperature for nitride and lower than the melting point of the stainless
steel, wherein dissolution of nitrogen at the first temperature is performed to obtain
a diffusion depth of 10 µm to 50 µm with a content of nitrogen in the range of 0.05%
to 0.5%, and iv) cooling the workpiece after the dissolution step to a second temperature
which is lower than the temperature at which nitrides form in the stainless steel.
[0012] US 2006/0070685 A1 refers to a process for producing a bearing component with an edge zone the process
comprising the steps of i) providing an austenitic cold-rolled strip with a carbon
content of 0.15-0.25% and a chromium alloying content of at least 12%; ii) initially
deep-drawing the component from the strip; then enriching the strip at the edge zone
with nitrogen as part of a heat treatment in a nitrogen-rich atmosphere; and iii)
thereafter cooling the component to form a martensitic microstructure in which nitrogen
is present in dissolved form.
[0013] In view of all this, the object underlying the present invention is to provide a
method for surface hardening a cold deformed article at least partially consisting
of stainless steel or a nickel base alloy with a chromium content of at least 10 %
by weight, which leads to an article with an excellent surface hardness, a high hardness
beneath the surface area of the article, an excellent yield strength, a high wear
resistance as well as an excellent corrosion resistance.
[0014] In accordance with the present invention this object is satisfied by providing a
method for surface hardening a cold deformed article at least partially consisting
of stainless steel or a nickel base alloy with a chromium content of at least 10 %
by weight, comprising the steps of:
- a) providing a cold deformed article, wherein at least the surface region of the article
is made of an alloy selected from the group consisting of stainless steel and nickel
base alloys with a chromium content of at least 10 % by weight,
- b) annealing the cold deformed article for 5 minutes to 50 hours at a temperature
between 450°C and 750°C in a non-carburizing atmosphere, a non-nitriding atmosphere
and a non-nitrocarburizing atmosphere,
- c) activating the annealed article obtained in step b) and
- d) simultaneously with step c) or after step c) heat treating the annealed article
at a temperature of 350 to less than 550°C for 2 to 50 hours in plasma, in a salt
bath or in a gaseous atmosphere to obtain a nitride, carburized and/or nitrocarburized
diffusion zone in the surface area of the article, wherein the plasma, the salt bath
or the gaseous atmosphere contains a compound selected from the group consisting of
carbon, nitrogen containing compounds, carbon containing compounds and mixtures of
two or more of the aforementioned compounds,
wherein the annealing in step b) is performed with a higher temperature than the heat
treating in step d).
[0015] This solution bases on the surprising finding that by performing an annealing step
with the cold deformed article for 1 minute to 100 hours at a temperature between
100°C and 900°C, before subjecting the so treated article to an activation and low
temperature diffusion hardening process, a precipitation of chromium rich agglomerates
can be completely or at least to a great extent suppressed, even if the article has
been cold formed. On account of this, the free chromium content of the alloy of the
article and - as consequence thereof - also the corrosion resistance of the article
in general and specifically of the surface area of the article is not reduced or,
if at all, only insignificantly reduced. In contrast thereto, a respective method
without performing the aforementioned annealing step would lead to the generation
of significant amounts of chromium containing precipitates in the article leading
to a significant reduction of the corrosion resistance of the article.
[0016] In view of this, the process in accordance with the present invention does not only
lead to a high hardness of the article over its whole thickness as a consequence of
the cold working as well as to an extremely high surface hardness as a consequence
of the diffusion hardening, but in addition to an excellent wear resistance and corrosion
resistance of the article on account of the annealing step. In advantage to articles
having been merely cold formed, the articles obtained with the method in accordance
with the present invention have a significantly increased surface hardness and an
improved wear resistance. Furthermore, in advantage to articles having been cold formed
and solution annealed, before having been subjected to a diffusion hardening, the
articles obtained with the method in accordance with the present invention have an
increased surface hardness, an improved hardness beneath the surface area of the article
as well as an improved wear resistance. In addition, in advantage to articles having
been cold formed and subjected to solution nitriding treatment, before having been
subjected to a diffusion hardening, the articles obtained with the method in accordance
with the present invention have an increased hardness beneath the surface area of
the article as well as an improved wear resistance. Finally, in advantage to articles
having been cold formed and subjected to an activation and a low temperature diffusion
hardening without annealing heat treatment there between, the articles obtained with
the method in accordance with the present invention have an increased corrosion resistance.
[0017] Cold forming in the sense of the present patent application, which is typically also
called work hardening or strain hardening, is a method of strengthening a metal-article
by plastic deformation. The strengthening occurs on account of dislocation movements
and dislocation generation within the crystal structure of the material. Usually,
cold forming is also used for shaping or forming the article, respectively, and is
in general performed at a temperature below the full recrystallization temperature
of the material, from which the article consists.
[0018] Generally, the annealing step b) of the method in accordance with the present invention
may be performed at any temperature between 450°C and 750°C and for any time between
5 minutes and 50 hours, as long as it is performed in a non-carburizing atmosphere,
a non-nitriding atmosphere and a non-nitrocarburizing atmosphere, i.e. in an atmosphere
which is non-carburizing atmosphere, non-nitriding and non-nitrocarburizing. Preferably,
the non-carburizing, non-nitriding and non-nitrocarburizing atmosphere contains no
compound selected from the group consisting of nitrogen containing compounds, carbon
containing compounds and mixtures of two or more of the aforementioned compounds.
Nitrogen and/or carbon may be included in the atmosphere of step b), as long as step
b) is performed at a temperature, at which the nitrogen and/or carbon is not diffused
into the surface of the substrate. So the annealing step b) may be performed in a
pure nitrogen atmosphere at a temperature below 850°C, since then no nitriding occurs.
[0019] Of course, the temperature and duration of the annealing step b) slightly depends
on the precise composition of the alloy, from which the article to be treated is made.
Typically, the more severe the conditions during the annealing step, the more the
hardness of the article decreases, but on the other hand the better the chromium containing
precipitate generation is suppressed during the later diffusion hardening process.
According to a preferred embodiment of the present patent application, the annealing
step b) is conducted for a duration and at a temperature selected from the aforementioned
numeric value ranges so that the hardness of the cold worked article is not reduced
in average by more than 15% during the annealing step b). In other words, the annealing
step b) is preferably performed so that the hardness of the cold worked and annealed
article is in average at least 85% of the hardness of the cold worked article before
annealing. Hardness means in this connection the Vickers hardness.
