[0001] The invention relates to an improvement of the DALI communications standard.
[0002] As of now, the DALI communications standard allows for up to 64 devices and additional
64 sensors connected to a single DALI bus system. The current drawn by each connected
element is limited to 2 mA. While using such a large number of devices on a single
DALI bus though, bus congestion can occur, leading to unacceptably high reaction times
of the connected devices due to a long waiting time until the respective DALI command
can be transmitted.
[0003] A conventional DALI bus communication system is for example shown by the document
WO 2013/113888.
[0005] A transmission scheme that has high transient and EMI immunity with low EMI emissions
and involves amplitude modulation is disclosed in
US 2012/134394 A1.
[0006] Accordingly, the object of the invention is to increase the information transmission
capacity while preferably retaining compatibility to legacy devices.
[0007] The object solved by the features of claim 1 for the device and claim 12 for the
method. Further it is solved by the features of claim 13 for the associated computer
program. The dependent claims contain further developments.
[0008] The inventive DALI control device comprises a DALI interface adapted to receive and/or
transmit DALI signals. Additionally, the DALI interface is adapted to utilize a signal
level of the DALI signals. By using not only the signal transitions according to the
Manchester coding employed by regular DALI signals, but by additionally utilizing
the signal levels of the DALI signals, the information carrying capacity of the DALI
signals can be increased, without increasing the necessary bandwidth or clock rate.
[0009] The DALI control device is adapted to transmit DALI signals. In this case, the DALI
interface comprises an encoder, adapted to encode a first information based on Manchester
coding, and encode a second information based on a signal level of HIGH and/or LOW
pulses of the Manchester coding. This allows for a very efficient spectral use.
[0010] More preferably, the encoder is adapted to encode the second information using amplitude
modulation, e.g. amplitude shift keying, with at least two, preferably at least three,
most preferably at least four signal levels. Additionally or alternatively, the encoder
is adapted to encode the second information using frequency modulation, e.g. frequency
shift keying, with at least two, preferably at least three, most preferably at least
four signal frequencies within the HIGH and/or LOW pulses of the Manchester coding.
Using amplitude modulation allows for a very simple coding and decoding, while using
frequency modulation allows for a more robust signal transmission.
[0011] Preferably, the DALI control device is adapted to receive DALI signals. The DALI
interface then comprises a decoder, which is adapted to decode a first information
based on Manchester coding and decode a second information based on a signal level
of HIGH and/or LOW pulses of the Manchester coding. This allows for an especially
efficient spectral use.
[0012] Preferably, the decoder is adapted to decode the second information using amplitude
modulation with at least two, preferably at least three, most preferably at least
four signal levels. Additionally or alternatively, the decoder is adapted to decode
the second information using frequency modulation with at least two, preferably at
least three, most preferably at least four signal frequencies within the HIGH and/or
LOW pulses of the Manchester coding. Using amplitude modulation allows for a very
simple coding and decoding, while using frequency modulation allows for a more robust
signal transmission.
[0013] Preferably, the DALI interface moreover comprises a galvanic decoupler, adapted to
perform a galvanic decoupling of the DALI control device and a connection port to
a secondary DALI line. This effectively prevents interferences.
[0014] More preferably, the galvanic decoupler is a high frequency clocked DC-DC converter
comprising a transformer. This type of galvanic decoupler is especially suitable for
conveying different signal levels of the DALI signals.
[0015] Preferably, the high frequency clocked DC-DC converter comprising a transformer is
adapted to transmit a load modulation of a secondary side to a primary side, forming
a reverse channel. This allows for 2-way communications.
[0016] Preferably, the DALI interface is adapted to set the clocking of the high frequency
clocked DC-DC converted so as to perform an amplitude modulation and/or a frequency
modulation of the HIGH and/or LOW pulses of the DALI signal at a secondary side of
the transformer. This allows for an especially simple signal generation.
[0017] Preferably, the high frequency clocked DC-DC converter comprises at least one primary
side switch. An amplitude of a signal of a secondary side of the transformer may be
set by a duty factor or switching frequency selection of the primary side switch of
the DC-DC converter. This allows for an especially simple signal generation.
