FIELD OF THE INVENTION
[0001] The object of the present invention is an assembly made of a railway axle and a motor
assembly advantageously useable in the field of the railway vehicles, and a respective
railway wagon using said assembly.
STATE OF THE ART
[0002] Nowadays, there are known machines or vehicles delivering high values of power -
such as for example railway wagons and operative machines - which use an endothermic
traction wherein, between the endothermic motor and the driven shaft connected to
the wheels, there is a geared transmission. The purpose of the transmission is to
provide a reduction ratio between the number of rounds of the motor and the number
of rounds of the driven shaft for causing the motor to function at an operative state
which is as nearest as possible to the optimal operative one independently from the
speed of the machine itself. This is due to the fact that the more the number of rounds
of the motor differs from the optimal one, the more will decrease the thermodynamic
efficiency of the endothermic motor.
[0003] The known transmissions are adapted to generate a predetermined number of reduction
ratios, tied to corresponding combinations of geared wheels present in the transmission
itself. Such type of transmission requires to reciprocally engage the geared wheels
which - in order to be capable to be engaged and disengaged from each other - require
to be temporarily disconnected from the normal flow of the mechanical power in order
to prevent the wheels themselves from being hit and irreversibly damaged. For this
reason, mechanical clutches are used which, however, disadvantageously dissipate part
of the power transmitted by them under the engagement and disengagement transient
conditions. Moreover, the mechanical clutches are characterized by a performance which
gets lower as the transmitted powers get higher, so that they are not very suited
for machines and vehicles with high values of the delivered power. It is noted that
- referring again to applications in which the exchanged power is high as in the railway
field - the mechanical clutches exhibit a short life and an insufficient reliability.
[0004] Moreover, it is observed that the geared transmissions are often commanded by a manual
actuation, through known "speed gearboxes". If such manual actuation is not cleverly
performed, the machine would be caused to operate in a suboptimal operative state,
in other words in a too low or too high state, and therefore the overall efficiency
of the machine will be reduced.
[0005] Moreover, it is known to use semi-hydrostatic type transmissions, wherein the endothermic
motor is mechanically connected, by a reduction group, to a driven shaft, which is,
for example, connected to driving wheels. The reduction group has a transmission ratio
which can be continuously changed along a portion of the operative range of the machine,
in other words a portion of the overall speed range of the machine itself. The transmission
ratio is changed by a hydrostatic actuation which acts on the reduction group. Disadvantageously,
such semi-hydrostatic type transmission requires anyway to use a mechanical engagement
geared transmission, generally mounted downstream the reduction group, at least for
switching between a "low gear", typical of an operation under heavy loads and at low
speeds, and a "high gear", typical of an operation without loads or with light loads
and at high speeds. This is caused by the limited flexibility of the endothermic motor,
which is directly and mechanically connected to the reduction group and which, since
is a Diesel motor, has a very limited optimal range of the operative conditions. Without
the engagement geared transmission, the performance of the machine would be jeopardized,
particularly the speed would be limited and the supplied power would not be optimized.
Moreover, the cited switching between the low gear and high gear would require to
adopt a mechanical clutch which would cause the above described disadvantages. In
the same way, if the vehicle is switched when is still, e.g., for inserting the high
gear, the vehicle breakaway performance would be substantially jeopardized, because
the vehicle, since must stop for engaging the high gear, would be compelled to start
to move from still with a more disadvantageous transmission ratio, since this latter
is associated to an use optimal at high speeds but which is certainly unsuited for
starting from still, particularly under high loads. Moreover, the known semi-hydrostatic
transmissions exhibit another disadvantage which consists of requiring complicated
constructive arrangements for reversing the motion direction, particularly tied to
the necessity of providing complicated reversing members adapted to reverse the rotation
direction of the driven shaft.