[0020] Taking the above into account, the annealing step b) is performed for a time of 5
minutes to 50 hours, preferably for 10 minutes to 20 hours and most preferably for
20 minutes to 10 hours.
[0021] Good results are in particular obtained, if the annealing step b) of the method in
accordance with the present invention is performed at a temperature between 550 and
700°C.
[0022] Particular good results are obtained, when the annealing step b) of the method in
accordance with the present invention is performed for 20 minutes to 10 hours at a
temperature between 550°C and 700°C.
[0023] The present invention is not particularly limited concerning the pressure, at which
the annealing step b) is conducted. For instance, the annealing step b) may be performed
at atmospheric pressure or under reduced pressure. As set out above, the annealing
step is performed in a non-carburizing atmosphere, a non-nitriding atmosphere and
a non-nitrocarburizing atmosphere, i.e. in an atmosphere containing no compound selected
from the group consisting of nitrogen containing compounds, carbon containing compounds
and mixtures of two or more of the aforementioned compounds that would form diffusible
compounds during the annealing step. Otherwise, a diffusion of carbon and/or nitrogen
would occur during the annealing step b) at least to a small degree and this would
initiate the formation of chromium containing precipitates, which would oppose the
effects achieved with the method in accordance with the present invention. Moreover,
it has been found during the present invention that the effects of the annealing step
b), namely the reduction of chromium containing precipitates during the later diffusion
hardening, are in a particular excellent extent obtained, when the annealing step
b) is performed in an atmosphere which does not lead to a structural change of the
surface, in particular to a change of the surface roughness and surface morphology
of the article. In particular, it is of advantage that the oxide layer of the article
is maintained during the annealing step b).
[0024] In view of this, it is preferred in accordance with a first preferred alternative
of the present invention that the annealing step b) is performed under vacuum, namely
preferably at a pressure of at most 10.000 Pa and more preferably of at most 5.000
Pa.
[0025] Alternatively, it is preferred in accordance with a second preferred alternative
of the present invention that the annealing step b) is performed in an atmosphere,
which also- i.e. in addition to diffusible compounds selected from the group consisting
of nitrogen containing compounds, carbon containing compounds and mixtures thereof
- does not include any compound, which would remove or even partially remove the oxide
layer on the alloy, from which the article is made, during the annealing step b).
Accordingly, it is preferred in this second alternative that the annealing step b)
is performed in an atmosphere, which does not contain more than 5 % by volume of fluorine,
of a fluorine containing compound and/or of a fluoride containing compound, preferably
not more than 1 % by volume of fluorine, of a fluorine containing compound and/or
of a fluoride containing compound, preferably not more than 0.1 % by volume of fluorine,
of a fluorine containing compound and/or of a fluoride containing compound and most
preferably no fluorine, no fluorine containing compound and no fluoride containing
compound at all. On account of the same reasons it is preferred in this second alternative
that the annealing step b) is performed in an atmosphere, which does not contain more
than 5 % by volume of chlorine, of a chlorine containing compound and/or of a chloride
containing compound, preferably not more than 1 % by volume of chlorine, of a chlorine
containing compound and/or of a chloride containing compound, preferably not more
than 0.1 % by volume of chlorine, of a chlorine containing compound and/or of a chloride
containing compound and most preferably no chlorine, no chlorine containing compound
and no chloride containing compound at all.
[0026] In a further development of the aforementioned second alternative, it is suggested
that the annealing step b) is performed in a reducing atmosphere, which assures that
the oxide layer of the article is maintained during the annealing step b). Good results
are in particular obtained, when the annealing step b) is performed in an atmosphere
containing hydrogen.
[0027] As set out above, at least the surface region of the article is made of an alloy
selected from the group consisting of stainless steel and nickel base alloys with
a chromium content of at least 10 % by weight. However, it is preferred that the whole
article consists completely of the alloy.
[0028] Good results are for example obtained, when the cold deformed article provided in
step a) consists of austenitic stainless steel and/or duplex stainless steel.
[0029] In accordance with the present invention there is no limitation concerning the thickness
of the article and surprisingly good results are even obtained with comparable thick
articles, which may be not processed for example with a method of the prior art comprising
a solution nitriding treatment of the cold worked article before subjecting it to
the diffusion hardening process. In particular, the method in accordance with the
present invention is suitable for articles having a thickness of at least 100 µm and
even for articles having a thickness of at least 5 mm.
[0030] The cold forming for obtaining the article provided in step a) may be any cold forming
step known to a person skilled in the art. Exemplarily, the step a) may comprise plastically
deforming the article at a temperature of at most 300°C, preferably by a technique
selected from the group consisting of forging, extrusion, shaping, drawing, pressing,
roll burnishing, rolling and combinations of two or more of the aforementioned techniques.
[0031] Alternatively thereto, step a) may comprise the machining of the article at a temperature
of at most 200°C, preferably by a technique selected from the group consisting of
turning, milling, punching, grinding, polishing and combinations of two or more of
the aforementioned techniques.
[0032] It is also possible that the two aforementioned cold forming techniques are combined,
namely that step a) comprises plastically deforming the article at a temperature of
at most 300°C and machining the article at a temperature of at most 200°C, wherein
the plastically deforming is preferably performed by a technique selected from the
group consisting of forging, extrusion, shaping, drawing, pressing, roll burnishing,
rolling and combinations of two or more of the aforementioned techniques and wherein
the machining preferably performed by a technique selected from the group consisting
of turning, milling, punching, grinding, polishing and combinations of two or more
of the aforementioned techniques.
[0033] In accordance with a preferred embodiment of the present invention, the heat treatment
in step d) is performed as carburizing step in a gaseous atmosphere comprising a carbon
containing compound. Good results are in particular obtained, when the carbon containing
compound is selected form the group consisting carbon monoxide, carbon dioxide, mixtures
of carbon monoxide and carbon dioxide, hydrocarbon compounds and mixtures of two or
more of the aforementioned compounds, wherein the hydrocarbon compound is preferably
selected from the group consisting of C
1-6-alkanes, fluorinated C
1-6-alkanes, C
1-6-alkenes, fluorinated C
1-6-alkenes, C
1-6-alkynes, fluorinated C
1-6-alkynes and mixtures of two or more of the aforementioned compounds, wherein C
1-6-alkynes and/or fluorinated C
1-6-alkynes are particularly preferred.