[0018] In an alternative embodiment, the primary side switch of the DC-DC converter may
be clocked at a fixed frequency and a fixed duty cycle and thereby may transfer the
level of the amplitude of the primary side voltage to the secondary side in a "feed-forward"
operation.
[0019] Preferably, the DALI interface is adapted to be compatible to legacy DALI devices,
especially to DALI control devices employing only Manchester coding. This allows for
an especially flexible use of the DALI control device.
[0020] Preferably, the DALI interface is adapted to utilize additional signal levels between
10 V and 30 V, preferably between 11 V and 15 V, most preferably between 11,5 V and
12,5 V. This allows for a clear distinguishing from the regular DALI high voltage
of 10 V.
[0021] Moreover, an inventive DALI system is presented. The inventive DALI system comprises
a first DALI control device as explained earlier and a second DALI control explained
earlier. Moreover, the system comprises a primary DALI line connecting the first DALI
control device and the second DALI control device. The system allows for an especially
high information transmission rate between the devices.
[0022] Moreover, a method for communicating using a DALI interface is provided. The method
comprises receiving and/or transmitting DALI signals, additionally utilizing a signal
level of the DALI signals by encoding a first information based on Manchester coding,
and encoding a second information based on a signal level of HIGH and/or LOW pulses
of the Manchester coding. This allows for an especially efficient communication with
a high transmission rate.
[0023] Moreover, a computer program is provided. The computer program comprises program
code for performing the previously shown method, when the computer program runs on
a computer.
[0024] An exemplary embodiment of the invention is now further explained with respect to
the drawings, in which
- Fig. 1
- shows a first embodiment of the DALI system along with a first embodiment of the DALI
control device in a block diagram;
- Fig. 2
- shows a second embodiment of the DALI system along with a second embodiment of the
DALI control device in a block diagram;
- Fig. 3
- shows a detail of a third embodiment of the DALI control device in a block diagram;
- Fig. 4
- shows an exemplary DALI signal using Manchester coding;
- Fig. 5
- shows an exemplary DALI signal as used by a fourth embodiment of the DALI control
device;
- Fig. 6
- shows a detail of a fifth embodiment of the DALI control device in a circuit diagram;
- Fig. 7
- shows a detail of a sixth embodiment of the DALI control device in a circuit diagram;
- Fig. 8
- shows a first embodiment of the inventive method in a flow diagram, and
- Fig. 9
- shows a second embodiment of the inventive method in a flow diagram.
[0025] First we demonstrate the construction and function of different embodiments of the
inventive DALI system and DALI control device along Fig. 1-7, before we show the detailed
function of the different embodiments of the method along Fig. 8 and Fig. 9. Similar
entities and reference numbers in different figures have been partially omitted.
[0026] In Fig. 1, a first embodiment of the DALI system 1 is shown. The DALI system 1 comprises
a first DALI control device 10 connected by a primary DALI line 13 to a second DALI
control device 11. For example, the first DALI control device 10 is a central DALI
controller, while the second DALI control device 11 is a DALI compatible lighting
device. According to the legacy DALI protocol, Manchester coding is used for encoding
communications between the first DALI control device 10 and the second DALI control
device 11.
[0027] The second DALI control device 11 may comprise an internal control unit which is
designed to control a load element like a lamp depending on the communication received
from primary DALI line 13. At least the second DALI control device 11 may comprise
a galvanic decoupler, like an opto-coupler, which provides galvanic isolation from
the primary DALI line 13 to the internal control unit.
[0028] An example of a Manchester coding is for example shown in Fig. 4. The information
is therein encoded in the transitions between a low signal level and a high signal
level. The actual signal level of the LOW signal level and the HIGH signal level though
is conventionally not used for information transmission.
[0029] According to the present invention, as shown in Fig. 5, the signal level of the DALI
signal is used for encoding additional information. Here, four different signal levels
¼ low, ½ low, ¾ low, low are employed. A different number of signal levels still can
be used. Especially, also different HIGH levels can be used. Advantageously, at least
two, preferably at least three, most preferably at least four signal levels are used
for encoding the second information.