[0006] A further solution is described in the patent application
EP1988309A2 which refers to a transmission system for endothermic traction machines. The system
comprises a first and second hydraulic motors connectable by respective pumps to an
endothermic motor; each motor is mechanically connected to a reduction group which
is connected - oppositely to the hydraulic motors - to a driven shaft. The driven
shaft is connected to a motion transmission shaft provided with a pair of driving
wheels of the machine. The reduction group is distanced and distinct from the motion
transmission shaft by the driven shaft which is interposed between the reduction group
and the transmission shaft.
[0007] The reduction group is configured for continuously changing, along an overall operative
range of the machine, the transmission ratio between the number of rounds of the endothermic
motor and the number of rounds of said driving wheels. Moreover, the system comprises
adjusting means acting on the reduction group for continuously changing the transmission
ratio in the overall operative range of the traction machine.
[0008] This latter solution, in comparison with the above described state of the art, enables
to continuously switch between the low gear and high gear without mechanical clutches
and without stopping the vehicle. While the solution described in the patent application
EP1988309A2 is better than the previous state of the art, the Applicant has found that also this
latter approach is not devoid of limitations and disadvantages. De facto, the transmission
system described in the application
EP1988309A2 exhibits a cumbersome and complicated structure which makes complex the steps of
installing, servicing and possibly substituting the same. Moreover, it is observed
that the complicated structure substantially impacts on the overall mechanical efficiency
of the transmission so that the mechanical power transferrable from the endothermic
motor to the driving wheels is reduced.
[0009] A further solution is described in patent application
DE 2005 003 509 A1 which refers to a differential unit for rail vehicles intended for distribution of
an input torque to two output shafts. The differential unit comprises a couple of
three-shaft gears each of being coupled with hydro-motors managed by a control unit.
Each three-shaft gear is configured to transmit the torque generated by the respective
hydro-motor to a driving wheel of the rail vehicle.
OBJECT OF THE INVENTION
[0011] Therefore, it is an object of the present invention to substantially solve at least
one of the inconveniences and/or limitations of the previous solutions.
[0012] A first object of the present invention consists of providing an assembly made of
a railway axle and a motor assembly for railway wagons, which exhibits a high overall
efficiency and at the same exhibits a high reliability.
[0013] Moreover, it is an object of the present invention to provide an assembly as hereabove
which is structurally simple and economical; particularly, it is an object of the
invention to provide an assembly as hereabove exhibiting a reduced size which can
make easier to install and possibly service the motor assembly itself.
[0014] Then, it is an object of the present invention to provide an assembly as hereabove
which exhibits a high operative flexibility, particularly when is used in a wide range
of operative speeds; particularly, it is an object of the invention to provide an
assembly as hereabove which is capable of substantially autonomously causing the motor
- for example of the railway wagon - to operate at a state and under a load proximate
to the optimal values.
[0015] These objects and others, which will be better shown in the following description,
are substantially met by a motor assembly for a railway axle and by a respective railway
wagon according to what is disclosed in one or more of the attached claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] Some embodiments and some aspects of the invention will be described in the following
with reference to the attached drawings, given only in an indicative and therefore
non-limiting way, wherein:
- Figure 1 is a perspective view of an assembly according to the present invention;
- Figure 2 is a perspective detailed view of the assembly according to the present invention;
- Figure 3 is a longitudinal cross-section detailed view of the assembly according to
the present invention;
- Figure 4 is an exploded schematic view of components of the assembly according to
the present invention;
- Figures from 5 to 7 are respective outlines of different embodiments of assemblies
according to the present invention;
- Figure 8 is a perspective view of a railway wagon comprising at least one assembly
according to the present invention.
DEFINITIONS AND CONVENTIONS
[0017] It is observed that in the present detailed description, corresponding parts illustrated
in the several figures are indicated by the same numeral references. The figures could
therefore illustrate the object of the invention by means of not-in-scale representations;
therefore, parts and components illustrated in the figures regarding the object of
the invention could refer only to schematic representations.
[0018] The term hydraulic-type actuation means an actuation which translates a mechanical
action, for example generatable by an endothermic motor, in a pressure value associable
to a working fluid.