[0034] Optionally, the aforementioned carburization gas may further comprise hydrogen, which
promotes the decomposition of the carbon containing compound and thus the formation
of diffusible carbon.
[0035] Independently, from whether the carburization gas contains the optional hydrogen
or not, the carburization gas may contain an inert gas, such as argon, as diluent.
[0036] In accordance with an alternatively preferred embodiment of the present invention,
the heat treatment in step d) is performed as nitriding step in a gaseous atmosphere
comprising a nitrogen containing compound. Good results are in particular obtained,
when the nitrogen containing compound is ammonia and/or urea. Optionally, the aforementioned
nitriding gas may further comprise hydrogen, in order to promote the decomposition
of the nitrogen containing compound and thus the formation of diffusible nitrogen,
and/or an inert gas, such as argon, as diluent.
[0037] In accordance with yet an alternatively preferred embodiment of the present invention,
the heat treatment in step d) is performed as nitrocarburization step in a gaseous
atmosphere comprising a carbon containing compound as well as a nitrogen containing
compound. Good results are in particular obtained, when the nitrocarburization is
performed in a gaseous atmosphere comprising i) carbon monoxide, carbon dioxide, a
mixture of carbon monoxide and carbon dioxide and/or a hydrocarbon compound, wherein
the hydrocarbon compound is preferably selected from the group consisting of C
1-6-alkanes, fluorinated C
1-6-alkanes, C
1-6-alkenes, fluorinated C
1-6-alkenes, C
1-6-alkynes, fluorinated C
1-6-alkynes and mixtures of two or more of the aforementioned compounds, and ii) a nitrogen
containing compound, wherein the nitrogen containing compound is ammonia and/or urea.
Optionally, the aforementioned nitrocarburization gas may further comprise hydrogen,
in order to promote the decomposition of the carbon containing compound and of the
nitrogen containing compound and thus the formation of diffusible nitrogen and carbon,
and/or an inert gas, such as argon, as diluent.
[0038] In accordance with the present invention, the diffusion hardening performed during
the heat treatment in step d) is performed as so called low temperature diffusion
hardening at a temperature between 350 and less than 550°C in plasma, in a salt bath
or in a gaseous atmosphere to obtain a nitride, carburized and/or nitrocarburized
diffusion zone in the surface area of the article. Particular good results are obtained,
when the diffusion hardening is conducted at a temperature between 350 and 510°C.
[0039] In accordance with the present invention, the diffusion hardening is performed for
2 to 50 hours.
[0040] The heat treatment in step d) is preferably performed at atmospheric or subatmospheric
pressure between 500 and 10,000 MPa.
[0041] In accordance with a further preferred embodiment of the present invention, the heat
treatment of the article in step d) is performed in plasma. Preferably, the plasma
heat treatment step d) is performed in plasma at a pressure of 100 to 1.000 Pa for
10 minutes to 100 hours in a carburizing atmosphere, in a nitriding atmosphere or
in a nitrocarburizing atmosphere at a temperature of 100 to 550°C.
[0042] If a carburizing atmosphere is used, the atmosphere preferably comprises carbon monoxide,
carbon dioxide, a hydrocarbon compound, such as in particular methane, or a mixture
thereof. If a nitriding atmosphere is used, the preferably oxygen free atmosphere
preferably comprises ammonia and/or urea. If a nitrocarburizing atmosphere is used,
the preferably oxygen free atmosphere preferably comprises i) carbon monoxide, carbon
dioxide, a hydrocarbon compound, such as in particular methane, or a mixture thereof
and ii) ammonia and/or urea. Independently, from whether a carburizing atmosphere,
a nitriding atmosphere or a nitrocarburizing atmosphere is used, the atmosphere may
further contain an inert gas, such as argon, as diluent and/or hydrogen, in order
to promote the decomposition of the carbon and/or nitrogen containing compound and
thus the formation of diffusible carbon and/or nitrogen.
[0043] Particular good results are obtained, when the plasma heat treatment step d) is performed
in plasma at a pressure of 100 to 1.000 Pa in a carburizing atmosphere, in a nitriding
atmosphere or in a nitrocarburizing atmosphere at a temperature of 400 to 500°C.
[0044] During the plasma treatment not only a diffusion hardening is performed, but also
an activation of the surface of the article, i.e. the removal of the oxide layer of
the article, is achieved. In other words, the plasma treatment simultaneously fulfils
the activation step c) and the diffusion hardening step d). However, in order to improve
the activation efficiency, the activation in step c) is preferably performed before
the heat treatment step d) and by sputtering the annealed article obtained in step
b) preferably in an atmosphere comprising argon, hydrogen, a rare gas, such as helium,
or a mixture thereof. The sputter activation step may be performed at a temperature
between 100 and 550°C and preferably at a temperature of 300 to 500°C for 10 minutes
to 10 hours and preferably for 1 to 10 hours.
[0045] In accordance with a further preferred embodiment of the present invention, the heat
treatment of the article in step d) is performed in a salt bath. Preferably, the heat
treatment is performed for 1 to 100 hours in a molten salt bath including as carbon
donor and nitrogen donor a cyanide salt, such as sodium cyanide and/or potassium cyanide.
In addition to the cyanide salt, preferably potassium chloride and lithium chloride
are included in the salt bath and more preferably also an activator compound selected
from the group consisting of barium chloride, strontium chloride, magnesium chloride,
calcium chloride and mixtures of two or more of the aforementioned salts.
[0046] Particular good results are obtained, when the salt bath heat treatment step d) is
performed in a salt bath at a temperature of 350 to 410°C.
[0047] During the treatment in the salt bath containing cyanide salt(s) not only a diffusion
hardening is performed, but also an activation of the surface of the article, i.e.
the removal of the oxide layer of the article, is achieved. In other words, the salt
bath treatment simultaneously fulfils the activation step c) and the diffusion hardening
step d).
[0048] In accordance with a further preferred embodiment of the present invention, the heat
treatment of the article in step d) is performed in a gaseous atmosphere. The preferred
temperature conditions, pressure conditions and gas compositions for carburization,
nitridation and nitrocarburization have been described above. In this embodiment,
the activation in step c) is preferably performed before the heat treatment step d)
in a gaseous atmosphere comprising a fluorine compound at a temperature of 250 to
500°C. Preferably, the fluorine compound is selected from the group consisting of
fluorine, NF
3, BF
3, CF
4, HF, SF
6, C
2F
6, WF
6, CHF
3, SiF
4, C
1-6-fluorinated alkanes, C
1-6-fluorinated alkenes, C
1-6-fluorinated alkynes and mixtures of two or more of the aforementioned compounds.