[0030] At the same time though, the Manchester encoding, as shown in Fig. 4 though is still
used. This means that a first information is encoded using the Manchester encoding,
while a second information is encoded utilizing the signal levels. In the embodiment
shown in Fig. 5, an amplitude modulation, for example an amplitude shift keying, between
the different signal levels is used. Alternatively, though, also a frequency modulation,
for example a frequency shift keying, can be used. In this case, different signal
frequencies within the LOW and HIGH pulses of the Manchester encoding can be used
to encode the second information.
[0031] In Fig. 2, a detail of a DALI system 1 with the first DALI control device 10 and
the second DALI control device 11, as shown in Fig. 1, is shown. The first DALI control
device 10 comprises a controller 20. The second DALI control device 11 comprises a
DALI interface 21. The controller 20 of the first DALI control device 10 and the DALI
interface 21 of second DALI control device 11 are connected by a primary DALI line
13. The controller 20 provides the information to be transmitted over the primary
DALI line 13, while the DALI interface 21 encodes the information for transmission
through a secondary DALI line 12, which is connected to an internal control unit 15
of the second DALI control device 11. The internal control unit 15 is designed to
control a load element, like a lamp, depending on the communication received from
first DALI control device 10 via primary DALI line 13 and transferred over the DALI
interface 21 to the secondary DALI line 12.
[0032] Also, the DALI interface 21 receives DALI signals through the secondary DALI line
12 from the internal control unit 15, decodes them, and provides the received information
to the controller 20.
[0033] In Fig. 3, further details of the DALI interface 21 of Fig. 2 are shown. The DALI
Interface 21 here comprises an encoder 30 and a decoder 31, connected over the primary
DALI line 13 to the controller 20 of Fig. 2, and also connected to a galvanic decoupler
32, which again is connected to the secondary DALI line 12.
[0034] The encoder 30 receives information to be transmitted from the controller 20 of Fig.
2 and encodes it. As described along Fig. 4 and Fig. 5, a first piece of information
is encoded using the Manchester encoding, while a second piece of information is encoded
utilizing the signal levels, as especially shown in Fig. 5.
[0035] When receiving a DALI signal through the primary DALI line 13, the galvanic decoupler
32 performs a decoupling of the received signal together with performing a galvanic
isolation. The encoder 30 therefore provides a coding signal to the galvanic decoupler
32, which performs a galvanic decoupling generated a DALI signal to be transmitted
through the secondary DALI line 12.
[0036] When receiving a DALI signal through the secondary DALI line 12, the galvanic decoupler
32 performs a galvanic decoupling and provides the received signal to the decoder
31. The decoder 31 decodes the received DALI signal and provides the decoded information
through the controller 20 of Fig. 2. Especially, the decoder 31 performs a Manchester
decoding of a first piece of information and performs a decoding taking the signal
levels into account, resulting into a second piece of information.
[0037] The decoder 31 may for instance adjust the signal level on the primary DALI line
13 depending on the second information which can be decoded by decoder 31.
[0038] It is important to note that the resulting DALI control device is compatible to legacy
DALI control devices in that the first piece of information encoded using Manchester
encoding can still be transmitted to and received from legacy DALI control devices.
Only the second piece of information encoded utilizing the signal levels cannot be
processed by legacy DALI control devices. Knowing which devices within the DALI system
are legacy DALI control devices and which devices are inventive DALI control devices,
it is possible to decide, if to transmit the second piece of information, or not.
Also, when receiving information from a legacy DALI control device, it is not necessary
to decode the signal levels, since legacy DALI control devices cannot transmit any
information within the signal levels.
[0039] Advantageously, in order to accommodate legacy DALI control devices, the additional
signal levels used are outside of the signal level range of the Manchester encoding.
While in legacy DALI communication standard, a voltage of 10V for the low signal are
used, an additional voltage the additional amplitude values could be around 12V.
[0040] In Fig. 6, a further detail of an embodiment of the DALI control device is shown.