[0019] The term working fluid means any fluid adapted to transmit high pressures, typically
the ones used in power actuations such as the actuations in the traction field. Preferably,
such working fluid is oil.
DETAILED DESCRIPTION
Motor assembly for a railway axle
[0020] 1 generally indicates a motor assembly for a railway axle advantageously useable
in the field of railway wagons. The attached figures schematically show - in a non-limiting
way - an embodiment of the motor assembly 1 associated to an axle 2 of a railway wagon
100 (see Figure 8, for example).
[0021] As it is visible in Figure 1, the motor assembly 1 comprises an axle 2 extending
along a development direction between a first and second longitudinal end portions
2a, 2b at which, the axle 2 respectively stably supports, in a non-limiting way, a
first and second driving wheels (these elements are indicated by reference R in Figure
1). The axle 2 and driving wheels are configured for rotating around an axis A (Figure
1); the axle and driving wheels exhibit a circular cross-section and are located concentrically
with each other: the axle and driving wheels exhibit a common symmetry axis which
coincides with the axis A. In an embodiment variant not illustrated in the attached
figures, the axle 2 can comprise also one driving wheel: such embodiment variant is
adapted for the railway transport systems known as monorail.
[0022] As it is visible in the attached figures, the motor assembly comprises a main wheel
3 fitted to the axle 2 and adapted to rotate together with this latter around the
same axis A: the main wheel 3 is stably fixed to the wheel for example by a joint
or key system. The attached figures illustrate a preferred but non-limiting embodiment
of the invention wherein the main wheel 3 is disposed in proximity of the driving
wheel R placed at the first longitudinal end portion 2a. De facto, the main wheel
3 is not located at a midline portion of the axle 2 but is proximate to a driving
wheel R with respect to the other.
[0023] In a preferred but non-limiting embodiment of the invention, the main wheel 3 comprises
a geared wheel, for example one with straight teeth, whose axis substantially coincides
with the axis A. As an alternative, the main wheel can comprise a friction wheel.
[0024] As it is visible in Figures from 1 to 4 for example, the motor assembly 1 comprises
an actuating wheel 4 constrained to the axle 2 and movable around the axis A with
respect to the axle 2 itself, consequently movable with respect to the main wheel
3. The first actuating wheel 4 is concentric with the axle 2: the first actuating
wheel 4 comprises an axis coincident with the axis A. More particularly, the wheel
4 exhibits a center which is located on the rotation axis A. The first actuating wheel
is axially distanced from the main wheel 3: the main wheel 3 and first actuating wheel
4 are both engaged with the axle 2 but are distanced along the development direction
of this latter.
[0025] The first actuating wheel 4 is constrained to the axle 2 by means of at least one
radial bearing interposed between this latter and the wheel 4: the bearing is adapted
to enable a rotative relative motion between the wheel 4 and axle 2. The first actuating
wheel 4 exhibits an outer coupling surface 4a actuatable by a first motor 8 configured
for putting in rotation the first actuating wheel 4. In a preferred but non-limiting
embodiment of the invention, the first actuating wheel 4 comprises a geared wheel,
for example one with straight teeth, whose axis substantially coincides with the axis
A. As an alternative, the first wheel 4 can comprise a friction wheel.
[0026] As it is visible in the attached figures, the motor assembly 1 can comprise a connecting
element 10 attached to the first actuating wheel 4 and extending towards the main
wheel 3 (Figure 3). More particularly and as it is visible in Figure 4 for example,
the connecting element 10 comprises an abutment portion 10a substantially comprising
a tubular body - a kind of sleeve - having a circular cross-section integrally joined
to the first actuating wheel 4. The abutment portion 10a is delimited in thickness
by an inner surface facing the axle 2 and distanced from this latter and an outer
surface 10b - opposite to the inner surface of the same abutment portion - whose function
will be fully described in the following.