Good results are in particular achieved in this embodiment, when the activation is
performed at a temperature of 250 to 550°C and preferably of 350 to 500°C for of 0.5
to 50 hours and preferably 1 to 15 hours in a gaseous atmosphere including NF
3 and/or N
2 at atmospheric pressure.
[0049] Alternatively to the aforementioned embodiment, it is also possible to perform the
activation according to step c) simultaneously with the heat treatment of the article
in a gaseous atmosphere according to step d) for instance by using specific carbon
containing compounds which also function as carbon donor. Suitable carbon containing
compounds therefor are unsaturated C
1-6-hydrocarbon compounds, such as C
1-6-alkenes and C
1-6-alkynes, such as acetylene. Particularly suitable for this purpose are halogenates
hydrocarbon compounds and in particular unsaturated halogenates hydrocarbon compounds,
such as fluorinated C
1-6-alkenes and fluorinated C
1-6-alkynes.
[0050] In order to reliably avoid a generation of chromium containing precipitates in the
finally treated article, it is in a further development of the idea of the present
invention as most preferably suggested that the method in accordance with the present
invention does not comprise any heating to a temperature above 900°C, preferably does
not comprise any heating to a temperature above 800°C, more preferably does not comprise
any heating to a temperature above 750°C and most preferably does not comprise any
heating to a temperature above 700°C.
[0051] Due to the same reasons, it is particularly preferred that the method in accordance
with the present invention consists of steps a) to d) and optionally a cooling step
between steps b) and c) to a temperature between 0°C and 100°C and preferably to a
temperature between 23°C and 60°C and/or a cooling step between steps c) and d) to
a temperature between 0°C and 100°C and preferably to a temperature between 23°C and
60°C.
[0052] In addition, the present invention refers to a surface hardened article obtainable
by a method in accordance with claim 13.
[0053] As set out above, the surface hardened article obtainable by a method in accordance
with the present invention is characterized in that it does not only have a high hardness
over its whole thickness as a consequence of the cold working as well as an extremely
high surface hardness as a consequence of the diffusion hardening, but in addition
an excellent wear resistance and corrosion resistance of the article on account of
the annealing step.
[0054] More specifically, the surface hardened article in accordance with the present invention
has in average a Vickers hardness HV1 measured in accordance with ASTM E92-16 of at
least 150 and/or a surface hardness HV0.05 measured in accordance with ASTM E92-16
of at least 500. Preferably, the surface hardened article has in average a Vickers
hardness HV1 of at least 200, more preferably of at least 210 and most preferably
of at least 220.
[0055] In addition, the surface hardened article in accordance with the present invention
preferably has a surface hardness HV0.05 measured in accordance with ASTM E92-16 of
at least 600, more preferably of at least 650 and most preferably of at least 675.
[0056] Furthermore, the surface hardened article in accordance with the present invention
has a corrosion resistance measured in accordance with DIN EN ISO 8442-1 of December
1997 of less than 15 pitting corrosion points per 20 cm
2 surface area, preferably of less than 5 pitting corrosion points per 20 cm
2 surface area and more preferably of less than 1 pitting corrosion points per 20 cm
2 surface area.
[0057] Subsequently, the present invention is described by reference to an example and a
comparative example, which, however, do not limit the scope of the present invention.
Example
[0058] First of all, a set of key lock washers was prepared from austenitic stainless steel
AISI 316 by cold working. More specifically, key lock washers 2, each of which comprising
a first side 3 with radial teeth 4 and an opposite cam-side 5 with cams 6, were prepared
by fine blanking of the inner and outer diameter of each key lock washer and subsequently
embossing the first side with radial teeth and the camside with a cold working tool.
[0059] Afterwards, so produced key lock washers were subjected to an annealing step, in
which the key lock washers were heated for 1 hour at 700°C in a vacuum furnace in
a vacuum of about 500 Pa. The heating-up was performed in the furnace with a rate
of 50°C per minute.
[0060] Subsequently, the furnace was purged with 100 liter argon gas, before the annealed
key lock washers were activated and simultaneously carburized at 420°C for 20 hours
in an atmosphere comprising 5%by volume of acetylene, 50%by volume of hydrogen and
45%by volume of nitrogen.
[0061] The so obtained surface hardened key lock washers showed the following propertied:
|
Surface hardened washers of the example |
Base material hardness 1) |
222 ± 11 HV1 |
Surface hardness 2) |
690 to 890 HV0.05 |
Diffusion zone depth 3) |
11 to 14 µm |
Evaluation of corrosion resistance 4) |
No Corrosion products are visible on the surface in an optical microscope at 100x
magnification. |
Evaluation of corrosion resistance 5) |
Surface free form corrosion products (cf. fig. 2). |
1) Measured in accordance with ASTM E92-16 |
2) Measured in accordance with ASTM E92-16 |
3) Determined in in dependence on DIN EN ISO 1463, 2004 with a Kalling II etchant
at 1000x magnification |
4) Determined in accordance with the Test described in EN ISO 8442-1, version of December
1997 |
5) Determined after immersion of the key lock washers for 68 hours in 200ml 3% NaCl
for 68 hours at ambient temperature |
Comparative Example
[0062] A set of key lock washers was prepared and surface hardened as described in the example
except that no annealing step was performed between the cold working and the carburization.