Especially here, the inner workings of the galvanic decoupler 32 are shown. Since
opto-couplers are often not very accurate with regard to the signal level, the use
of opto-couplers is disadvantageous. Therefore here, a clocked DC-DC converter comprising
a transformer is suggested. The DC-DC converter may be formed by a flyback converter
or forward converter.
[0041] The galvanic decoupler 32 formed by a clocked DC-DC converter comprises a transformer
61, connected to a source 60. The source 60 may be formed by the supplying primary
DALI line 13, which is provided to the input terminals of the galvanic decoupler 32.
There might be an additional constant current source in series connection with the
primary side of the transformer 61. The primary side of the transformer 61 is connected
to a switch 62, which is controlled by the encoder 30. The switch 62 either leaves
the primary side of the transformer 61 open or connects it to ground 63. The secondary
side of the transformer 61 is connected to the secondary DALI line 12. The switch
62 is clocked with a high frequency signal by the encoder 30. The frequency and /
or the duty cycle of the high frequency signal sets the signal level of the resulting
DALI signal. The encoder 30 may detect the amplitude of the signal applied by the
primary DALI line 13 and may set the frequency and / or the duty cycle of the high
frequency signal depending on the amplitude of the signal applied by the primary DALI
line 13 which is provided to the galvanic decoupler 32. Thereby an amplitude of a
signal at the secondary side of the transformer 61 is set by a duty factor and / or
switching frequency of the primary side switch 62 of the DC-DC converter 32. By deliberately
using a switching signal, which is of a sufficiently low frequency that the switching
pulses are transferred to the secondary side, the previously described frequency modulation,
e.g. frequency shift keying, the resulting DALI signal to encode the second information
can be achieved.
[0042] Preferably, during the HIGH pulses of the Manchester encoding, the switching is deactivated,
while the different signal levels are set during the LOW pulses of the Manchester
encoding, as for example showing in Fig. 5. Also a coding scheme employing switching
during all pulses, resulting in utilizing the HIGH and LOW pulse values for coding
is possible.
[0043] When performing frequency modulation, e.g. frequency shift keying, the information
is transmitted to the secondary side and can be decoded on the receiver side as different
frequencies within the low pulses of the Manchester encoded signal.
[0044] In a further embodiment, the primary side switch 62 of the DC-DC converter 32 may
be clocked at a fixed frequency and fixed duty cycle and thereby may transfer the
level of the amplitude of the primary side voltage to the secondary side in a "feed-forward"
operation. In such case there is no need that the encoder 30 detects the amplitude
of the signal applied by the primary DALI line 13. The primary side switch 62 just
has to be clocked at a given fixed frequency and given fixed duty cycle. As soon as
there is a change in the amplitude of the signal applied by the primary DALI line
13 the resulting voltage on the secondary side of the transformer 61 will change proportional
to the signal on primary DALI line 13. By such operation there will be an "automatic"
forwarding of the information provided by the signal on primary DALI line 13 to the
secondary side of the DC-DC-converter feeding the secondary DALI line 12. The embodiment
described by this example is one example for the usage of amplitude modulation to
encode the second information.
[0045] In a further embodiment, shown in Fig. 7, a back channel is shown. Here, on the secondary
side of the transformer 61, the secondary DALI line 12 is connected. On a receiver
side of the secondary DALI line 12, a secondary side switch 70 is shown. The secondary
side switch 70 may be connected in series with a load element, e.g. a resistance,
which is not shown here. This secondary side switch 70 may perform a load modulation
depending on signals or information received on the secondary DALI line 12 from the
internal control unit 15. This load modulation is transformed by the transformer 61
to the primary side and can be read out there by a decoder 31, e.g. by monitoring
of the resulting duty cycle of primary side switch 62 or by monitoring the current
flowing through the primary side of transformer 61 or primary side switch 62.
[0046] This is symbolized by an arrow pointing to the reference number 31, referring to
the decoder of Fig. 3.
[0047] The decoder 31 then decodes the received DALI signal and provides the decoded information
onto the primary DALI line 13, e.g. by switching a switching element (not shown) onto
the primary DALI line 13. Especially, the decoder 31 switches the switching element
depending on the decoded first information and second information into account. Thereby
a DALI signal will be generated on the primary DALI line 13 comprising first information
and second information, whereby the Manchester coding comprises a first piece of information
and the signal level comprises the second piece of information.