[0027] Moreover, the connecting element 10 comprises a spacing portion 10c integrally joined
to the abutment portion 10a and disposed oppositely to the first actuating wheel 4:
the abutment portion 10a is interposed between the first actuating wheel 4 and spacing
portion 10c. As it is visible in Figure 4 for example, the spacing portion 10c emerges
from the abutment portion away from the axle 2. More particularly, the facing portion
10c comprises a plate extending all around the sleeve of the abutment portion and
therefore all around the axle 2. The first actuating wheel 4, abutment portion 10a
and spacing portion are integrally joined in order to define a single solid body.
[0028] As it is visible in the attached figures, the motor assembly 1 further comprises
at least one connecting wheel 5 fixed to the first connecting wheel 4 and configured
for cooperating with the main wheel 3 for enabling the axle 2 to rotate around the
axis A. The connecting wheel 5 is configured for rotating around the main wheel 3.
Particularly, the connecting wheel 5 is attached - for example by a joint or by means
of a key system - to the spacing portion 10c of the connecting element 10 oppositely
to the abutment portion 10a: the connecting element 10 is interposed and connects
the first actuating wheel 4 to the connecting wheel 5 (Figure 4 is an exploded view
of the motor assembly 1 even though is not shown how the connecting wheel is fixed
to the spacing portion 10c).
[0029] The connecting wheel 5 exhibits a center distanced from the axis A and therefore
is offset with respect to the axis 2. The connecting wheel 5 is rotatively supported
by the connecting element 10 - fixed to the first actuating wheel 4 - around the axle
2. The spacing portion 10c is adapted to arrange the connecting wheel 5 around and
in contact with the main wheel 3: indeed, the connecting wheel directly contacts the
main wheel 3. More particularly, the connecting wheel 5 is aligned with the main wheel
3 along a direction perpendicular to the axis A: the connecting wheel 5 therefore
is distanced - along the axis A - with respect to the first actuating wheel 4.
[0030] In a preferred but non-limiting embodiment of the invention, the connecting wheel
5 comprises a geared wheel, for example one with straight teeth, having the axis parallel
to the axis A and therefore to the axis of the main wheel 3. As an alternative, the
connecting wheel 5 can comprise a friction wheel. As hereinbefore described, the main
wheel 3 can also comprise a geared wheel or a friction wheel; the connecting wheel
5 - being adapted to cooperate with the main wheel 3 - comprises a type of wheel identical
to this latter: the main wheel and connecting wheel both comprise a geared wheel or
a friction wheel.
[0031] Advantageously, the motor assembly 1 comprises a plurality of connecting wheels 5
active on and directly contacting the main wheel 3. More specifically, the motor assembly
1 can comprise a number of connecting wheels 5 equal to or greater than 2, particularly
comprised between 2 and 6, still more particularly equal to or comprised between 3
and 5. Advantageously, the connecting wheels 5 are equidistant to each other, particularly
exhibit the same distance from the axle 2. Advantageously, each connecting wheel 5
comprises a geared wheel with straight teeth, identical to each other by shape and
size; particularly the connecting wheels 5 exhibit parallel symmetry axes, particularly
parallel to a symmetry axis of the main wheel 3. In this way, the connecting wheels
5 can operate by pushing on the main wheel 3 in a uniform way in order to ensure a
uniform thrust and a suitable distribution of the stresses on the wheel 3.
[0032] As it is visible in Figures from 1 to 4 for example, the motor assembly 1 comprises
a second actuating wheel 6 - distinct from the first actuating wheel 4 - constrained
to the axle 2 and configured for rotating with respect to this latter around the axis
A, consequently movable with respect to the main wheel 3. The second actuating wheel
6 is concentric with the axis 2 and therefore concentric with the first actuating
wheel 4: the second actuating wheel 6 comprises an axis coincident with the axis A.
[0033] More particularly, the wheel 6 exhibits a center which is located on the rotation
axis A. The second actuating wheel 6 is axially distanced from the main wheel 3 and
distanced from the first actuating wheel 4: the second actuating wheel 6 is axially
interposed between the first actuating wheel 4 and main wheel 3 (Figure 3). De facto,
the first actuating wheel 4, second actuating wheel 6 and main wheel 3 - besides all
rotating around the axis - are aligned and distanced along said axis A.
