Field of the invention
[0001] The invention relates to mutant forms of lysenin. The invention also relates to analyte
characterisation using the mutant forms of lysenin.
Background to the invention
[0002] Nanopore sensing is an approach to sensing that relies on the observation of individual
binding or interaction events between analyte molecules and a receptor. Nanopore sensors
can be created by placing a single pore of nanometer dimensions in an insulating membrane
and measuring voltage-driven ionic transport through the pore in the presence of analyte
molecules. The identity of an analyte is revealed through its distinctive current
signature, notably the duration and extent of current block and the variance of current
levels. Such nanopore sensors are commercially available, for example the MinION
™ device sold by Oxford Nanopore Technologies Ltd, comprising an array of nanopores
integrated within an electronic chip.
[0003] There is currently a need for rapid and cheap nucleic acid (e.g. DNA or RNA) sequencing
technologies across a wide range of applications. Existing technologies are slow and
expensive mainly because they rely on amplification techniques to produce large volumes
of nucleic acid and require a high quantity of specialist fluorescent chemicals for
signal detection. Nanopore sensing has the potential to provide rapid and cheap nucleic
acid sequencing by reducing the quantity of nucleotide and reagents required.
[0004] One of the essential components of sequencing nucleic acids using nanopore sensing
is the control of nucleic acid movement through the pore. Another is the discrimination
of nucleotides as the nucleic acid polymer is moved through the pore. In the past,
to achieve nucleotide discrimination the nucleic acid has been passed through a mutant
of hemolysin. This has provided current signatures that have been shown to be sequence
dependent. It has also been shown that a large number of nucleotides contribute to
the observed current when a hemolysin pore is used, making a direct relationship between
observed current and polynucleotide challenging.
[0005] While the current range for nucleotide discrimination has been improved through mutation
of the hemolysin pore, a sequencing system would have higher performance if the current
differences between nucleotides could be improved further. In addition, it has been
observed that when the nucleic acids are moved through a pore, some current states
show high variance. It has also been shown that some mutant hemolysin pores exhibit
higher variance than others. While the variance of these states may contain sequence
specific information, it is desirable to produce pores that have low variance to simplify
the system. It is also desirable to reduce the number of nucleotides that contribute
to the observed current.
Summary of the invention
[0007] The inventors have surprisingly identified new mutant lysenin monomers in which one
or more modifications have been made to improve the ability of the monomer to interact
with a polynucleotide. The inventors have also surprisingly demonstrated that pores
comprising the novel mutant monomers have an enhanced ability to interact with polynucleotides
and therefore display improved properties for estimating the characteristics of, such
as the sequence of, polynucleotides. The mutant pores surprisingly display improved
nucleotide discrimination. In particular, the mutant pores surprisingly display an
increased current range, which makes it easier to discriminate between different nucleotides,
and a reduced variance of states, which increases the signal-to-noise ratio. In addition,
the number of nucleotides contributing to the current as the polynucleotide moves
through the pore is decreased. This makes it easier to identify a direct relationship
between the observed current as the polynucleotide moves through the pore and the
polynucleotide.
[0008] All amino acid substitutions, deletions and/or additions disclosed herein are with
reference to a mutant lysenin monomer comprising a variant of the sequence shown in
SEQ ID NO: 2, unless stated to the contrary.
[0009] Reference to a mutant lysenin monomer comprising a variant of the sequence shown
in SEQ ID NO: 2 encompasses mutant lysenin monomers comprising variants of sequences
as set out in SEQ ID NOS: 14 to 16. Amino acid substitutions, deletions and/or additions
may be made to lysenin monomers comprising a variant of the sequence shown in SEQ
ID NO: 2 that are equivalent to the substitutions, deletions and/or additions disclosed
herein with reference to SEQ ID NO: 2.
[0010] A mutant monomer may be considered as an isolated monomer.
[0011] Accordingly, the invention provides a mutant lysenin monomer comprising a variant
of the sequence shown in SEQ ID NO: 2, wherein the monomer is capable of forming a
pore and wherein the variant comprises a modification at one or more of the following
positions K37, G43, K45, V47, S49, T51, H83, V88, T91, T93, V95, Y96, S98, K99, V100,
I101, P108, P109, T110, S111, K112 and T114.
[0012] The invention also provides a mutant lysenin monomer comprising a variant of the
sequence shown in SEQ ID NO: 2, wherein the monomer is capable of forming a pore and
wherein the variant comprises one or more of the substitutions
D35N/S;
S74K/R;
E76D/N;
S78R/K/N/Q;
S80K/R/N/Q;
S82K/R/N/Q;
E84R/K/N/A;
E85N;
S86K/Q;
S89K;
M90K/I/A;
E92D/S;
E94D/Q/G/A/K/R/S/N;
E102N/Q/D/S;
T104R/K/Q;
T106R/K/Q;
R115S;
Q117S; and
N119S.
[0013] The invention also provides a mutant lysenin monomer comprising a variant of the
sequence shown in SEQ ID NO: 2, wherein the monomer is capable of forming a pore and
wherein the variant comprises mutations at one or more of
D35/E94/T106;
K37/E94/E102/T106;
K37/E94/T104/T106;
K37/E94/T106;
K37/E94/E102/T106;
G43/E94/T106;
K45/V47/E92/E94/T106;
K45/V47/E94/T106;
K45/S49/E92/E94/T106;
K45/S49/E94/T106;
K45/E94/T106;
K45/T106;
V47/E94/T106;
V47/V88/E94/T106;
S49/E94/T106 ;
T51/E94D/T106;
S74/E94;
E76/E94;
S78/E94;
Y79/E94;
S80/E94;
S82/E94;
S82/E94/T106 ;
H83/E94;
H83/E94/T106;
E85/E94/T106;
S86/E94;
V88/M90/E94/T106;
S89/E94;
M90/E94/T106;
T91/E94/T106;
E92/E94/T106;
T93/E94/T106;
E94/Y96/T106;
E94/S98/K99/T106;
E94/K99/T106;
E94/E102;
E94/T104;
E94/T106;
E94/P108;
E94/P109;
E94/T110;
E94/S111;
E94/T114;
E94/R115;
E94/Q117; and
E94/E119.
[0014] The invention also provides a mutant lysenin monomer comprising a variant of the
sequence shown in SEQ ID NO: 2, wherein the monomer is capable of forming a pore and
wherein the variant comprises one or more of the substitutions:
E84R/E94D;
E84K/E94D;
E84N/E94D;
E84A/E94Q;
E84K/E94Q and
E94Q/D121S.
[0015] The invention also provides a mutant lysenin monomer comprising a variant of the
sequence shown in SEQ ID NO: 2, wherein the variant comprises one of the following
combinations of substitutions:
- E84Q/E85K/E92Q/E94D/E97S/D126G;
- E84Q/E85K/E92Q/E94Q/E97S/D126G; or
- E84Q/E85K/E92Q/E94D/E97S/T106K/D126G.
[0016] The invention also provides a mutant lysenin monomer comprising a variant of the
sequence shown in SEQ ID NO: 2, wherein in the variant (a) 2, 4, 6, 8, 10, 12, 14,
16, 18 or 20 of the amino acids at positions 34 to 70 of SEQ ID NO: 2, or corresponding
to those positions, have been deleted and (b) 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20
of the amino acids at positions 71 to 107 of SEQ ID NO: 2, or corresponding to those
positions, have been deleted.
[0017] The invention also provides:
- a construct comprising two or more covalently attached monomers derived from lysenin,
wherein at least one of the monomers is a mutant lysenin monomer of the invention;
- a polynucleotide which encodes a mutant lysenin monomer of the invention or a genetically
fused construct of the invention;
- a homo-oligomeric pore derived from lysenin comprising a sufficient number of mutant
lysenin monomers of the invention;
- a hetero-oligomeric pore derived from lysenin comprising at least one mutant lysenin
monomer of the invention;
- a pore comprising at least one construct of the invention;
- a method of characterising a target analyte, comprising: (a) contacting the target
analyte with a pore of the invention such that the target analyte moves through the
pore; and (b) taking one or more measurements as the analyte moves with respect to
the pore wherein the measurements are indicative of one or more characteristics of
the target analyte and thereby characterising the target analyte;
- a method of forming a sensor for characterising a target polynucleotide, comprising
forming a complex between a pore of the invention and a polynucleotide binding protein
and thereby forming a sensor for characterising the target polynucleotide;
- a sensor for characterising a target polynucleotide, comprising a complex between
a pore of the invention and a polynucleotide binding protein;
- use of a pore of the invention to characterise a target analyte;
- a kit for characterising a target polynucleotide comprising (a) a pore of the invention
and (b) a membrane;
- an apparatus for characterising target polynucleotides in a sample, comprising (a)
a plurality of pores of the invention and (b) a plurality of polynucleotide binding
proteins;
- a method of improving the ability of a lysenin monomer comprising the sequence shown
in SEQ ID NO: 2 to characterise a polynucleotide, comprising making one or more modifications
and/or substitutions of the invention;
- a method of producing a construct of the invention, comprising covalently attaching
at least one mutant lysenin monomer of the invention to one or more monomers derived
from lysenin; and
- a method of forming a pore of the invention, comprising allowing at least one mutant
monomer of the invention or at least one construct of the invention to oligomerise
with a sufficient number of monomers of the invention, constructs of the invention
or monomers derived from lysenin to form a pore.
Description of the Figures
[0018]
Figure 1 shows the median plot for lysenin mutant 1.
Figure 2 shows the median plot for lysenin mutant 10.
Figure 3 shows the median plot for lysenin mutant - Lysenin - (E84Q/E85K/E92Q/E94D/E97S/T106K/D126G/C272A/C283A)9
(SEQ ID NO: 2 with mutations E84Q/E85K/E92Q/E94D/E97S/T106K/D126G/C272A/C283A).
Figure 4 shows the median plot for lysenin mutant - Lysenin - (E84Q/E85K/E92Q/E94C/E97S/T106K/D126G/C272A/C283A)9
with 2-iodo-N-(2,2,2-trifluoroethyl)acetamide attached via E94C (SEQ ID NO: 2 with
mutations E84Q/E85K/E92Q/E94C/E97S/T106K/D126G/C272A/C283A).
Figure 5 shows the adapter used in the examples. A corresponds to 30 iSpC3. B corresponds
to SEQ IN NO: 19. C corresponds to 4 iSp18. D corresponds to SEQ ID NO: 20. E corresponds
to SEQ ID NO: 21 which has 5BNA-G//iBNA-G//iBNA-T//iBNA-T//i-BNA-A attached to its
5' end. F corresponds to SEQ ID NO: 22 which has a 5' phosphate. G corresponds to
SEQ ID NO: 24. H corresponds to a cholesterol.
Figure 6 shows the 3D structure of a monomer of lysenin. Upon interaction with sphingomyelin
containing membranes, lysenin monomers assemble together to form a nonameric pore
via an intermediate pre-pore. During the assembly process, the polypeptide section
shown in black (corresponding to amino acids 65-74 of SEQ ID NO: 2) converts into
the bottom loop of the beta barrel shown in Figure 7. The two beta sheets on either
side of the polypeptide section shown in black and the polypeptide sections linking
those beta sheets to the polypeptide section shown in black (corresponding to amino
acids 34-64 and 75-107 of SEQ ID NO: 2) extend to form the beta barrel of the pore
as shown in Figure 7. Such large structural changes make it difficult to predict the
beta barrel region of the lysenin pore by studying the monomeric structure.
Figure 7 depicts regions of the lysenin pore. Figure 7A shows the 3D structure of
a nonomeric pore of lysenin and Figure 7B shows the structure of a monomer taken from
the lysenin pore. Each monomer contributes two beta sheets to the barrel of lysenin
pore. The beta sheets (containing amino acids corresponding to amino acids 34-64 and
75-107 of SEQ ID NO: 2) are linked by an unstructured loop at the bottom of the pore
(amino acids corresponding to position 65-74 of SEQ ID NO: 2).
Figure 8 is an alignment of the amino acid sequence of lysenin (SEQ ID NO: 2) with
the amino acid sequences of three lysenin related proteins (SEQ ID NOs: 14-16). The
three lysenin homologues having sequences closely related to lysenin were identified
by performing a BLAST search using a database of non-redundant protein sequences.
The protein sequences of lysenin related protein 1 (LRP1), lysenin related protein
2 (LRP2) and lysenin related protein 3 (LRP3) were aligned with the sequence of lysenin
to show similarities of the four proteins. The dark grey shading indicates positions
at which identical amino acids are present in all four sequences. LRP1 is approximately
75% identical to lysenin, LRP2 is approximately 88% identical to lysenin and LRP3
is approximately 79% identical to lysenin.
Description of the Sequence Listing
[0019]
SEQ ID NO: 1 shows the polynucleotide sequence encoding the lysenin monomer.
SEQ ID NO: 2 shows the amino acid sequence of the lysenin monomer.
SEQ ID NO: 3 shows the polynucleotide sequence encoding the Phi29 DNA polymerase.
SEQ ID NO: 4 shows the amino acid sequence of the Phi29 DNA polymerase.
SEQ ID NO: 5 shows the codon optimised polynucleotide sequence derived from the sbcB gene from E. coli. It encodes the exonuclease I enzyme (EcoExo I) from E. coli.
SEQ ID NO: 6 shows the amino acid sequence of exonuclease I enzyme (EcoExo I) from
E. coli.
SEQ ID NO: 7 shows the codon optimised polynucleotide sequence derived from the xthA gene from E. coli. It encodes the exonuclease III enzyme from E. coli.
SEQ ID NO: 8 shows the amino acid sequence of the exonuclease III enzyme from E. coli. This enzyme performs distributive digestion of 5' monophosphate nucleosides from
one strand of double stranded DNA (dsDNA) in a 3' - 5' direction. Enzyme initiation
on a strand requires a 5' overhang of approximately 4 nucleotides.
SEQ ID NO: 9 shows the codon optimised polynucleotide sequence derived from the recJ gene from T. thermophilus. It encodes the RecJ enzyme from T. thermophilus (TthRecJ-cd).
SEQ ID NO: 10 shows the amino acid sequence of the RecJ enzyme from T. thermophilus (TthRecJ-cd). This enzyme performs processive digestion of 5' monophosphate nucleosides
from ssDNA in a 5' - 3' direction. Enzyme initiation on a strand requires at least
4 nucleotides.
SEQ ID NO: 11 shows the codon optimised polynucleotide sequence derived from the bacteriophage
lambda exo (redX) gene. It encodes the bacteriophage lambda exonuclease.
SEQ ID NO: 12 shows the amino acid sequence of the bacteriophage lambda exonuclease.
The sequence is one of three identical subunits that assemble into a trimer. The enzyme
performs highly processive digestion of nucleotides from one strand of dsDNA, in a
5'-3'direction (http://www.neb.com/nebecomm/products/productM0262.asp). Enzyme initiation
on a strand preferentially requires a 5' overhang of approximately 4 nucleotides with
a 5' phosphate.
SEQ ID NO: 13 shows the amino acid sequence of Hel308 Mbu.
SEQ ID NO: 14 shows the amino acid sequence of lysenin related protein (LRP) 1.
SEQ ID NO: 15 shows the amino acid sequence of lysenin related protein (LRP) 2.
SEQ ID NO: 16 shows the amino acid sequence of lysenin related protein (LRP) 3.
SEQ ID NO: 17 shows the amino acid sequence of the activated version of parasporin-2.
The full length protein is cleaved at its amino and carboxy termini to form an activated
version that is capable of forming pores.
SEQ ID NO: 18 shows the amino acid sequence of Dda 1993.
SEQ ID NOs: 19 to 24 show the polynucleotide sequences used in the examples.
Detailed description of the invention
[0020] It is to be understood that different applications of the disclosed products and
methods may be tailored to the specific needs in the art. It is also to be understood
that the terminology used herein is for the purpose of describing particular embodiments
of the invention only, and is not intended to be limiting.
[0021] In addition as used in this specification and the appended claims, the singular forms
"a", "an", and "the" include plural referents unless the content clearly dictates
otherwise. Thus, for example, reference to "a mutant monomer" includes "mutant monomers",
reference to "a substitution" includes two or more such substitutions, reference to
"a pore" includes two or more such pores, reference to "a polynucleotide" includes
two or more such polynucleotides, and the like.
[0022] In this specification, where different amino acids at a specific positon are separated
by the symbol "/", the / symbol "/" means "or". For instance, P108R/K means P108R
or P108K. In this specification where different positions or different substitutions
are separated by the the symbol "/", the "/" symbol means "and". For example, E94/P108
means E94 and P108 or E94D/P108K means E94D and P108K.
[0023] All publications, patents and patent applications cited herein, whether supra or
infra, are hereby incorporated by reference in their entirety.
Mutant lysenin monomers
[0024] In one aspect, the present invention provides mutant lysenin monomers. The mutant
lysenin monomers may be used to form the pores of the invention. A mutant lysenin
monomer is a monomer whose sequence varies from that of a wild-type lysenin monomer
(e.g. SEQ ID NO: 2, SEQ ID NO: 14, SEQ ID NO: 15 or SEQ ID NO: 16). The mutant lysenin
monomer typically retains the ability to form a pore in the presence of other monomers
of the invention or other monomers from lysenin or derived from lysenin. The mutant
monomer is therefore typically capable of forming a pore. Methods for confirming the
ability of mutant monomers to form pores are well-known in the art and are described
in the Examples. For example, the formation of pores by be determined by electrophysiology.
The pores are typically inserted in a membrane, which may be, for example, a lipid
membrane or a block co-polymer membrane. Electrical or optical measurements may be
acquired from single lysenin pores, such as pores comprising one or more monomer of
the invention, inserted in a membrane. A potential difference may be applied across
the membrane and current flow through the membrane may be detected. Current flow may
be detected by any suitable method, such as by electrical or optical means. The ability
of the pore to translocate polynucleotides,
preferably single stranded polynucleotides, may be determined by adding a polynucleotide binding protein, DNA, fuel (e.g MgCl2,
ATP) pre-mix, applying a potential difference (of, for example 180 mV) and monitoring
current flow through the pore to detect polynucleotide binding protein-controlled
DNA movement.
[0025] The mutant monomers have an altered ability to interact with a polynucleotide when
present in a pore. Pores comprising one or more of the mutant monomers therefore have
improved nucleotide reading properties e.g. display (1) improved polynucleotide capture
and (2) improved polynucleotide recognition or discrimination. In particular, pores
constructed from the mutant monomers capture nucleotides and polynucleotides more
easily than the wild type. In addition, pores constructed from the mutant monomers
display an increased current range, which makes it easier to discriminate between
different nucleotides, and a reduced variance of states, which increases the signal-to-noise
ratio. In addition, the number of nucleotides contributing to the current as the polynucleotide
moves through pores constructed from the mutants is decreased. This makes it easier
to identify a direct relationship between the observed current as the polynucleotide
moves through the pore and the polynucleotide. The improved nucleotide reading properties
of the mutants are achieved via five main mechanisms, namely by changes in the:
- sterics (increasing or decreasing the size of amino acid residues);
- charge (e.g. introducing or removing -ve charge and/or introducing or removing +ve
charge);
- hydrogen bonding (e.g. introducing amino acids that can hydrogen bond to the base
pairs);
- pi stacking (e.g. introducing amino acids that interact through delocalised electron
pi systems); and/or
- alteration of the structure of the pore (e.g. introducing amino acids that increase
the size of the barrel or channel).
[0026] Any one or more of these five mechanisms may be responsible for the improved properties
of the pores formed from the mutant monomers of the invention. For instance, a pore
comprising a mutant monomer of the invention may display improved nucleotide reading
properties as a result of altered sterics, altered hydrogen bonding and an altered
structure.
[0027] A mutant monomer of the invention comprises a variant of the sequence shown in SEQ
ID NO: 2. SEQ ID NO: 2 is the wild-type sequence of the lysenin monomer. A variant
of SEQ ID NO: 2 is a polypeptide that has an amino acid sequence which varies from
that of SEQ ID NO: 2. Typically the variant retains its ability to form a pore.
[0028] Pores comprising one or more of the mutant monomers comprising a substitution at
S80, T106, T104 display improved polynucleotide capture. Particular examples of such
substitutions include S80K/R, T104R/K and T106R/K. Other substitutions at these positions
which increase the positive charge of the amino acid side chain at any one or more,
such as 2, 3, 4 or 5, of these positions may be used to improve the properties of
a pore comprising the mutant monomer, i.e. improve capture of the polynucleotide,
compared to a wild-type pore or a pore comprising a mutant monomer comprising other
capture enhancing mutations such as E84Q/E85K/E92Q/E97S/D126G, for example a pore
comprising a mutant monomer comprising only those mutations or a mutant monomer comprising
the following mutations E84Q/E85K/E92Q/E94D/E97S/D126G. Typically, where the improvement
is determined relative to a pore comprising other mutations, such as E84Q/E85K/E92Q/E97S/D126G
or E84Q/E85K/E92Q/E94D/E97S/D126G, those mutations are also present in the mutant
monomer being tested, i.e. the effect(s) of a mutation, or combination of mutations,
is(are) determined relative to a baseline monomer/pore that is identical to the monomer/pore
being tested other that at the test positions(s). The properties of a pore comprising
a mutant monomer or a control monomer may be determined using heterooligomeric pores,
or more preferably homooligomaric pores. Examples of preferred combinations of mutations
are described throughout the specification, for example in Table 9.
[0029] Pores comprising one or more of the mutant monomers comprising a substitution at
D35, K37, K45, V47, S49, E76, S78, S82, V88, S89, M90, T91, E92, E94, Y96, S98, V100,
T104 display improved polynucleotide recognition or discrimination. Particular examples
of such substitutions include D35N, K37N/S, K45R/K/D/T/Y/N, V47K/R, S49K/R/L, T51KE76S/N,
S78N, S82N, V88I, S89Q, M90I/A, T91S, E92D/E, E94D/Q/N, Y96D, S98Q, V100S and T104K.
These mutations may each decrease noise, increase current range and/or reduce channel
gating as described in Table 9. Other mutations that increase or decrease the size
of the amino acid side chain, increase or decrease the charge, result in the same
hydrogen bond formation and/or affect pi stacking in the same way as any one or more
of these exemplary mutations made be made to the specified positions in SEQ ID NO:
2 or to the corresponding position in a variant of SEQ ID NO: 2. The mutations may
be introduced individually or in combination. For example, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17 or 18 of these positions may be mutated to improve
the properties of a pore comprising the mutant monomer, i.e. improve signal to noise,
increase range and/or decrease channel gating such that polynucleotide recognition
or discrimination is improved, compared to a wild-type pore, a pore comprising a mutant
monomer comprising the mutations E84Q/E85K/E92QE97S/D126G, such as a monomer comprising
only those mutations, the mutations E84Q/E85K/E92Q/E94D/E97S/D126G, the mutations
E84Q/E85K/E92Q/E94Q/E97S/D126G and/or the mutations E84Q/E85K/E92Q/E94D/E97S/T106K/D126G.
Typically, where the improvement is determined relative to a pore comprising other
mutations, such as E84Q/E85K/E92Q/E97S/D126G, E84Q/E85K/E92Q/E94D/E97S/D126G, E84Q/E85K/E92Q/E94Q/E97S/D126G
or E84Q/E85K/E92Q/E94D/E97S/T106K/D126G, those mutations are also present in the mutant
monomer being tested, i.e. the effect(s) of a mutation, or combination of mutations,
is(are) determined relative to a baseline monomer/pore that is identical to the monomer/pore
being tested other that at the test positions(s). The properties of a pore comprising
a mutant monomer or a control monomer may be determined using heterooligomeric pores,
or more preferably homooligomaric pores. Examples of preferred combinations of mutations
are described throughout the specification, for example in Table 9.
[0030] Pores comprising one or more of the mutant monomers comprising a substitution at
E94 and/or Y96 may reduce the number of nucleotides contributing to the current as
the polynucleotide moves through pore compared to a wild-type pore or a pore comprising
a mutant monomer comprising the mutations E84Q/E85K/E92QE97S/D126G. For example, the
substitution Y96D/E may be made, preferably in combination with E94Q/D, to reduce
the size of the read head. A reduction in the number of nucleotides contributing to
the current as the polynucleotide moves through pore compared to a wild-type pore
or a pore comprising a mutant monomer comprising the mutations E84Q/E85K/E92QE97S/D126G
may also be achieved by deleting an even number of amino acids (typically one that
would be present in the lumen of the pore and an adjacent amino acid that would face
away from the lumen of the pore) from each of the two beta strands of the monomer
that form part of the barrel of the pore, i.e. positions corresponding to amino acids
34 to 65 and 74 to 107 of SEQ ID NO: 2, as described herein.
Modifications of the invention
[0031] The invention provides a mutant lysenin monomer in which the amino acid sequence
of the beta sheets that contribute to the structure of the barrel in a lysenin pore
are modified compared to wild-type lysenin and compared to lysenin mutants disclosed
in the art, for example in
WO 2013//153359. The modifications of the invention are in the region of the lysenin momomer corresponding
to amino acids 34 to 107 of SEQ ID NO: 2, particularly amino acids 34 to 65 and 74
to 107 of SEQ ID NO: 2. The corresponding regions of LR1, LR2 and LR3 monomers are
shown in the alignment of Figure 8.
[0032] The invention provides a mutant lysenin monomer comprising a variant of the sequence
shown in SEQ ID NO: 2, wherein the monomer is capable of forming a pore and wherein
the variant comprises a modification at one or more, such as from 2 to 22, 3 to 20,
4 to 15, 5 to 10, 6, 7, 8 or 9, of the following positions K37, G43, K45, V47, S49,
T51, H83, V88, T91, T93, V95, Y96, S98, K99, V100, I101, P108, P109, T110, S111, K112
and T114. The variant may comprise modifications at any number and any combination
of the positions. In one aspect, the modification may be a substitution, deletion
or addition of an amino acid and is preferably a substitution or a deletion mutation.
Preferred modifications are discussed below under the heading "Further modifications".
The mutant lysenin monomer may comprise modification at other positions of SEQ ID
NO: 2. For example, in addition to one or more, such as 2 to 20, 3 to 15, 4 to 10
or 6 to 8, modifications of the invention, the mutant lysenin monomer may have one
or more, such as 2 to 20, 3 to 15, 4 to 10 or 6 to 8, amino acid substituons or deletions
in the sequence of SEQ ID NO: 2 that are described in the art, for example in
WO 2013/153359.
[0033] The variant preferably comprises a modification at one or more of the following positions
T91, V95, Y96, S98, K99, V100, I101 and K112. The variant may have modifications at
any number and any combination of the positions. The modification is preferably substitution
with serine (S) or glutamine (Q). The variant preferably comprises one or more of
the substitutions T91S, V95S, Y96S, S98Q, K99S, V100S, I101S and K112S. The variant
may comprise any number and any combination of these substitutions.
[0034] The variant preferably comprises a modification at one or more of the following positions
K37, G43, K45, V47, S49, T51, H83, V88, T91, T93, Y96, S98, K99, P108, P109, T110,
S111 and T114. The variant may comprise modifications at any number and any combination
of the positions. The modification is preferably substitution with asparagine (N),
tryptophan (W), serine (S), glutamine (Q), lysine (K), aspartic acid (D), arginine
(R), threonine (T), tyrosine (Y), leucine (L) or isoleucine (I). The variant preferably
comprises one or more of the substitutions K37N/W/S/Q, G43K, K45D/R/N/Q/T/Y, V47K/S/N,
S49K/L, T51K, H83S/K, V88I/T, T91K, T93K, Y96D, S98K, K99Q/L, P108K/R, P109K, T110K/R,
S111K and T114K. The variant preferably comprises modifications at one or more of
the following positions:
E94/P108; |
E94/Y96/T106; |
E94/P109; |
K45/E94/T106; |
E94/T110; |
K45/E94/T106; |
E94/P108; |
E94/S98/K99/T106; |
E94D/T110R; |
K37/E94/T106; |
E94D/S111K; |
K37/E94/T106; |
E94D/T114K; |
K37/E94/T106; |
H83S/E94Q; |
K45/E94/T106; |
E94/K99/T106; |
K37/E94/E102/T106; |
E94/T93/T106; |
K37/E94/E102/T106; |
E94/T91/T106; |
K37/E94/T104/T106; |
H83/E94/T106; |
K45/E94/T106; |
K45/V47/E94/T106; |
G43/E94/T106; |
V47/E94/T106; |
V88/M90/E94/T106; |
T51/E94/T106; |
V47/V88/E94/T106; |
K45/S49/E94/T106; |
K45/S49/E94/E92/T106; |
S49/E94/T106; |
K45/V47/E92/E94/T106; and |
K45/T106; |
E94/K99/T106. |
V47/E94/T106; |
|
[0035] The variant preferably comprises one or more of the substitutions:
E94D/P108K; |
K45N/E94N/T106K; |
E94D/P109K; |
K37Q/E94D/E102N/T106K; |
E94D/T110K; |
K37S/E94D/E102S/T106K; |
E94D/P108R; |
K37S/E94D/T104K/T106K; |
E94D/T110R; |
K45Q/E94Q/T106K; |
E94D/S 111K; |
K45T/V47K/E94D/T106K; |
E94D/T114K; |
V47S/E94D/T106K; |
H83S/E94Q; |
T51K/E94D/T106K; |
E94D/K99Q/T106K; |
K45Y/S49K/E94D/T106K; |
E94D/T93K/T106K; |
S49L/E94D/T106K; |
E94D/T91K/T106K; |
K45R/T106K; |
H83K/E94D/T106K; |
V47K/E94D/T106K; |
E94Q/Y96D/T106K; |
G43K/E94D/T106K; |
K45D/E94K/T106K; |
V88I/M90A/E94D/T106K; |
K45R/E94D/T106K; |
V47N/V88T/E94D/T106K; |
E94D/S98K/K99L/T106K; |
K45N/S49K/E94N/E92D/T106K; |
K37N/E94D/T106K; |
K45N/V47K/E92D/E94N/T106K; and |
K37W/E94D/T106K; |
E94D/K99Q/T106K. |
K37S/E94D/T106K; |
|
[0036] The invention also provides a mutant lysenin monomer comprising a variant of the
sequence shown in SEQ ID NO: 2, wherein the monomer is capable of forming a pore and
wherein the variant comprises one or more of the substitutions:
D35N/S;
S74K/R;
E76D/N;
S78R/K/N/Q;
S80K/R/N/Q;
S82K/R/N/Q;
E84R/K/N/A;
E85N;
S86K/Q;
S89K;
M90K/I/A;
E92D/S;
E94D/Q/G/A/K/R/S/N;
E102N/Q/D/S;
T104R/K/Q;
T106R/K/Q;
R115S;
Q117S; and
N119S.