[0063] The so obtained surface hardened key lock washers showed the following propertied:
|
Surface hardened washers of the comparative example |
Base material hardness 1) |
235 ± 13 HV1 |
Surface hardness 2) |
680 to 840 HV0.05 |
Diffusion zone depth 3) |
12 to 14 µm |
Evaluation of corrosion resistance 4) |
Corrosion products are visible on the surface and pitting corrosion spots can be seen
in an optical microscope at 100x magnification. |
Evaluation of corrosion resistance 5) |
Corrosion products are visible on the surface on the camside and the cutting edge
on the inner diameter and the outer diamete (cf. fig. 3). |
1) to 5) As described for the example |
List of Reference Numbers
[0064]
- 1
- Set of key lock washers
- 2
- Key lock washer
- 3
- First side of Key lock washer
- 4
- Radial teeth of Key lock washer 4
- 5
- Cam-side of Key lock washer
- 6
- Cams of Key lock washer
1. A method for surface hardening a cold deformed article at least partially consisting
of stainless steel or a nickel base alloy with a chromium content of at least 10 %
by weight, comprising the steps of:
a) providing a cold deformed article, wherein at least the surface region of the article
is made of an alloy selected from the group consisting of stainless steel and nickel
base alloys with a chromium content of at least 10 % by weight,
b) annealing the cold deformed article for 5 minutes to 50 hours at a temperature
between 450°C and 750°C in a non-carburizing atmosphere, a non-nitriding atmosphere
and a non-nitrocarburizing atmosphere,
c) activating the annealed article obtained in step b) and
d) simultaneously with step c) or after step c) heat treating the annealed article
at a temperature of 350 to less than 550°C for 2 to 50 hours in plasma, in a salt
bath or in a gaseous atmosphere to obtain a nitride, carburized and/or nitrocarburized
diffusion zone in the surface area of the article, wherein the plasma, the salt bath
or the gaseous atmosphere contains a compound selected from the group consisting of
carbon, nitrogen containing compounds, carbon containing compounds and mixtures of
two or more of the aforementioned compounds,
wherein the annealing in step b) is performed with a higher temperature than the heat
treating in step d).
2. The method in accordance with claim 1,
characterized in that
the annealing in step b) is performed in an atmosphere containing no compound selected
from the group consisting of nitrogen containing compounds, carbon containing compounds
and mixtures of two or more of the aforementioned compounds and preferably also no
nitrogen and carbon.
3. The method in accordance with claim 1 or 2,
characterized in that
the annealing in step b) is performed at a temperature between 550 and 700°C.
4. The method in accordance with any of the preceding claims,
characterized in that
the annealing in step b) is performed under vacuum with a pressure of at most 10.000
Pa and preferably of at most 5.000 Pa or the annealing in step b) is performed in
a reducing atmosphere, preferably an atmosphere containing hydrogen and more preferably
an atmosphere consisting of hydrogen, at atmospheric pressure.
5. The method in accordance with any of the preceding claims,
characterized in that
the article consists of the alloy, wherein preferably the cold deformed article provided
in step a) consists of austenitic stainless steel and/or duplex stainless steel and
preferably has a thickness of at least 100 µm and preferably of at least 5 mm.
6. The method in accordance with any of the preceding claims,
characterized in that
step a) comprises plastically deforming the article at a temperature of at most 300°C,
preferably by a technique selected from the group consisting of forging, extrusion,
shaping, drawing, pressing, roll burnishing, rolling and combinations of two or more
of the aforementioned techniques, and/or
step a) comprises machining the article at a temperature of at most 200°C, preferably
by a technique selected from the group consisting of turning, milling, punching, grinding,
polishing and combinations of two or more of the aforementioned techniques,
and/or
step a) comprises plastically deforming the article at a temperature of at most 300°C
and machining the article at a temperature of at most 200°C, wherein the plastically
deforming is preferably performed by a technique selected from the group consisting
of forging, extrusion, shaping, drawing, pressing, roll burnishing, rolling and combinations
of two or more of the aforementioned techniques and wherein the machining preferably
performed by a technique selected from the group consisting of turning, milling, punching,
grinding, polishing and combinations of two or more of the aforementioned techniques.
7. The method in accordance with any of the preceding claims,
characterized in that
the heat treatment in step d) is performed as carburizing in a gaseous atmosphere
comprising a compound selected form the group consisting carbon monoxide, carbon dioxide,
mixtures of carbon monoxide and carbon dioxide, hydrocarbon compounds and mixtures
of two or more of the aforementioned compounds, wherein the hydrocarbon compound is
preferably selected from the group consisting of C1-6-alkanes, fluorinated C1-6-alkanes, C1-6-alkenes, fluorinated C1-6-alkenes, C1-6-alkynes, fluorinated C1-6-alkynes and mixtures of two or more of the aforementioned compounds, wherein the
gaseous atmosphere preferably further comprises hydrogen.
8. The method in accordance with any of the preceding claims,
characterized in that
the heat treatment in step d) is performed as nitriding in a gaseous atmosphere comprising
a nitrogen containing compound and optionally further comprising hydrogen, wherein
the nitrogen containing compound is preferably ammonia and/or urea.
9. The method in accordance with any of the preceding claims,
characterized in that
the heat treatment in step d) is performed as nitrocarburization in a gaseous atmosphere
comprising i) a compound selected from the group consisting of carbon monoxide, carbon
dioxide, a mixture of carbon monoxide and carbon dioxide, hydrocarbon compounds and
mixtures of two or more of the aforementioned compounds and ii) a nitrogen containing
compound, wherein the hydrocarbon compound is preferably selected from the group consisting
of C1-6-alkanes, fluorinated C1-6-alkanes, C1-6-alkenes, fluorinated C1-6-alkenes, C1-6-alkynes, fluorinated C1-6-alkynes and mixtures of two or more of the aforementioned compounds, and wherein
the nitrogen containing compound is preferably ammonia and/or urea, wherein the gaseous
atmosphere preferably further comprises hydrogen.
10. The method in accordance with any of the preceding claims,
characterized in that
the heat treatment in step d) is performed at a temperature between 350 and 510°C,
wherein the heat treatment in step d) is preferably performed for 5 to 20 hours.
11. The method in accordance with any of the preceding claims,
characterized in that
the heat treatment of the article in step d) is performed in a gaseous atmosphere
and the activation in step c) is performed by heat treating the article in a gaseous
atmosphere comprising a fluorine compound at a temperature of 250 to 500°C, wherein
the fluorine compound is preferably selected from the group consisting of fluorine,
NF3, BF3, CF4, HF, SF , C2F , WF , CHF3, SiF4, C1-6-fluorinated alkanes, C1-6-fluorinated alkenes, C1-6-fluorinated alkynes and mixtures of two or more of the aforementioned compounds.
12. The method in accordance with any of the preceding claims,
characterized in that
the method does not comprise any heating to a temperature above 900°C, preferably
does not comprise any heating to a temperature above 800°C, more preferably does not
comprise any heating to a temperature above 750°C and most preferably does not comprise
any heating to a temperature above 700°C.
13. A surface hardened article obtainable by a method in accordance with any of the preceding
claims
characterized in that
it has a Vickers hardness HV1 measured in accordance with ASTM E92-16 of at least
150, preferably of at least 200, more preferably of at least 210 and most preferably
of at least 220,
and/or
it has a surface hardness HV0.05 measured in accordance with ASTM E92-16 of at least
500, preferably of at least 600, more preferably of at least 650 and most preferably
of at least 675, and
characterized in that
it has a corrosion resistance measured in accordance with DIN EN ISO 8442-1 of December
1997 of less than 15 pitting corrosion points per 20 cm2 surface area.