[0034] More specifically, the second actuating wheel 6 is constrained by means of at least
one radial bearing to the abutment portion 10b of the connecting element 10: in this
way, the second actuating wheel 6 is rotatively movable both with respect to the first
actuating wheel 4 and main wheel 3. Still more particularly, the second actuating
wheel 6 is constrained to the axle 2 by interposing the connecting element 10; the
second actuating wheel 6 is constrained to the connecting element by means of a radial
bearing acting, on one side, on the outer surface 10b of the abutment portion 10a
and, on the other side, on the reciprocal coupling inner surface 6b of the second
actuating wheel 6 (Figure 3) .
[0035] The second actuating wheel 6 exhibits an outer coupling surface 6a actuatable by
a second motor 9 configured for putting in rotation the second actuating wheel 6.
In a preferred but non-limiting embodiment of the invention, the second actuating
wheel 6 comprises a geared wheel, for example one with straight teeth, whose axis
substantially coincides with the axis A. As an alternative, the second wheel 6 can
comprise a friction wheel.
[0036] As it is visible in Figures 3 and 4 for example, moreover the motor assembly 1 comprises
at least one coupling portion 7 attached to and integral with the second actuating
wheel 6. The coupling portion 7 is placed at least partially around the connecting
wheel 5 and exhibits an inner coupling surface 7a engaged with the connecting wheel
5 so that this latter is interposed between the main wheel 3 and said inner coupling
surface 7a. De facto, the coupling portion 7 comprises a cross-section tubular body
- integrally joined to the second actuating wheel 6 - exhibiting an inner surface
delimiting the coupling surface which is directly constrained to one or more connecting
wheels 5. The coupling portion 7a exhibits a circular development, the center thereof
being coincident with the axis A. De facto, the coupling portion 7 is concentric with
the axle and therefore with the respective wheels 3, 4 and 6 (the actuating wheels
4, 6 and main wheel 3).
[0037] Each connecting wheel 5 is directly constrained, on one side, to the main wheel 3
and, on the other side, directly constrained to the inner coupling surface 7a of the
coupling portion 7: the inner coupling surface 7a is connected to the main wheel 3
only by interposing the connecting wheel 5.
[0038] In a preferred but non-limiting embodiment of the invention, the inner coupling surface
7a defines an inner geared wheel adapted to directly cooperate with the geared wheel
of the connecting wheel 5. More particularly, the geared wheel of the connecting wheel
5 is active on and operates in contact with an inner geared wheel defined by the inner
coupling surface 7a; the geared wheel of the connecting wheel 5 exhibits a rotation
axis parallel to a rotation axis of the inner geared wheel, for example one with straight
gear, defined by the inner coupling surface 7a.
[0039] As hereinbefore briefly described, the first and second actuating wheels 4, 6 are
actuatable by a motor. Indeed, the motor assembly 1 can comprise at least one first
motor 8 active on the first actuating wheel 4 and configured for rotating this latter
around the axis A. As it is visible in Figures 2 and 4 for example, the first motor
comprises at least one transmission shaft 8a on which is fitted a transmission wheel
8b configured for putting in rotation - by the action of the first motor 8 - the first
actuating wheel 4. In a preferred but non-limiting embodiment of the invention, the
transmission wheel 8b comprises a geared wheel, for example one with straight teeth,
which directly contacts and is directly active on the outer surface 4a of the first
actuating wheel 4. The geared wheel of the transmission wheel 8b exhibits a rotation
axis parallel to and distanced from the rotation axis of the first actuating wheel
4 and therefore parallel to the axis A. In a preferred embodiment of the invention,
the first motor 8 comprises an electric motor connected to and supplied by a battery
or current generator 11.