[0037] The variant may comprise any number and any combination of these substitutions. The
variant preferably comprises one or more of the substitutions E94D/Q/G/A/K/R/S, S86Q
and E92S, such as E94D/Q/G/A/K/R/S; S86Q; E92S; E94D/Q/G/A/K/R/S and S86Q; E94D/Q/G/A/K/R/S
and E92S; S86Q and E92S; or E94D/Q/G/A/K/R/S, S86Q and E92S.
[0038] The variant preferably comprises one or more of the substitutions
D35N/S;
S74K/R;
E76D/N;
S78R/K/N/Q;
S80K/R/N/Q;
S82K/R/N/Q;
E84R/K/N/A;
E85N;
S86K;
S89K;
M90K/I/A;
E92D;
E94D/Q/K/N;
E102N/Q/D/S;
T104R/K/Q;
T106R/K/Q;
R115S;
Q117S; and
N119S.
[0039] The variant may comprise any number and combination of these substitutions.
[0040] The variant preferably comprises one or more of the substitutions
E94D/E102N; |
E94D/S111K; |
E94D/E102Q; |
E94D/T114K; |
E94D/S80K; |
E76N/E94Q; |
S82K/E94D; |
S78Q/E94Q; |
E94D/T106R; |
S80Q/E94Q; |
E94D/T106K; |
S82Q/E94Q; |
E94D/T104R; |
H83S/E94Q; |
E94D/T104K; |
E84A/E94Q; |
S78R/E94D; |
E84K/E94Q; |
S78K/E94D; |
E94Q/T104Q; |
S80R/E94D; |
E94Q/T106Q; |
S82R/E94D; |
E94Q/R115S; |
E76D/E94D; |
E94Q/Q117S; |
E76N/E94D; |
E94Q/N119S; |
E94D/E102D; |
E94Q/D121S; |
E84R/E94D; |
E76S/E94Q; |
E84K/E94D; |
E94D/K99Q/T106K; |
E84N/E94D; |
E94D/T93K/T106K; |
S78N/E94D; |
E94D/T91K/T106K; |
S80N/E94D; |
E94D/M90K/T106K; |
S82N/E94D; |
E85N/E94D/T106K; |
E94D/P108K; |
H83K/E94D/T106K; |
E94D/P109K; |
E94Q/Y96D/T106K; |
S74K/E94D; |
K45D/E94K/T106K; |
E94D/T110K; |
K45R/E94D/T106K; |
S74R/E94D; |
E94D/S98K/K99L/T106K; |
E94D/P108R; |
D35N/E94D/T106K; |
E94D/T110R; |
D35S/E94D/T106K; |
S86K/E94D; |
K37N/E94D/T106K; |
S89K/E94D; |
K37W/E94D/T106K; |
K37S/E94D/T106K; |
K45Y/S49K/E94D/T106K; |
K45N/E94N/T106K; |
S49L/E94D/T106K; |
E92D/E94Q/T106K; |
K45R/T106K; |
K37Q/E94D/E102N/T106K; |
V47K/E94D/T106K; |
E94Q/T106K; |
G43K/E94D/T106K; |
K37S/E94D/E102S/T106K; |
V88I/M90A/E94D/T106K; |
K37S/E94D/T104K/T106K; |
V47N/V88T/E94D/T106K; |
K45Q/E94Q/T106K; |
K45N/S49K/E94N/E92D/T106K; |
M90I/E94D/T106K; |
K45N/V47K/E92D/E94N/T106K; |
K45T/V47K/E94D/T106K; |
E94D/K99Q/T106K; |
V47S/E94D/T106K; |
S82K/E94D/T106K; and |
T51K/E94D/T106K; |
Y79S/E94Q. |
[0041] The variant may comprise any number and any combination of these substitutions.
[0042] The invention also provides a mutant lysenin monomer comprising a variant of the
sequence shown in SEQ ID NO: 2, wherein the monomer is capable of forming a pore and
wherein the variant comprises mutations at one or more of
D35/E94/T106;
K37/E94/E102/T106;
K37/E94/T104/T106;
K37/E94/T106;
K37/E94/E102/T106;
G43/E94/T106;
K45/V47/E92/E94/T106;
K45/V47/E94/T106;
K45/S49/E92/E94/T106;
K45/S49/E94/T106;
K45/E94/T106;
K45/T106;
V47/E94/T106;
V47/V88/E94/T106;
S49/E94/T106 ;
T51/E94D/T106;
S74/E94;
E76/E94;
S78/E94;
Y79/E94;
S80/E94;
S82/E94;
S82/E94/T106 ;
H83/E94;
H83/E94/T106;
E85/E94/T106;
S86/E94;
V88/M90/E94/T106;
S89/E94;
M90/E94/T106;
T91/E94/T106;
E92/E94/T106;
T93/E94/T106;
E94/Y96/T106;
E94/S98/K99/T106;
E94/K99/T106;
E94/E102;
E94/T104;
E94/T106;
E94/P108;
E94/P109;
E94/T110;
E94/S111;
E94/T114;
E94/R115;
E94/Q117; and
E94/E119.
[0043] The variant preferably comprises one or more of substitutions:
D35N/E94D/T106K;
D35S/E94D/T106K;
K37Q/E94D/E102N/T106K;
K37S/E94D/E102S/T106K;
K37S/E94D/T104K/T106K;
K37N/E94D/T106K;
K37W/E94D/T106K;
K37S/E94D/T106K;
G43K/E94D/T106K;
K45N/V47K/E92D/E94N/T106K;
K45T/V47K/E94D/T106K;
K45N/S49K/E94N/E92D/T106K;
K45Y/S49K/E94D/T106K;
K45D/E94K/T106K;
K45R/E94D/T106K;
K45N/E94N/T106K;
K45Q/E94Q/T106K;
K45R/T106K;
V47S/E94D/T106K;
V47K/E94D/T106K;
V47N/V88T/E94D/T106K;
S49L/E94D/T106K;
T51K/E94D/T106K;
S74K/E94D;
S74R/E94D;
E76D/E94D;
E76N/E94D;
E76S/E94Q;
E76N/E94Q;
S78R/E94D;
S78K/E94D;
S78N/E94D;
S78Q/E94Q;
Y79S/E94Q;
S80K/E94D;
S80R/E94D;
S80N/E94D;
S80Q/E94Q;
S82K/E94D;
S82R/E94D;
S82N/E94D;
S82Q/E94Q;
S82K/E94D/T106K;
H83S/E94Q;
H83K/E94D/T106K;
E85N/E94D/T106K;
S86K/E94D;
V881/M90A/E94D/T106K;
S89K/E94D;
M90K/E94D/T106K;
M901/E94D/T106K;
T91K/E94D/T106K;
E92D/E94Q/T106K;
T93K/E94D/T106K;
E94Q/Y96D/T106K;
E94D/S98K/K99L/T106K;
E94D/K99Q/T106K;
E94D/E102N;
E94D/E102Q;
E94D/E102D;
E94D/T104R;
E94D/T104K;
E94Q/T104Q;
E94D/T106R;
E94D/T106K;
E94Q/T106Q;
E94Q/T106K;
E94D/P108K;
E94D/P108R;
E94D/P109K;
E94D/T110K;
E94D/T110R;
E94D/S111K;
E94D/T114K;
E94Q/R115S;
E94Q/Q117S; and
E94Q/N119S.
[0044] The variant may comprise any number and any combination of these substitutions.
[0045] The invention also provides a mutant lysenin monomer comprising a variant of the
sequence shown in SEQ ID NO: 2, wherein the monomer is capable of forming a pore and
wherein the variant comprises one or more of the substitutions
E84R/E94D;
E84K/E94D;
E84N/E94D;
E84A/E94Q;
E84K/E94Q and
E94Q/D121S.
[0046] The variant may comprise any number and any combination of these substitutions.
[0047] The mutant monomer of the invention preferably comprises any combination of the modifications
and/or substitutions defined above. Exemplary combinations are disclosed in the Examples.
Barrel deletions
[0048] In another embodiment, the invention also provides a mutant lysenin monomer comprising
a variant of the sequence shown in SEQ ID NO: 2, wherein in the variant (a) 2, 4,
6, 8, 10, 12, 14, 16, 18 or 20 of the amino acids at positions 34 to 70 of SEQ ID
NO: 2 have been deleted, or wherein the amino acid residues at positions corresponding
to positions 34 to 70 of SEQ ID NO: 2 have been deleted, and (b) 2, 4, 6, 8, 10, 12,
14, 16, 18 or 20 of the amino acids at positions 71 to 107 of SEQ ID NO: 2 have been
deleted, or wherein the amino acid residues at positions corresponding to positions
71 to 107 of SEQ ID NO: 2 have been deleted,.
[0049] The number of amino acids deleted from positions 34 to 70 may be different from the
number of amino acids deleted from positions 71 to 107. The number of amino acids
deleted from positions 34 to 70 is preferably the same as the number of amino acids
deleted from positions 71 to 107.
[0050] Any combination of amino acids from positions 34 to 70 and amino acids from positions
71 to 107 may be deleted. The positions of the amino acids that have been deleted
are preferably shown in a row of Table 1 or 2 or more than one row of Table 1 and/or
2. For instance, if D35 and V34 are deleted from positions 34 to 70, T104 and 1105
may be deleted from positions 71 to 107. Similarly, D35, V34, K37 and 138 may be deleted
from positions 34 to 70 and E102, H103, T104 and 1105 may be deleted from positions
71 to 107. This ensures the maintenance of the beta sheet structure lining the barrel
of the pore.
Table 1
Residue for deletion facing into barrel between V34 and F70 |
Corresponding residue for deletion facing out to membrane between V34 and F70 |
Residue for deletion facing into barrel between 1107 and E71 |
Corresponding residue for deletion facing out to membrane 1107 and E71 |
D35 |
V34 |
T104 |
1105 |
D35 |
V34 |
T104 |
H103 |
D35 |
Q36 |
T104 |
1105 |
D35 |
Q36 |
T104 |
H103 |
K37 |
Q36 |
E102 |
H103 |
K37 |
Q36 |
E102 |
1101 |
K37 |
138 |
E102 |
H103 |
K37 |
138 |
E102 |
1101 |
T39 |
138 |
V100 |
1101 |
T39 |
138 |
V100 |
K99 |
T39 |
140 |
V100 |
1101 |
T39 |
140 |
V100 |
K99 |
T41 |
140 |
S98 |
K99 |
T41 |
140 |
S98 |
E97 |
T41 |
K42 |
S98 |
K99 |
T41 |
K42 |
S98 |
E97 |
G43 |
K42 |
Y96 |
E97 |
G43 |
K42 |
Y96 |
V95 |
G43 |
M44 |
Y96 |
E97 |
G43 |
M44 |
Y96 |
V95 |
K45 |
M44 |
E94 |
V95 |
K45 |
M44 |
E94 |
T93 |
K45 |
N46 |
E94 |
V95 |
K45 |
N46 |
E94 |
T93 |
V47 |
N46 |
E92 |
T93 |
V47 |
N46 |
E92 |
T91 |
V47 |
N48 |
E92 |
T93 |
V47 |
N48 |
E92 |
T91 |
S49 |
N48 |
M90 |
T91 |
S49 |
N48 |
M90 |
S89 |
S49 |
E50 |
M90 |
T91 |
S49 |
E50 |
M90 |
S89 |
T51 |
E50 |
V88 |
S89 |
T51 |
E50 |
V88 |
Q87 |
T51 |
R52 |
V88 |
S89 |
T51 |
R52 |
V88 |
Q87 |
T53 |
R52 |
S86 |
Q87 |
T53 |
R52 |
S86 |
E85 |
T53 |
V54 |
S86 |
Q87 |
T53 |
V54 |
S86 |
E85 |
T55 |
V54 |
E84 |
E85 |
T55 |
V54 |
E84 |
H83 |
T55 |
A56 |
E84 |
E85 |
T55 |
A56 |
E84 |
H83 |
T57 |
A56 |
S82 |
H83 |
T57 |
A56 |
S82 |
H81 |
T57 |
H58 |
S82 |
H83 |
T57 |
H58 |
S82 |
H81 |
S59 |
H58 |
S80 |
H81 |
S59 |
H58 |
S80 |
Y79 |
S59 |
160 |
S80 |
H81 |
S59 |
160 |
S80 |
Y79 |
G61 |
160 |
S78 |
Y79 |
G61 |
160 |
S78 |
V77 |
G61 |
S62 |
S78 |
Y79 |
G61 |
S62 |
S78 |
V77 |
T63 |
S62 |
E76 |
V77 |
T63 |
S62 |
E76 |
V75 |
T63 |
164 |
E76 |
V77 |
T63 |
164 |
E76 |
V75 |
S65 |
164 |
S74 |
V75 |
S65 |
164 |
S74 |
G73 |
S65 |
T66 |
S74 |
V75 |
S65 |
T66 |
S74 |
G73 |
G67 |
T66 |
172 |
G73 |
G67 |
T66 |
172 |
E71 |
G67 |
D68 |
172 |
G73 |
G67 |
D68 |
172 |
E71 |
A69 |
D68 |
172 |
G73 |
A69 |
D68 |
172 |
E71 |
A69 |
D70 |
172 |
G73 |
A69 |
D70 |
172 |
E71 |
Table 2
Residue for deletion facing into barrel between 1107 and E71 |
Corresponding residue for deletion facing out to membrane 1107 and E71 |
Residue for deletion facing into barrel between V34 and F70 |
Corresponding residue for deletion facing out to membrane between V34 and F70 |
T106 |
1107 |
D35 |
V34 |
T106 |
1107 |
D35 |
Q36 |
T106 |
1105 |
D35 |
V34 |
T106 |
1105 |
D35 |
Q36 |
T104 |
1105 |
D35 |
V34 |
T104 |
1105 |
D35 |
Q36 |
T104 |
H103 |
D35 |
V34 |
T104 |
H103 |
D35 |
Q36 |
E102 |
H103 |
K37 |
Q36 |
E102 |
H103 |
K37 |
138 |
E102 |
1101 |
K37 |
Q36 |
E102 |
1101 |
K37 |
138 |
V100 |
1101 |
T39 |
138 |
V100 |
1101 |
T39 |
140 |
V100 |
K99 |
T39 |
138 |
V100 |
K99 |
T39 |
140 |
S98 |
K99 |
T41 |
140 |
S98 |
K99 |
T41 |
K52 |
S98 |
E97 |
T41 |
140 |
S98 |
E97 |
T41 |
K52 |
Y96 |
E97 |
G43 |
K52 |
Y96 |
E97 |
G43 |
M44 |
Y96 |
V95 |
G43 |
K52 |
Y96 |
V95 |
G43 |
M44 |
E94 |
V95 |
K45 |
M44 |
E94 |
V95 |
K45 |
N46 |
E94 |
T93 |
K45 |
M44 |
E94 |
T93 |
K45 |
N46 |
E92 |
T93 |
V47 |
N46 |
E92 |
T93 |
V47 |
N48 |
E92 |
T91 |
V47 |
N46 |
E92 |
T91 |
V47 |
N48 |
M90 |
T91 |
S49 |
N48 |
M90 |
T91 |
S49 |
E50 |
M90 |
S89 |
S49 |
N48 |
M90 |
S89 |
S49 |
E50 |
V88 |
S89 |
T51 |
E50 |
V88 |
S89 |
T51 |
R52 |
V88 |
Q87 |
T51 |
E50 |
V88 |
Q87 |
T51 |
R52 |
S86 |
Q87 |
T53 |
R52 |
S86 |
Q87 |
T53 |
V54 |
S86 |
E85 |
T53 |
R52 |
S86 |
E85 |
T53 |
V54 |
E84 |
E85 |
T55 |
V54 |
E84 |
E85 |
T55 |
A56 |
E84 |
H83 |
T55 |
V54 |
E84 |
H83 |
T55 |
A56 |
S82 |
H83 |
T57 |
A56 |
S82 |
H83 |
T57 |
H58 |
S82 |
H81 |
T57 |
A56 |
S82 |
H81 |
T57 |
H58 |
S80 |
H81 |
S59 |
H58 |
S80 |
H81 |
S59 |
160 |
S80 |
Y79 |
S59 |
H58 |
S80 |
Y79 |
S59 |
160 |
S78 |
Y79 |
G61 |
160 |
S78 |
Y79 |
G61 |
S62 |
S78 |
V77 |
G61 |
160 |
S78 |
V77 |
G61 |
S62 |
E76 |
V77 |
T63 |
S62 |
E76 |
V77 |
T63 |
164 |
E76 |
V75 |
T63 |
S62 |
E76 |
V75 |
T63 |
164 |
S74 |
V75 |
S65 |
164 |
S74 |
V75 |
S65 |
T66 |
S74 |
G73 |
S65 |
164 |
S74 |
G73 |
S65 |
T66 |
172 |
G73 |
G67 |
T66 |
172 |
G73 |
G67 |
D68 |
172 |
E71 |
G67 |
T66 |
172 |
E71 |
G67 |
D68 |
172 |
G73 |
A69 |
D68 |
172 |
G73 |
A69 |
F70 |
172 |
E71 |
A69 |
D68 |
172 |
E71 |
A69 |
F70 |
[0051] The amino acids deleted from positions 34 to 70 and from positions 71 to 107 do not
have to be in a row of Table 1 or 2. For instance, if D35 and V34 are deleted from
positions 34 to 70, I72 and E71 may be deleted from positions 71 to 107.
[0052] The amino acids deleted from positions 34 to 70 are preferably consecutive. The amino
acids deleted from positions 71 to 107 are preferably consecutive. The amino acids
deleted from positions 34 to 70 and the amino acids deleted from positions 71 to 107
are preferably consecutive.
[0053] The invention preferably provides mutant monomers in which the following have been
deleted:
- (i) N46/V47/T91/T92; or
- (ii) N48/S49/T91/T92.
[0054] The skilled person can identify other combinations of amino acids that may be deleted
in accordance with the invention. The following discussion uses the numbering of residues
in SEQ ID NO: 2 (i.e. before any amino acids have been deleted as defined above).
[0055] The barrel deletion variants further preferably comprise, where appropriate, any
of the modifications and/or substitutions discussed above or below. By "where appropriate",
we mean if the positions are still present in the mutant monomer following the barrel
deletions.
Chemical modifications
[0056] In another aspect, the invention provides a mutant lysenin monomer that is chemically-modified.
The mutant monomer may be any of those discussed above or below. As a result, a mutant
monomer of the invention, such as a variant of SEQ ID NO: 2 comprising a modification
at one or more of the following positions K37, G43, K45, V47, S49, T51, H83, V88,
T91, T93, V95, Y96, S98, K99, V100, I101, P108, P109, T110, S111, K112 and T114 or
a variant comprising the barrel deletions discussed above, may be chemically-modified
in accordance with the invention as discussed below.
[0057] A mutant monomer comprising any of the further modifications discussed below, i.e.
comprising one or more modifications within the region of from about position 44 to
about position 126 of SEQ ID NO: 2 which alter the ability of the monomer, or preferably
the region, to interact with a polynucleotide, may be chemically modified. These chemically
modified monomers need not comprise a modification of the invention, i.e. need not
comprise a modification at one or more of the following positions K37, G43, K45, V47,
S49, T51, H83, V88, T91, T93, V95, Y96, S98, K99, V100, I101, P108, P109, T110, S111,
K112 and T114. A chemically-modified mutant monomer preferably comprises a variant
of SEQ ID NO: 2 which comprises a substitution at one or more of the following positions
of SEQ ID NO: 2 (a) E84, E85, E92, E97 and D126; (b) E85, E97 and D126 or (c) E84
and E92. Any number and combination of the substitutions discussed below may be made.
[0058] The mutant monomer can be chemically-modified in any way such that the diameter of
the barrel or channel of a pore formed from the monomer is reduced or narrowed. This
is discussed in more detail below.
[0059] The chemical modification is such that a chemical molecule is preferably covalently
attached to the mutant monomer. The chemical molecule can be covalently attached to
the mutant monomer using any method known in the art. The chemical molecule is typically
attached via chemical linkage.
[0060] The mutant monomer is preferably chemically modified by attachment of a molecule
to one or more cysteines (cysteine linkage), attachment of a molecule to one or more
lysines, attachment of a molecule to one or more non-natural amino acids or enzyme
modification of an epitope. If the chemical modifier is attached via cysteine linkage,
the one or more cysteines have preferably been introduced to the mutant monomer by
substitution. Suitable methods for carrying out such modifications are well-known
in the art. Suitable non-natural amino acids include, but are not limited to, 4-azido-L-phenylalanine
(Faz) and any one of the amino acids numbered 1-71 in Figure 1 of
Liu C. C. and Schultz P. G., Annu. Rev. Biochem., 2010, 79, 413-444.
[0061] The mutant monomer may be chemically modified by the attachment of any molecule which
has the effect of reducing or narrowing the diameter of the barrel of a pore formed
from the monomer at any location or site. For instance, the mutant monomer may be
chemically modified by attachment of: (i) Maleimides such as: 4-phenylazomaleinanil,
1.N-(2-Hydroxyethyl)maleimide, N-Cyclohexylmaleimide, 1.3-Maleimidopropionic Acid,
1.1-4-Aminophenyl-1H-pyrrole,2,5,dione, 1.1-4-Hydroxyphenyl-1H-pyrrole,2,5,dione,
N-Ethylmaleimide, N-Methoxycarbonylmaieimide, N-tert-Butylmaleimide, N-(2-Aminoethyl)maleimide
, 3-Maleimido-PROXYL , N-(4-Chlorophenyl)maieimide, 1-[4-(diniethylamino)-3,5-dimtrophenyl]-1H-pyrrole-2,5-dione,
N-[4-(2-Benzimidazolyl)phenyl]maleimide, N-[4-(2-benzoxazolyl)phenyl]maleimide, N-(1-NAPHTHYL)-MALEIMIDE,
N-(2,4-XYLYL)MALEIMlDE, N(2,4-DIFLUOROPHENYL)MALEIMIDE , N-(3-CHLORO-PARA-TOLYL)-MALEIMIDE
, 1-(2-Amino-ethyl)-pyrrole-2,5-dione hydrochloride, 1-cyclopentyl-3-methyl-2,5-dihydro-1H-pyrrole-2,5-dione,
1-(3-aminopropyl)-2,5-dihydro-1H-pyrrole-2,5-dione hydrochloride, 3-methyl-1-[2-oxo-2-(piperazin-1-yl)ethyl]-2,5-dihydro-1H-pyrrole-2,5-dione
hydrochloride, 1-benzyl-2,5-dihydro-1H-pyrrole-2,5-dione, 3-methyl-1-(3,3,3-trifluropropyl)-2,5-dihydro-1H-pyrrole-2,5-dione,
1-[4-(methylamino)cyclohexyl]-2,5-dihydro-1H-pyrrole-2,5-dione trifluroacetic acid,
SMILES O=C1C=CC(=O)N1CC=2C=CN=CC2, SMILES O=C1C=CC(=O)N1CN2CCNCC2, 1-benzyl-3-methyl-2,5-dihydro-1H-pyrrole-2,5-dione,
1-(2-fluorophenyl)-3-methyl-2,5-dihydro 1H-pyrrole-2,5-dione, N-(4-PHENOXYPHENYL)MALEIMIDE
, N-(4-NITROPHENYL)MALEIMIDE; (ii) Iodocetamides such as :3-(2-Iodoacetamido)-PROXYL,
N-(cyclopropylmethyl)-2-iodoacetamide, 2-iodo-N-(2-phenylethyl)acetamide, 2-iodo-N-(2,2,2-trifluoroethyl)acetamide,
N-(4-ACETYLPHENYL)-2-IODOACETA-MIDE, N-(4-(AMINOSULFONYL)PHENYL)-2-IODOACETAMIDE,
N-(1,3-BENZOTHIAZOL-2-YL)-2-IODOACETAMIDE, N-(2,6-DIETHYLPHENYL)-2-IODOACETAMIDE,
N-(2-benzoyl-4-chlorophenyl)-2-iodoacetamide; (iii) Bromoacetamides: such as N-(4-(ACETYLAMINO)PHENYL)-2-BROMOACETAMIDE
, N-(2-ACETYLPHENYL)-2-BROMOACETAMIDE , 2-BROMO-N-(2-CYANOPHENYL)ACETAMIDE, 2-BROMO-N-(3-(TRIFLUOROMETHYL)PHENYL)ACETAMIDE,
N-(2-benzoylphenyl)-2-bromoacetamide , 2-bromo-N-(4-fluoropbenyl)-3-methylbutanamide,
N-Benzyl-2-bromo-
N-phenylpropionamide, N-(2-BROMO-BUTYRYL)-4-CHLORO-BENZENESULFONAMIDE, 2-Bromo-N-methyl-N-phenylacetamide,
2-bromo-N-phenethyl-acetamide,2-ADAMANTAN-1-YL-2-BROMO-N-CYCLOHEXYL-ACETAMIDE, 2-bromo-N-(2-methylphenyl)butanamide,
Monobromoacetanilide; (iv) Disulphides such as: ALDRITHIOL-2 , ALDRITHIOL-4 , ISOPROPYL
DISULFIDE, 1-(Isobutyldisulfanyl)-2-methylpropane, Dibenzyl disulfide, 4-AMINOPHENYL
DISULFIDE, 3-(2-Pyridyldithio)propionic acid, 3-(2-Pyridyldithio)propionic acid hydrazide,
3-(2-Pyridyldithio)propionic acid N-succinimidyl ester, am6amPDP1-βCD; and (v) Thiols
such as: 4-Phenylthiazole-2-thiol, Purpald, 5,6,7,8-TETRAHYDRO-QUINAZOLINE-2-THIOL.
[0062] The mutant monomer may be chemically modified by attachment of polyethylene glycol
(PEG), a nucleic acid, such as DNA, a dye, a fluorophore or a chromophore. In some
embodiments, the mutant monomer is chemically modified with a molecular adaptor that
facilitates the interaction between a pore comprising the monomer and a target analyte,
a target nucleotide or target polynucleotide. The presence of the adaptor improves
the host-guest chemistry of the pore and the nucleotide or polynucleotide and thereby
improves the sequencing ability of pores formed from the mutant monomer.