[0048] The decoder 31 may for instance adjust the signal level on the primary DALI line
13 depending on the first and second information which can be decoded by decoder 31.
[0049] Furthermore, in Fig. 8, a first embodiment of the inventive method is shown. In a
first step 100, DALI signals are received and or transmitted. In addition to the Manchester
encoding regularly employed when transmitting or receiving DALI signals, in a second
step 101, the signal level of the DALI signals is additionally utilized.
[0050] In Fig. 9, in more detail embodiment of the inventive method is shown. In a first
step 200, first information is encoded in signal transitions of a DALI signal. In
a second step 201 second information is encoded in signal levels of a DALI signal.
In a third step 202 the DALI signal is transmitted. Any fourth step 203, the DALI
signal is received. In a fifth step 204 the first information, encoded in the signal
transitions, is decoded. In a sixth step 205, the second information, encoded in the
signal levels, is decoded.
[0051] The invention is not limited to the examples and especially not to a specific type
of encoding or decoding scheme. Also it is not limited to a specific number of used
signal levels for the encoding. The characteristics of the exemplary embodiments can
be used in any advantageous combination.
1. DALI control device (10) comprising a DALI interface (21),
wherein the DALI interface (21) is adapted to receive and/or transmit DALI signals,
wherein the DALI interface (21) is adapted to additionally utilize a signal level
of the DALI signals,
wherein the DALI interface (21) comprises an encoder (30), adapted to
- encode a first information based on Manchester coding, and
characterized in that
the encoder (30) is further adapted to
- encode a second information based on a signal level of HIGH and/or LOW pulses of
the Manchester coding.
2. DALI control device (10) according to claim 1,
wherein the encoder (30) is adapted to encode the second information using amplitude
modulation with at least two, preferably at least three, most preferably at least
4 signal levels, and/or
wherein the encoder (30) is adapted to encode the second information using frequency
modulation with at least two, preferably at least three, most preferably at least
4 signal frequencies within the HIGH and/or LOW pulses of the Manchester coding.
3. DALI control device (10) according to claim 1 or claim 2,
wherein the DALI control device (10) is adapted to receive DALI signals,
wherein the DALI interface (21) comprises a decoder (31), adapted to
- decode a first information based on Manchester coding, and
- decode a second information based on a signal level of HIGH and/or LOW pulses of
the Manchester coding.
4. DALI control device (10) according to claim 3,
wherein the decoder (31) is adapted to decode the second information using amplitude
modulation with at least two, preferably at least three, most preferably at least
4 signal levels, and/or
wherein the decoder (31) is adapted to decode the second information using frequency
modulation with at least two, preferably at least three, most preferably at least
4 signal frequencies within the HIGH and/or LOW pulses of the Manchester coding.
5. DALI control device (10) according to any of claims 1 to 4,
wherein the DALI interface (21) comprises a galvanic decoupler (32), adapted to perform
a galvanic decoupling of the DALI control device (10) and a connection port to a secondary
DALI line (12).
6. DALI control device (10) according to claim 5,
wherein the galvanic decoupler (32) is a high frequency clocked DC-DC converter comprising
a transformer (61),
wherein the high frequency clocked DC-DC converter comprising a transformer (61) is
adapted to transmit a load modulation of a secondary side to a primary side, forming
a reverse channel.
7. DALI control device (10) according to claim 6,
wherein the DALI interface (21) is adapted to set the clocking of the high frequency
clocked DC-DC converter so as to perform an amplitude modulation and/or a frequency
modulation of the HIGH and/or LOW pulses of the DALI signal at a secondary side of
the transformer.
8. DALI control device (10) according to claim 7,
wherein the high frequency clocked DC-DC converter comprises a primary side switch
(62), and
wherein an amplitude of a signal at the secondary side of the transformer (61) is
set by a duty factor of the primary side switch of the DC-DC converter.