14. The surface hardened article in accordance with claim 13, which has a corrosion resistance
measured in accordance with DIN EN ISO 8442-1 of December 1997 of less than 5 pitting
corrosion points per 20 cm2 surface area and preferably of less than 1 pitting corrosion points per 20 cm2 surface area.
1. Verfahren zum Oberflächenhärten eines kaltverformten Gegenstands, der zumindest teilweise
aus Edelstahl oder einer Legierung auf Nickelbasis mit einem Chromgehalt von mindestens
10 Gew.-% besteht, die folgenden Schritte umfassend:
a) Vorsehen eines kaltverformten Gegenstands, wobei mindestens der Oberflächenbereich
des Gegenstands aus einer Legierung gefertigt ist, die aus der Gruppe bestehend aus
Edelstahl und Legierungen auf Nickelbasis mit einem Chromgehalt von mindestens 10
Gew.-% ausgewählt ist,
b) Tempern des kaltgeformten Gegenstands über 5 Minuten bis 50 Stunden bei einer Temperatur
zwischen 450 °C und 750 °C in einer nicht carburierenden Atmosphäre, einer nicht nitrierenden
Atmosphäre und einer nicht nitrocarburierenden Atmosphäre,
c) Aktivieren des getemperten Gegenstands, der in Schritt b) erhalten wird, und
d) gleichzeitig mit Schritt c) oder nach Schritt c) Hitzebehandlung des getemperten
Gegenstands bei einer Temperatur 350 bis weniger 550 °C über 2 bis 50 Stunden in Plasma,
in einem Salzbad oder in einer gasförmigen Atmosphäre, um eine Nitrid-, aufgekohlte
und/oder nitrocarburierte Diffusionszone im Oberflächenbereich des Gegenstands zu
erzielen, wobei das Plasma, das Salzbad oder die gasförmige Atmosphäre eine Verbindung
umfasst, die aus der Gruppe bestehend aus Kohlenstoff, stickstoffhaltigen Verbindungen,
kohlenstoffhaltigen Verbindungen und Gemischen aus zwei oder mehr der vorstehen erwähnten
Verbindungen ausgewählt sind,
wobei das Tempern in Schritt b) bei einer höheren Temperatur als die Hitzebehandlung
in Schritt d) durchgeführt wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
das Tempern in Schritt b) in einer Atmosphäre durchgeführt wird, die keine Verbindung
enthält, die aus der Gruppe bestehend aus stickstoffhaltigen Verbindungen, kohlenstoffhaltigen
Verbindungen und Gemischen aus zwei oder mehr der vorstehend erwähnten Verbindungen
ausgewählt ist, und vorzugsweise auch keinen Stickstoff und Kohlenstoff.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das Tempern in Schritt b) bei einer Temperatur zwischen 550 und 700 °C durchgeführt
wird.
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Tempern in Schritt b) unter Vakuum mit einem Druck von höchstens 10,000Pa und
vorzugsweise höchstens 5,000 Pa durchgeführt wird oder das Tempern in Schritt b) in
einer reduzierenden Atmosphäre, bevorzugt einer wasserstoffhaltigen Atmosphäre, besonders
bevorzugt einer Atmosphäre, die aus Wasserstoff besteht, bei Atmosphärendruck durchgeführt
wird.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Gegenstand aus der Legierung besteht, wobei bevorzugt der in Schritt a) vorgesehene
kaltverformte Gegenstand aus austenitischem Edelstahl und/oder Duplexstahl besteht
und bevorzugt eine Dicke von mindestens 100 µm und bevorzugt von mindestens 5 mm aufweist.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
Schritt a) das plastische Verformen des Gegenstands bei einer Temperatur von höchstens
300 °C umfasst, bevorzugt anhand einer Methode, die aus der Gruppe bestehend aus Schmieden,
Extrusion, Formen, Ziehen, Pressen, Glättwalzen, Walzen und Kombinationen aus zwei
oder mehr der vorstehend erwähnten Methoden ausgewählt ist,
und/oder
Schritt a) das maschinelle Bearbeiten des Gegenstands bei einer Temperatur von höchstens
200 °C umfasst, bevorzugt anhand einer Methode, die aus der Gruppe bestehend aus Drehen,
Fräsen, Stanzen, Schleifen, Polieren und Kombinationen aus zwei oder mehr der vorstehend
erwähnten Methoden ausgewählt ist,
und/oder
Schritt a) das plastische Verformen des Gegenstands bei einer Temperatur von höchstens
300 °C und maschinelle Bearbeiten des Gegenstands bei einer Temperatur von höchstens
200 °C umfasst, wobei das plastische Verformen vorzugsweise anhand einer Methode durchgeführt
wird, die aus der Gruppe bestehend aus Schmieden, Extrusion, Formen, Ziehen, Pressen,
Glättwalzen, Walzen und Kombinationen aus zwei oder mehr der vorstehend erwähnten
Methoden ausgewählt ist und wobei das maschinelle Bearbeiten bevorzugt anhand einer
Methode durchgeführt wird, die aus der Gruppe bestehend aus Drehen, Fräsen, Stanzen,
Schleifen, Polieren und Kombinationen aus zwei oder mehr der vorstehend erwähnten
Methoden ausgewählt ist.
7. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Hitzebehandlung in Schritt d) als Carburieren in einer gasförmigen Atmosphäre
durchgeführt wird, die eine Verbindung umfasst, die aus der Gruppe bestehend aus Kohlenmonoxid,
Kohlendioxid, Gemischen aus Kohlenmonoxid und Kohlendioxid, Kohlenwasserstoffverbindungen
und Gemischen aus zwei oder mehr der vorstehend erwähnten Verbindungen ausgewählt
ist, wobei die Kohlenwasserstoffverbindung bevorzugt aus der Gruppe bestehend aus
C1-6-Alkanen, fluorierten C1-6-Alkanen, C1-6-Alkenen, fluorierten C1-6-Alkenen, C1-6-Alkinen, fluorierten C1-6-Alkinen und Gemischen aus zwei oder mehr der vorstehend erwähnten Verbindungen ausgewählt
ist, wobei die gasförmig Atmosphäre bevorzugt ferner Wasserstoff umfasst.
8. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Hitzebehandlung in Schritt d) als Nitrieren in einer gasförmigen Atmosphäre durchgeführt
wird, die eine stickstoffhaltige Verbindung umfasst und optional ferner Wasserstoff
umfasst, wobei die stickstoffhaltige Verbindung bevorzugt Ammoniak und/oder Harnstoff
ist.
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Hitzebehandlung in Schritt d) als Nitrocarburieren in einer gasförmigen Atmosphäre
durchgeführt wird, die i) eine Verbindung umfasst, die aus der Gruppe bestehend aus
Kohlenmonoxid, Kohlendioxid, einem Gemisch aus Kohlenmonoxid und Kohlendioxid, Kohlenwasserstoffverbindungen
und Gemischen aus zwei oder mehr der vorstehend erwähnten Verbindungen ausgewählt
ist, und ii) eine stickstoffhaltige Verbindung umfasst, wobei die Kohlenwasserstoffverbindung
bevorzugt aus der Gruppe bestehend aus C1-6-Alkanen, fluorierten C1-6-Alkanen, C1-6-Alkenen, fluorierten C1-6-Alkenen, C1-6-Alkinen, fluorierten C1-6-Alkinen und Gemischen aus zwei oder mehr der vorstehend erwähnten Verbindungen ausgewählt
ist, and wobei die stickstoffhaltige Verbindung bevorzugt Ammoniak und/oder Harnstoff
ist, wobei die gasförmige Atmosphäre bevorzugt ferner Wasserstoff umfasst.
10. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Hitzebehandlung in Schritt d) bei einer Temperatur zwischen 350 und 510 °C durchgeführt
wird, wobei die Hitzebehandlung in Schritt d) bevorzugt über 5 bis 20 Stunden durchgeführt
wird.
11. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Hitzebehandlung des Gegenstands in Schritt d) in einer gasförmigen Atmosphäre
durchgeführt wird und die Aktivierung in Schritt c) durch Hitzebehandeln des Gegenstands
in einer gasförmigen Atmosphäre, die eine Fluorverbindung umfasst, bei einer Temperatur
von 250 bis 500 °C durchgeführt wird, wobei die Fluorverbindung bevorzugt aus der
Gruppe bestehend aus Fluor, NF3, BF3, CF4, HF, SF6, C2F6, WF6, CHF3, SiF4, fluorierten C1-6-Alkanen, fluorierten C1-6-Alkenen, fluorierten C1-6-Alkinen und Gemischen aus zwei oder mehr der vorstehend erwähnten Verbindungen ausgewählt
ist.
12. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Verfahren kein Erhitzen auf eine Temperatur über 900 °C umfasst, bevorzugt kein
Erhitzen auf eine Temperatur über 800 °C umfasst, besonders bevorzugt kein Erhitzen
auf eine Temperatur über 750 °C umfasst und ganz besonders bevorzugt kein Erhitzen
auf eine Temperatur über 700 °C umfasst.
13. Oberflächengehärteter Gegenstand, der anhand eines Verfahrens gemäß einem der vorhergehenden
Ansprüche erzielt werden kann,
dadurch gekennzeichnet, dass
er eine vickers-Härte HV1 aufweist, die nach ASTM E92-16 bei mindestens 150, bevorzugt
mindestens 200, besonders bevorzugt mindestens 210 und ganz besonders bevorzugt mindestens
220 gemessen wird,
und/oder
eine Oberflächenhärte HV0.05 aufweist, die gemäß ASTM E92-16 bei mindestens 500, bevorzugt
mindestens 600, besonders bevorzugt mindestens 650 und ganz besonders bevorzugt mindestens
675 gemessen wird,
und dadurch gekennzeichnet, dass
er eine gemäß der DIN EN ISO 8442-1 vom Dezember 1997 gemessene Korrosionsbeständigkeit
von weniger als 15 Lochfraßkorrosionspunkten pro 20 cm2 Oberfläche aufweist.
14. Oberflächengehärteter Gegenstand nach Anspruch 13, wobei dieser eine gemäß der DIN
EN ISO 8442-1 vom Dezember 1997 gemessene Korrosionsbeständigkeit von weniger als
5 Lochfraßkorrosionspunkten pro 20 cm2 Oberfläche und bevorzugt von weniger als 1 Lochfraßkorrosionspunkt pro 20 cm2 Oberfläche aufweist.
1. Procédé pour le durcissement de surface d'un article déformé à froid consistant au
moins partiellement en de l'acier inoxydable ou un alliage à base de nickel ayant
une teneur en chrome d'au moins 10 % en poids, comprenant les étapes consistant à
:
a) se procurer un article déformé à froid, au moins la région de surface de l'article
étant faite d'un alliage choisi dans le groupe consistant en l'acier inoxydable et
les alliages à base de nickel ayant une teneur en chrome d'au moins 10 % en poids
;
b) soumettre l'article déformé à froid à un recuit pendant 5 minutes à 50 heures à
une température entre 450°C et 750°C dans une atmosphère non-cémentante, une atmosphère
non-nitrurante et une atmosphère non-nitrocémentante ;
c) activer l'article recuit obtenu dans l'étape b) ; et
d) simultanément avec l'étape c) ou après l'étape c), traiter thermiquement l'article
recuit à une température de 350 à moins de 550°C pendant 2 à 50 heures dans un plasma,
dans un bain de sel ou dans une atmosphère gazeuse pour obtenir une zone de diffusion
nitrurée, cémentée et/ou nitrocémentée dans l'aire de surface de l'article, le plasma,
le bain de sel ou l'atmophère gazeuse contenant un composé choisi dans le groupe consistant
en carbone, composés à teneur en azote, composés à teneur en carbone et mélanges d'au
moins deux des composés susmentionnés,
dans lequel le recuit dans l'étape b) est effectué avec une température supérieure
au traitement thermique dans l'étape d).
2. Procédé selon la revendication 1,
caractérisé par le fait que
le recuit dans l'étape b) est effectué dans une atmosphère ne contenant pas de composé
choisi dans le groupe consistant en composés à teneur en azote, composés à teneur
en carbone et mélanges d'au moins deux des composés susmentionnés et de préférence
également sans azote et carbone.
3. Procédé selon l'une des revendications 1 ou 2,
caractérisé par le fait que
le recuit dans l'étape b) est effectué à une température entre 550 et 700°C.