[0063] The chemically-modified mutant monomer preferably comprises a variant of the sequence
shown in SEQ ID NO: 2. Variants are defined below. The variant typically comprises
one or more substitutions in which one or more residues are replaced with cysteine,
lysine or a non-natural amino acid. Non-natural amino acids include, but are not limited,
to 4-Azido-L-phenylalanine (Faz), 4-Acetyl-L-phenylalanine, 3-Acetyl-L-phenylalanine,
4-Acetoacetyl-L-phenylalanine, O-Allyl-L-tyrosine, 3-(Phenylselanyl)-L-alanine, O-2-Propyn-1-yl-L-tyrosine,
4-(Dihydroxyboryl)-L-phenylalanine, 4-[(Ethylsulfanyl)carbonyl]-L-phenylalanine, (2
S)-2-amino-3-4-[(propan-2-ylsulfanyl)carbonyl]phenyl;propanoic acid, (2
S)-2-amino-3-4-[(2-amino-3-sulfanylpropanoyl)amino]phenyl;propanoic acid, O-Methyl-L-tyrosine,
4-Amino-L-phenylalanine, 4-Cyano-L-phenylalanine, 3-Cyano-L-phenylalanine, 4-Fluoro-L-phenylalanine,
4-Iodo-L-phenylalanine, 4-Bromo-L-phenylalanine, O-(Trifluoromethyl)tyrosine, 4-Nitro-L-phenylalanine,
3-Hydroxy-L-tyrosine, 3-Amino-L-tyrosine, 3-Iodo-L-tyrosine, 4-Isopropyl-L-phenylalanine,
3-(2-Naphthyl)-L-alanine, 4-Phenyl-L-phenylalanine, (2
S)-2-amino-3-(naphthalen-2-ylamino)propanoic acid, 6-(Methylsulfanyl)norleucine, 6-Oxo-L-lysine,
D-tyrosine, (2R)-2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid, (2R)-2-Ammoniooctanoate3-(2,2'-Bipyridin-5-yl)-D-alanine,
2-amino-3-(8-hydroxy-3-quinolyl)propanoic acid, 4-Benzoyl-L-phenylalanine, S-(2-Nitrobenzyl)cysteine,
(2
R)-2-amino-3-[(2-nitrobenzyl)sulfanyl]propanoic acid, (2
S)-2-amino-3-[(2-nitrobenzyl)oxy]propanoic acid, O-(4,5-Dimethoxy-2-nitrobenzyl)-L-serine,
(2
S)-2-amino-6-([(2-nitrobenzyl)oxy]carbonyl;amino)hexanoic acid, O-(2-Nitrobenzyl)-L-tyrosine,
2-Nitrophenylalanine, 4-[(E)-Phenyldiazenyl]-L-phenylalanine, 4-[3-(Trifluoromethyl)-3H-diaziren-3-yl]-D-phenylalanine,
2-amino-3-[[5-(dimethylamino)-1-naphthyl]sulfonylamino]propanoic acid, (2
S)-2-amino-4-(7-hydroxy-2-oxo-2
H-chromen-4-yl)butanoic acid, (2
S)-3-[(6-acetylnaphthalen-2-yl)amino]-2-aminopropanoic acid, 4-(Carboxymethyl)phenylalanine,
3-Nitro-L-tyrosine, O-Sulfo-L-tyrosine, (2R)-6-Acetamido-2-ammoniohexanoate, 1-Methylhistidine,
2-Aminononanoic acid, 2-Aminodecanoic acid, L-Homocysteine, 5-Sulfanylnorvaline, 6-Sulfanyl-L-norleucine,
5-(Methylsulfanyl)-L-norvaline, N
6-[(2R,3R)-3-Methyl-3,4-dihydro-2H-pyrrol-2-yl]carbonyl;-L-lysine, N
6-[(Benzyloxy)carbonyl]lysine, (2
S)-2-amino-6-[(cyclopentylcarbonyl)amino]hexanoic acid, N
6-[(Cyclopentyloxy)carbonyl]-L-lysine, (2
S)-2-amino-6-[(2
R)-tetrahydrofuran-2-ylcarbonyl]amino;hexanoic acid, (2
S)-2-amino-8-[(2
R,3
S)-3-ethynyltetrahydrofuran-2-yl]-8-oxooctanoic acid, N
6-(tert-Butoxycarbonyl)-L-lysine, (2S)-2-Hydroxy-6-([(2-methyl-2-propanyl)oxy]carbonyl;amino)hexanoic
acid, N
6-[(Allyloxy)carbonyl]lysine, (2
S)-2-amino-6-([(2-azidobenzyl)oxy]carbonyl;amino)hexanoic acid, N
6-L-Prolyl-L-lysine, (2
S)-2-amino-6-[(prop-2-yn-1-yloxy)carbonyl]amino;hexanoic acid and N
6-[(2-Azidoethoxy)carbonyl]-L-lysine. The most preferred non-natural amino acid is
4-azido-L-phenylalanine (Faz).
[0064] The mutant monomer may be chemically modified by the attachment of any molecule at
any of positions of SEQ ID NO: 2: K37, V47, S49, T55, S86, E92 and E94. More preferably,
the mutant monomer may be chemically modified by the attachment of any molecule at
position E92 and/or E94. In one embodiment, the mutant monomer is chemically modified
by attachment of a molecule to one or more cysteines (cysteine linkage), one or more
lysines or one or more non-natural amino acids at these positions. The mutant monomer
preferably comprises a variant of the sequence shown in SEQ ID NO: 2 comprising one
or more of K37C, V47C, S49C, T55C, S86C, E92C and E94C wherein one or more molecules
are attached to the one or more introduced cysteines. The mutant monomer more preferably
comprises a variant of the sequence shown in SEQ ID NO: 2 comprising E92C and/or E94C
wherein one or more molecules are attached to the introduced cysteine(s). In each
of these two preferred embodiments, the one or more cysteines (Cs) may be replaced
with one or more lysines or one or more non-natural amino acids, such as one or more
Fazs.
[0065] The reactivity of cysteine residues may be enhanced by modification of the adjacent
residues. For instance, the basic groups of flanking arginine, histidine or lysine
residues will change the pKa of the cysteines thiol group to that of the more reactive
S
- group. The reactivity of cysteine residues may be protected by thiol protective groups
such as dTNB. These may be reacted with one or more cysteine residues of the mutant
monomer before a linker is attached.
[0066] The molecule may be attached directly to the mutant monomer. The molecule is preferably
attached to the mutant monomer using a linker, such as a chemical crosslinker or a
peptide linker. Suitable chemical crosslinkers are well-known in the art. Preferred
crosslinkers include 2,5-dioxopyrrolidin-1-yl 3-(pyridin-2-yldisulfanyl)propanoate,
2,5-dioxopyrrolidin-1-yl 4-(pyridin-2-yldisulfanyl)butanoate and 2,5-dioxopyrrolidin-1-yl
8-(pyridin-2-yldisulfanyl)octananoate. The most preferred crosslinker is succinimidyl
3-(2-pyridyldithio)propionate (SPDP). Typically, the molecule is covalently attached
to the bifunctional crosslinker before the molecule/crosslinker complex is covalently
attached to the mutant monomer but it is also possible to covalently attach the bifunctional
crosslinker to the monomer before the bifunctional crosslinker/monomer complex is
attached to the molecule.
[0067] The linker is preferably resistant to dithiothreitol (DTT). Suitable linkers include,
but are not limited to, iodoacetamide-based and maleimide-based linkers.
[0068] Advantages of pores comprising the chemically-modified mutant monomers of the invention
are discussed in more detail below.
[0069] Further chemical modifications that may be made in accordance with the invention
are discussed below.
Further modifications
[0070] Any of the mutant monomers discussed above may have further modifications within
the region from about position 44 to about position 126 of SEQ ID NO: 2 where appropriate
(i.e. where the relevant amino positions remain in the mutant monomer or are not modified/substituted
with another amino acid). At least a part of this region typically contributes to
the membrane spanning region of lysenin. At least a part of this region typically
contributes to the barrel or channel of lysenin. At least a part of this region typically
contributes to the internal wall or lining of lysenin.
[0072] The variant preferably comprises one or more modifications within the region of from
about position 44 to about position 126 of SEQ ID NO: 2 which alter the ability of
the monomer, or preferably the region, to interact with a polynucleotide. The interaction
between the monomer and a polynucleotide may be increased or decreased. An increased
interaction between the monomer and a polynucleotide will, for example, facilitate
capture of the polynucleotide by pores comprising the mutant monomer. A decreased
interaction between the region and a polynucleotide will, for example, improve recognition
or discrimination of the polynucleotide. Recognition or discrimination of the polynucleotide
may be improved by decreasing the variance of states of pores comprising the mutant
monomer (which increases the signal-to-noise ratio) and/or decreasing the number of
nucleotides in the polynucleotide contributing to the current as the polynucleotide
moves through pores comprising the mutant monomer.
[0073] The ability of the monomer to interact with a polynucleotide can be determined using
methods that are well-known in the art. The monomer may interact with a polynucleotide
in any way, e.g. by non-covalent interactions, such as hydrophobic interactions, hydrogen
bonding, Van der Waal's forces, pi (π)-cation interactions or electrostatic forces.
For instance, the ability of the region to bind to a polynucleotide can be measured
using a conventional binding assay. Suitable assays include, but are not limited to,
fluorescence-based binding assays, nuclear magnetic resonance (NMR), Isothermal Titration
Calorimetry (ITC) or Electron spin resonance (ESR) spectroscopy. Alternatively, the
ability of a pore comprising one or more of the mutant monomers to interact with a
polynucleotide can be determined using any of the methods discussed above or below.
Preferred assays are described in the Examples.
[0074] One or more modifications may be further made within the region from about position
44 to about position 126 of SEQ ID NO: 2. The one or more modifications are preferably
within any one of the following regions: from about position 40 to about position
125, from about position 50 to about position 120, from about position 60 to about
position 110 and from about position 70 to about position 100. If the one or more
modifications are being made to improve polynucleotide capture, they are more preferably
made within any one of the following regions: from about position 44 to about position
103, from about position 68 to about position 103, from about position 84 to about
position 103, from about position 44 to about position 97, from about position 68
to about position 97 or from about position 84 to about position 97. If the one or
more modifications are being made to improve polynucleotide recognition or discrimination,
they are more preferably made within any one of the following regions: from about
position 44 to about position 109, from about position 44 to about position 97 or
from about position 48 to about position 88. The region is preferably from about position
44 to about position 67 of SEQ ID NO: 2.
[0075] If the one or more modifications are intended improve polynucleotide recognition
or discrimination, they are preferably made in addition to one or more modifications
to improve polynucleotide capture. This allows pores formed from the mutant monomer
to effectively capture a polynucleotide and then characterise the polynucleotide,
such as estimate its sequence, as discussed below.
[0076] Modifications of protein nanopores that alter their ability to interact with a polynucleotide,
in particular improve their ability to capture and/or recognise or discriminate polynucleotides,
are well documented in the art. For instance, such modifications are disclosed in
WO 2010/034018 and
WO 2010/055307. Similar modifications can be made to the lysenin monomer in accordance with this
invention.
[0077] Any number of modifications may be made, such as 1, 2, 5, 10, 15, 20, 30 or more
modifications. Any modification(s) can be made as long as the ability of the monomer
to interact with a polynucleotide is altered. Suitable modifications include, but
are not limited to, amino acid substitutions, amino acid additions and amino acid
deletions. The one or more modifications are preferably one or more substitutions.
This is discussed in more detail below.
[0078] The one or more modifications preferably (a) alter the steric effect of the monomer,
or preferably alter the steric effect of the region, (b) alter the net charge of the
monomer, or preferably alter the net charge of the region, (c) alter the ability of
the monomer, or preferably of the region, to hydrogen bond with the polynucleotide,
(d) introduce or remove chemical groups that interact through delocalized electron
pi systems and/or (e) alter the structure of the monomer, or preferably alter the
structure of the region. The one or more modifications more preferably result in any
combination of (a) to (e), such as (a) and (b); (a) and (c); (a) and (d); (a) and
(e); (b) and (c); (b) and (d); (b) and (e); (c) and (d); (c) and (e); (d) and (e),
(a), (b) and (c); (a), (b) and (d); (a), (b) and (e); (a), (c) and (d); (a), (c) and
(e); (a), (d) and (e); (b), (c) and (d); (b), (c) and (e); (b), (d) and (e); (c),
(d) and (e); (a), (b), (c) and d); (a), (b), (c) and (e); (a), (b), (d) and (e); (a),
(c), (d) and (e); (b), (c), (d) and (e); and (a), (b), (c) and (d).
[0079] For (a), the steric effect of the monomer can be increased or decreased. Any method
of altering the steric effects may be used in accordance with the invention. The introduction
of bulky residues, such as phenylalanine (F), tryptophan (W), tyrosine (Y) or histidine
(H), increases the sterics of the monomer. The one or more modifications are preferably
the introduction of one or more of F, W, Y and H. Any combination of F, W, Y and H
may be introduced. The one or more of F, W, Y and H may be introduced by addition.
The one or more of F, W, Y and H are preferably introduced by substitution. Suitable
positions for the introduction of such residues are discussed in more detail below.
[0080] The removal of bulky residues, such as phenylalanine (F), tryptophan (W), tyrosine
(Y) or histidine (H), conversely decreases the sterics of the monomer. The one or
more modifications are preferably the removal of one or more of F, W, Y and H. Any
combination of F, W, Y and H may be removed. The one or more of F, W, Y and H may
be removed by deletion. The one or more of F, W, Y and H are preferably removed by
substitution with residues having smaller side groups, such as serine (S), threonine
(T), alanine (A) and valine (V).
[0081] For (b), the net charge can be altered in any way. The net positive charge is preferably
increased or decreased. The net positive charge can be increased in any manner. The
net positive charge is preferably increased by introducing, preferably by substitution,
one or more positively charged amino acids and/or neutralising, preferably by substitution,
one or more negative charges.
[0082] The net positive charge is preferably increased by introducing one or more positively
charged amino acids. The one or more positively charged amino acids may be introduced
by addition. The one or more positively charged amino acids are preferably introduced
by substitution. A positively charged amino acid is an amino acid with a net positive
charge. The positively charged amino acid(s) can be naturally-occurring or non-naturally-occurring.
The positively charged amino acids may be synthetic or modified. For instance, modified
amino acids with a net positive charge may be specifically designed for use in the
invention. A number of different types of modification to amino acids are well known
in the art.
[0083] Preferred naturally-occurring positively charged amino acids include, but are not
limited to, histidine (H), lysine (K) and arginine (R). The one or more modifications
are preferably the introduction of one or more of H, K and R. Any number and combination
of H, K and R may be introduced. The one or more of H, K and R may be introduced by
addition. The one or more of H, K and R are preferably introduced by substitution.
Suitable positions for the introduction of such residues are discussed in more detail
below.
[0084] Methods for adding or substituting naturally-occurring amino acids are well known
in the art. For instance, methionine (M) may be substituted with arginine (R) by replacing
the codon for methionine (ATG) with a codon for arginine (AGA) at the relevant position
in a polynucleotide encoding the monomer. The polynucleotide can then be expressed
as discussed below.
[0085] Methods for adding or substituting non-naturally-occurring amino acids are also well
known in the art. For instance, non-naturally-occurring amino acids may be introduced
by including synthetic aminoacyl-tRNAs in the IVTT system used to express the pore.
Alternatively, they may be introduced by expressing the monomer in
E. coli that are auxotrophic for specific amino acids in the presence of synthetic (i.e.
non-naturally-occurring) analogues of those specific amino acids. They may also be
produced by naked ligation if the pore is produced using partial peptide synthesis.
[0086] Any amino acid may be substituted with a positively charged amino acid. One or more
uncharged amino acids, non-polar amino acids and/or aromatic amino acids may be substituted
with one or more positively charged amino acids. Uncharged amino acids have no net
charge. Suitable uncharged amino acids include, but are not limited to, cysteine (C),
serine (S), threonine (T), methionine (M), asparagine (N) and glutamine (Q). Non-polar
amino acids have non-polar side chains. Suitable non-polar amino acids include, but
are not limited to, glycine (G), alanine (A), proline (P), isoleucine (I), leucine
(L) and valine (V). Aromatic amino acids have an aromatic side chain. Suitable aromatic
amino acids include, but are not limited to, histidine (H), phenylalanine (F), tryptophan
(W) and tyrosine (Y). Preferably, one or more negatively charged amino acids are substituted
with one or more positively charged amino acids. Suitable negatively charged amino
acids include, but are not limited to, aspartic acid (D) and glutamic acid (E).
[0087] Preferred introductions include, but are not limited to, substitution of E with K,
M with R, substitution of M with H, substitution of M with K, substitution of D with
R, substitution of D with H, substitution of D with K, substitution of E with R, substitution
of E with H, substitution of N with R, substitution of T with R and substitution of
G with R. Most preferably E is substituted with K.
[0088] Any number of positively charged amino acids may be introduced or substituted. For
instance, 1, 2, 5, 10, 15, 20, 25, 30 or more positively charged amino acids may be
introduced or substituted.
[0089] The net positive charge is more preferably increased by neutralising one or more
negative charges. The one or more negative charges may be neutralised by replacing
by substitution one or more negatively charged amino acids with one or more uncharged
amino acids, non-polar amino acids and/or aromatic amino acids. The removal of negative
charge increases the net positive charge. The uncharged amino acids, non-polar amino
acids and/or aromatic amino acids can be naturally-occurring or non-naturally-occurring.
They may be synthetic or modified. Suitable uncharged amino acids, non-polar amino
acids and aromatic amino acids are discussed above. Preferred substitutions include,
but are not limited to, substitution of E with Q, substitution of E with S, substitution
of E with A, substitution of D with Q, substitution of E with N, substitution of D
with N, substitution of D with G and substitution of D with S.
[0090] Any number and combination of uncharged amino acids, non-polar amino acids and/or
aromatic amino acids may substituted. For instance, 1, 2, 5, 10, 15, 20, 25, or 30
or more uncharged amino acids, non-polar amino acids and/or aromatic amino acids may
be substituted. Negatively charged amino acids may be substituted with (1) uncharged
amino acids; (2) non-polar amino acids; (3) aromatic amino acids; (4) uncharged amino
acids and non-polar amino acids; (5) uncharged amino acids and aromatic amino acids;
and (5) non-polar amino acids and aromatic amino acids; or (6) uncharged amino acids,
non-polar amino acids and aromatic amino acids.
[0091] The one or more negative charges may be neutralised by introducing one or more positively
charged amino acids near to, such as within 1, 2, 3 or 4 amino acids, or adjacent
to one or more negatively charged amino acids. Examples of positively and negatively
charged amino acids are discussed above. The positively charged amino acids may be
introduced in any manner discussed above, for instance by substitution.
[0092] The net positive charge is preferably decreased by introducing one or more negatively
charged amino acids and/or neutralising one or more positive charges. Ways in which
this might be done will be clear from the discussion above with reference to increasing
the net positive charge. All of the embodiments discussed above with reference to
increasing the net positive charge equally apply to decreasing the net positive charge
except the charge is altered in the opposite way. In particular, the one or more positive
charges are preferably neutralised by substituting one or more positively charged
amino acids with one or more uncharged amino acids, non-polar amino acids and/or aromatic
amino acids or by introducing one or more negatively charged amino acids near to,
such as within 1, 2, 3 or 4 amino acids of, or adjacent to one or more positively
charged amino acids.
[0093] The net negative charge is preferably increased or decreased. All of the above embodiments
discussed above with reference to increasing or decreasing the net positive charge
equally apply to decreasing or increasing the net negative charge respectively.
[0094] For (c), the ability of the monomer to hydrogen bond may be altered in any manner.
The introduction of serine (S), threonine (T), asparagine (N), glutamine (Q), tyrosine
(Y) or histidine (H) increases the hydrogen bonding ability of the monomer. The one
or more modifications are preferably the introduction of one or more of S, T, N, Q,
Y and H. Any combination of S, T, N, Q, Y and H may be introduced. The one or more
of S, T, N, Q, Y and H may be introduced by addition. The one or more of S, T, N,
Q, Y and H are preferably introduced by substitution. Suitable positions for the introduction
of such residues are discussed in more detail below.
[0095] The removal of serine (S), threonine (T), asparagine (N), glutamine (Q), tyrosine
(Y) or histidine (H) decreases the hydrogen bonding ability of the monomer. The one
or more modifications are preferably the removal of one or more of S, T, N, Q, Y and
H. Any combination of S, T, N, Q, Y and H may be removed. The one or more of S, T,
N, Q, Y and H may be removed by deletion. The one or more of S, T, N, Q, Y and H are
preferably removed by substitution with other amino acids which hydrogen bond less
well, such as alanine (A), valine (V), isoleucine (I) and leucine (L).
[0096] For (d), the introduction of aromatic residues, such as phenylalanine (F), tryptophan
(W), tyrosine (Y) or histidine (H), also increases the pi stacking in the monomer.
The removal of aromatic residues, such as phenylalanine (F), tryptophan (W), tyrosine
(Y) or histidine (H), also decreases the pi stacking in the monomer. Such amino acids
can be introduced or removed as discussed above with reference to (a).
[0097] For (e), one or more modifications can be made in accordance with the invention which
alter the structure of the monomer. For example, one or more loop regions can be removed,
shortened or extended. This typically facilitates the entry or exit of a polynucleotide
into or out of the pore. The one or more loop regions may be the
cis side of the pore, the
trans side of the pore or on both sides of the pore. Alternatively, one or more regions
of the amino terminus and/or the carboxy terminus of the pore can be extended or deleted.
This typically alters the size and/or charge of the pore.
[0098] It will be clear from the discussion above that the introduction of certain amino
acids will enhance the ability of the monomer to interact with a polynucleotide via
more than one mechanism. For instance, the substitution of E with H will not only
increase the net positive charge (by neutralising negative charge) in accordance with
(b), but will also increase the ability of the monomer to hydrogen bond in accordance
with (c).
[0099] The variant preferably comprises a substitution at one or more of the following positions
of SEQ ID NO: 2: M44, N46, N48, E50, R52, H58, D68, F70, E71, S74, E76, S78, Y79,
S80, H81, S82, E84, E85, S86, Q87, S89, M90, E92, E94, E97, E102, H103, T104, T106,
R115, Q117, N119, D121 and D126. The variant preferably comprises a substitution at
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33 or 34 of those positions. The variant preferably
comprises a substitution at one or more of the following positions of SEQ ID NO: 2:
D68, E71, S74, E76, S78, S80, S82, E84, E85, S86, Q87, S89, E92, E102, T104, T106,
R115, Q117, N119 and D121. The variant preferably comprises a substitution at 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 of those positions.
[0100] The variant preferably comprises a substitution at one or more of the following positions
of SEQ ID NO: 2 (a) E84, E85, E92, E97 and D126; (b) E85, E97 and D126 or (c) E84
and E92. The amino acids substituted into the variant may be naturally-occurring or
non-naturally occurring derivatives thereof. The amino acids substituted into the
variant may be D-amino acids. Each position listed above may be substituted with asparagine
(N), serine (S), glutamine (Q), arginine (R), glycine (G), tyrosine (Y), aspartic
acid (D), leucine (L), lysine (K) or alanine (A).
[0101] The variant preferably comprises at least one of the following mutations of SEQ ID
NO: 2:
(a) serine (S) at position 44;
(b) serine (S) at position 46;
(c) serine (S) at position 48;
(d) serine (S) at position 52;
(e) serine (S) at position 58;
(f) serine (S) at position 68;
(g) serine (S) at position 70;
(h) serine (S) at position 71;
(i) serine (S) at position 76;
(j) serine (S) at position 79;
(k) serine (S) at position 81;
(l) serine (S), aspartic acid (D) or glutamine (Q) at position 84;
(m) serine (S) or lysine (K) at position 85;
(n) serine (S) at position 87;
(o) serine (S) at position 90;
(p) asparagine (N) or glutamine (Q) at position 92;
(q) serine (S) or asparagine (N) at position 94;
(r) serine (S) or asparagine (N) at position 97;
(s) serine (S) at position 102;
(t) serine (S) at position 103;
(u) asparagine (N) or serine (S) at position 121;
(v) serine (S) at position 50;
(w) asparagine (N) or serine (S) at position 94;
(x) asparagine (N) or serine (S) at position 97;
(y) serine (S) or asparagine (N) at position 121;
(z) asparagine (N) or glutamine (Q) or glycine (G) at position 126.; and
(aa) serine (S) or asparagine (N) at position 128.
[0102] The variant may include any number of mutations (a) to (aa), such as 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
or 27 of the mutations. Preferred combinations of mutations are discussed below. The
amino acids introduced into the variant may be naturally-occurring or non-naturally
occurring derivatives thereof. The amino acids introduced into the variant may be
D-amino acids.
[0103] The variant preferably comprises at least one of the following mutations of SEQ ID
NO: 2:
- (a) serine (S) at position 68;
- (b) serine (S) at position 71;
- (c) serine (S) at position 76;
- (d) aspartic acid (D) or glutamine (Q) at position 84;
- (e) lysine (K) at position 85;
- (f) asparagine (N) or glutamine (Q) at position 92;
- (g) serine (S) at position 102;
- (h) asparagine (N) or serine (S) at position 121;
- (i) serine (S) at position 50;
- (j) asparagine (N) or serine (S) at position 94;
- (k) asparagine (N) or serine (S) at position 97; and
- (l) asparagine (N) or glutamine (Q) or glycine (G) at position 126.
[0104] The variant may include any number of mutations (a) to (1), such as 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11 or 12 of the mutations. Preferred combinations of mutations are
discussed below. The amino acids introduced into the variant may be naturally-occurring
or non-naturally occurring derivatives thereof. The amino acids introduced into the
variant may be D-amino acids.
[0105] The variant may include one or more additional modifications outside of the region
of from about position 44 to about position 126 of SEQ ID NO: 2 which in combination
with the modifications in the region discussed above improve polynucleotide capture
and/or improve polynucleotide recognition or discrimination. Suitable modifications
include, but are not limited to, substitution at one or more of D35, E128, E135, E134
and E167. In particular, removal of the negative charge by substituting E at one or
more of positions 128, 135, 134 and 167 improves polynucleotide capture. E at one
or more of these positions may be substituted in any of the ways discussed above.
Preferably all of E128, E135, E134 and E167 are substituted as discussed above. E
is preferably substituted with A. In other words, the variant preferably comprises
one or more of, or all of, E128A, E135A, E134A and E167A. Another preferred substitution
is D35Q.
[0106] In a preferred embodiment, the variant comprises the following substitutions in SEQ
ID NO: 2:
- i. one or more of, such as both of, E84D and E85K;
- ii. one or more of, such as 2, 3, 4, 5 or 6 of, E84Q, E85K, E92Q, E97S, D126G and
E167A;
- iii. one or more of, such as 2, 3, 4 or 5 of, E92N, E94N, E97N, D121N and D126N;
- iv. one or more of, such as 2, 3, 4, 5 or 6 of, E92N, E94N, E97N, D121N, D126N and
E128N;
- v. one or more of, such as 2, 3, 4, 5, 6 or 7 of, E76S, E84Q, E85K, E92Q, E97S, D126G
and E167A;
- vi. one or more of, such as 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E50S;
- vii. one or more of, such as 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E71S;
- viii. one or more of, such as 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E94S;
- ix. one or more of, such as 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E102S;
- x. one or more of, such as 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G, E167A
and E128S;
- xi. one or more of, such as 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E135S;
- xii. one or more of, such as 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and D68S;
- xiii. one or more of, such as 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and D121S;
- xiv. one or more of, such as 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and D134S;
- xv. one or more of, such as 2 or 3 of, E84D, E85K and E92Q;
- xvi. one or more of, such as 1, 2, 3, 4, 5 or 6 of, E84Q, E85K, E92Q, E97S, D126G
and E135S;
- xvii. one or more of, such as 1, 2, 3, 4 or 5 of, E85K, E92Q, E94S, E97S and D126G;
- xviii. one or more of, such as 1, 2, 3, 4 or 5 of, E76S, E85K, E92Q, E97S and D126G;
- xix. one or more of, such as 1, 2, 3, 4 or 5 of, E71S, E85K, E92Q, E97S and D126G;
- xx. one or more of, such as 1, 2, 3, 4 or 5 of, D68S, E85K, E92Q, E97S and D126G;
- xxi. one or more of, such as 1, 2, 3 or 4 of, E85K, E92Q, E97S and D126G;
- xxii. one or more of, such as 1, 2, 3, 4, 5 or 6 of, E84Q, E85K, E92Q, E97S, H103S
and D126G;
- xxiii. one or more of, such as 1, 2, 3, 4, 5 or 6 of, E84Q, E85K, M90S, E92Q, E97S
and D126G;
- xxiv. one or more of, such as 1, 2, 3, 4, 5 or 6 of, E84Q, Q87S, E85K, E92Q, E97S
and D126G;
- xxv. one or more of, such as 1, 2, 3, 4 or 5 of, E84Q, E85S, E92Q, E97S and D126G;
- xxvi. one or more of, such as 1, 2, 3, 4 or 5 of, E84S, E85K, E92Q, E97S and D126G;
- xxvii. one or more of, such as 1, 2, 3, 4, 5 or 6 of, H81S, E84Q, E85K, E92Q, E97S
and D126G;
- xxviii. one or more of, such as 1, 2, 3, 4, 5 or 6 of, Y79S, E84Q, E85K, E92Q, E97S
and D126G;
- xxix. one or more of, such as 1, 2, 3, 4, 5 or 6 of, F70S, E84Q, E85K, E92Q, E97S
and D126G;
- xxx. one or more of, such as 1, 2, 3, 4, 5 or 6 of, H58S, E84Q, E85K, E92Q, E97S and
D126G;
- xxxi. one or more of, such as 1, 2, 3, 4, 5 or 6 of, R52S, E84Q, E85K, E92Q, E97S
and D126G;
- xxxii. one or more of, such as 1, 2, 3, 4, 5 or 6 of, N48S, E84Q, E85K, E92Q, E97S
and D126G;
- xxxiii. one or more of, such as 1, 2, 3, 4, 5 or 6 of, N46S, E84Q, E85K, E92Q, E97S
and D126G;
- xxxiv. one or more of, such as 1, 2, 3, 4, 5 or 6 of, M44S, E84Q, E85K, E92Q, E97S
and D126G;
- xxxv. one or more of, such as both of, E92Q and E97S;
- xxxvi. one or more of, such as 1, 2, 3 or 4 of, E84Q, E85K, E92Q and E97S;
- xxxvii. one or more of, such as both of, E84Q and E85K;
- xxxviii. one or more of, such as 1, 2 or 3 of, E84Q, E85K and D126G;
- xxxix. one or more of, such as 1, 2, 3 or 4 of, E84Q, E85K, D126G and E167A;
- xl. one or more of, such as 1, 2 or 3 of, E92Q, E97S and D126G;
- xli. one or more of, such as 1, 2, 3, 4 or 5 of, E84Q, E85K, E92Q, E97S and D126G;
- xlii. one or more of, such as 1, 2, 3, 4 or 5 of, E84Q, E85K, E92Q, E97S and E167A;
- xliii. one or more of, such as 1, 2, 3, 4 or 5 of, E84Q, E85K, E92Q, D126G and E167A;
- xliv. one or more of, such as 1, 2, 3, 4 or 5 of, E84Q, E85K, E97S, D126G and E167A;
- xlv. one or more of, such as 1, 2, 3, 4 or 5 of, E84Q, E92Q, E97S, D126G and E167A;
- xlvi. one or more of, such as 1, 2, 3, 4 or 5 of, E85K, E92Q, E97S, D126G and E167A;
- xlvii. one or more of, such as 1, 2 or 3 of, E84D, E85K and E92Q;
- xlviii. one or more of, such as 1, 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S,
D126G, E167A and D121S;
- xlix. one or more of, such as 1, 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and D68S;
- l. one or more of, such as 1, 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E135S;
- li. one or more of, such as 1, 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E128S;
- lii. one or more of, such as 1, 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E102S;
- liii. one or more of, such as 1, 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E94S;
- liv. one or more of, such as 1, 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E71S;
- lv. one or more of, such as 1, 2, 3, 4, 5, 6 or 7 of, E84Q, E85K, E92Q, E97S, D126G,
E167A and E50S;
- lvi. one or more of, such as 1, 2, 3, 4, 5, 6 or 7 of, E76S, E84Q, E85K, E92Q, E97S,
D126G and E167A;
- lvii. one or more of, such as 1, 2, 3, 4, 5 or 6 of, E92N, E94N, E97N, D121N, D126N
and E128N;
- lviii. one or more of, such as 1, 2, 3, 4 or 5 of, E92N, E94N, E97N, D121N and D126N;
or
- lix. one or more of, such as 1, 2, 3, 4, 5 or 6 of, E84Q, E85K, E92Q, E97S, D126G
and E167A
[0107] In the above, the first letter refers to the amino acid in SEQ ID NO: 2 being replaced,
the number is the position in SEQ ID NO: 2 and the second letter refers to the amino
acid with which the first is to be substituted. Hence, E84D refers to substitution
of glutamic acid (E) at position 84 with aspartic acid (D).