9. DALI control device (10) according to any of claims 1 to 8,
the DALI interface (21) is adapted to be compatible to legacy DALI devices.
10. DALI control device (10) according to claim 9,
wherein the DALI interface (21) is adapted to utilize additional signal levels between
10V and 30V, preferably between 11V and 15V, most preferably between 11,5V and 12,
5V.
11. DALI system, comprising a first DALI control device (10) according to claim 1, a second
DALI control device (10) according to claim 3 and a primary DALI line (13) connecting
the first DALI control device (10) and the second DALI control device (10).
12. Method for communicating using a DALI interface (21), the method comprising:
- receiving (100) and/or transmitting DALI signals,
- additionally utilizing (101) a signal level of the DALI signals by
- encoding a first information based on Manchester coding, characterized by
- encoding a second information based on a signal level of HIGH and/or LOW pulses
of the Manchester coding.
13. A computer program with a program code for performing the method according to claim
12 when the computer program runs on a computer.
1. DALI-Steuervorrichtung (10), umfassend eine DALI-Schnittstelle (21),
wobei die DALI-Schnittstelle (21) angepasst ist, um DALI-Signale zu empfangen und/oder
zu übertragen,
wobei die DALI-Schnittstelle (21) angepasst ist, um einen Signalpegel der DALI-Signale
zusätzlich zu nutzen,
wobei die DALI-Schnittstelle (21) einen Codierer (30) umfasst,
der angepasst ist, zum
- Codieren von ersten Informationen basierend auf Manchester-Codierung und
dadurch gekennzeichnet, dass
der Codierer (30) ferner angepasst ist, zum
- Codieren von zweiten Informationen basierend auf einem Signalpegel von HOHEN und/oder
NIEDRIGEN Impulsen der Manchester-Codierung.
2. DALI-Steuervorrichtung (10) nach Anspruch 1,
wobei der Codierer (30) angepasst ist, um die zweiten Informationen unter Verwendung
von Amplitudenmodulation mit mindestens zwei, vorzugsweise mindestens drei, am meisten
bevorzugt mindestens 4 Signalpegeln zu codieren, und/oder
wobei der Codierer (30) angepasst ist, um die zweiten Informationen unter Verwendung
von Frequenzmodulation mit mindestens zwei, vorzugsweise mindestens drei, am meisten
bevorzugt mindestens 4 Signalfrequenzen innerhalb der HOHEN und/oder NIEDRIGEN Impulse
der Manchester-Codierung zu codieren.
3. DALI-Steuervorrichtung (10) nach Anspruch 1 oder 2,
wobei die DALI-Steuervorrichtung (10) angepasst ist, um DALI-Signale zu empfangen,
wobei die DALI-Schnittstelle (21) einen Decodierer (31) umfasst, der angepasst ist,
zum
- Decodieren von ersten Informationen basierend auf Manchester-Codierung und
- Decodieren von zweiten Informationen basierend auf einem Signalpegel von HOHEN und/oder
NIEDRIGEN Impulsen der Manchester-Codierung.
4. DALI-Steuervorrichtung (10) nach Anspruch 3,
wobei der Decodierer (31) angepasst ist, um die zweiten Informationen unter Verwendung
von Amplitudenmodulation mit mindestens zwei, vorzugsweise mindestens drei, am meisten
bevorzugt mindestens 4 Signalpegeln zu decodieren, und/oder
wobei der Decodierer (31) angepasst ist, um die zweiten Informationen unter Verwendung
von Frequenzmodulation mit mindestens zwei, vorzugsweise mindestens drei, am meisten
bevorzugt mindestens 4 Signalfrequenzen innerhalb der HOHEN und/oder NIEDRIGEN Impulse
der Manchester-Codierung zu decodieren.
5. DALI-Steuervorrichtung (10) nach einem der Ansprüche 1 bis 4,
wobei die DALI-Schnittstelle (21) einen galvanischen Entkoppler (32) umfasst, der
angepasst ist, um eine galvanische Entkopplung der DALI-Steuervorrichtung (10) und
eines Verbindungsanschlusses mit einer sekundären DALI-Leitung (12) durchzuführen.