4. Procédé selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
le recuit dans l'étape b) est effectué sous vide avec une pression d'au plus 10 000
Pa et de préférence d'au plus 5 000 Pa ou le recuit dans l'étape b) est effectué dans
une atmosphère réductrice, de préférence une atmosphère contenant de l'hydrogène et
de façon davantage préférée une atmosphère consistant en hydrogène, à pression atmosphérique.
5. Procédé selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
l'article consiste en l'alliage, où, de préférence, l'article déformé à froid fourni
dans l'étape a) consiste en de l'acier inoxydable austénitique et/ou de l'acier inoxydable
duplex et, de préférence, a une épaisseur d'au moins 100 µm et de préférence d'au
moins 5 mm.
6. Procédé selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
l'étape a) comprend la déformation plastique de l'article à une température d'au plus
300°C, de préférence par une technique choisie dans le groupe consistant en le forgeage,
l'extrusion, le façonnage, l'étirage, le pressage, le brunissage au rouleau, le laminage
et les combinaisons d'au moins deux des techniques susmentionnées,
et/ou
l'étape a) comprend l'usinage de l'article à une température d'au plus 200°C, de préférence
par une technique choisie dans le groupe consistant en le tournage, le fraisage, le
poinçonnage, le meulage, le polissage et les combinaisons d'au moins deux des techniques
susmentionnées,
et/ou
l'étape a) comprend la déformation plastique de l'article à une température d'au plus
300°C et l'usinage de l'article à une température d'au plus 200°C, la déformation
plastique étant, de préférence, effectuée par une technique choisie dans le groupe
consistant en le forgeage, l'extrusion, le façonnage, l'étirage, le pressage, le brunissage
au rouleau, le laminage et les combinaisons d'au moins deux des techniques susmentionnées,
et l'usinage étant, de préférence, effectué par une technique choisie dans le groupe
consistant en le tournage, le fraisage, le poinçonnage, le meulage, le polissage et
les combinaisons d'au moins deux des techniques susmentionnées.
7. Procédé selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
le traitement thermique dans l'étape d) est effectué en tant que cémentation dans
une atmosphère gazeuse comprenant un composé choisi dans le groupe consistant en le
monoxyde de carbone, le dioxyde de carbone, les mélanges de monoxyde de carbone et
de dioxyde de carbone, les composés hydrocarbonés et les mélanges d'au moins deux
des composés susmentionnés, le composé hydrocarboné étant, de préférence, choisi dans
le groupe consistant en les alcanes en C1-6, les alcanes en C1-6 fluorés, les alcènes en C1-6, les alcènes en C1-6 fluorés, les alcynes en C1-6, les alcynes en C1-6 fluorés et les mélanges d'au moins deux des composés susmentionnés, l'atmosphère
gazeuse de préférence comprenant en outre de l'hydrogène.
8. Procédé selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
le traitement thermique dans l'étape d) est effectué en tant que nitruration dans
une atmosphère gazeuse comprenant un composé à teneur en azote et facultativement
comprenant en outre de l'hydrogène, le composé à teneur en azote étant, de préférence,
l'ammoniac et/ou l'urée.
9. Procédé selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
le traitement thermique dans l'étape d) est effectué en tant que nitrocémentation
dans une atmosphère gazeuse conmprenant i) un composé choisi dans le groupe consistant
en le monoxyde de carbone, le dioxyde de carbone, un mélange de monoxyde de carbone
et de dioxyde de carbone, les composés hydrocarbonés et les mélanges d'au moins deux
des composés susmentionnés et ii) un composé à teneur en azote, le composé hydrocarboné
étant, de préférence, choisi dans le groupe consistant en les alcanes en C1-6, les alcanes en C1-6 fluorés, les alcènes en C1-6, les alcènes en C1-6 fluorés, les alcynes en C1-6, les alcynes en C1-6 fluorés et les mélanges d'au moins deux des composés susmentionnés, et le composé
à teneur en azote étant, de préférence, l'ammoniac et/ou l'urée, l'atmosphère gazeuse
de préférence comprenant en outre de l'hydrogène.
10. Procédé selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
le traitement thermique dans l'étape d) est effectué à une température entre 350 et
510°C, le traitement thermique dans l'étape d) étant de préférence effectué pendant
5 à 20 heures.
11. Procédé selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
le traitement thermique de l'article dans l'étape d) est effectué dans une atmosphère
gazeuse et l'activation dans l'étape c) est effectuée par traitement thermique de
l'article dans une atmosphère gazeuse comprenant un composé du fluor à une température
de 250 à 500°C, le composé du fluor étant, de préférence, choisi dans le groupe consistant
en le fluor, NF3, BF3, CF4, HF, SF6, C2F6, WF6, CHF3, SiF4, les alcanes en C1-6 fluorés, les alcènes fluorés en C1-6, les alcynes fluorés en C1-6 et les mélanges d'au moins deux des composés susmentionnés.
12. Procédé selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
le procédé ne comprend pas de chauffage à une température au-dessus de 900°C,
de préférence ne comprend pas de chauffage à une température au-dessus de 800°C,
de façon davantage préférée ne comprend pas de chauffage à une température au-dessus
de 750°C et de la façon que l'on préfère le plus ne comprend pas de chauffage à une
température au-dessus de 700°C.
13. Article durci en surface susceptible d'être obtenu par un procédé selon l'une quelconque
des revendications précédentes,
caractérisé par le fait qu'
il a une dureté Vickers HV1 mesurée conformément à ASTM E92-16 d'au moins 150, de
préférence d'au moins 200, de façon davantage préférée d'au moins 210 et de la façon
que l'on préfère le plus d'au moins 220,
et/ou
il a une dureté de surface HV0.05 mesurée conformément à ASTM E92-16 d'au moins 500,
de préférence d'au moins 600, de façon davantage préférée d'au moins 650 et de la
façon que l'on préfère le plus d'au moins 675
et caractérisé par le fait qu'
il a une résistance à la corrosion mesurée conformément à DIN EN ISO 8442-1 de Décembre
1997 de moins de 15 points de corrosion par piqûre par 20 cm2 d'aire de surface.
14. Article durci en surface selon la revendication 13, il a une résistance à la corrosion
mesurée conformément à DIN EN ISO 8442-1 de Décembre 1997 de moins de 5 points de
corrosion par piqûre par 20 cm2 d'aire de surface et de façon davantage préférée de moins de 1 point de corrosion
par piqûre par 20 cm2 d'aire de surface.