[0108] The variant may include any number of the substitutions in any one of i to lix, such
as 1, 2, 3, 4, 5, 6 or 7. The variant preferably includes all of the substitutions
shown in any one of i to lix above.
[0109] In a preferred embodiment, the variant comprises the substitutions in any one of
i to xv above. The variant may include any number of the substitutions in any one
of i to xv, such as 1, 2, 3, 4, 5, 6 or 7. The variant preferably includes all of
the substitutions shown in any one of i to xv above.
[0110] If the one or more modifications are intended to improve the ability of the monomer
to recognise or discriminate a polynucleotide, they are preferably made in addition
to the modifications discussed above that improve polynucleotide capture, such as
E84Q, E85K, E92Q, E97S, D126G and E167A.
[0111] The one or more modifications made to the identified region may concern the substitution
of one or more amino acids in the region with amino acids present at the corresponding
position(s) in homologues or paralogues of lysenin. Four examples of homologues of
lysenin are shown in SEQ ID NOs: 14 to 17. The advantage of such substitutions is
that they are likely to result in mutant monomers that form pores since the homologue
monomers also form pores. For example, mutations may be made at any one or more of
the positions in SEQ ID NO: 2 that differ between SEQ ID NO: 2 and any one of SEQ
ID NOS: 14 to 17. Such a mutation may be a substitution of an amino acid in SEQ ID
NO: 2 with an amino acid from the corresponding position in any one of SEQ ID NOS:
14 to 17, preferably in any one of SEQ ID NOs: 14 to 16. Alternatively, the mutation
at any one of these positions may be a substitution with any amino acid, or may be
a deletion or insertion mutation, such as substitutions, deletion or insertion of
1 to 30 amino acids such as of 2 to 20, 3 to 10 or 4 to 8 amino acids. Other than
the mutations disclosed herein, and the mutations disclosed in the prior art, for
example in
WO 2013/153359, the amino acids that are conserved or identical between SEQ ID NO: 2 and all of
SEQ ID NOs: 14 to 17, more preferably all of SEQ ID NOS: 14 to 16, are preferably
conserved or present in a variant of the invention. Conservative mutations may be
made at any one or more of these positions that are conserved or identical between
SEQ ID NO: 2 and SEQ ID NOS: 14 to 17, or more preferably SEQ ID NOS: 14 to 16.
[0112] The invention provides a lysenin mutant monomer that comprises any one or more of
the amino acids described herein as being substituted into a specific position of
SEQ ID NO: 2 at a position in the structure of the lysenin monomer that corresponds
to the specific position in SEQ ID NO: 2. Corresponding positions may be determined
by standard techniques in the art. For example, the PILEUP and BLAST algorithms mentioned
above can be used to align the sequence of a lysenin monomer with SEQ ID NO: 2 and
hence to identify corresponding residues.
[0113] The mutant monomer typically retains the ability to form the same 3D structure as
the wild type lysenin monomer, such as the same 3D structure as a lysenin monomer
having the sequence of SEQ ID NO: 2. The 3D structure of the lysenin monomer is known
in the art and is disclosed, for example, in the
De Colbis et al., Structure, 2012 (20): 1498-1507. The mutant monomer typically retains the ability to form a homooligomeric and/or
a heterooligomeric pore with other lysenin monomers. The mutant monomer typically
retains the ability to refold to form the same 3D structure as the wild-type lysenin
monomer when present in a pore. The 3D structure of the lysenin monomer in a lysenin
pore is shown in Figure 7 herein. Any number of mutations, such as from 2 to 100,
3 to 80, 4 to 70, 5 to 60, 10 to 50 or 20 to 40, may be made in the wild-type lysenin
sequence in addition to the mutations described herein, provided that the lysenin
mutant monomer retains one or more of the improved properties imparted on it by the
mutations of the invention.
[0114] Typically, the lysenin monomer will retain the ability to contribute two beta sheets
to the barrel of the lysenin pore when it assembles with other identical mutant monomers,
or with different lysenin mutant monomers to form a pore.
[0115] The variant further preferably comprises one or more of E84Q/E85K/E92Q/E97S/D126G
or, where appropriate, all of E84Q/E85K/E92Q/E97S/D126G. By "where appropriate", we
mean if the positions are still present in the mutant monomer or are not modified
with a different amino acid.
[0116] In addition to the specific mutations discussed above, the variant may include other
mutations. These mutations do not necessarily enhance the ability of the monomer to
interact with a polynucleotide. The mutations may facilitate, for example, expression
and/or purification. Over the entire length of the amino acid sequence of SEQ ID NO:
2, a variant will preferably be at least 50% homologous to that sequence based on
amino acid similarity or identity. More preferably, the variant may be at least 55%,
at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%,
at least 90% and more preferably at least 95%, 97% or 99% homologous based on amino
acid similarity or identity to the amino acid sequence of SEQ ID NO: 2 over the entire
sequence. There may be at least 80%, for example at least 85%, 90% or 95%, amino acid
similarity or identity over a stretch of 100 or more, for example 125, 150, 175 or
200 or more, contiguous amino acids ("hard homology").
[0117] Standard methods in the art may be used to determine homology. For example the UWGCG
Package provides the BESTFIT program which can be used to calculate homology, for
example used on its default settings (
Devereux et al (1984) Nucleic Acids Research 12, p387-395). The PILEUP and BLAST algorithms can be used to calculate homology or line up sequences
(such as identifying equivalent residues or corresponding sequences (typically on
their default settings)), for example as described in
Altschul S. F. (1993) J Mol Evol 36:290-300;
Altschul, S.F et al (1990) J Mol Biol 215:403-10. Software for performing BLAST analyses is publicly available through the National
Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). Similarity can
be measured using pairwise identity or by applying a scoring matrix such as BLOSUM62
and converting to an equivalent identity. Since they represent functional rather than
evolved changes, deliberately mutated positions would be masked when determining homology.
Similarity may be determined more sensitively by the application of position-specific
scoring matrices using, for example, PSIBLAST on a comprehensive database of protein
sequences. A different scoring matrix could be used that reflect amino acid chemico-physical
properties rather than frequency of substitution over evolutionary time scales (e.g.
charge).
[0118] Amino acid substitutions may be made to the amino acid sequence of SEQ ID NO: 2 in
addition to those discussed above, for example up to 1, 2, 3, 4, 5, 10, 20 or 30 substitutions.
Conservative substitutions replace amino acids with other amino acids of similar chemical
structure, similar chemical properties or similar side-chain volume. The amino acids
introduced may have similar polarity, hydrophilicity, hydrophobicity, basicity, acidity,
neutrality or charge to the amino acids they replace. Alternatively, the conservative
substitution may introduce another amino acid that is aromatic or aliphatic in the
place of a pre-existing aromatic or aliphatic amino acid. Conservative amino acid
changes are well-known in the art and may be selected in accordance with the properties
of the 20 main amino acids as defined in Table 3 below. Where amino acids have similar
polarity, this can also be determined by reference to the hydropathy scale for amino
acid side chains in Table 4.
Table 3 - Chemical properties of amino acids
Ala |
aliphatic, hydrophobic, neutral |
Met |
hydrophobic, neutral |
Cys |
polar, hydrophobic, neutral |
Asn |
polar, hydrophilic, neutral |
Asp |
polar, hydrophilic, charged (-) |
Pro |
hydrophobic, neutral |
Glu |
polar, hydrophilic, charged (-) |
Gln |
polar, hydrophilic, neutral |
Phe |
aromatic, hydrophobic, neutral |
Arg |
polar, hydrophilic, charged (+) |
Gly |
aliphatic, neutral |
Ser |
polar, hydrophilic, neutral |
His |
aromatic, polar, hydrophilic, charged (+) |
Thr |
polar, hydrophilic, neutral |
Ile |
aliphatic, hydrophobic, neutral |
Val |
aliphatic, hydrophobic, neutral |
Lys |
polar, hydrophilic, charged(+) |
Trp |
aromatic, hydrophobic, neutral |
Leu |
aliphatic, hydrophobic, neutral |
Tyr |
aromatic, polar, hydrophobic |
Table 4 - Hydropathy scale
Side Chain |
Hydropathy |
Ile |
4.5 |
Val |
4.2 |
Leu |
3.8 |
Phe |
2.8 |
Cys |
2.5 |
Met |
1.9 |
Ala |
1.8 |
Gly |
-0.4 |
Thr |
-0.7 |
Ser |
-0.8 |
Trp |
-0.9 |
Tyr |
-1.3 |
Pro |
-1.6 |
His |
-3.2 |
Glu |
-3.5 |
Gln |
-3.5 |
Asp |
-3.5 |
Asn |
-3.5 |
Lys |
-3.9 |
Arg |
-4.5 |
[0119] The variant may comprise one or more substitutions outside of the region specified
above in which amino acids are replaced with those at the corresponding position(s)
in homologues and paralogues of lysenin. Four examples of homologues of lysenin are
shown in SEQ ID NOs: 14 to 17.
[0120] One or more amino acid residues of the amino acid sequence of SEQ ID NO: 2 may additionally
be deleted from the variants described above. Up to 1, 2, 3, 4, 5, 10, 20 or 30 residues
may be deleted, or more.
[0121] Variants may include fragments of SEQ ID NO: 2. Such fragments retain pore forming
activity. This may be assayed as described above. Fragments may be at least 50, 100,
150, 200 or 250 amino acids in length. Such fragments may be used to produce the pores
of the invention. Since the region of from about position 44 to about position 126
of SEQ ID NO: 2 can be modified by one or more deletions in accordance with the invention,
a fragment does not have to contain the entire region. Hence, fragments shorter than
the length of the unmodified region are envisaged by the invention. A fragment preferably
comprises the pore forming domain of SEQ ID NO: 2. A fragment more preferably comprises
the region from about position 44 to about position 126 of SEQ ID NO: 2 which is modified
in accordance with the invention.
[0122] One or more amino acids may be alternatively or additionally added to the variants
described above. An extension may be provided at the amino terminal or carboxy terminal
of the amino acid sequence of the variant of SEQ ID NO: 2, including a fragment thereof.
The extension may be quite short, for example from 1 to 10 amino acids in length.
Alternatively, the extension may be longer, for example up to 50 or 100 amino acids.
A carrier protein may be fused to an amino acid sequence according to the invention.
Other fusion proteins are discussed in more detail below.
[0123] As discussed above, a variant is a polypeptide that has an amino acid sequence which
varies from that of SEQ ID NO: 2 and which retains its ability to form a pore. A variant
typically contains the region of SEQ ID NO: 2 that is responsible for pore formation,
namely from about position 44 to about position 126 and this region is modified in
accordance with the invention as discussed above. It may contain a fragment of this
region as discussed above. In addition to the modifications of the invention, a variant
of SEQ ID NO: 2 may include one or more additional modifications, such as substitutions,
additions or deletions. These modifications are preferably located in the stretches
in the variant that correspond to from about position 1 to about position 43 and from
about position 127 to about position 297 of SEQ ID NO: 2 (i.e. outside of the region
modified in accordance with the invention).
[0124] The mutant monomers may be modified to assist their identification or purification,
for example by the addition of histidine residues (a hist tag), aspartic acid residues
(an asp tag), a streptavidin tag or a flag tag, or by the addition of a signal sequence
to promote their secretion from a cell where the polypeptide does not naturally contain
such a sequence. An alternative to introducing a genetic tag is to chemically react
a tag onto a native or engineered position on the pore. An example of this would be
to react a gel-shift reagent to a cysteine engineered on the outside of the pore.
This has been demonstrated as a method for separating hemolysin hetero-oligomers (
Chem Biol. 1997 Jul;4(7):497-505).
[0125] The mutant monomer may be labelled with a revealing label. The revealing label may
be any suitable label which allows the pore to be detected. Suitable labels include,
but are not limited to, fluorescent molecules, radioisotopes, e.g.
125I,
35S, enzymes, antibodies, antigens, polynucleotides, polyethylene glycols (PEGs), peptides
and ligands such as biotin.
[0126] The mutant monomer may also be produced using D-amino acids. For instance, the mutant
monomer may comprise a mixture of L-amino acids and D-amino acids. This is conventional
in the art for producing such proteins or peptides.
[0127] The mutant monomer contains one or more specific modifications to facilitate interaction
with a polynucleotide. The mutant monomer may also contain other non-specific modifications
as long as they do not interfere with pore formation. A number of non-specific side
chain modifications are known in the art and may be made to the side chains of the
mutant monomer. Such modifications include, for example, reductive alkylation of amino
acids by reaction with an aldehyde followed by reduction with NaBH
4, amidination with methylacetimidate or acylation with acetic anhydride.
[0128] The mutant monomer can be produced using standard methods known in the art. The monomer
may be made synthetically or by recombinant means. For example, the monomer may be
synthesized by
in vitro translation and transcription (IVTT). Suitable methods for producing pore monomers
are discussed in International Application Nos.
PCT/GB09/001690 (published as
WO 2010/004273),
PCT/GB09/001679 (published as
WO 2010/004265) or
PCT/GB10/000133 (published as
WO 2010/086603). Methods for inserting pores into membranes are discussed below.
[0129] Polynucleotide sequences encoding a mutant monomer may be derived and replicated
using standard methods in the art. Such sequences are discussed in more detail below.
Polynucleotide sequences encoding a mutant monomer may be expressed in a bacterial
host cell using standard techniques in the art. The mutant monomer may be produced
in a cell by
in situ expression of the polypeptide from a recombinant expression vector. The expression
vector optionally carries an inducible promoter to control the expression of the polypeptide.
[0130] A mutant monomer may be produced in large scale following purification by any protein
liquid chromatography system from pore producing organisms or after recombinant expression
as described below. Typical protein liquid chromatography systems include FPLC, AKTA
systems, the Bio-Cad system, the Bio-Rad BioLogic system and the Gilson HPLC system.
The mutant monomer may then be inserted into a naturally occurring or artificial membrane
for use in accordance with the invention. Methods for inserting pores into membranes
are discussed below.
[0131] In some embodiments, the mutant monomer is chemically modified. The mutant monomer
can be chemically modified in any way and at any site. The mutant monomer is preferably
chemically modified by attachment of a molecule to one or more cysteines (cysteine
linkage), attachment of a molecule to one or more lysines, attachment of a molecule
to one or more non-natural amino acids, enzyme modification of an epitope or modification
of a terminus. Suitable methods for carrying out such modifications are well-known
in the art. Suitable non-natural amino acids include, but are not limited to, 4-azido-L-phenylalanine
(Faz) and any one of the amino acids numbered 1-71 in Figure 1 of
Liu C. C. and Schultz P. G., Annu. Rev. Biochem., 2010, 79, 413-444. The mutant monomer may be chemically modified by the attachment of any molecule.
For instance, the mutant monomer may be chemically modified by attachment of a polyethylene
glycol (PEG), a nucleic acid, such as DNA, a dye, a fluorophore or a chromophore.
[0132] In some embodiments, the mutant monomer is chemically modified with a molecular adaptor
that facilitates the interaction between a pore comprising the monomer and a target
analyte, a target nucleotide or target polynucleotide. The presence of the adaptor
improves the host-guest chemistry of the pore and the nucleotide or polynucleotide
and thereby improves the sequencing ability of pores formed from the mutant monomer.
The principles of host-guest chemistry are well-known in the art. The adaptor has
an effect on the physical or chemical properties of the pore that improves its interaction
with the nucleotide or polynucleotide. The adaptor may alter the charge of the barrel
or channel of the pore or specifically interact with or bind to the nucleotide or
polynucleotide thereby facilitating its interaction with the pore.
[0133] The molecular adaptor is preferably a cyclic molecule, for example a cyclodextrin,
a species that is capable of hybridization, a DNA binder or interchelator, a peptide
or peptide analogue, a synthetic polymer, an aromatic planar molecule, a small positively-charged
molecule or a small molecule capable of hydrogen-bonding.
[0134] The adaptor may be cyclic. A cyclic adaptor preferably has the same symmetry as the
pore.
[0135] The adaptor typically interacts with the analyte, nucleotide or polynucleotide via
host-guest chemistry. The adaptor is typically capable of interacting with the nucleotide
or polynucleotide. The adaptor comprises one or more chemical groups that are capable
of interacting with the nucleotide or polynucleotide. The one or more chemical groups
preferably interact with the nucleotide or polynucleotide by non-covalent interactions,
such as hydrophobic interactions, hydrogen bonding, Van der Waal's forces, π-cation
interactions and/or electrostatic forces. The one or more chemical groups that are
capable of interacting with the nucleotide or polynucleotide are preferably positively
charged. The one or more chemical groups that are capable of interacting with the
nucleotide or polynucleotide more preferably comprise amino groups. The amino groups
can be attached to primary, secondary or tertiary carbon atoms. The adaptor even more
preferably comprises a ring of amino groups, such as a ring of 6, 7, 8 or 9 amino
groups. The adaptor most preferably comprises a ring of 6 or 9 amino groups. A ring
of protonated amino groups may interact with negatively charged phosphate groups in
the nucleotide or polynucleotide.
[0136] The correct positioning of the adaptor within the pore can be facilitated by host-guest
chemistry between the adaptor and the pore comprising the mutant monomer. The adaptor
preferably comprises one or more chemical groups that are capable of interacting with
one or more amino acids in the pore. The adaptor more preferably comprises one or
more chemical groups that are capable of interacting with one or more amino acids
in the pore via non-covalent interactions, such as hydrophobic interactions, hydrogen
bonding, Van der Waal's forces, π-cation interactions and/or electrostatic forces.
The chemical groups that are capable of interacting with one or more amino acids in
the pore are typically hydroxyls or amines. The hydroxyl groups can be attached to
primary, secondary or tertiary carbon atoms. The hydroxyl groups may form hydrogen
bonds with uncharged amino acids in the pore. Any adaptor that facilitates the interaction
between the pore and the nucleotide or polynucleotide can be used.
[0137] Suitable adaptors include, but are not limited to, cyclodextrins, cyclic peptides
and cucurbiturils. The adaptor is preferably a cyclodextrin or a derivative thereof.
The cyclodextrin or derivative thereof may be any of those disclosed in
Eliseev, A. V., and Schneider, H-J. (1994) J. Am. Chem. Soc. 116, 6081-6088. The adaptor is more preferably heptakis-6-amino-β-cyclodextrin (am
7-βCD), 6-monodeoxy-6-monoamino-β-cyclodextrin (am
1-βCD) or heptakis-(6-deoxy-6-guanidino)-cyclodextrin (gu
7-βCD). The guanidino group in gu
7-βCD has a much higher pKa than the primary amines in am
7-βCD and so it is more positively charged. This gu
7-βCD adaptor may be used to increase the dwell time of the nucleotide in the pore,
to increase the accuracy of the residual current measured, as well as to increase
the base detection rate at high temperatures or low data acquisition rates.
[0138] If a succinimidyl 3-(2-pyridyldithio)propionate (SPDP) crosslinker is used as discussed
in more detail below, the adaptor is preferably heptakis(6-deoxy-6-amino)-6-N-mono(2-pyridyl)dithiopropanoyl-β-cyclodextrin
(am
6amPDP
1-βCD).
[0139] More suitable adaptors include γ-cyclodextrins, which comprise 8 sugar units (and
therefore have eight-fold symmetry). The γ-cyclodextrin may contain a linker molecule
or may be modified to comprise all or more of the modified sugar units used in the
β-cyclodextrin examples discussed above.
[0140] The molecular adaptor is preferably covalently attached to the mutant monomer. The
adaptor can be covalently attached to the pore using any method known in the art.
The adaptor is typically attached via chemical linkage. If the molecular adaptor is
attached via cysteine linkage, the one or more cysteines have preferably been introduced
to the mutant by substitution. The mutant monomers of the invention can of course
comprise a cysteine residue at one or both of positions 272 and 283. The mutant monomer
may be chemically modified by attachment of a molecular adaptor to one or both of
these cysteines. Alternatively, the mutant monomer may be chemically modified by attachment
of a molecule to one or more cysteines or non-natural amino acids, such as FAz, introduced
at other positions.
[0141] The reactivity of cysteine residues may be enhanced by modification of the adjacent
residues. For instance, the basic groups of flanking arginine, histidine or lysine
residues will change the pKa of the cysteines thiol group to that of the more reactive
S
- group. The reactivity of cysteine residues may be protected by thiol protective groups
such as dTNB. These may be reacted with one or more cysteine residues of the mutant
monomer before a linker is attached. The molecule may be attached directly to the
mutant monomer. The molecule is preferably attached to the mutant monomer using a
linker, such as a chemical crosslinker or a peptide linker.
[0142] Suitable chemical crosslinkers are well-known in the art. Preferred crosslinkers
include 2,5-dioxopyrrolidin-1-yl 3-(pyridin-2-yldisulfanyl)propanoate, 2,5-dioxopyrrolidin-1-yl
4-(pyridin-2-yldisulfanyl)butanoate and 2,5-dioxopyrrolidin-1-yl 8-(pyridin-2-yldisulfanyl)octananoate.
The most preferred crosslinker is succinimidyl 3-(2-pyridyldithio)propionate (SPDP).
Typically, the molecule is covalently attached to the bifunctional crosslinker before
the molecule/crosslinker complex is covalently attached to the mutant monomer but
it is also possible to covalently attach the bifunctional crosslinker to the monomer
before the bifunctional crosslinker/monomer complex is attached to the molecule.
[0143] The linker is preferably resistant to dithiothreitol (DTT). Suitable linkers include,
but are not limited to, iodoacetamide-based and maleimide-based linkers.
[0144] In other embodiment, the monomer may be attached to a polynucleotide binding protein.
This forms a modular sequencing system that may be used in the methods of the invention.
Polynucleotide binding proteins are discussed below.
[0145] The polynucleotide binding protein may be covalently attached to the mutant monomer.
The protein can be covalently attached to the pore using any method known in the art.
The monomer and protein may be chemically fused or genetically fused. The monomer
and protein are genetically fused if the whole construct is expressed from a single
polynucleotide sequence. Genetic fusion of a pore to a polynucleotide binding protein
is discussed in International Application No.
PCT/GB09/001679 (published as
WO 2010/004265).
[0146] If the polynucleotide binding protein is attached via cysteine linkage, the one or
more cysteines have preferably been introduced to the mutant by substitution. Such
substitutions are typically made in loop regions which have low conservation amongst
homologues indicating that mutations or insertions may be tolerated. They are therefore
suitable for attaching a polynucleotide binding protein. Such substitutions are typically
made in residues 1 to 43 and 127 to 297 of SEQ ID NO: 2. The reactivity of cysteine
residues may be enhanced by modification as described above.
[0147] The polynucleotide binding protein may be attached directly to the mutant monomer
or via one or more linkers. The polynucleotide binding protein may be attached to
the mutant monomer using the hybridization linkers described in International Application
No.
PCT/GB10/000132 (published as
WO 2010/086602). Alternatively, peptide linkers may be used. Peptide linkers are amino acid sequences.
The length, flexibility and hydrophilicity of the peptide linker are typically designed
such that it does not to disturb the functions of the monomer and molecule. Preferred
flexible peptide linkers are stretches of 2 to 20, such as 4, 6, 8, 10 or 16, serine
and/or glycine amino acids. More preferred flexible linkers include (SG)
1, (SG)
2, (SG)
3, (SG)
4, (SG)
5 and (SG)
8 wherein S is serine and G is glycine. Preferred rigid linkers are stretches of 2
to 30, such as 4, 6, 8, 16 or 24, proline amino acids. More preferred rigid linkers
include (P)
12 wherein P is proline.
[0148] The mutant monomer may be chemically modified with a molecular adaptor and a polynucleotide
binding protein.
Making mutant lysenin monomers
[0149] The invention also provides a method of improving the ability of a lysenin monomer
comprising the sequence shown in SEQ ID NO: 2 to characterise a polynucleotide. The
method comprises making one or more modifications and/or substitutions of the invention
in SEQ ID NO: 2. Any of the embodiments discussed above with reference to the mutant
lysenin monomers and below with reference to characterising polynucleotides equally
apply to this method of the invention.
Constructs
[0150] The invention also provides a construct comprising two or more covalently attached
monomers derived from lysenin wherein at least one of the monomers is a mutant lysenin
monomer of the invention. The construct of the invention retains its ability to form
a pore. One or more constructs of the invention may be used to form pores for characterising
a target analyte. One or more constructs of the invention may be used to form pores
for characterising a target polynucleotide, such as sequencing a target polynucleotides.
The construct may comprise 2, 3, 4, 5, 6, 7, 8, 9 or 10 or more monomers. The two
or more monomers may be the same or different.
[0151] At least monomer in the construct is a mutant monomer of the invention. 2 or more,
3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more or 10
or more monomers in the construct may be mutant monomers of the invention. All of
the monomers in the construct are preferably mutant monomers of the invention. The
mutant monomers may be the same or different. In a preferred embodiment, the construct
comprises two mutant monomers of the invention.
[0152] The mutant monomers of the invention in the construct are preferably approximately
the same length or are the same length. The barrels of the mutant monomers of the
invention in the construct are preferably approximately the same length or are the
same length. Length may be measured in number of amino acids and/or units of length.
The mutant monomers of the invention in the construct preferably have the same number
of amino acids deleted from positions 34 to 70 and/or positions 71 to 107 as described
above.
[0153] The other monomers in the construct do not have to be mutant monomers of the invention.
For instance, at least one monomer may comprise the sequence shown in SEQ ID NO: 2.
At least one monomer in the construct may be a paralogue or homologue of SEQ ID NO:
2. Suitable homologues are shown in SEQ ID NOs: 14 to 17.
[0154] Alternatively, at least one monomer may comprise a variant of SEQ ID NO: 2 which
is at least 50% homologous to SEQ ID NO: 2 over its entire sequence based on amino
acid identity, but does not include any of the specific mutations required by the
mutant monomers of the invention or in which no amino acids have been deleted as described
above. More preferably, the variant may be at least 55%, at least 60%, at least 65%,
at least 70%, at least 75%, at least 80%, at least 85%, at least 90% and more preferably
at least 95%, 97% or 99% homologous based on amino acid identity to the amino acid
sequence of SEQ ID NO: 2 over the entire sequence. The variant may be a fragment or
any other variant discussed above. Constructs of the invention may also comprise a
variant of SEQ ID NO: 14, 15, 16 or 17 which is at least 50% homologous or at least
any of the other level of homology mentioned above to SEQ ID NO: 14, 15, 16 or 17
over its entire sequence based on amino acid identity.
[0155] All of the monomers in the construct may be a mutant monomer of the invention. The
mutant monomers may be the same or different. In a more preferred embodiment, the
construct comprises two monomers and at least one of the monomers is a mutant monomer
of the invention.
[0156] The monomers may be genetically fused. Monomers are genetically fused if the whole
construct is expressed from a single polynucleotide sequence. The coding sequences
of the monomers may be combined in any way to form a single polynucleotide sequence
encoding the construct. Genetic fusion is discussed in International Application No.