[0040] Moreover, the motor assembly 1 can comprise at least one second motor 9 active on
the second actuating wheel 6 and configured for rotating this latter around the axis
A. As it is visible in Figures from 2 to 4 for example, the second motor comprises
at least one transmission shaft 9a to which is fitted a transmission wheel 9b configured
for putting in rotation - by the action of the second motor 9 - the second actuating
wheel 6. In a preferred but non-limiting embodiment of the invention, the transmission
wheel 9b comprises a geared wheel, for example one with straight teeth, which directly
contacts and is directly active on the outer surface 6a of the second actuating wheel
6. The geared wheel of the transmission wheel 9b exhibits a rotation axis parallel
to and distanced from the rotation axis of the second actuating wheel 6 and therefore
parallel to the axis A. In a preferred embodiment of the invention, the second motor
9 comprises an electric motor connected to and supplied by a battery or current generator
11.
[0041] In a preferred but non-limiting embodiment of the invention illustrated in Figure
5, the first and second motors comprise respectively an electric motor: each motor
is supplied by the battery or current generator 11. Advantageously, moreover the motor
assembly 1 comprises a control unit 12 connected to the battery or current generator
11, and configured for commanding this latter (the element 11) to supply electric
energy to the respective motors for enabling the operation. Further, the control unit
12 is advantageously connected to each electric motor 8, 9 and is configured for:
- detecting the operative condition of each motor, in other words detecting if each
motor is in a still state (the rotation shaft is still) or if each motor is in an
active state wherein the transmission shaft - and therefore the transmission wheel
- is moving,
- detecting, for each motor, an angular speed of the transmission shaft and therefore
the angular speed of the respective transmission wheel,
- controlling, for each motor, said angular speed in order to control the angular speed
of the actuating wheels 4, 6 and therefore the rotation speed of the axle around the
axis A.
[0042] Figure 7 illustrates an embodiment variant of the invention wherein the motor assembly
1 comprises a first portion 18 directly associable to an endothermic motor 13, particularly
a Diesel motor, and connected, as it will be better described in the following, to
at least one hydraulic motor which is directly active on the first or second actuating
wheels 4, 6.
[0043] More particularly, the first portion 18 comprises a first hydraulic pump 14 mechanically
connected to the endothermic motor 13, for receiving a mechanical power from the same
and transferring at least part of such power to a working fluid. Preferably, the first
hydraulic pump 14 is directly connected to the endothermic motor, and still more preferably,
is stably connected to the endothermic motor itself, for example to flanged portions
suitably made on the endothermic motor. In the particular case of an application on
a railway machine, the first portion 18 of the apparatus 1 is mounted to the case
of the machine itself, to which is also housed the endothermic motor 13. The motor
assembly 1 (the embodiment variant in Figure 7) comprises a hydraulic-type actuating
group, preferably a hydrostatic one, which is mechanically connected to the endothermic
motor 13 for receiving power from this latter and transmitting at least part of such
power to one or more of the cited actuating wheels. Particularly, the hydraulic actuating
group comprises a first hydraulic-type motor 8, fluidically communicating with the
cited first hydraulic pump 14 for receiving, at the inlet, a motive power from the
cited working fluid and for transferring part of such motive power to the first actuating
wheel 4 and consequently to the driving wheels. According to what was cited before,
the fluid communication between the first hydraulic pump 14 and first hydraulic motor
8 is performed by one or more first conduits 19 of a type adapted to convey a pressurized
fluid. More preferably, the first hydraulic pump 14 and first hydraulic motor 8 are
connected only by means of such fluid communication. The first hydraulic pump 14 is
preferably of a piston type, and more preferably of a variable displacement type.
This latter condition means the possibility of varying in a regulated way at least
the flow rate of the working fluid from the hydraulic pump 14 itself, in order to
be capable of varying a power transmitted to the corresponding first hydraulic motor
8 and, therefore, to the driving wheels. Preferably, also the first hydraulic motor
8 is of a piston type, and more preferably of a variable displacement type. As it
is visible again in Figure 7, the motor assembly 1 comprises a second hydraulic pump
15 and a second hydraulic-type motor 9: the second hydraulic motor 9 is directly active
on the second actuating wheel by means of a geared wheel. Preferably, both the second
hydraulic pump 15 and second hydraulic motor 9 are of a piston type, and at least
one them, preferably the second hydraulic pump 15, has a displacement varying as a
function of a power to be transmitted by means of the second hydraulic pump 15 itself.