6. DALI-Steuervorrichtung (10) nach Anspruch 5,
wobei der galvanische Entkoppler (32) ein hochfrequent getakteter Gleichspannungswandler
ist, umfassend einen Transformator (61),
wobei der hochfrequent getaktete Gleichspannungswandler, umfassend einen Transformator
(61), angepasst ist, um eine Lastmodulation einer Sekundärseite auf eine Primärseite
zu übertragen, wodurch ein Rückwärtskanal ausgebildet wird.
7. DALI-Steuervorrichtung (10) nach Anspruch 6,
wobei die DALI-Schnittstelle (21) angepasst ist, um die Taktung des hochfrequent getakteten
Gleichspannungswandlers einzustellen, um eine Amplitudenmodulation und/oder eine Frequenzmodulation
der HOHEN-und/oder NIEDRIGEN Impulse des DALI-Signals an einer Sekundärseite des Transformators
durchzuführen.
8. DALI-Steuervorrichtung (10) nach Anspruch 7,
wobei der hochfrequent getaktete Gleichspannungswandler einen primärseitigen Schalter
(62) umfasst, und
wobei eine Amplitude eines Signals an der Sekundärseite des Transformators (61) durch
ein Tastverhältnis des primärseitigen Schalters des Gleichspannungswandlers eingestellt
wird.
9. DALI-Steuervorrichtung (10) nach einem der Ansprüche 1 bis 8,
wobei die DALI-Schnittstelle (21) angepasst ist, um mit Vermächtnis-DALI-Vorrichtungen
kompatibel zu sein.
10. DALI-Steuervorrichtung (10) nach Anspruch 9,
wobei die DALI-Schnittstelle (21) angepasst ist, um zusätzliche Signalpegel zwischen
10 V und 30 V, vorzugsweise zwischen 11 V und 15 V, am meisten bevorzugt zwischen
11,5 V und 12,5 V, zu nutzen.
11. DALI-System, umfassend eine erste DALI-Steuervorrichtung (10) nach Anspruch 1, eine
zweite DALI-Steuervorrichtung (10) nach Anspruch 3 und eine primäre DALI-Leitung (13),
die die erste DALI-Steuervorrichtung (10) und die zweite DALI-Steuervorrichtung (10)
verbindet.
12. Verfahren zum Kommunizieren unter Verwendung einer DALI-Schnittstelle (21), das Verfahren
umfassend:
- Empfangen (100) und/oder Übertragen von DALI-Signalen,
- zusätzliches Nutzen (101) eines Signalpegels der DALI-Signale durch
- Codieren von ersten Information basierend auf Manchester-Codierung, gekennzeichnet durch
- Codieren von zweiten Information basierend auf einem Signalpegel von HOHEN und/oder
NIEDRIGEN Impulsen der Manchester-Codierung.
13. Computerprogramm mit einem Programmcode zum Durchführen des Verfahrens nach Anspruch
12, wenn das Computerprogramm auf einem Computer abläuft.
1. Dispositif de commande DALI (10) comprenant une interface DALI (21),
dans lequel l'interface DALI (21) est conçue pour recevoir et/ou transmettre des signaux
DALI,
dans lequel l'interface DALI (21) est conçue pour utiliser en complément un niveau
de signal des signaux DALI,
dans lequel l'interface DALI (21) comprend un encodeur (30), conçu pour
- encoder des premières informations sur la base d'un codage de Manchester, et
caractérisé en ce que
l'encodeur (30) est conçu en outre pour
- encoder des deuxièmes informations sur la base d'un niveau de signal d'impulsions
HAUTES et/ou BASSES du codage de Manchester.
2. Dispositif de commande DALI (10) selon la revendication 1,
dans lequel l'encodeur (30) est conçu pour encoder les deuxièmes informations en utilisant
une modulation d'amplitude avec au moins deux, de préférence au moins trois, le plus
préférablement au moins 4 niveaux de signal, et/ou
dans lequel l'encodeur (30) est conçu pour encoder les deuxièmes informations en utilisant
une modulation de fréquence avec au moins deux, de préférence au moins trois, le plus
préférablement au moins 4 fréquences de signal au sein des impulsions HAUTES et/ou
BASSES du codage de Manchester.