PCT/GB09/001679 (published as
WO 2010/004265).
[0157] The monomers may be genetically fused in any configuration. The monomers may be fused
via their terminal amino acids. For instance, the amino terminus of the one monomer
may be fused to the carboxy terminus of another monomer.
[0158] The two or more monomers may be genetically fused directly together. The monomers
are preferably genetically fused using a linker. The linker may be designed to constrain
the mobility of the monomers. Preferred linkers are amino acid sequences (i.e. peptide
linkers). Any of the peptide linkers discussed above may be used.
[0159] The length, flexibility and hydrophilicity of the peptide linker are each typically
designed such that they do not to disturb the functions of the monomer and molecule.
Preferred flexible peptide linkers are stretches of 2 to 20, such as 4, 6, 8, 10 or
16, serine and/or glycine amino acids. More preferred flexible linkers include (SG)
1, (SG)
2, (SG)
3, (SG)
4, (SG)
5 and (SG)
8 wherein S is serine and G is glycine. Preferred rigid linkers are stretches of 2
to 30, such as 4, 6, 8, 16 or 24, proline amino acids. More preferred rigid linkers
include (P)
12 wherein P is proline.
[0160] In another preferred embodiment, the monomers are chemically fused. Monomers are
chemically fused if they are chemically attached, for instance via a chemical crosslinker.
Any of the chemical crosslinkers discussed above may be used. The linker may be attached
to one or more cysteine residues or non-natural amino acids, such as Faz, introduced
into a mutant monomer Alternatively, the linker may be attached to a terminus of one
of the monomers in the construct. Monomers are typically linked via one or more of
residues 1 to 43 and 127 to 297 of SEQ ID NO: 2.
[0161] If a construct contains different monomers, crosslinkage of monomers to themselves
may be prevented by keeping the concentration of linker in a vast excess of the monomers.
Alternatively, a "lock and key" arrangement may be used in which two linkers are used.
Only one end of each linker may react together to form a longer linker and the other
ends of the linker each react with a different monomers. Such linkers are described
in International Application No.
PCT/GB10/000132 (published as
WO 2010/086602).
[0162] The invention also provides a method of producing a construct of the invention. The
method comprises covalently attaching at least one mutant lysenin monomer of the invention
to one or more monomers derived from lysenin. Any of the embodiments discussed above
with reference to the construct of the invention equally apply to the methods of producing
the constructs.
Polynucleotides
[0163] The present invention also provides polynucleotide sequences which encode a mutant
monomer of the invention. The mutant monomer may be any of those discussed above.
The polynucleotide sequence preferably comprises a sequence at least 50%, 60%, 70%,
80%, 90% or 95% homologous based on nucleotide identity to the sequence of SEQ ID
NO: 1 over the entire sequence. There may be at least 80%, for example at least 85%,
90% or 95% nucleotide identity over a stretch of 300 or more, for example 375, 450,
525 or 600 or more, contiguous nucleotides ("hard homology"). Homology may be calculated
as described above. The polynucleotide sequence may comprise a sequence that differs
from SEQ ID NO: 1 on the basis of the degeneracy of the genetic code.
[0164] The present invention also provides polynucleotide sequences which encode any of
the genetically fused constructs of the invention. The polynucleotide preferably comprises
two or more sequences as shown in SEQ ID NO: 1 or a variant thereof as described above.
[0165] Polynucleotide sequences may be derived and replicated using standard methods in
the art. Chromosomal DNA encoding wild-type Lysenin may be extracted from a pore producing
organism, such as
Eisenia fetida. The gene encoding the pore monomer may be amplified using PCR involving specific
primers. The amplified sequence may then undergo site-directed mutagenesis. Suitable
methods of site-directed mutagenesis are known in the art and include, for example,
combine chain reaction. Polynucleotides encoding a construct of the invention can
be made using well-known techniques, such as those described in
Sambrook, J. and Russell, D. (2001). Molecular Cloning: A Laboratory Manual, 3rd
Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
[0166] The resulting polynucleotide sequence may then be incorporated into a recombinant
replicable vector such as a cloning vector. The vector may be used to replicate the
polynucleotide in a compatible host cell. Thus polynucleotide sequences may be made
by introducing a polynucleotide into a replicable vector, introducing the vector into
a compatible host cell, and growing the host cell under conditions which bring about
replication of the vector. The vector may be recovered from the host cell. Suitable
host cells for cloning of polynucleotides are known in the art and described in more
detail below.
[0167] The polynucleotide sequence may be cloned into a suitable expression vector. In an
expression vector, the polynucleotide sequence is typically operably linked to a control
sequence which is capable of providing for the expression of the coding sequence by
the host cell. Such expression vectors can be used to express a pore subunit.
[0168] The term "operably linked" refers to a juxtaposition wherein the components described
are in a relationship permitting them to function in their intended manner. A control
sequence "operably linked" to a coding sequence is ligated in such a way that expression
of the coding sequence is achieved under conditions compatible with the control sequences.
Multiple copies of the same or different polynucleotide sequences may be introduced
into the vector.
[0169] The expression vector may then be introduced into a suitable host cell. Thus, a mutant
monomer or construct of the invention can be produced by inserting a polynucleotide
sequence into an expression vector, introducing the vector into a compatible bacterial
host cell, and growing the host cell under conditions which bring about expression
of the polynucleotide sequence. The recombinantly-expressed monomer or construct may
self-assemble into a pore in the host cell membrane. Alternatively, the recombinant
pore produced in this manner may be removed from the host cell and inserted into another
membrane. When producing pores comprising at least two different subunits, the different
subunits may be expressed separately in different host cells as described above, removed
from the host cells and assembled into a pore in a separate membrane, such as a sheep
erythrocyte membrane or liposomes containing sphingomyelin.
[0170] For example, lysenin monomers may be oligomerised by adding a lipid mixture comprising
sphingomyelin and one ore more of the following lipids: phosphatidylserine; POPE;
Cholesterol; and Soy PC and incubating the mixture, for example at 30 °C for 60 minutes.
The oligomerised monomers may be purified by any suitable method, for example by SDS-PAGE
and gel purification as described in
WO2013/153359.
[0171] The vectors may be for example, plasmid, virus or phage vectors provided with an
origin of replication, optionally a promoter for the expression of the said polynucleotide
sequence and optionally a regulator of the promoter. The vectors may contain one or
more selectable marker genes, for example a tetracycline resistance gene. Promoters
and other expression regulation signals may be selected to be compatible with the
host cell for which the expression vector is designed. A T7,
trc, lac, ara or λ
L promoter is typically used.
[0172] The host cell typically expresses the pore subunit at a high level. Host cells transformed
with a polynucleotide sequence will be chosen to be compatible with the expression
vector used to transform the cell. The host cell is typically bacterial and preferably
Escherichia coli. Any cell with a λ DE3 lysogen, for example C41 (DE3), BL21 (DE3), JM109 (DE3), B834
(DE3), TUNER, Origami and Origami B, can express a vector comprising the T7 promoter.
In addition to the conditions listed above any of the methods cited in
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20647-52 may be used to express the lysenin proteins.
Pores
[0173] The invention also provides various pores. The pores of the invention are ideal for
characterising analytes. The pores of the invention are especially ideal for characterising,
such as sequencing, polynucleotides because they can discriminate between different
nucleotides with a high degree of sensitivity. The pores can be used to characterise
nucleic acids, such as DNA and RNA, including sequencing the nucleic acid and identifying
single base changes. The pores of the invention can even distinguish between methylated
and unmethylated nucleotides. The base resolution of pores of the invention is surprisingly
high. The pores show almost complete separation of all four DNA nucleotides. The pores
can be further used to discriminate between deoxycytidine monophosphate (dCMP) and
methyl-dCMP based on the dwell time in the pore and the current flowing through the
pore.
[0174] The pores of the invention can also discriminate between different nucleotides under
a range of conditions. In particular, the pores will discriminate between nucleotides
under conditions that are favourable to the characterising, such as sequencing, of
polynucleotides. The extent to which the pores of the invention can discriminate between
different nucleotides can be controlled by altering the applied potential, the salt
concentration, the buffer, the temperature and the presence of additives, such as
urea, betaine and DTT. This allows the function of the pores to be fine-tuned, particularly
when sequencing. This is discussed in more detail below. The pores of the invention
may also be used to identify polynucleotide polymers from the interaction with one
or more monomers rather than on a nucleotide by nucleotide basis.
[0175] A pore of the invention may be isolated, substantially isolated, purified or substantially
purified. A pore of the invention is isolated or purified if it is completely free
of any other components, such as lipids or other pores. A pore is substantially isolated
if it is mixed with carriers or diluents which will not interfere with its intended
use. For instance, a pore is substantially isolated or substantially purified if it
is present in a form that comprises less than 10%, less than 5%, less than 2% or less
than 1% of other components, such as lipids or other pores. Alternatively, a pore
of the invention may be present in a lipid bilayer.
[0176] A pore of the invention may be present as an individual or single pore. Alternatively,
a pore of the invention may be present in a homologous or heterologous population
or plurality of two or more pores.
Homo-oligomeric pores
[0177] The invention also provides a homo-oligomeric pore derived from lysenin comprising
identical mutant monomers of the invention. The monomers are identical in terms of
their amino acid sequence. The homo-oligomeric pore of the invention is ideal for
characterising, such as sequencing, polynucleotides. The homo-oligomeric pore of the
invention may have any of the advantages discussed above. The advantages of specific
homo-oligomeric pores of the invention are indicated in the Examples.
[0178] The homo-oligomeric pore may contain any number of mutant monomers. The pore typically
comprises two or more mutant monomers. The homo-oligomeric pore may contain any number
of mutant monomers. The pore typically comprises at least 6, at least 7, at least
8, at least 9 or at least 10 identical mutant monomers, such as 6, 7, 8, 9 or 10 mutant
monomers. The pore preferably comprises eight or nine identical mutant monomers. The
pore most preferably comprises nine identical mutant monomers. This number of monomers
is referred to herein as a "sufficient number".
[0179] One or more, such as 2, 3, 4, 5, 6, 7, 8, 9 or 10, of the mutant monomers is preferably
chemically modified as discussed above or below.
[0180] One or more of the mutant monomers is preferably chemically modified as discussed
above or below. In other words, one or more of the monomers being chemically modified
(and the others not being chemically modified) does not prevent the pore from being
homo-oligomeric as long as the amino acid sequence of each of the monomers is identical.
Hetero-oligomeric pores
[0182] The invention also provides a hetero-oligomeric pore derived from lysenin comprising
at least one mutant monomer of the invention, wherein at least one of the monomers
differs from the others. The monomer differs from the others in terms of its amino
acid sequence. The hetero-oligomeric pore of the invention is ideal for characterising,
such as sequencing, polynucleotides. Hetero-oligomeric pores can be made using methods
known in the art (e.g.
Protein Sci. 2002 Jul;11(7):1813-24).
[0183] The hetero-oligomeric pore contains sufficient monomers to form the pore. The monomers
may be of any type, including, for example, wild-type. The pore typically comprises
two or more monomers. The pore typically comprises at least 6, at least 7, at least
8, at least 9 or at least 10 monomers, such as 6, 7, 8, 9 or 10 monomers. The pore
preferably comprises eight or nine monomers. The pore most preferably comprises nine
monomers. This number of monomers is referred to herein as a "sufficient number".
[0184] The pore may comprise at least one monomer comprising the sequence shown in SEQ ID
NO: 2, a paralogue thereof, a homologue thereof or a variant thereof which does not
have a mutation required by the mutant monomers of the invention or in which no amino
acids have been deleted as described above. Suitable variants are any of those discussed
above with reference to the constructs of the invention, including SEQ ID NOs: 2,
14, 15, 16 and 17 and variants thereof. In this embodiment, the remaining monomers
are preferably mutant monomers of the invention.
[0185] In a preferred embodiment, the pore comprises (a) one mutant monomer of the invention
and (b) a sufficient number of identical monomers to form the pore, wherein the mutant
monomer in (a) is different from the identical monomers in (b). The identical monomers
in (b) preferably comprise the sequence shown in SEQ ID NO: 2, a paralogue thereof,
a homologue thereof or a variant thereof which does not have a mutation required by
the mutant monomers of the invention.
[0186] A hetero-oligomeric pore of the invention preferably comprises only one mutant lysenin
monomer of the invention.
[0187] In another preferred embodiment, all of the monomers in the hetero-oligomeric pore
are mutant monomers of the invention and at least one of them differs from the others.
[0188] The mutant monomers of the invention in the pore are preferably approximately the
same length or are the same length. The barrels of the mutant monomers of the invention
in the pore are preferably approximately the same length or are the same length. Length
may be measured in number of amino acids and/or units of length. The mutant monomers
of the invention in the pore preferably have the same number of amino acids deleted
from positions 34 to 70 and/or positions 71 to 107.
[0189] In all the embodiments discussed above, one or more of the mutant monomers is preferably
chemically modified as discussed above or below. The presence of a chemical modification
on one monomer does not result in the pore being hetero-oligomeric. The amino acid
sequence of at least one monomer must differ from the sequence(s) of the other monomers.
Methods for making pores are discussed in more detail below.
Construct-containing pores
[0190] The invention also provides a pore comprising at least one construct of the invention.
A construct of the invention comprises two or more covalently attached monomers derived
from lysenin, wherein at least one of the monomers is a mutant lysenin monomer of
the invention. In other words, a construct must contain more than one monomer. At
least two of the monomers in the pore are in the form of a construct of the invention.
The monomers may be of any type.
[0191] A pore typically contains (a) one construct comprising two monomers and (b) a sufficient
number of monomers to form the pore. The construct may be any of those discussed above.
The monomers may be any of those discussed above, including mutant monomers of the
invention.
[0192] Another typical pore comprises more than one construct of the invention, such as
two, three or four constructs of the invention. Such pores further comprise a sufficient
number of monomers to form the pore. The monomer may be any of those discussed above.
A further pore of the invention comprises only constructs comprising 2 monomers. A
specific pore according to the invention comprises several constructs each comprising
two monomers. The constructs may oligomerise into a pore with a structure such that
only one monomer from each construct contributes to the pore. Typically, the other
monomers of the construct (i.e. the ones not forming the pore) will be on the outside
of the pore.
[0193] Mutations can be introduced into the construct as described above. The mutations
may be alternating, i.e. the mutations are different for each monomer within a two
monomer construct and the constructs are assembled as a homo-oligomer resulting in
alternating modifications. In other words, monomers comprising MutA and MutB are fused
and assembled to form an A-B:A-B:A-B:A-B pore. Alternatively, the mutations may be
neighbouring, i.e. identical mutations are introduced into two monomers in a construct
and this is then oligomerised with different mutant monomers. In other words, monomers
comprising MutA are fused follow by oligomerisation with MutB-containing monomers
to form A-A:B:B:B:B:B:B.
[0194] One or more of the monomers of the invention in a construct-containing pore may be
chemically-modified as discussed above or below.
Chemically-modified pores of the invention
[0195] In another aspect, the invention provides a chemically-modified lysenin pore comprising
one or more mutant monomers which are chemically modified such that the open diameter
of the barrel/channel of an assembled pore is reduced, narrowed or constricted at
one site or more along the length of the barrel; such as two, three, four or five
sites. The pore may comprise any number of monomers discussed above with reference
to the homo-oligomeric and hetero-oligomeric pores of the invention. The pore preferably
comprises nine chemically-modified monomers. The chemically-modified pore may be homo-oligomeric
as described above. In other words, all of the monomers in the chemically-modified
pore may have the same amino acid sequence and be chemically modified in the same
way. The chemically-modified pore may be hetero-oligomeric as described above. In
other words, the pore may comprise (a) only one monomer which is chemically modified,
(b) more than one, such as two, three, four, five, six, seven or eight, chemically-modified
monomers in which at least two, such as three, four, five, six or seven, of the chemically-modified
monomers differ from one another or (c) only chemically-modified monomers (
i.e. all of the monomers are chemically modified) in which at least two, such as three,
four, five, six, seven, eight or nine, of the chemically-modified monomers differ
from one another. The monomers may differ from one another in terms of their amino
acid sequences, their chemical modifications or both their amino acid sequences and
their chemical modifications. The chemically-modified monomer(s) may be any of theose
discussed above and/or below.
[0196] The invention also provides a mutant lysenin monomer that is chemically-modified
in any of the ways discussed below. The mutant monomer may be any of those discussed
above or below. As a result, a mutant monomer of the invention, such as a variant
of SEQ ID NO: 2 comprising a modification at one or more of the following positions
K37, G43, K45, V47, S49, T51, H83, V88, T91, T93, V95, Y96, S98, K99, V100, 1101,
P108, P109, T110, S111, K112 and T114 or a variant comprising the barrel deletions
discussed above, may be chemically-modified in accordance with the invention as discussed
below.
[0197] The mutant monomer can be chemically-modified such that the diameter of the barrel
of an assembled pore is reduced or narrowed by any factor of reduction which is dependent
on the size of the analyte to be passed through the pore. The width of the constriction
zone will typically determine the extent of disruption of the measurement signal during
translocation of the analyte due to for example the analyte reducing the ion flow
through the pore. The greater the disruption in signal, typically the greater the
sensitivity in measurement. Thus the constriction zone may be chosen to be slightly
wider than the analyte to be translocated. For translocation for example of ssDNA,
the width of the constriction zone may be chosen from a value in the range of 0.8
to 3.0nm.
[0198] Chemical modification may also determine the length of the constriction zone which
in turn will determine the number of polymer units, for example nucleotides, that
contribute to the measurement signal. The nucleotides that contribute to the current
signal at any particular time may be referred to as a k-mer where k is an integer
and which may be a whole or fractional number. In the case of measurement of a polynucleotide
having 4 types of nucleobase, a 3-mer will give rise to 4
3 potential signal levels. Larger values of k give rise to a greater number of signal
levels. Typically it is desirable to provide a short constriction zone as this simplifies
analysis of the measurement signal data.
[0199] The chemical modification is such that a chemical molecule is preferably covalently
attached to the mutant monomer or the one or more mutant monomers. The chemical molecule
can be covalently attached to the pore, mutant monomer or one or more mutant monomers
using any method known in the art. The chemical molecule is typically attached via
chemical linkage.
[0200] The mutant monomer or one or more mutant monomers is/are preferably chemically modified
by attachment of a molecule to one or more cysteines (cysteine linkage), attachment
of a molecule to one or more lysines, attachment of a molecule to one or more non-natural
amino acids or enzyme modification of an epitope. If the chemical modifier is attached
via cysteine linkage, the one or more cysteines have preferably been introduced to
the mutant by substitution. Suitable methods for carrying out such modifications are
well-known in the art. Suitable non-natural amino acids include, but are not limited
to, 4-azido-L-phenylalanine (Faz) and any one of the amino acids numbered 1-71 in
Figure 1 of
Liu C. C. and Schultz P. G., Annu. Rev. Biochem., 2010, 79, 413-444.
[0201] The mutant monomer or one or more mutant monomers may be chemically modified by the
attachment of any molecule which has the effect of reducing or narrowing the diameter
of the barrel of an assembled pore at any location or site. For instance, the mutant
monomer may be chemically modified by attachment of (i) Maleimides such as: 4-phenylazomaleinanil,
1.N-(2-Hydroxyethyl)maleimide, N-Cyclohexylmaleimide, 1.3-Maleimidopropionic Acid,
1.1-4-Aminophenyl-1H-pyrrole,2,5,dione, 1.1-4-Hydroxyphenyl-1H-pyrrole,2,5,dione,
N-Ethylmaleimide, N-Methoxycarbonylnialeimide, N-tert-Butylmaleimide, N-(2-Aminoethyl)maleimide
, 3-Maleimido-PROXYL , N-(4-Chlorophenyl)maleimide, 1-[4-(dimethylamino)-3,5-dinitrophenyl]-1H-pyrroLe-2,5-dione,
N-[4-(2-Benzimidazolyl)phenyl]maleimide, N-[4-(2-benzoxazolyl)phenyl]maleimide, N-(1-NAPHTHYL)-MALEIMIDE,
N-(2,4-XYLYL)MALEIMIDE, N-(2,4-DIFLUOROPHENYL)MALEIMIDE , N-(3-CHLORO-PARA-TOLYL)-MALEIMIDE
, 1-(2-Amino-ethyl)-pyrrole-2,5-dione hydrochlonde, 1-cyclopentyl-3-methyl-2,5-dihydro-1H-pyrrole-2,5-dione,
1-(3-aminopropyl)-2,5-dihydro1H-pyrrole-2,5-dione hydrochloride, 3-methyl-1-[2-oxo-2-(piperazin-1-yl)ethyl]-2,5-dihydro-1H-pyrrole-2,5-dione
hydrochloride, 1-benzyl-2,5-dihydro-1H-pyrrole-2,5-dione, 3-methyl-1-(3,3,3-trifluropropyl)-2',5-dihydro-1H-pyrrole-2,5-dione,
1-[4-(methylamino)cydohexyl]-2,5-dihydro-1H-pyrrole-2,5-dione trifluroacetic acid,
SMILES O=C1C=CC(=O)N1CC=2C=CN=CC2, SMILES O=C1C=CC(=O)N1CN2CCNCC2, 1-benzyl-3-methyl-2,5-dihydro-1H-pyrrole-2,5-dione,
1-(2-fluorophenyl)-3-methyl-2,5-dihydro 1H-pyrrole-2,5-dione, N-(4-PHENOXYPHENYL)MALEIMIDE,
N-(4-NITROPHENYL)MALEIMIDE (ii) Iodocetamides such as :3-(2-Iodoacetamido)-PROXYL,
N-(cyclopropylmethyl)-2-iodoacetamide, 2-iodo-N-(2-phenylethyl)acetamide, 2-iodo-N-(2,2,2-trifuoroethyl)acetamide,N-(4-ACETYLPHENYL)-2-IODOACETAMIDE,
N-(4-(AMINOSULFONYL)PHENYL)-2-IODOACETAMIDE, N-(1,3-BENZOTHIAZOL-2-YL)-2-IODOACETAMIDE,N-(2,6-DIETHYLPHENYL)-2-IODOACETAMIDE,
N-(2-benzoyl-4-chlorophenyl)-2-iodoacetamide, (iii) Bromoacetamides: such as N-(4-(ACETYLAMINO)PHENYL)-2-BROMOACETAMIDE
, N-(2-ACETYLPHENYL)-2-BROMOACETAMIDE, 2-BROMO-N-(2-CYANOPHENYL)ACETAMIDE, 2-BROMO-N-(3-(TRIFLUOROMETHIL)PHENYL)ACETAMIDE,
N-(2-benzoylphenyl)-2-bromoacetamide , 2-bromo-N-(4-fluorophenyl)-3-methylbutanamide,
N-Benzyl-2-bromo-
N-phenylpropionamide, N-(2-BROMO-BUTYRYL)-4-CHLORO-BENZENESULFONAMIDE, 2-Bromo-N-methyl-N-phenylacetamide,
2-bromo-N-phenethyl-acetamide,2-ADAMANTAN-1-YL-2-BROMO-N-CYCLOHEXYL-ACETAMIDE, 2-bromo-N-(2-methylphenyl)butanamide,
Monobromoacetanilide, (iv) Disulphides such as: ALDRITHIOL-2 , ALDRITHIOL-4 , ISOPROPYL.
DISULFIDE, 1-(Isobutyldisulfanyl)-2-methylpropane, Dibenzyl disulfide, 4-AMINOPHENYL
DISULFIDE, 3-(2-Pyridyldithio)propionic acid, 3-(2-Pyridyldithio)propionic acid hydrazide,
3-(2-Pyridyldithio)propionic acid N-succinimidyl ester, am6amPDP1-βCD
and (v) Thiols such as: 4-Phenylthiazole-2-thiol, Purpald, 5,6,7,8-TETRAHYDRO-QUINAZOLINE-2-THIOL.
[0202] The mutant monomer or one or more mutant monomers may be chemically modified by attachment
of polyethylene glycol (PEG), a nucleic acid, such as DNA, a dye, a fluorophore or
a chromophore. In some embodiments, the mutant monomer or one or more mutant monomers
is/are chemically modified with a molecular adaptor that facilitates the interaction
between a pore comprising the monomer and a target analyte, a target nucleotide or
target polynucleotide. The presence of the adaptor improves the host-guest chemistry
of the pore and the nucleotide or polynucleotide and thereby improves the sequencing
ability of pores formed from the mutant monomer.
[0203] The mutant monomer or one or more mutant monomers may be chemically modified by the
attachment of any molecule which has the effect of reducing or narrowing the open
diameter of the barrel of an assembled pore at any of positions: K37, V47, S49, T55,
S86, E92, E94. More preferably the mutant monomer may be chemically modified by the
attachment of any molecule which has the effect of reducing or narrowing the open
diameter of the barrel of an assembled pore at positions E92 and E94. In one embodiment
the mutant monomer or one or more mutant monomers is/are chemically modified by attachment
of a molecule to one or more cysteines (cysteine linkage) at these positions.
[0204] The reactivity of cysteine residues may be enhanced by modification of the adjacent
residues. For instance, the basic groups of flanking arginine, histidine or lysine
residues will change the pKa of the cysteines thiol group to that of the more reactive
S
- group. The reactivity of cysteine residues may be protected by thiol protective groups
such as dTNB. These may be reacted with one or more cysteine residues of the mutant
monomer before a linker is attached.
[0205] The molecule may be attached directly to the mutant monomer or the one or more mutant
monomers. The molecule is preferably attached to the mutant monomer using a linker,
such as a chemical crosslinker or a peptide linker. Suitable chemical crosslinkers
are well-known in the art. Preferred crosslinkers include 2,5-dioxopyrrolidin-1-yl
3-(pyridin-2-yldisulfanyl)propanoate, 2,5-dioxopyrrolidin-1-yl 4-(pyridin-2-yldisulfanyl)butanoate
and 2,5-dioxopyrrolidin-1-yl 8-(pyridin-2-yldisulfanyl)octananoate. The most preferred
crosslinker is succinimidyl 3-(2-pyridyldithio)propionate (SPDP). Typically, the molecule
is covalently attached to the bifunctional crosslinker before the molecule/crosslinker
complex is covalently attached to the mutant monomer but it is also possible to covalently
attach the bifunctional crosslinker to the monomer before the bifunctional crosslinker/monomer
complex is attached to the molecule.
[0206] The linker is preferably resistant to dithiothreitol (DTT). Suitable linkers include,
but are not limited to, iodoacetamide-based and maleimide-based linkers.
[0207] The pores chemically modified in this way show the specific advantage of (i) improvements
to the sharpness of the read head (ii) improved discrimination between bases and (iii)
improved range i.e., improved signal to noise ratio.
[0208] By modifying a particular position within the barrel with a chemical molecule a new
reader-head can be introduced or an old reader head can be modified. Due to the size
of the modified molecule, the physical size of the reader head can be altered significantly.
Similarly, due to the chemical nature of the modified molecule, properties of the
reader-head can be altered. Combination of the two effects has been demonstrated to
result in a reader-head with improved resolution and better discrimination of bases.
Not only has the relative contribution to the signal of different bases at different
positions been altered, read-head positions at the extreme show much less discrimination
meaning their contribution toward the signal is much reduced and therefore the length
of the Kmer being assayed at a given moment is shorter. This sharper read-head makes
the process of deconvolution of Kmers from raw signal simpler.
Producing pores of the invention
[0209] The invention also provides a method of producing a pore of the invention. The method
comprises allowing at least one mutant monomer of the invention or at least one construct
of the invention to oligomerise with a sufficient number of mutant lysenin monomers
of the invention, constructs of the invention, lysenin monomers or monomers derived
from lysenin to form a pore. If the method concerns making a homo-oligomeric pore
of the invention, all of the monomers used in the method are mutant lysenin monomers
of the invention having the same amino acid sequence. If the method concerns making
a hetero-oligomeric pore of the invention, at least one of the monomers is different
from the others.
[0210] Typically, the monomers are expressed in host cells as described above, removed from
the host cells and assembled into a pore in a separate membrane, such as a sheep erythrocyte
membrane or liposomes containing sphingomyelin.
[0211] For example, lysenin monomers may be oligomerised by adding a lipid mixture comprising
sphingomyelin and one ore more of the following lipids: phosphatidylserine; POPE;
Cholesterol; and Soy PC and incubating the mixture, for example at 30 °C for 60 minutes.
The oligomerised monomers may be purified by any suitable method, for example by SDS-PAGE
and gel purification as described in
WO2013/153359.
[0212] Any of the embodiments discussed above with reference to the pores of the invention
equally apply to the methods of producing the pores.
Methods of characterising analytes
[0213] The invention provides a method of characterising a target analyte. The method comprises
contacting the target analyte with a pore of the invention such that the target analyte
moves through the pore. The pore may be any of those discussed above. One or more
characteristics of the target analyte are then measured as the analyte moves with
respect to the pore using standard methods known in the art. One or more characteristics
of the target analyte are preferably measured as the analyte moves through the pore.
Steps (a) and (b) are preferably carried out with a potential applied across the pore.
As discussed in more detail below, the applied potential typically results in the
formation of a complex between the pore and a polynucleotide binding protein. The
applied potential may be a voltage potential. Alternatively, the applied potential
may be a chemical potential. An example of this is using a salt gradient across an
amphiphilic layer. A salt gradient is disclosed in
Holden et al., J Am Chem Soc. 2007 Jul 11;129(27):8650-5.
[0214] The method of the invention is for characterising a target analyte. The method is
for characterising at least one analyte. The method may concern characterising two
or more analytes. The method may comprise characterising any number of analytes, such
as 2, 5, 10, 15, 20, 30, 40, 50, 100 or more analytes.
[0215] The target analyte is preferably a metal ion, an inorganic salt, a polymer, an amino
acid, a peptide, a polypeptide, a protein, a nucleotide, an oligonucleotide, a polynucleotide,
a dye, a bleach, a pharmaceutical, a diagnostic agent, a recreational drug, an explosive
or an environmental pollutant. The method may concern characterising two or more analytes
of the same type, such as two or more proteins, two or more nucleotides or two or
more pharmaceuticals. Alternatively, the method may concern characterising two or
more analytes of different types, such as one or more proteins, one or more nucleotides
and one or more pharmaceuticals.
[0216] The target analyte can be secreted from cells. Alternatively, the target analyte
can be an analyte that is present inside cells such that the analyte must be extracted
from the cells before the invention can be carried out.
[0217] The analyte is preferably an amino acid, a peptide, a polypeptides and/or a protein.
The amino acid, peptide, polypeptide or protein can be naturally-occurring or non-naturally-occurring.
The polypeptide or protein can include within them synthetic or modified amino acids.
A number of different types of modification to amino acids are known in the art. Suitable
amino acids and modifications thereof are above. For the purposes of the invention,
it is to be understood that the target analyte can be modified by any method available
in the art.
[0218] The protein can be an enzyme, an antibody, a hormone, a growth factor or a growth
regulatory protein, such as a cytokine. The cytokine may be selected from interleukins,
preferably IFN-1, IL-1, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 and IL-13, interferons,
preferably IL-γ, and other cytokines such as TNF-α. The protein may be a bacterial
protein, a fungal protein, a virus protein or a parasite-derived protein.
[0219] The target analyte is preferably a nucleotide, an oligonucleotide or a polynucleotide.
A nucleotide typically contains a nucleobase, a sugar and at least one phosphate group.
The nucleobase is typically heterocyclic. Nucleobases include, but are not limited
to, purines and pyrimidines and more specifically adenine, guanine, thymine, uracil
and cytosine. The sugar is typically a pentose sugar. Nucleotide sugars include, but
are not limited to, ribose and deoxyribose. The nucleotide is typically a ribonucleotide
or deoxyribonucleotide. The nucleotide typically contains a monophosphate, diphosphate
or triphosphate. Phosphates may be attached on the 5' or 3' side of a nucleotide.
[0220] Nucleotides include, but are not limited to, adenosine monophosphate (AMP), adenosine
diphosphate (ADP), adenosine triphosphate (ATP), guanosine monophosphate (GMP), guanosine
diphosphate (GDP), guanosine triphosphate (GTP), thymidine monophosphate (TMP), thymidine
diphosphate (TDP), thymidine triphosphate (TTP), uridine monophosphate (UMP), uridine
diphosphate (UDP), uridine triphosphate (UTP), cytidine monophosphate (CMP), cytidine
diphosphate (CDP), cytidine triphosphate (CTP), 5-methylcytidine monophosphate, 5-methylcytidine
diphosphate, 5-methylcytidine triphosphate, 5-hydroxymethylcytidine monophosphate,
5-hydroxymethylcytidine diphosphate, 5-hydroxymethylcytidine triphosphate, cyclic
adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), deoxyadenosine
monophosphate (dAMP), deoxyadenosine diphosphate (dADP), deoxyadenosine triphosphate
(dATP), deoxyguanosine monophosphate (dGMP), deoxyguanosine diphosphate (dGDP), deoxyguanosine
triphosphate (dGTP), deoxythymidine monophosphate (dTMP), deoxythymidine diphosphate
(dTDP), deoxythymidine triphosphate (dTTP), deoxyuridine monophosphate (dUMP), deoxyuridine
diphosphate (dUDP), deoxyuridine triphosphate (dUTP), deoxycytidine monophosphate
(dCMP), deoxycytidine diphosphate (dCDP) and deoxycytidine triphosphate (dCTP), 5-methyl-2'-deoxycytidine
monophosphate, 5-methyl-2'-deoxycytidine diphosphate, 5-methyl-2'-deoxycytidine triphosphate,
5-hydroxymethyl-2'-deoxycytidine monophosphate, 5-hydroxymethyl-2'-deoxycytidine diphosphate
and 5-hydroxymethyl-2'-deoxycytidine triphosphate. The nucleotides are preferably
selected from AMP, TMP, GMP, UMP, dAMP, dTMP, dGMP or dCMP. The nucleotides may be
abasic (i.e. lack a nucleobase). The nucleotides may contain additional modifications.
In particular, suitable modified nucleotides include, but are not limited to, 2'amino
pyrimidines (such as 2'-amino cytidine and 2'-amino uridine), 2'-hyrdroxyl purines
(such as , 2'-fluoro pyrimidines (such as 2'-fluorocytidine and 2'fluoro uridine),
hydroxyl pyrimidines (such as 5'-α-P-borano uridine), 2'-O-methyl nucleotides (such
as 2'-O-methyl adenosine, 2'-O-methyl guanosine, 2'-O-methyl cytidine and 2'-O-methyl
uridine), 4'-thio pyrimidines (such as 4'-thio uridine and 4'-thio cytidine) and nucleotides
have modifications of the nucleobase (such as 5-pentynyl-2'-deoxy uridine, 5-(3-aminopropyl)-uridine
and 1,6-diaminohexyl-N-5-carbamoylmethyl uridine).
[0221] Oligonucleotides are short nucleotide polymers which typically have 50 or fewer nucleotides,
such 40 or fewer, 30 or fewer, 20 or fewer, 10 or fewer or 5 or fewer nucleotides.
The oligonucleotides may comprise any of the nucleotides discussed above, including
the abasic and modified nucleotides. The method of the invention is preferably for
characterising a target polynucleotide. A polynucleotide, such as a nucleic acid,
is a macromolecule comprising two or more nucleotides. The polynucleotide or nucleic
acid may comprise any combination of any nucleotides. The nucleotides can be naturally
occurring or artificial. One or more nucleotides in the target polynucleotide can
be oxidized or methylated. One or more nucleotides in the target polynucleotide may
be damaged. For instance, the polynucleotide may comprise a pyrimidine dimer. Such
dimers are typically associated with damage by ultraviolet light and are the primary
cause of skin melanomas. One or more nucleotides in the target polynucleotide may
be modified, for instance with a label or a tag. Suitable labels are described above.
The target polynucleotide may comprise one or more spacers.
[0222] Nucleotides are defined above. Nucleotides present in the polynucleotide typically
include, but are not limited to, adenosine monophosphate (AMP), guanosine monophosphate
(GMP), thymidine monophosphate (TMP), uridine monophosphate (UMP), cytidine monophosphate
(CMP), cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP),
deoxyadenosine monophosphate (dAMP), deoxyguanosine monophosphate (dGMP), deoxythymidine
monophosphate (dTMP), deoxyuridine monophosphate (dUMP) and deoxycytidine monophosphate
(dCMP). The nucleotides are preferably selected from AMP, TMP, GMP, CMP, UMP, dAMP,
dTMP, dGMP, dCMP and dUMP
[0223] A nucleotide may be abasic (i.e. lack a nucleobase).
[0224] The nucleotides in the polynucleotide may be attached to each other in any manner.
The nucleotides are typically attached by their sugar and phosphate groups as in nucleic
acids. The nucleotides may be connected via their nucleobases as in pyrimidine dimers.
[0225] The polynucleotide may be single stranded or double stranded. At least a portion
of the polynucleotide is preferably double stranded. A single stranded polynucleotide
may have one or more primers hybridised thereto and hence comprise one or more short
regions of double stranded polynucleotide. The primers may be the same type of polynucleotide
as the target polynucleotide or may be a different type of polynucleotide.
[0226] The polynucleotide can be a nucleic acid, such as deoxyribonucleic acid (DNA) or
ribonucleic acid (RNA). The target polynucleotide can comprise one strand of RNA hybridized
to one strand of DNA. The polynucleotide may be any synthetic nucleic acid known in
the art, such as peptide nucleic acid (PNA), glycerol nucleic acid (GNA), threose
nucleic acid (TNA), locked nucleic acid (LNA) or other synthetic polymers with nucleotide
side chains.
[0227] The whole or only part of the target polynucleotide may be characterised using this
method. The target polynucleotide can be any length. For example, the polynucleotide
can be at least 10, at least 50, at least 100, at least 150, at least 200, at least
250, at least 300, at least 400 or at least 500 nucleotide pairs in length. The polynucleotide
can be 1000 or more nucleotide pairs, 5000 or more nucleotide pairs in length or 100000
or more nucleotide pairs in length.
[0228] The target analyte, such as a target polynucleotide, is present in any suitable sample.
The invention is typically carried out on a sample that is known to contain or suspected
to contain the target analyte, such as the target polynucleotide. Alternatively, the
invention may be carried out on a sample to confirm the identity of one or more target
analytes, such as one or more target polynucleotides, whose presence in the sample
is known or expected.
[0229] The sample may be a biological sample. The invention may be carried out
in vitro on a sample obtained from or extracted from any organism or microorganism. The organism
or microorganism is typically archaean, prokaryotic or eukaryotic and typically belongs
to one the five kingdoms: plantae, animalia, fungi, monera and protista. The invention
may be carried out
in vitro on a sample obtained from or extracted from any virus. The sample is preferably a
fluid sample. The sample typically comprises a body fluid of the patient. The sample
may be urine, lymph, saliva, mucus or amniotic fluid but is preferably blood, plasma
or serum. Typically, the sample is human in origin, but alternatively it may be from
another mammal animal such as from commercially farmed animals such as horses, cattle,
sheep or pigs or may alternatively be pets such as cats or dogs. Alternatively a sample
of plant origin is typically obtained from a commercial crop, such as a cereal, legume,
fruit or vegetable, for example wheat, barley, oats, canola, maize, soya, rice, bananas,
apples, tomatoes, potatoes, grapes, tobacco, beans, lentils, sugar cane, cocoa, cotton.
[0230] The sample may be a non-biological sample. The non-biological sample is preferably
a fluid sample. Examples of a non-biological sample include surgical fluids, water
such as drinking water, sea water or river water, and reagents for laboratory tests.
[0231] The sample is typically processed prior to being assayed, for example by centrifugation
or by passage through a membrane that filters out unwanted molecules or cells, such
as red blood cells. The sample may be measured immediately upon being taken. The sample
may also be typically stored prior to assay, preferably below -70°C.
[0232] The pore is typically present in a membrane. Any membrane may be used in accordance
with the invention. Suitable membranes are well-known in the art. The membrane preferably
comprises sphingomyelin. The membrane is preferably an amphiphilic layer. An amphiphilic
layer is a layer formed from amphiphilic molecules, such as phospholipids, which have
both at least one hydrophilic portion and at least one lipophilic or hydrophobic portion.
The amphiphilic molecules may be synthetic or naturally occurring. Non-naturally occurring
amphiphiles and amphiphiles which form a monolayer are known in the art and include,
for example, blockcopolymers (
Gonzalez-Perez et al., Langmuir, 2009, 25, 10447-10450). Block copolymers are polymeric materials in which two or more monomer sub-units
that are polymerized together to create a single polymer chain. Block copolymers typically
have properties that are contributed by each monomer sub-unit. However, a block copolymer
may have unique properties that polymers formed from the individual sub-units do not
possess. Block copolymers can be engineered such that one of the monomer sub-units
is hydrophobic (i.e. lipophilic), whilst the other sub-unit(s) are hydrophilic whilst
in aqueous media. In this case, the block copolymer may possess amphiphilic properties
and may form a structure that mimics a biological membrane. The block copolymer may
be a diblock (consisting of two monomer sub-units), but may also be constructed from
more than two monomer sub-units to form more complex arrangements that behave as amphiphiles.
The copolymer may be a triblock, tetrablock or pentablock copolymer.
[0233] The amphiphilic layer may be a monolayer or a bilayer. The amphiphilic layer is typically
a planar lipid bilayer or a supported bilayer.
[0234] The amphiphilic layer is typically a lipid bilayer. Lipid bilayers are models of
cell membranes and serve as excellent platforms for a range of experimental studies.
For example, lipid bilayers can be used for
in vitro investigation of membrane proteins by single-channel recording. Alternatively, lipid
bilayers can be used as biosensors to detect the presence of a range of substances.
The lipid bilayer may be any lipid bilayer. Suitable lipid bilayers include, but are
not limited to, a planar lipid bilayer, a supported bilayer or a liposome. The lipid
bilayer is preferably a planar lipid bilayer. Suitable lipid bilayers are disclosed
in International Application No.
PCT/GB08/000563 (published as
WO 2008/102121), International Application No.
PCT/GB08/004127 (published as
WO 2009/077734) and International Application No.
PCT/GB2006/001057 (published as
WO 2006/100484).
[0235] Methods for forming lipid bilayers are known in the art. Suitable methods are disclosed
in the Example. Lipid bilayers are commonly formed by the method of
Montal and Mueller (Proc. Natl. Acad. Sci. USA., 1972; 69: 3561-3566), in which a lipid monolayer is carried on aqueous solution/air interface past either
side of an aperture which is perpendicular to that interface.
[0236] The method of Montal & Mueller is popular because it is a cost-effective and relatively
straightforward method of forming good quality lipid bilayers that are suitable for
protein pore insertion. Other common methods of bilayer formation include tip-dipping,
painting bilayers and patch-clamping of liposome bilayers.
[0237] In a preferred embodiment, the lipid bilayer is formed as described in International
Application No.
PCT/GB08/004127 (published as
WO 2009/077734). In another preferred embodiment, the membrane is a solid state layer. A solid-state
layer is not of biological origin. In other words, a solid state layer is not derived
from or isolated from a biological environment such as an organism or cell, or a synthetically
manufactured version of a biologically available structure. Solid state layers can
be formed from both organic and inorganic materials including, but not limited to,
microelectronic materials, insulating materials such as Si
3N
4, Al
2O
3, and SiO, organic and inorganic polymers such as polyamide, plastics such as Teflon
® or elastomers such as two-component addition-cure silicone rubber, and glasses. The
solid state layer may be formed from monatomic layers, such as graphene, or layers
that are only a few atoms thick. Suitable graphene layers are disclosed in International
Application No.
PCT/US2008/010637 (published as
WO 2009/035647).
[0238] The method is typically carried out using (i) an artificial amphiphilic layer comprising
a pore, (ii) an isolated, naturally-occurring lipid bilayer comprising a pore, or
(iii) a cell having a pore inserted therein. The method is typically carried out using
an artificial amphiphilic layer, such as an artificial lipid bilayer. The layer may
comprise other transmembrane and/or intramembrane proteins as well as other molecules
in addition to the pore. Suitable apparatus and conditions are discussed below. The
method of the invention is typically carried out
in vitro. The analyte, such as a target polynucleotide, may be coupled to the membrane. This
may be done using any known method. If the membrane is an amphiphilic layer, such
as a lipid bilayer (as discussed in detail above), the analyte, such as a target polynucleotide,
is preferably coupled to the membrane via a polypeptide present in the membrane or
a hydrophobic anchor present in the membrane. The hydrophobic anchor is preferably
a lipid, fatty acid, sterol, carbon nanotube or amino acid.
[0239] The analyte, such as a target polynucleotide, may be coupled directly to the membrane.
The analyte, such as a target polynucleotide, is preferably coupled to the membrane
via a linker. Preferred linkers include, but are not limited to, polymers, such as
polynucleotides, polyethylene glycols (PEGs) and polypeptides. If a polynucleotide
is coupled directly to the membrane, then some data will be lost as the characterising
run cannot continue to the end of the polynucleotide due to the distance between the
membrane and the interior of the pore. If a linker is used, then the polynucleotide
can be processed to completion. If a linker is used, the linker may be attached to
the polynucleotide at any position. The linker is preferably attached to the polynucleotide
at the tail polymer.
[0240] The coupling may be stable or transient. For certain applications, the transient
nature of the coupling is preferred. If a stable coupling molecule were attached directly
to either the 5' or 3' end of a polynucleotide, then some data will be lost as the
characterising run cannot continue to the end of the polynucleotide due to the distance
between the bilayer and the interior of the pore. If the coupling is transient, then
when the coupled end randomly becomes free of the bilayer, then the polynucleotide
can be processed to completion. Chemical groups that form stable or transient links
with the membrane are discussed in more detail below. The analyte, such as a target
polynucleotide, may be transiently coupled to an amphiphilic layer, such as a lipid
bilayer using cholesterol or a fatty acyl chain. Any fatty acyl chain having a length
of from 6 to 30 carbon atoms, such as hexadecanoic acid, may be used.
[0241] In preferred embodiments, the analyte, such as a target polynucleotide, is coupled
to an amphiphilic layer. Coupling of analytes, such as a target polynucleotide, to
synthetic lipid bilayers has been carried out previously with various different tethering
strategies. These are summarised in Table 5 below.
[0242] Polynucleotides may be functionalized using a modified phosphoramidite in the synthesis
reaction, which is easily compatible for the addition of reactive groups, such as
thiol, cholesterol, lipid and biotin groups. These different attachment chemistries
give a suite of attachment options for polynucleotides. Each different modification
group tethers the polynucleotide in a slightly different way and coupling is not always
permanent so giving different dwell times for the polynucleotide to the bilayer. The
advantages of transient coupling are discussed above.
[0244] Alternatively, the reactive group could be considered to be the addition of a short
piece of DNA complementary to one already coupled to the bilayer, so that attachment
can be achieved via hybridisation. Ligation of short pieces of ssDNA have been reported
using T4 RNA ligase I (
Troutt, A. B., M. G. McHeyzer-Williams, et al. (1992). "Ligation-anchored PCR: a simple
amplification technique with single-sided specificity." Proc Natl Acad Sci U S A 89(20):
9823-5). Alternatively either ssDNA or dsDNA could be ligated to native dsDNA and then the
two strands separated by thermal or chemical denaturation. To native dsDNA, it is
possible to add either a piece of ssDNA to one or both of the ends of the duplex,
or dsDNA to one or both ends. Then, when the duplex is melted, each single strand
will have either a 5' or 3' modification if ssDNA was used for ligation or a modification
at the 5' end, the 3' end or both if dsDNA was used for ligation. If the polynucleotide
is a synthetic strand, the coupling chemistry can be incorporated during the chemical
synthesis of the polynucleotide. For instance, the polynucleotide can be synthesized
using a primer a reactive group attached to it.
[0245] A common technique for the amplification of sections of genomic DNA is using polymerase
chain reaction (PCR). Here, using two synthetic oligonucleotide primers, a number
of copies of the same section of DNA can be generated, where for each copy the 5'
of each strand in the duplex will be a synthetic polynucleotide. By using an antisense
primer that has a reactive group, such as a cholesterol, thiol, biotin or lipid, each
copy of the target DNA amplified will contain a reactive group for coupling.
[0246] The pore used in the method of the invention is a pore of the invention (i.e. a pore
comprising at least one mutant monomer of the invention or at least one construct
of the invention). The pore may be chemically modified in any of the ways discussed
above. The pore is preferably modified with a covalent adaptor that is capable of
interacting with the target analyte as discussed above.
[0247] The method is preferably for characterising a target polynucleotide and step (a)
comprises contacting the target polynucleotide with the pore and a polynucleotide
binding protein and the polynucleotide binding protein controls the movement of the
target polynucleotide through the pore. The polynucleotide binding protein may be
any protein that is capable of binding to the polynucleotide and controlling its movement
through the pore. It is straightforward in the art to determine whether or not a polynucleotide
binding protein binds to a polynucleotide. The polynucleotide binding protein typically
interacts with and modifies at least one property of the polynucleotide. The polynucleotide
binding protein may modify the polynucleotide by cleaving it to form individual nucleotides
or shorter chains of nucleotides, such as di- or trinucleotides. The moiety may modify
the polynucleotide by orienting it or moving it to a specific position, i.e. controlling
its movement.
[0248] The polynucleotide binding protein is preferably a polynucleotide handling enzyme.
A polynucleotide handling enzyme is a polypeptide that is capable of interacting with
and modifying at least one property of a polynucleotide. The enzyme may modify the
polynucleotide by cleaving it to form individual nucleotides or shorter chains of
nucleotides, such as di- or trinucleotides. The enzyme may modify the polynucleotide
by orienting it or moving it to a specific position. The polynucleotide binding protein
typically comprises a polynucleotide binding domain and a catalytic domain. The polynucleotide
handling enzyme does not need to display enzymatic activity as long as it is capable
of binding the target sequence and controlling its movement through the pore. For
instance, the enzyme may be modified to remove its enzymatic activity or may be used
under conditions which prevent it from acting as an enzyme. Such conditions are discussed
in more detail below.
[0249] The polynucleotide handling enzyme is preferably derived from a nucleolytic enzyme.
The polynucleotide handling enzyme used in the construct of the enzyme is more preferably
derived from a member of any of the Enzyme Classification (EC) groups 3.1.11, 3.1.13,
3.1.14, 3.1.15, 3.1.16, 3.1.21, 3.1.22, 3.1.25, 3.1.26, 3.1.27, 3.1.30 and 3.1.31.
The enzyme may be any of those disclosed in International Application No.
PCT/GB10/000133 (published as
WO 2010/086603).
[0250] Preferred enzymes are polymerases, exonucleases, helicases and topoisomerases, such
as gyrases. Suitable enzymes include, but are not limited to, exonuclease I from
E. coli (SEQ ID NO: 6), exonuclease III enzyme from
E. coli (SEQ ID NO: 8), RecJ from
T. thermophilus (SEQ ID NO: 10) and bacteriophage lambda exonuclease (SEQ ID NO: 12) and variants
thereof. Three subunits comprising the sequence shown in SEQ ID NO: 10 or a variant
thereof interact to form a trimer exonuclease. The enzyme may be Phi29 DNA polymerase
(SEQ ID NO: 4) or a variant thereof. The enzyme may be a helicase or derived from
a helicase. Typical helicases are Hel308, RecD or XPD, for example Hel308 Mbu (SEQ
ID NO: 13) or a variant thereof.
[0252] The helicase preferably comprises the sequence shown in SEQ ID NO: 18 (Dda) or a
variant thereof. Variants may differ from the native sequences in any of the ways
discussed below for transmembrane pores. A preferred variant of SEQ ID NO: 18 comprises
(a) E94C and A360C or (b) E94C, A360C, C109A and C136A and then optionally (ΔM1)G1G2
(i.e. deletion of M1 and then addition G1 and G2).
[0253] A variant of SEQ ID NOs: 4, 6, 8, 10, 12, 13 or 18 is an enzyme that has an amino
acid sequence which varies from that of SEQ ID NO: 4, 6, 8, 10, 12, 13 or 18 and which
retains polynucleotide binding ability. The variant may include modifications that
facilitate binding of the polynucleotide and/or facilitate its activity at high salt
concentrations and/or room temperature.
[0254] Over the entire length of the amino acid sequence of SEQ ID NO: 4, 6, 8, 10, 12,
13 or 18, a variant will preferably be at least 50% homologous to that sequence based
on amino acid identity. More preferably, the variant polypeptide may be at least 55%,
at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%,
at least 90% and more preferably at least 95%, 97% or 99% homologous based on amino
acid identity to the amino acid sequence of SEQ ID NO: 4, 6, 8, 10, 12, 13 or 18 over
the entire sequence. There may be at least 80%, for example at least 85%, 90% or 95%,
amino acid identity over a stretch of 200 or more, for example 230, 250, 270 or 280
or more, contiguous amino acids ("hard homology"). Homology is determined as described
above. The variant may differ from the wild-type sequence in any of the ways discussed
above with reference to SEQ ID NO: 2. The enzyme may be covalently attached to the
pore as discussed above.
[0255] There are two main strategies for sequencing polynucleotides using nanopores, namely
strand sequencing and exonuclease sequencing. The method of the invention may concern
either strand sequencing or exonuclease sequencing.
[0256] In strand sequencing, the DNA is translocated through the nanopore either with or
against an applied potential. Exonucleases that act progressively or processively
on double stranded DNA can be used on the
cis side of the pore to feed the remaining single strand through under an applied potential
or the
trans side under a reverse potential. Likewise, a helicase that unwinds the double stranded
DNA can also be used in a similar manner. A polymerase may also be used. There are
also possibilities for sequencing applications that require strand translocation against
an applied potential, but the DNA must be first "caught" by the enzyme under a reverse
or no potential. With the potential then switched back following binding the strand
will pass
cis to
trans through the pore and be held in an extended conformation by the current flow. The
single strand DNA exonucleases or single strand DNA dependent polymerases can act
as molecular motors to pull the recently translocated single strand back through the
pore in a controlled stepwise manner,
trans to
cis, against the applied potential.
[0257] In one embodiment, the method of characterising a target polynucleotide involves
contacting the target sequence with a pore and a helicase enzyme. Any helicase may
be used in the method. Helicases may work in two modes with respect to the pore. First,
the method is preferably carried out using a helicase such that it controls movement
of the target sequence through the pore with the field resulting from the applied
voltage. In this mode the 5' end of the DNA is first captured in the pore, and the
enzyme controls movement of the DNA into the pore such that the target sequence is
passed through the pore with the field until it finally translocates through to the
trans side of the bilayer. Alternatively, the method is preferably carried out such
that a helicase enzyme controls movement of the target sequence through the pore against
the field resulting from the applied voltage. In this mode the 3' end of the DNA is
first captured in the pore, and the enzyme controls movement of the DNA through the
pore such that the target sequence is pulled out of the pore against the applied field
until finally ejected back to the cis side of the bilayer.
[0258] In exonuclease sequencing, an exonuclease releases individual nucleotides from one
end of the target polynucleotide and these individual nucleotides are identified as
discussed below. In another embodiment, the method of characterising a target polynucleotide
involves contacting the target sequence with a pore and an exonuclease enzyme. Any
of the exonuclease enzymes discussed above may be used in the method. The enzyme may
be covalently attached to the pore as discussed above.
[0259] Exonucleases are enzymes that typically latch onto one end of a polynucleotide and
digest the sequence one nucleotide at a time from that end. The exonuclease can digest
the polynucleotide in the 5' to 3' direction or 3' to 5' direction. The end of the
polynucleotide to which the exonuclease binds is typically determined through the
choice of enzyme used and/or using methods known in the art. Hydroxyl groups or cap
structures at either end of the polynucleotide may typically be used to prevent or
facilitate the binding of the exonuclease to a particular end of the polynucleotide.
[0260] The method involves contacting the polynucleotide with the exonuclease so that the
nucleotides are digested from the end of the polynucleotide at a rate that allows
characterisation or identification of a proportion of nucleotides as discussed above.
Methods for doing this are well known in the art. For example, Edman degradation is
used to successively digest single amino acids from the end of polypeptide such that
they may be identified using High Performance Liquid Chromatography (HPLC). A homologous
method may be used in the present invention.
[0261] The rate at which the exonuclease functions is typically slower than the optimal
rate of a wild-type exonuclease. A suitable rate of activity of the exonuclease in
the method of the invention involves digestion of from 0.5 to 1000 nucleotides per
second, from 0.6 to 500 nucleotides per second, 0.7 to 200 nucleotides per second,
from 0.8 to 100 nucleotides per second, from 0.9 to 50 nucleotides per second or 1
to 20 or 10 nucleotides per second. The rate is preferably 1, 10, 100, 500 or 1000
nucleotides per second. A suitable rate of exonuclease activity can be achieved in
various ways. For example, variant exonucleases with a reduced optimal rate of activity
may be used in accordance with the invention.
[0262] The method of the invention involves measuring one or more characteristics of the
target analyte, such as a target polynucleotide. The method may involve measuring
two, three, four or five or more characteristics of the target analyte, such as a
target polynucleotide. For target polynucleotides, the one or more characteristics
are preferably selected from (i) the length of the target polynucleotide, (ii) the
identity of the target polynucleotide, (iii) the sequence of the target polynucleotide,
(iv) the secondary structure of the target polynucleotide and (v) whether or not the
target polynucleotide is modified. Any combination of (i) to (v) may be measured in
accordance with the invention.
[0263] For (i), the length of the polynucleotide may be measured using the number of interactions
between the target polynucleotide and the pore.
[0264] For (ii), the identity of the polynucleotide may be measured in a number of ways.
The identity of the polynucleotide may be measured in conjunction with measurement
of the sequence of the target polynucleotide or without measurement of the sequence
of the target polynucleotide. The former is straightforward; the polynucleotide is
sequenced and thereby identified. The latter may be done in several ways. For instance,
the presence of a particular motif in the polynucleotide may be measured (without
measuring the remaining sequence of the polynucleotide). Alternatively, the measurement
of a particular electrical and/or optical signal in the method may identify the target
polynucleotide as coming from a particular source.