3. Dispositif de commande DALI (10) selon la revendication 1 ou la revendication 2,
dans lequel le dispositif de commande DALI (10) est conçu pour recevoir des signaux
DALI,
dans lequel l'interface DALI (21) comprend un décodeur (31), conçu pour
- décoder des premières informations sur la base d'un codage de Manchester, et
- décoder des deuxièmes informations sur la base d'un niveau de signal d'impulsions
HAUTES et/ou BASSES du codage de Manchester.
4. Dispositif de commande DALI (10) selon la revendication 3,
dans lequel le décodeur (31) est conçu pour décoder les deuxièmes informations en
utilisant une modulation d'amplitude avec au moins deux, de préférence au moins trois,
le plus préférablement au moins 4 niveaux de signal, et/ou
dans lequel le décodeur (31) est conçu pour décoder les deuxièmes informations en
utilisant une modulation de fréquence avec au moins deux, de préférence au moins trois,
le plus préférablement au moins 4 fréquences de signal au sein des impulsions HAUTES
et/ou BASSES du codage de Manchester.
5. Dispositif de commande DALI (10) selon l'une quelconque des revendications 1 à 4,
dans lequel l'interface DALI (21) comprend un découpleur galvanique (32), conçu pour
mettre en oeuvre un découplage galvanique du dispositif de commande DALI (10) et un
port de connexion à une ligne DALI secondaire (12).
6. Dispositif de commande DALI (10) selon la revendication 5,
dans lequel le découpleur galvanique (32) est un convertisseur CC-CC cadencé haute
fréquence comprenant un transformateur (61),
dans lequel le convertisseur CC-CC cadencé haute fréquence comprenant un transformateur
(61) est conçu pour transmettre une modulation de charge d'un côté secondaire vers
un côté primaire, en formant un canal inverse.
7. Dispositif de commande DALI (10) selon la revendication 6,
dans lequel l'interface DALI (21) est conçue pour régler le cadencement du convertisseur
CC-CC cadencé haute fréquence de façon à mettre en oeuvre une modulation d'amplitude
et/ou une modulation de fréquence des impulsions HAUTES et/ou BASSES du signal DALI
au niveau d'un côté secondaire du transformateur.
8. Dispositif de commande DALI (10) selon la revendication 7,
dans lequel le convertisseur CC-CC cadencé haute fréquence comprend un commutateur
côté primaire (62), et
dans lequel une amplitude d'un signal au niveau du côté secondaire du transformateur
(61) est réglée par un facteur de marche du commutateur côté primaire du convertisseur
CC-CC.
9. Dispositif de commande DALI (10) selon l'une quelconque des revendications 1 à 8,
l'interface DALI (21) est conçue pour être compatible vis-à-vis de dispositifs DALI
traditionnels.
10. Dispositif de commande DALI (10) selon la revendication 9,
dans lequel l'interface DALI (21) est conçue pour utiliser des niveaux de signal supplémentaires
entre 10 V et 30 V, de préférence entre 11 V et 15 V, le plus préférablement entre
11,5 V et 12,5 V.
11. Système DALI, comprenant un premier dispositif de commande DALI (10) selon la revendication
1, un deuxième dispositif de commande DALI (10) selon la revendication 3 et une ligne
DALI primaire (13) connectant le premier dispositif de commande DALI (10) et le deuxième
dispositif de commande DALI (10).
12. Procédé pour communiquer en utilisant une interface DALI (21), le procédé comprenant
:
- la réception (100) et/ou la transmission de signaux DALI,
- l'utilisation (101) en complément d'un niveau de signal des signaux DALI par
- l'encodage de premières informations sur la base d'un codage de Manchester, caractérisé par
- l'encodage de deuxièmes informations sur la base d'un niveau de signal d'impulsions
HAUTES et/ou BASSES du codage de Manchester.
13. Programme informatique avec un code de programme pour mettre en oeuvre le procédé
selon la revendication 12 lorsque le programme informatique s'exécute sur un ordinateur.