[0266] For (iv), the secondary structure may be measured in a variety of ways. For instance,
if the method involves an electrical measurement, the secondary structure may be measured
using a change in dwell time or a change in current flowing through the pore. This
allows regions of single-stranded and double-stranded polynucleotide to be distinguished.
[0267] For (v), the presence or absence of any modification may be measured. The method
preferably comprises determining whether or not the target polynucleotide is modified
by methylation, by oxidation, by damage, with one or more proteins or with one or
more labels, tags or spacers. Specific modifications will result in specific interactions
with the pore which can be measured using the methods described below. For instance,
methylcytosine may be distinguished from cytosine on the basis of the current flowing
through the pore during its interaction with each nucleotide.
[0268] The invention also provides a method of estimating the sequence of a target polynucleotide.
The invention further provides a method of sequencing a target polynucleotide.
[0271] In a preferred embodiment, the method comprises:
- (a) contacting the target polynucleotide with a pore of the invention and a polynucleotide
binding protein such that the target polynucleotide moves through the pore and the
binding protein controls the movement of the target polynucleotide through the pore;
and
- (b) measuring the current passing through the pore as the polynucleotide moves with
respect to the pore wherein the current is indicative of one or more characteristics
of the target polynucleotide and thereby characterising the target polynucleotide.
[0272] The methods may be carried out using any apparatus that is suitable for investigating
a membrane/pore system in which a pore is inserted into a membrane. The method may
be carried out using any apparatus that is suitable for transmembrane pore sensing.
For example, the apparatus comprises a chamber comprising an aqueous solution and
a barrier that separates the chamber into two sections. The barrier has an aperture
in which the membrane containing the pore is formed.
[0274] The methods may involve measuring the current passing through the pore as the analyte,
such as a target polynucleotide, moves with respect to the pore. Therefore the apparatus
may also comprise an electrical circuit capable of applying a potential and measuring
an electrical signal across the membrane and pore. The methods may be carried out
using a patch clamp or a voltage clamp. The methods preferably involve the use of
a voltage clamp.
[0275] The methods of the invention may involve the measuring of a current passing through
the pore as the analyte, such as a target polynucleotide, moves with respect to the
pore. Suitable conditions for measuring ionic currents through transmembrane protein
pores are known in the art and disclosed in the Example. The method is typically carried
out with a voltage applied across the membrane and pore. The voltage used is typically
from +2 V to -2 V, typically -400 mV to +400mV. The voltage used is preferably in
a range having a lower limit selected from - 400 mV, -300 mV, -200 mV, -150 mV, -100
mV, -50 mV, -20mV and 0 mV and an upper limit independently selected from +10 mV,
+ 20 mV, +50 mV, +100 mV, +150 mV, +200 mV, +300 mV and +400 mV. The voltage used
is more preferably in the range 100 mV to 240mV and most preferably in the range of
120 mV to 220 mV. It is possible to increase discrimination between different nucleotides
by a pore by using an increased applied potential.
[0276] The methods are typically carried out in the presence of any charge carriers, such
as metal salts, for example alkali metal salt, halide salts, for example chloride
salts, such as alkali metal chloride salt. Charge carriers may include ionic liquids
or organic salts, for example tetramethyl ammonium chloride, trimethylphenyl ammonium
chloride, phenyltrimethyl ammonium chloride, or 1-ethyl-3-methyl imidazolium chloride.
In the exemplary apparatus discussed above, the salt is present in the aqueous solution
in the chamber. Potassium chloride (KCl), sodium chloride (NaCl) or caesium chloride
(CsCl) is typically used. KCl is preferred. The salt concentration may be at saturation.
The salt concentration may be 3M or lower and is typically from 0.1 to 2.5 M, from
0.3 to 1.9 M, from 0.5 to 1.8 M, from 0.7 to 1.7 M, from 0.9 to 1.6 M or from 1 M
to 1.4 M. The salt concentration is preferably from 150 mM to 1 M. The method is preferably
carried out using a salt concentration of at least 0.3 M, such as at least 0.4 M,
at least 0.5 M, at least 0.6 M, at least 0.8 M, at least 1.0 M, at least 1.5 M, at
least 2.0 M, at least 2.5 M or at least 3.0 M. High salt concentrations provide a
high signal to noise ratio and allow for currents indicative of the presence of a
nucleotide to be identified against the background of normal current fluctuations.
[0277] The methods are typically carried out in the presence of a buffer. In the exemplary
apparatus discussed above, the buffer is present in the aqueous solution in the chamber.
Any buffer may be used in the method of the invention. Typically, the buffer is HEPES.
Another suitable buffer is Tris-HCl buffer. The methods are typically carried out
at a pH of from 4.0 to 12.0, from 4.5 to 10.0, from 5.0 to 9.0, from 5.5 to 8.8, from
6.0 to 8.7 or from 7.0 to 8.8 or 7.5 to 8.5. The pH used is preferably about 7.5.
[0278] The methods may be carried out at from 0 °C to 100 °C, from 15 °C to 95 °C, from
16 °C to 90 °C, from 17 °C to 85 °C, from 18 °C to 80 °C, 19 °C to 70 °C, or from
20 °C to 60 °C. The methods are typically carried out at room temperature. The methods
are optionally carried out at a temperature that supports enzyme function, such as
about 37 °C.
[0279] The method is typically carried out in the presence of free nucleotides or free nucleotide
analogues and an enzyme cofactor that facilitate the action of the polynucleotide
binding protein, such as a helicase or an exonuclease. The free nucleotides may be
one or more of any of the individual nucleotides discussed above. The free nucleotides
include, but are not limited to, adenosine monophosphate (AMP), adenosine diphosphate
(ADP), adenosine triphosphate (ATP), guanosine monophosphate (GMP), guanosine diphosphate
(GDP), guanosine triphosphate (GTP), thymidine monophosphate (TMP), thymidine diphosphate
(TDP), thymidine triphosphate (TTP), uridine monophosphate (UMP), uridine diphosphate
(UDP), uridine triphosphate (UTP), cytidine monophosphate (CMP), cytidine diphosphate
(CDP), cytidine triphosphate (CTP), cyclic adenosine monophosphate (cAMP), cyclic
guanosine monophosphate (cGMP), deoxyadenosine monophosphate (dAMP), deoxyadenosine
diphosphate (dADP), deoxyadenosine triphosphate (dATP), deoxyguanosine monophosphate
(dGMP), deoxyguanosine diphosphate (dGDP), deoxyguanosine triphosphate (dGTP), deoxythymidine
monophosphate (dTMP), deoxythymidine diphosphate (dTDP), deoxythymidine triphosphate
(dTTP), deoxyuridine monophosphate (dUMP), deoxyuridine diphosphate (dUDP), deoxyuridine
triphosphate (dUTP), deoxycytidine monophosphate (dCMP), deoxycytidine diphosphate
(dCDP) and deoxycytidine triphosphate (dCTP). The free nucleotides are preferably
selected from AMP, TMP, GMP, CMP, UMP, dAMP, dTMP, dGMP or dCMP. The free nucleotides
are preferably adenosine triphosphate (ATP). The enzyme cofactor is a factor that
allows the helicase to function. The enzyme cofactor is preferably a divalent metal
cation. The divalent metal cation is preferably Mg
2+, Mn
2+, Ca
2+ or Co
2+. The enzyme cofactor is most preferably Mg
2+.
[0280] The target polynucleotide may be contacted with the pore and the polynucleotide binding
protein in any order. It is preferred that, when the target polynucleotide is contacted
with the polynucleotide binding protein and the pore, the target polynucleotide firstly
forms a complex with the polynucleotide binding protein. When the voltage is applied
across the pore, the target polynucleotide/protein complex then forms a complex with
the pore and controls the movement of the polynucleotide through the pore.
Methods of identifying an individual nucleotide
[0281] The present invention also provides a method of characterising an individual nucleotide.
In other words, the target analyte is an individual nucleotide. The method comprises
contacting the nucleotide with a pore of the invention such that the nucleotide interacts
with the pore and measuring the current passing through the pore during the interaction
and thereby characterising the nucleotide. The invention therefore involves nanopore
sensing of an individual nucleotide. The invention also provides a method of identifying
an individual nucleotide comprising measuring the current passing through the pore
during the interaction and thereby determining the identity of the nucleotide. Any
of the pores of the invention discussed above may be used. The pore is preferably
chemically modified with a molecular adaptor as discussed above.
[0282] The nucleotide is present if the current flows through the pore in a manner specific
for the nucleotide (i.e. if a distinctive current associated with the nucleotide is
detected flowing through the pore). The nucleotide is absent if the current does not
flow through the pore in a manner specific for the nucleotide.
[0283] The invention can be used to differentiate nucleotides of similar structure on the
basis of the different effects they have on the current passing through a pore. Individual
nucleotides can be identified at the single molecule level from their current amplitude
when they interact with the pore. The invention can also be used to determine whether
or not a particular nucleotide is present in a sample. The invention can also be used
to measure the concentration of a particular nucleotide in a sample.
[0284] The pore is typically present in a membrane. The methods may be carried out using
any suitable membrane/pore system described above.
[0285] An individual nucleotide is a single nucleotide. An individual nucleotide is one
which is not bound to another nucleotide or polynucleotide by a nucleotide bond. A
nucleotide bond involves one of the phosphate groups of a nucleotide being bound to
the sugar group of another nucleotide. An individual nucleotide is typically one which
is not bound by a nucleotide bond to another polynucleotide of at least 5, at least
10, at least 20, at least 50, at least 100, at least 200, at least 500, at least 1000
or at least 5000 nucleotides. For example, the individual nucleotide has been digested
from a target polynucleotide sequence, such as a DNA or RNA strand. The methods of
the invention may be used to identify any nucleotide. The nucleotide can be any of
those discussed above.
[0286] The nucleotide may be derived from the digestion of a nucleic acid sequence such
as ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). Nucleic acid sequences can
be digested using any method known in the art. Suitable methods include, but are not
limited to, those using enzymes or catalysts. Catalytic digestion of nucleic acids
is disclosed in
Deck et al., Inorg. Chem., 2002; 41: 669-677.
[0287] Individual nucleotides from a single polynucleotide may be contacted with the pore
in a sequential manner in order to sequence the whole or part of the polynucleotide.
Sequencing polynucleotides is discussed in more detail above.
[0288] The nucleotide may be contacted with the pore on either side of the membrane. The
nucleotide may be introduced to the pore on either side of the membrane. The nucleotide
may be contacted with the side of the membrane that allows the nucleotide to pass
through the pore to the other side of the membrane. For example, the nucleotide is
contacted with an end of the pore, which in its native environment allows the entry
of ions or small molecules, such as nucleotides, into the barrel or channel of the
pore such that the nucleotide may pass through the pore. In such cases, the nucleotide
interacts with the pore and/or adaptor as it passes across the membrane through the
barrel or channel of the pore. Alternatively, the nucleotide may be contacted with
the side of the membrane that allows the nucleotide to interact with the pore via
or in conjunction with the adaptor, dissociate from the pore and remain on the same
side of the membrane. The present invention provides pores in which the position of
the adaptor is fixed. As a result, the nucleotide is preferably contacted with the
end of the pore which allows the adaptor to interact with the nucleotide.
[0289] The nucleotide may interact with the pore in any manner and at any site. As discussed
above, the nucleotide preferably reversibly binds to the pore via or in conjunction
with the adaptor. The nucleotide most preferably reversibly binds to the pore via
or in conjunction with the adaptor as it passes through the pore across the membrane.
The nucleotide can also reversibly bind to the barrel or channel of the pore via or
in conjunction with the adaptor as it passes through the pore across the membrane.
[0290] During the interaction between the nucleotide and the pore, the nucleotide affects
the current flowing through the pore in a manner specific for that nucleotide. For
example, a particular nucleotide will reduce the current flowing through the pore
for a particular mean time period and to a particular extent. In other words, the
current flowing through the pore is distinctive for a particular nucleotide. Control
experiments may be carried out to determine the effect a particular nucleotide has
on the current flowing through the pore. Results from carrying out the method of the
invention on a test sample can then be compared with those derived from such a control
experiment in order to identify a particular nucleotide in the sample or determine
whether a particular nucleotide is present in the sample. The frequency at which the
current flowing through the pore is affected in a manner indicative of a particular
nucleotide can be used to determine the concentration of that nucleotide in the sample.
The ratio of different nucleotides within a sample can also be calculated. For instance,
the ratio of dCMP to methyl-dCMP can be calculated.
[0291] The method may involve the use of any apparatus, sample or condition discussed above.
Methods of forming sensors
[0292] The invention also provides a method of forming a sensor for characterising a target
polynucleotide. The method comprises forming a complex between a pore of the invention
and a polynucleotide binding protein, such as a helicase or an exonuclease. The complex
may be formed by contacting the pore and the protein in the presence of the target
polynucleotide and then applying a potential across the pore. The applied potential
may be a chemical potential or a voltage potential as described above. Alternatively,
the complex may be formed by covalently attaching the pore to the protein. Methods
for covalent attachment are known in the art and disclosed, for example, in International
Application Nos.
PCT/GB09/001679 (published as
WO 2010/004265) and
PCT/GB10/000133 (published as
WO 2010/086603). The complex is a sensor for characterising the target polynucleotide. The method
preferably comprises forming a complex between a pore of the invention and a helicase.
Any of the embodiments discussed above equally apply to this method.
[0293] The invention also provides a sensor for characterising a target polynucleotide.
The sensor comprises a complex between a pore of the invention and a polynucleotide
binding protein. Any of the embodiments discussed above equally apply to the sensor
of the invention.
Kits
[0294] The present invention also provides a kit for characterising, such as sequencing,
a target polynucleotide. The kit comprises (a) a pore of the invention and (b) a membrane.
The kit preferably further comprises a polynucleotide binding protein, such as a helicase
or an exonuclease. Any of the embodiments discussed above equally applicable to the
kits of the invention.
[0295] The kits of the invention may additionally comprise one or more other reagents or
instruments which enable any of the embodiments mentioned above to be carried out.
Such reagents or instruments include one or more of the following: suitable buffer(s)
(aqueous solutions), means to obtain a sample from a subject (such as a vessel or
an instrument comprising a needle), means to amplify and/or express polynucleotide
sequences, a membrane as defined above or voltage or patch clamp apparatus. Reagents
may be present in the kit in a dry state such that a fluid sample resuspends the reagents.
The kit may also, optionally, comprise instructions to enable the kit to be used in
the method of the invention or details regarding which patients the method may be
used for. The kit may, optionally, comprise nucleotides.
Apparatus
[0296] The invention also provides an apparatus for characterising, such as sequencing,
target polynucleotides in a sample. The apparatus may comprise (a) a plurality of
pores of the invention and (b) a plurality of polynucleotide binding proteins, such
as helicases or exonucleases. The apparatus may be any conventional apparatus for
analyte analysis, such as an array or a chip.
[0297] The array or chip typically contains multiple wells of membrane, such as a block
co-polymer membrane, each with a single nanopore inserted. The array may be integrated
within an electronic chip.
[0298] The apparatus preferably comprises:
a sensor device that is capable of supporting the plurality of pores and being operable
to perform polynucleotide characterising or sequencing using the pores and proteins;
- at least one reservoir for holding material for performing the characterising or sequencing;
- a fluidics system configured to controllably supply material from the at least one
reservoir to the sensor device; and
- a plurality of containers for receiving respective samples, the fluidics system being
configured to supply the samples selectively from the containers to the sensor device.
[0300] The following Examples illustrate the invention.
Example 1
[0301] This example describes how a helicase - T4 Dda - E94C/C109A/C136A/A360C (SEQ ID NO:
18 with mutations E94C/C109A/C136A/A360C) was used to control the movement of DNA
through a number of different mutant lysenin nanopores. All of the nanopores tested
exhibited changes in current as the DNA translocated through the nanopore. The mutant
nanopores tested exhibited either 1) increased range, 2) reduced noise, 3) improved
signal:noise, 4) increased capture when compared to a mutant control nanopore or 5)
altered size of the read-head when compared to a baseline.
Materials and Methods
DNA Construct Preparation
[0302]
- 70 uL of T4 Dda - E94C/C109A/C136A/A360C was buffer exchanged (using a Zeba column)
into 70 uL 1× KOAc buffer, with 2 mM EDTA.
- 70 uL of the T4 Dda - E94C/C109A/C136A/A360C buffer exchange mix was added to 70 uL
of 2 uM DNA adapter (See Figure 5 for details of sequences). The sample was then mixed
and incubated for 5 mins at room temperature.
- 1 uL of 140 mM TMAD was added and the sample mixed and incubated for 60 min at room
temperature. This sample was known as sample A. A 2ul aliquot was then removed for
Agilent analysis.
HS/ATP step
[0303] • The reagents in the table below were mixed and incubated at room temperature for
25 minutes. This sample was known as sample B.
Reagent |
Volume |
Final |
Sample A (500 nM) |
139 |
220 nM |
2× HS buffer (100 mM Hepes, 2 M KCl, pH8) |
150 |
1× |
600mM MgCl2 |
7 |
14 mM |
100 mM rATP |
4.2 |
14 mM |
Final |
300.2 |
|
SPRI purification
[0304]
- 1.1 mL of SPRI beads was added to sample B and then the sample was mixed and incubated
for 5 mins.
- The beads were pelleted and the supernatant removed. The beads were then washed with
50 mM Tris.HCl, 2.5 M NaCl, 20% PEG8000.
- Sample C was eluted in 70 uL of 10 mM Tris HCl, 20 mM NaCl.
Ligation of 10kb lambda C to adapter with Enzyme
[0305] • The reagents in the table below were incubated at 20 °C for 10 mins in a thermocycler.
|
Volume µl |
|
nH2O |
310.2 |
|
10kb Lambda C DNA (SEQ ID NO: 23, 168.7nM) |
14.82 |
5nM |
Sample C (500nM) |
25 |
25nM |
Ligation buffer (5×) |
100 |
1x |
NEBNext Quick T4 DNA Ligase (2000U.ul-1) |
50 |
5% |
Total |
500 |
|
• The reaction mixture (1× 500ul aliquot) was then SPRI purified with 200ul of 20%
SPRI beads, washed in 750ul of wash buffer 1 and eluted in 125ul of elution buffer
1. A final DNA sequence (SEQ ID NO: 24) was hybridised to the DNA. This sample was
known as the sample D.
Components of Ligation Buffer (5×)
[0306]
Reagent |
Volume |
Final |
1 M Tris.HCl pH8 |
15 |
150 mM |
1 M MgCl2 |
5 |
50 mM |
100 mM ATP |
5 |
5 mM |
40% PEG 8000 |
75 |
30% |
Total |
100 uL |
|
Components of Wash Buffer 1
[0307]
Reagent |
Volume |
Final |
Water |
1100 |
|
1 M Tris.HCl pH8 |
100 |
50 mM |
5 M NaCl |
300 |
750 mM |
40% PEG 8000 |
500 |
10% |
Total |
2000 uL |
|
Components of Elution Buffer 1
[0308]
Reagent |
Volume |
Final |
Water |
906.7 |
up to 1000 uL |
0.5 M CAPS pH10 |
80 |
40 mM |
3 M KCl |
13.3 |
40 mM |
Total |
1000 uL |
|
Electrophysiology Experiments
[0309] Electrical measurements were acquired from single lysenin nanopores inserted in block
co-polymer in buffer (25mM K Phosphate buffer, 150mM Potassium Ferrocyanide (II),
150mM Potassium Ferricyanide (III), pH 8.0). After achieving a single pore inserted
in the block co-polymer, then buffer (2 mL, 25mM K Phosphate buffer, 150mM Potassium
Ferrocyanide (II), 150mM Potassium Ferricyanide (III), pH 8.0) was flowed through
the system to remove any excess lysenin nanopores. 150uL of 500mM KCl, 25mM K Phosphate,
pH8.0 was then flowed through the system. After 10 minutes a further 150uL of 500mM
KCl, 25mM K Phosphate, pH8.0 was flowed through the system and then the T4 Dda - E94C/C109A/C136A/A360C,
DNA, fuel (MgCl2, ATP) pre-mix (150 µL total, Sample D) was then flowed into the single
nanopore experimental system. The experiment was run at 180 mV and helicase-controlled
DNA movement monitored.
Results
[0310] A number of different nanopores were investigated in order to determine the effect
of mutations to regions of the transmembrane pore. The mutant pores which were investigated
are listed below with the baseline nanopore with which they were compared (Baseline
pores 1-4). A number of different parameters were investigated in order to identify
improved nanopores 1) the average noise of the signal (where noise is equal to the
standard deviation of all events in a strand, calculated over all strands) which in
an improved nanopore would be lower than the baseline, 2) the average current range
which was a measure of the spread of current levels within a signal and which in an
improved nanopore would be higher than the baseline, 3) the average signal to noise
quoted in the table is the signal to noise (average current range divided by average
noise of the signal) over all strands and in an improved nanopore would be higher
than the baseline, 4) the capture rate of DNA which in an improved nanopore would
be higher than the baseline and 5) the read head size which in an improved nanopore
could be increased or decreased depending on the size of the read-head of the baseline.
[0311] Each table below includes the relevant data for the corresponding baseline nanopore
Table 6 = mutant 1, table 7 = mutant 2, table 8 = mutant 3 and table 9 = mutant 10
which was then compared to the mutated pores.
Lysenin mutant 1 = Lysenin - (E84Q/E85K/E92Q/E97S/D126G)9 (SEQ ID NO: 2 with mutations
E84Q/E85K/E92Q/E97S/D126G). (
Baseline 1)
Lysenin mutant 2 = Lysenin - (E84Q/E85K/E92Q/E94D/E97S/D126G)9 (SEQ ID NO: 2 with
mutations E84Q/E85K/E92Q/E94D/E97S/D126G). (
Baseline 2)
Lysenin mutant 3 = Lysenin - (E84Q/E85K/E92Q/E94Q/E97S/D126G)9 (SEQ ID NO: 2 with
mutations E84Q/E85K/E92Q/E94Q/E97S/D126G). (
Baseline 3)
Lysenin mutant 4 = Lysenin - (E84Q/E85K/S89Q/E92Q/E97S/D126G)9 (SEQ ID NO: 2 with
mutations E84Q/E85K/S89Q/E92Q/E97S/D126G).
Lysenin mutant 5 = Lysenin - (E84Q/E85K/T91S/E92Q/E97S/D126G)9 (SEQ ID NO: 2 with
mutations E84Q/E85K/T91S/E92Q/E97S/D126G).
Lysenin mutant 6 = Lysenin - (E84Q/E85K/E92Q/E97S/S98Q/D126G)9 (SEQ ID NO: 2 with
mutations E84Q/E85K/E92Q/E97S/S98Q/D126G).
Lysenin mutant 7 = Lysenin - (E84Q/E85K/E92Q/E97S/V100S/D126G)9 (SEQ ID NO: 2 with
mutations E84Q/E85K/E92Q/E97S/V100S/D126G).
Lysenin mutant 8 = Lysenin - (E84Q/E85K/E92Q/E94D/E97S/S80K/D126G)9 (SEQ ID NO: 2
with mutations E84Q/E85K/E92Q/E94D/E97S/S80K/D126G).
Lysenin mutant 9 = Lysenin - (E84Q/E85K/E92Q/E94D/E97S/T106R/D126G)9 (SEQ ID NO: 2
with mutations E84Q/E85K/E92Q/E94D/E97S/T106R/D126G).
Lysenin mutant 10 = Lysenin - (E84Q/E85K/E92Q/E94D/E97S/T106K/D126G)9 (SEQ ID NO:
2 with mutations E84Q/E85K/E92Q/E94D/E97S/T106K/D126G). (
Baseline 4)
Lysenin mutant 11 = Lysenin - (E84Q/E85K/E92Q/E94D/E97S/T104R/D126G)9 (SEQ ID NO:
2 with mutations E84Q/E85K/E92Q/E94D/E97S/T104R/D126G).
Lysenin mutant 12 = Lysenin - (E84Q/E85K/E92Q/E94D/E97S/T104K/D126G)9 (SEQ ID NO:
2 with mutations E84Q/E85K/E92Q/E94D/E97S/T104K/D126G).
Lysenin mutant 13 = Lysenin - (S78N/E84Q/E85K/E92Q/E94D/E97S/D126G)9 (SEQ ID NO: 2
with mutations S78N/E84Q/E85K/E92Q/E94D/E97S/D126G).
Lysenin mutant 14 = Lysenin - (S82N/E84Q/E85K/E92Q/E94D/E97S/D126G)9 (SEQ ID NO: 2
with mutations S82N/E84Q/E85K/E92Q/E94D/E97S/D126G).
Lysenin mutant 15 = Lysenin - (E76N/E84Q/E85K/E92Q/E94Q/E97S/D126G)9 (SEQ ID NO: 2
with mutations E76N/E84Q/E85K/E92Q/E94Q/E97S/D126G).
Lysenin mutant 16 = Lysenin - (E76S/E84Q/E85K/E92Q/E94Q/E97S/D126G)9 (SEQ ID NO: 2
with mutations E76S/E84Q/E85K/E92Q/E94Q/E97S/D126G).
Lysenin mutant 17 = Lysenin - (E84Q/E85K/E92Q/E94Q/Y96D/D97S/T106K/D126G)9 (SEQ ID
NO: 2 with mutations E84Q/E85K/E92Q/E94Q/Y96D/D97S/T106K/D126G).
Lysenin mutant 18 = Lysenin - (K45D/E84Q/E85K/E92Q/E94K/D97S/T106K/D126G)9 (SEQ ID
NO: 2 with mutations K45D/E84Q/E85K/E92Q/E94K/D97S/T106K/D126G).
Lysenin mutant 19 = Lysenin - (K45R/E84Q/E85K/E92Q/E94D/D97S/T106K/D126G)9 (SEQ ID
NO: 2 with mutations K45R/E84Q/E85K/E92Q/E94D/D97S/T106K/D126G).
Lysenin mutant 20 = Lysenin - (D35N/E84Q/E85K/E92Q/E94D/D97S/T106K/D126G)9 (SEQ ID
NO: 2 with mutations D35N/E84Q/E85K/E92Q/E94D/D97S/T106K/D126G).
Lysenin mutant 21 = Lysenin - (K37N/E84Q/E85K/E92Q/E94D/D97S/T106K/D126G)9 (SEQ ID
NO: 2 with mutations K37N/E84Q/E85K/E92Q/E94D/D97S/T106K/D126G).
Lysenin mutant 22 = Lysenin - (K37S/E84Q/E85K/E92Q/E94D/D97S/T106K/D126G)9 (SEQ ID
NO: 2 with mutations K37S/E84Q/E85K/E92Q/E94D/D97S/T106K/D126G).
Lysenin mutant 23 = Lysenin - (E84Q/E85K/E92D/E94Q/D97S/T106K/D126G)9 (SEQ ID NO:
2 with mutations E84Q/E85K/E92D/E94Q/D97S/T106K/D126G).
Lysenin mutant 24 = Lysenin - (E84Q/E85K/E92E/E94Q/D97S/T106K/D126G)9 (SEQ ID NO:
2 with mutations E84Q/E85K/E92E/E94Q/D97S/T106K/D126G).
Lysenin mutant 25 = Lysenin - (K37S/E84Q/E85K/E92Q/E94D/D97S/T104K/T106K/D126G)9 (SEQ
ID NO: 2 with mutations K37S/E84Q/E85K/E92Q/E94D/D97S/T104K/T106K/D126G).
Lysenin mutant 26 = Lysenin - (E84Q/E85K/M90I/E92Q/E94D/E97S/T106K/D126G)9 (SEQ ID
NO: 2 with mutations E84Q/E85K/M90I/E92Q/E94D/E97S/T106K/D126G).
Lysenin mutant 27 = Lysenin - (K45T/V47K/E84Q/E85K/E92Q/E94D/E97S/T106K/D126G)9 (SEQ
ID NO: 2 with mutations K45T/V47K/E84Q/E85K/E92Q/E94D/E97S/T106K/D126G).
Lysenin mutant 28 = Lysenin - (T51K/E84Q/E85K/E92Q/E94D/E97S/T106K/D126G)9 (SEQ ID
NO: 2 with mutations T51K/E84Q/E85K/E92Q/E94D/E97S/T106K/D126G).
Lysenin mutant 29 = Lysenin - (K45Y/S49K/E84Q/E85K/E92Q/E94D/E97S/T106K/D126G)9 (SEQ
ID NO: 2 with mutations K45Y/S49K/E84Q/E85K/E92Q/E94D/E97S/T106K/D126G).
Lysenin mutant 30 = Lysenin - (S49L/E84Q/E85K/E92Q/E94D/E97S/T106K/D126G)9 (SEQ ID
NO: 2 with mutations S49L/E84Q/E85K/E92Q/E94D/E97S/T106K/D126G).
Lysenin mutant 31 = Lysenin - (E84Q/E85K/V88I/M90A/E92Q/E94D/E97S/T106K/D126G)9 (SEQ
ID NO: 2 with mutations E84Q/E85K/V88I/M90A/E92Q/E94D/E97S/T106K/D126G).
Lysenin mutant 32 = Lysenin - (K45N/S49K/E84Q/E85K/E92D/E94N/E97S/T106K/D126G)9 (SEQ
ID NO: 2 with mutations K45N/S49K/E84Q/E85K/E92D/E94N/E97S/T106K/D126G).
Lysenin mutant 33 = Lysenin - (K45N/V47K/E84Q/E85K/E92D/E94N/E97S/T106K/D126G)9 (SEQ
ID NO: 2 with mutations K45N/V47K/E84Q/E85K/E92D/E94N/E97S/T106K/D126G).
Table 6
Mutant No. |
Difference from Baseline Nanopore |
Range (pA) |
Noise (pA) |
Signal:Noise |
Advantages and Observations |
1 |
Baseline 1 |
11.1 |
1.56 |
7.12 |
|
2 |
E94D |
15.7 |
2.03 |
7.73 |
Increased S:N and reduction in channel gating with and without DNA in pore |
3 |
E94Q |
23.6 |
3.55 |
6.65 |
Doubled the range, reduction in channel gating with and without DNA in pore |
4 |
S89Q |
11.96 |
1.38 |
8.67 |
Lower noise |
5 |
T91S |
12.21 |
1.31 |
9.32 |
Lower noise |
6 |
S98Q |
10.63 |
1.27 |
8.37 |
Lower noise |
7 |
V100S |
12.58 |
1.5 |
8.39 |
Slight increase in range |
Table 7
Mutant No. |
Difference from Baseline Nanopore |
Range (pA) |
Noise (pA) |
Signal:Noise |
Advantages and Observations |
2 |
Baseline 2 |
15.7 |
2.03 |
7.73 |
|
8 |
S80K |
15.29 |
2.9 |
5.27 |
Improves capture rate slightly |
9 |
T106R |
15.83 |
2.55 |
6.21 |
Increases capture rate drastically |
10 |
T106K |
15.73 |
1.99 |
7.90 |
Increases capture rate drastically |
11 |
T104R |
17.36 |
3.59 |
4.84 |
Increases capture rate drastically |
12 |
T104K |
15.55 |
2.57 |
6.05 |
Increases capture rate drastically |
13 |
S78N |
14.54 |
1.77 |
8.21 |
Reduces noise |
14 |
S82N |
15.03 |
1.81 |
8.30 |
Reduces noise |
Table 8
Mutant No. |
Difference from Baseline Nanopore |
Range (pA) |
Noise (pA) |
Signal:Noise |
Advantages and Observations |
3 |
Baseline 3 |
23.6 |
3.55 |
6.65 |
|
15 |
E76N |
16.99 |
2.3 |
7.39 |
Decreases noise drastically |
16 |
E76S |
18.35 |
2.38 |
7.71 |
Decreases noise drastically |
Table 9
Mutant No. |
Difference from Baseline Nanopore |
Range (pA) |
Noise (pA) |
Signal:Noise |
Advantages and Observations |
10 |
Baseline 4 |
13.48 |
1.35 |
9.99 |
|
17 |
E94Q/Y96D |
16.53 |
1.07 |
15.45 |
Increase in range and decrease in noise, reduction in size of the read-head |
18 |
K45D/E94K |
14.11 |
1.05 |
13.44 |
Decrease in noise |
19 |
K45R |
11.09 |
1.09 |
10.17 |
Decrease in noise |
20 |
D35N |
15.91 |
1.68 |
9.47 |
Increase in range |
21 |
K37N |
14.39 |
1.28 |
11.24 |
Increase in range and decrease in noise |
22 |
K37S |
14.47 |
1.28 |
11.30 |
Increase in range and decrease in noise |
23 |
E92D/E94Q |
20.59 |
2.05 |
10.04 |
Increase in range |
24 |
E92E/E94Q |
21.45 |
1.83 |
11.72 |
Increase in range |
25 |
K37S/T104K |
13.96 |
1.24 |
11.26 |
Decrease in noise |
26 |
M90I |
14.08 |
1.14 |
12.35 |
Decrease in noise |
27 |
K45T/V47K |
15.4 |
1.46 |
10.55 |
Increase in range |
28 |
T51K |
19.33 |
1.89 |
10.23 |
Increase in range |
29 |
K45Y/S49K |
20.69 |
1.71 |
12.10 |
Increase in range |
30 |
S49L |
12.51 |
1.1 |
11.37 |
Decrease in noise |
31 |
V88I/M90A |
13.08 |
1.17 |
11.18 |
Decrease in noise |
32 |
K45N/S49K/E92D/E94N |
15.84 |
1.44 |
11.00 |
Increase in range |
33 |
K45N/V47K/E92D/E94N |
12.31 |
1.13 |
10.89 |
Decrease in noise |
Readhead Analysis
[0312] For lysenin mutants 1 and 10 we obtained a model of the expected ionic current distribution
of all possible 9mer polynucleotides. The model may comprise a mean and standard deviation
of the current distribution of each 9mer.
[0313] We examined and compared the structure of the model obtained for lysenin mutant 1
and 10. The figures (See Figure 1 and 2) provide an example of such a comparison.
In the case of each model (i.e. lysenin 1 or 10) we combined the mean of the distributions
for all 9mers of the form A,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9 here x_{i} represent arbitrary
polynucleotides chosen from {A,C,G,T}), the combination applied to the means being
to take a median. This median averaging is repeated for all nucleotides {A,C,G,T}
in position 1, and for all positions, such that we obtain 36 median values encoding
the median effect of each nucleotide when it is present in any of the 9 positions
of a 9mer.
[0314] The figures 1 (lysenin mutant 1) and 2 (lysenin mutant 2) plot these medians for
two different pores. The plots in figures 1 and 2 show the level of discrimination
between all bases at each position in the readhead. The greater the discrimination
the bigger the difference between the current contribution levels at that particular
position. If a position is not part of the readhead the current contribution at that
position will be similar for all four bases. Figure 2 (lysenin mutant 10) shows similar
current contributions for all four bases at positions 6 to 8 of the readhead. Figure
1 (lysenin mutant 1) does not show similar current contributions for all four bases
at any position in the readhead. Therefore lysenin mutant 10 has a shorter readhead
than lysenin mutant 1. A shorter read head can be advantageous as fewer bases contribute
to the signal at any one time which can lead to improved base calling accuracy.
Example 2
[0315] This example describes the protocol used to produce a chemically modified assembled
pore with a reduced diameter of a barrel/channel.
[0316] Monomeric Lysenin sample (about 10 umol) was first reduced to ensure maximum reactivity
of the cysteine residues and therefore high efficiency coupling reaction. The monomeric
lysenin sample (about 10 umol) was incubated with 1 mM dithiothreitol (DTT) for 5-15
minutes. Cellular debris and suspended aggregates were then pelleted through centrifugation,
20,000 rpm for 10 min. The soluble fraction was then recovered and buffer exchanged
to 1mM Tris, 1mM EDTA, pH 8.0, using 7 Kd molecular weight cut off Zeba spin columns
(ThermoFisher).
[0317] The molecule that was to be attached (e.g.: 2-iodo-N-(2,2,2-trifluoroethyl)acetamide)
was dissolved to a concentration of 100 mM in a suitable solvent, typically DMSO.
This was added to buffer exchanged Lysenin monomer sample to a final concentration
of 1mM. The resulting solution was incubated at 30 °C for 2 hours. Modified sample
(100 uL) was then oligomerised by adding 20 uL of a 5 lipid mixture from Encapsula
Nanosciences (Phosphatidylserine (0.325mg/ml): POPE (0.55mg/ml): Cholesterol (0.45mg/ml):
Soy PC (0.9mg/ml): Sphingomyelin (0.275mg/ml)). The sample was incubated at 30 °C
for 60 minutes. Sample was then subjected to SDS-PAGE and purified from gel as described
in International application number
PCT/GB2013/050667 (published as
WO2013/153359).
Example 3
[0318] This example compared a chemically modified assembled lysenin pore with a reduced
diameter of a barrel/channel (Lysenin-(E84Q/E85K/E92Q/E94C/E97S/T106K/D126G/C272A/C283A)9
with 2-iodo-N-(2,2,2-trifluoroethyl)acetamide attached via E94C (SEQ ID NO: 2 with
mutations E84Q/E85K/E92Q/E94C/E97S/T106K/D126G/C272A/C283A) with Lysenin-(E84Q/E85K/E92Q/E94D/E97S/T106K/D126G/C272A/C283A)9
(SEQ ID NO: 2 with mutations E84Q/E85K/E92Q/E94D/E97S/T106K/D126G/C272A/C283A).
Materials and Methods
[0319] The DNA construct was prepared as described in example 1. Electrophysiology experiments
were carried out as described in Example 1.
Results
[0320] The electrophysiology experiments showed that the chemically modified assembled pore
(Lysenin - (E84Q/E85K/E92Q/E94C/E97S/T106K/D126G/C272A/C283A)9 with 2-iodo-N-(2,2,2-trifluoroethyl)acetamide
attached via E94C (SEQ ID NO: 2 with mutations E84Q/E85K/E92Q/E94C/E97S/T106K/D126G/C272A/C283A)
exhibited a median range of 21 pA which was greater than Lysenin-(E84Q/E85K/E92Q/E94D/E97S/T106K/D126G/C272A/C283A)9
which exhibited a median range of 12 pA. This increase in median range provided greater
current space for the resolution of kmers.
[0321] Figures 3 (Lysenin - (E84Q/E85K/E92Q/E94D/E97S/T106K/D126G/C272A/C283A)9) and 4 ((Lysenin
- (E84Q/E85K/E92Q/E94C/E97S/T106K/D126G/C272A/C283A)9 with 2-iodo-N-(2,2,2-trifluoroethyl)acetamide
attached via E94C (SEQ ID NO: 2 with mutations E84Q/E85K/E92Q/E94C/E97S/T106K/D126G/C272A/C283A)
showed plots of the medians as described in Example 1. The relative contribution to
the signal of different bases at different positions had been altered when Figure
4 was compared to figure 3, read-head positions at the extreme (positions 7 to 8)
in Figure 4 showed much less discrimination meaning their contribution toward the
signal was much reduced and therefore the length of the Kmer being assayed at a given
moment was shorter. This shorter readhead can be advantageous as fewer bases contribute
to the signal at any one time which can lead to improved base calling accuracy.
[0322] Similar experiments to that described in Example 3 were carried out on Lysenin -
(E84Q/E85S/E92C/E94D/E97S/T106K/D126G/C272A/C283A)9 with 2-iodo-N-(2-phenylethyl)acetamide
attached via E92C (SEQ ID NO: 2 with mutations E84Q/E85S/E92C/E94D/E97S/T106K/D126G/C272A/C283A)
and Lysenin-(E84Q/E85S/E92C/E94D/E97S/T106K/D126G/C272A/C283A)9 with 1-benzyl-2,5-dihydro-1H-pyrrole-2,5-dione
attached via E92C (SEQ ID NO: 2 with mutations E84Q/E85S/E92C/E94D/E97S/T106K/D126G/C272A/C283A).
[0323] The following are aspects of the invention:
1. A mutant lysenin monomer comprising a variant of the amino acid sequence shown
in SEQ ID NO: 2, wherein the variant comprises a modification at one or more of the
following positions K37, G43, K45, V47, S49, T51, H83, V88, T91, T93, V95, Y96, S98,
K99, V100, 1101, P108, P109, T110, S111, K112 and T114.
2. A mutant monomer according to aspect 1, wherein the variant comprises a modification
at one or more of the following positions T91, V95, Y96, S98, K99, V100, 1101 and
K112.
3. A mutant monomer according to aspect 2, wherein the modification is substitution
with serine (S) or glutamine (Q).
4. A mutant monomer according to aspect 2 or 3, wherein the variant comprises one
or more of the following substitutions T91S, V95S, Y96S, S98Q, K99S, V100S, I101S
and K112S.
5. A mutant monomer according to aspect 1, wherein the variant comprises a modification
at one or more of the following positions K37, G43, K45, V47, S49, T51, H83, V88,
T91, T93, Y96, S98, K99, P108, P109, T110, S111 and T114.
6. A mutant monomer according to aspect 5, wherein the modification is substitution
with asparagine (N), tryptophan (W), serine (S), glutamine (Q), lysine (K), aspartic
acid (D), arginine (R), threonine (T), tyrosine (Y), leucine (L) or isoleucine (I).
7. A mutant monomer according to aspect 5 or 6, wherein the variant comprises one
or more of the following substitutions K37N/W/S/Q, G43K, K45D/R/N/Q/T/Y, V47K/S/N,
S49K/L, T51K, H83S/K, V88I/T, T91K, T93K, Y96D, S98K, K99Q/L, P108K/R, P109K, T110K/R,
S111K and T114K.
8. A mutant monomer according to any one of aspects 5 to 7, wherein the variant comprises
modifications at one or more of the following combinations of positions:
E94/P108; |
E94/P108; |
E94/P109; |
E94D/T110R; |
E94/T110; |
E94D/S111K; |
E94D/T114K; |
K37/E94/T104/T106; |
H83S/E94Q; |
K45/E94/T106; |
E94/K99/T106; |
K45/V47/E94/T106; |
E94/T93/T 106; |
V47/E94/T106; |
E94/T91/T106; |
T51/E94/T106; |
H83/E94/T106; |
K45/S49/E94/T106; |
E94/Y96/T106; |
S49/E94/T106; |
K45/E94/T106; |
K45/T106; |
K45/E94/T106; |
V47/E94/T106; |
E94/S98/K99/T106; |
G43/E94/T106; |
K37/E94/T106; |
V88/M90/E94/T106; |
K37/E94/T106; |
V47/V88/E94/T106; |
K37/E94/T106; |
K45/S49/E94/E92/T106; |
K45/E94/T106; |
K45/V47/E92/E94/T106; and |
K37/E94/E102/T106; |
E94/K99/T106. |
K37/E94/E102/T106; |
|
9. A mutant monomer according to aspect 8, wherein the variant comprises one or more
of the following combinations of substitutions:
E94D/P108K; |
K37N/E94D/T106K; |
E94D/P109K; |
K37W/E94D/T106K; |
E94D/T110K; |
K37S/E94D/T106K; |
E94D/P108R; |
K45N/E94N/T106K; |
E94D/T110R; |
K37Q/E94D/E102N/T106K; |
E94D/S111K; |
K37S/E94D/E102S/T106K; |
E94D/T114K; |
K37S/E94D/T104K/T106K; |
H83S/E94Q; |
K45Q/E94Q/T106K; |
E94D/K99Q/T106K; |
K45T/V47K/E94D/T106K; |
E94D/T93K/T106K; |
V47S/E94D/T106K; |
E94D/T91K/T106K; |
T51K/E94D/T106K; |
H83K/E94D/T106K; |
K45Y/S49K/E94D/T106K; |
E94Q/Y96D/T106K; |
S49L/E94D/T106K; |
K45D/E94K/T106K; |
K45R/T106K; |
K45R/E94D/T106K; |
V47K/E94D/T106K; |
E94D/S98K/K99L/T106K; |
G43K/E94D/T106K; |
V88I/M90A/E94D/T106K; |
K45N/V47K/E92D/E94N/T106K; and |
V47N/V88T/E94D/T106K; |
E94D/K99Q/T106K. |
K45N/S49K/E94N/E92D/T106K; |
|
10. A mutant lysenin monomer comprising a variant of the amino acid sequence shown
in SEQ ID NO: 2, wherein the variant comprises one or more of the substitutions:
D35N/S;
S74K/R;
E76D/N;
S78R/K/N/Q;
S80K/R/N/Q;
S82K/R/N/Q;
E84R/K/N/A;
E85N;
S86K/Q;
S89K;
M90K/I/A;
E92D/S;
E94D/Q/G/A/K/R/S/N;
E102N/Q/D/S;
T104R/K/Q;
T106R/K/Q;
R115S;
Q117S; and
N119S.
11. A mutant monomer according to aspect 10, wherein the variant comprises one or
more of the substitutions E94D/Q/G/A/K/R/S, S86Q and E92S.
12. A mutant monomer according to aspect 10, wherein the variant comprises one or
more of the substitutions:
D35N/S;
S74K/R;
E76D/N;
S78R/K/N/Q;
S80K/R/N/Q;
S82K/R/N/Q;
E84R/K/N/A;
E85N;
S86K;
S89K;
M90K/I/A;
E92D;
E94D/Q/K/N;
E102N/Q/D/S;
T104R/K/Q;
T106R/K/Q;
R115S;
Q117S; and
N119S.
13. A mutant monomer according to aspect 12, wherein the variant comprises one or
more of the following combinations of substitutions:
E94D/E102N; |
E84N/E94D; |
E94D/E102Q; |
S78N/E94D; |
E94D/S80K; |
S80N/E94D; |
S82K/E94D; |
S82N/E94D; |
E94D/T106R; |
E94D/P108K; |
E94D/T106K; |
E94D/P109K; |
E94D/T104R; |
S74K/E94D; |
E94D/T104K; |
E94D/T 110K; |
S78R/E94D; |
S74R/E94D; |
S78K/E94D; |
E94D/P108R; |
S80R/E94D; |
E94D/T 110R; |
S82R/E94D; |
S86K/E94D; |
E76D/E94D; |
S89K/E94D; |
E76N/E94D; |
E94D/S111K; |
E94D/E102D; |
E94D/T114K; |
E84R/E94D; |
E76N/E94Q; |
E84K/E94D; |
S78Q/E94Q; |
S80Q/E94Q; |
K37W/E94D/T106K; |
S82Q/E94Q; |
K37S/E94D/T106K; |
H83S/E94Q; |
K45N/E94N/T106K; |
E84A/E94Q; |
E92D/E94Q/T106K; |
E84K/E94Q; |
K37Q/E94D/E102N/T106K; |
E94Q/T104Q; |
E94Q/T106K; |
E94Q/T106Q; |
K37S/E94D/E102S/T106K; |
E94Q/R115S; |
K37S/E94D/T104K/T106K; |
E94Q/Q117S; |
K45Q/E94Q/T106K; |
E94Q/N119S; |
M90I/E94D/T106K; |
E94Q/D121S; |
K45T/V47K/E94D/T106K; |
E76S/E94Q; |
V47S/E94D/T106K; |
E94D/K99Q/T106K; |
T51K/E94D/T106K; |
E94D/T93K/T106K; |
K45Y/S49K/E94D/T106K; |
E94D/T91K/T106K; |
S49L/E94D/T106K; |
E94D/M90K/T106K; |
K45R/T106K; |
E85N/E94D/T106K; |
V47K/E94D/T106K; |
H83K/E94D/T106K; |
G43K/E94D/T106K; |
E94Q/Y96D/TI06K; |
V88I/M90A/E94D/T106K; |
K45D/E94K/T106K; |
V47N/V88T/E94D/T106K; |
K45R/E94D/T106K; |
K45N/S49K/E94N/E92D/T106K; |
E94D/S98K/K99L/T106K; |
K45N/V47K/E92D/E94N/T106K; |
D35N/E94D/T106K; |
E94D/K99Q/T106K; |
D35S/E94D/T106K; |
S82K/E94D/T106K; and |
K37N/E94D/T106K; |
Y79S/E94Q. |
14. A mutant lysenin monomer comprising a variant of the amino acid sequence shown
in SEQ ID NO: 2, wherein the variant comprises mutations at one or more of the following
combinations of positions:
D35/E94/T106; |
K45/V47/E92/E94/T106; |
K37/E94/E102/T106; |
K45/V47/E94/T106; |
K37/E94/T104/T106; |
K45/S49/E92/E94/T106; |
K37/E94/T106; |
K45/S49/E94/T106; |
K37/E94/E102/T106; |
K45/E94/T106; |
G43/E94/T106; |
K45/T106; |
V47/E94/T106; |
T91/E94/T106; |
V47/V88/E94/T106; |
E92/E94/T106; |
S49/E94/T106; |
T93/E94/T106; |
T51/E94D/T106; |
E94/Y96/T106; |
S74/E94; |
E94/S98/K99/T106; |
E76/E94; |
E94/K99/T106; |
S78/E94; |
E94/E102; |
Y79/E94; |
E94/T104; |
S80/E94; |
E94/T106; |
S82/E94; |
E94/P108; |
S82/E94/T106; |
E94/P109; |
H83/E94; |
E94/T110; |
H83/E94/T106; |
E94/S111; |
E85/E94/T106; |
E94/T114; |
S86/E94; |
E94/R115; |
V88/M90/E94/T106; |
E94/Q117; and |
S89/E94; |
E94/E119. |
M90/E94/T106; |
|
15. A mutant monomer according to aspect 14, wherein the variant comprises one or
more of the following combinations of substitutions:
D35N/E94D/T106K; |
K45R/E94D/T106K; |
D35S/E94D/T106K; |
K45N/E94N/T106K; |
K37Q/E94D/E102N/T106K; |
K45Q/E94Q/T106K; |
K37S/E94D/E102S/T106K; |
K45R/T106K; |
K37S/E94D/T104K/T106K; |
V47S/E94D/T106K; |
K37N/E94D/T106K; |
V47K/E94D/T106K; |
K37W/E94D/T106K; |
V47N/V88T/E94D/T106K; |
K37S/E94D/T106K; |
S49L/E94D/T106K; |
G43K/E94D/T106K; |
T51K/E94D/T106K; |
K45N/V47K/E92D/E94N/T106K; |
S74K/E94D; |
K45T/V47K/E94D/T106K; |
S74R/E94D; |
K45N/S49K/E94N/E92D/T106K; |
E76D/E94D; |
K45Y/S49K/E94D/T106K; |
E76N/E94D; |
K45D/E94K/T106K; |
E76S/E94Q; |
E76N/E94Q; |
T93K/E94D/T106K; |
S78R/E94D; |
E94Q/Y96D/T106K; |
S78K/E94D; |
E94D/S98K/K99L/T106K; |
S78N/E94D; |
E94D/K99Q/T106K; |
S78Q/E94Q; |
E94D/E102N; |
Y79S/E94Q; |
E94D/E102Q; |
S80K/E94D; |
E94D/E102D; |
S80R/E94D; |
E94D/T104R; |
S80N/E94D; |
E94D/T104K; |
S80Q/E94Q; |
E94Q/T104Q; |
S82K/E94D; |
E94D/T106R; |
S82R/E94D; |
E94D/T106K; |
S82N/E94D; |
E94Q/T106Q; |
S82Q/E94Q; |
E94Q/T106K; |
S82K/E94D/T106K; |
E94D/P108K; |
H83S/E94Q; |
E94D/P108R; |
H83K/E94D/T106K; |
E94D/P109K; |
E85N/E94D/T106K; |
E94D/T110K; |
S86K/E94D; |
E94D/T110R; |
V88I/M90A/E94D/T106K; |
E94D/S111K; |
S89K/E94D; |
E94D/T114K; |
M90K/E94D/T106K; |
E94Q/R115S; |
M90I/E94D/T106K; |
E94Q/Q117S; and |
T91K/E94D/T106K; |
E94Q/N119S. |
E92D/E94Q/T106K; |
|
16. A mutant lysenin monomer comprising a variant of the amino acid sequence shown
in SEQ ID NO: 2, wherein the variant comprises one or more of the following pairs
of substitutions:
E84R/E94D;
E84K/E94D;
E84N/E94D;
E84A/E94Q;
E84K/E94Q and
E94Q/D121S.
17. A mutant lysenin monomer according to any one of the preceding aspects, wherein
the monomer comprises any number and any combination of modifications and/or substitutions
defined in any one of the preceding aspects.
18. A mutant lysenin monomer comprising a variant of the sequence shown in SEQ ID
NO: 2, wherein in the variant (a) 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20 of the amino
acids corresponding to the amino acids at positions 34 to 70 of SEQ ID NO: 2 have
been deleted and (b) 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20 of the amino acids corresponding
to the amino acids at positions 71 to 107 of SEQ ID NO: 2 have been deleted.
19. A mutant monomer according to aspect 18, wherein the same number of amino acids
have been deleted in (a) and (b).
20. A mutant according to aspect 18 or 19, wherein the positions of the amino acids
that have been deleted are shown in a row of Table 1 or 2 or more than one row of
Table 1 and/or 2.
21. A mutant monomer according to any one of aspects 18 to 20, wherein amino acids
corresponding to the following amino acids in SEQ ID NO: 2 have been deleted:
- (i) N46/V47/T91/T92; or
- (ii) N48/S49/T91/T92.
22. A mutant monomer according to any one of aspects 18 to 21, wherein the variant
further comprises, where appropriate, any of the modifications and/or substitutions
defined in any one of aspects 1 to 17.
23. A mutant monomer according to any one of the preceding aspects, wherein the variant
further comprises
- a substitution at one or more of the following positions of SEQ ID NO: 2 (a) E84,
E85, E92, E97 and D126, (b) E85, E97 and D126, or (c) E84 and E92; or
- a substitution at one or more of E84Q/E85K/E92Q/E97S/D126G or, where appropriate,
all of E84Q/E85K/E92Q/E97S/D126G.
24. A mutant monomer according to aspect 23, wherein the variant comprises one of
the following combinations of substitutions:
- E84Q/E85K/E92Q/E94D/E97S/D126G;
- E84Q/E85K/E92Q/E94Q/E97S/D126G; or
- E84Q/E85K/E92Q/E94D/E97S/T106K/D126G.
25. A mutant lysenin monomer according to any one of the preceding aspects which is
capable of forming a pore.
26. A mutant lysenin monomer according to aspect 1, wherein the variant comprises
an amino acid sequence that is at least 70% identical to the sequence shown in SEQ
ID NO: 2.
27. A construct comprising two or more covalently attached monomers derived from lysenin,
wherein at least one of the monomers is a mutant lysenin monomer as defined in any
one of the preceding aspects.
28. A construct according to aspect 27, wherein the two or more monomers are the same
or different.
29. A construct according to aspect 27 or 28, wherein the two or more monomers are
genetically fused.
30. A polynucleotide which encodes a mutant lysenin monomer according to any one of
aspects 1 to 26 or a construct according to aspect 27.
31. A pore comprising at least one mutant lysenin monomer according to any one of
aspects 1 to 26 and/or at least one construct according to any one of aspects 27 to
29.
32. A pore according to aspect 31, which is a homo-oligomeric pore comprising from
6 to 12 mutant lysenin monomers according to any one of aspects 1 to 26.
33. A pore according to aspect 31, which is a hetero-oligomeric pore comprising at
least one mutant lysenin monomer according to any one of aspects 1 to 26.
34. A method of characterising a target analyte, comprising:
- (a) contacting the target analyte with a pore according to any one of aspects 31 to
33 such that the target analyte moves through the pore; and
- (b) taking one or more measurements as the analyte moves with respect to the pore
wherein the measurements are indicative of one or more characteristics of the target
analyte and thereby characterising the target analyte.
35. A method according to aspect 34, wherein:
- (i) the pore is present in a membrane separating a chamber into two compartments,
each compartment containing an aqueous solution;
- (ii) step (a) comprises providing the analyte in one compartment;
- (iii) step (b) comprises applying a potential difference across the membrane; and/or
- (iv) step (c) comprises measuring current flow across the membrane.
36. A method according to aspect 34 or 35, wherein the target analyte is a metal ion,
an inorganic salt, a polymer, an amino acid, a peptide, a polypeptide, a protein,
a nucleotide, an oligonucleotide, a polynucleotide, a dye, a bleach, a pharmaceutical,
a diagnostic agent, a recreational drug, an explosive or an environmental pollutant.
37. A method according to aspect 36, wherein the target analyte is a target polynucleotide.
38. A method according to aspect 37, wherein step (a) comprises contacting the target
polynucleotide with the pore and a polynucleotide binding protein and the protein
controls the movement of the target polynucleotide through the pore.
39. A method according to aspect 37 or 38, wherein characterising the target polynucleotide
comprises estimating the sequence of or sequencing the target polynucleotide.
40. A method of forming a sensor for characterising a target polynucleotide, comprising
forming a complex between a pore according to any one of aspects 31 to 33 and a polynucleotide
binding protein and thereby forming a sensor for characterising the target polynucleotide.
41. A method according to aspect 40, wherein the complex is formed by (a) contacting
the pore and the polynucleotide binding protein in the presence of the target polynucleotide
and (a) applying a potential across the pore.
42. A method according to aspect 41, wherein the potential is a voltage potential
or a chemical potential.
43. A method according to aspect 40, wherein the complex is formed by covalently attaching
the pore to the polynucleotide binding protein.
44. A sensor for characterising a target polynucleotide, comprising a complex between
a pore according to any one of aspect 31 to 33 and a polynucleotide binding protein.
45. Use of a pore according to any one of aspects 31 to 33 to characterise a target
analyte.
46. A kit for characterising a target polynucleotide comprising (a) a pore according
to any one of aspects 31 to 33 and (b) a membrane.
47. A kit according to aspect 46, wherein the kit further comprises a chip comprising
an amphiphilic layer.
48. An apparatus for characterising target polynucleotides in a sample, comprising
(a) a plurality of pores according to any one of aspects 31 to 33 and (b) a plurality
of polynucleotide binding proteins.
49. A method of improving the ability of a lysenin monomer comprising the sequence
shown in SEQ ID NO: 2 to characterise a polynucleotide, comprising making one or more
of the modifications and/or substitutions defined in any one of aspects 1 to 26.
50. A method of producing a construct according to any one of aspects 27 to 30, comprising
covalently attaching at least one mutant lysenin monomer according to any one of aspect
1 to 26 to one or more monomers derived from lysenin.