Moreover, preferably the second hydraulic pump 15 is directly connected to the endothermic
motor 13, particularly to the above mentioned flanged portions of the endothermic
motor itself. According to Figure 7, the second hydraulic pump 15 is integrally joined
to the first portion 18, and when is applied on a railway machine, the second hydraulic
pump 15 is therefore supported on the case of the railway machine. On the contrary,
preferably the second hydraulic motor 9 is mechanically and directly fixed at the
axle 2 so that the same motor can be directly active on the second actuating wheel
6. The operative connection between the second hydraulic pump 15 and second hydraulic
motor 9, in other words the power exchange between the same, is obtained only by a
fluid communication, and particularly by one or more second conduits 20 of a type
adapted to circulate a fluid at high pressures. In the embodiment in Figure 7, the
electric motors 8 and 9 are implemented by hydraulic motors 8 and 9; each hydraulic
motor comprises the above described shaft and transmission wheel for the electric
motors and are directly connected (active) on the respective actuating wheels 4, 6:
there are no interposing elements between the transmission wheels 8b, 9b of the motor
and the actuating wheels 4, 6. In a further embodiment variant illustrated in Figure
6, the motor assembly 1 comprises a first hydraulic motor 8 connected, as hereinbefore
described, to an endothermic motor 13 and to the first actuating wheel 4. The second
motor 9 is of an electric type and is connected, on one side, to the battery 11 and,
to the other side, is directly connected to the second actuating wheel 6.
Railway wagon
[0044] Moreover, it is an object of the present invention a railway wagon 100 comprising
at least one motor assembly 1 according to the hereinbefore given description and/or
according to anyone of the attached claims. Particularly, and as it is visible in
Figure 8, the wagon 100 comprises at least one frame 101 engaged with the motor assembly
1 adapted to define the load and support structure of the wagon. De facto, the frame
101 is constrained - under an operative condition of the wagon 100 - on the motor
assembly 1.
[0045] Advantageously but in a non-limiting way, the wagon comprises at least two motion
systems 1 both constrained to the frame 101 and distanced one from the other from
the same frame 101 along a longitudinal development direction of the wagon 100 (see
in an exemplifying way Figure 8); in other words, the motor assemblies 1 are connected
to each other by the frame 101: the frame 101 is configured for holding the motion
systems 1 at a predetermined and fixed distance from each other when the wagon slides
on the tracks. Figure 8 schematically shows a railway wagon 100 exhibiting four axles
wherein two of them comprise the motor assembly 1; however it is not excluded the
possibility of assembling a wagon exhibiting only two axles or a number of axles greater
than four. Moreover, it is not excluded the possibility of assembling a wagon wherein
each axle comprises the motor assembly 1 (all the axles are motorized) or of assembling
a wagon 100 exhibiting only one motor assembly 1 (having only one motorized axle).
ADVANTAGES OF THE INVENTION
[0046] The present invention meets the provided objects, because it overcomes the disadvantages
described with reference to the prior art. The presence of a motor assembly 1 devoid
of mechanical engagement members such as mechanical clutches and gear clutches is
extremely reliable particularly due to the absence of mechanical clutches, indeed
these latter, when used with high powers, are not cost-effective. The absence of mechanical
clutches and gear clutches enables to improve the overall efficiency of the machine,
because by its own nature the clutch is a source of a substantial dissipation of energy
during the engagement, disengagement and starting steps. Moreover, it is noted that
the members adapted to transmit the mechanical power of the motors to the driving
wheels R are directly constrained to the axle; this arrangement enables to obtain
a motor assembly 1 which is extremely compact and easy to install and which further
enables to maximize the mechanical efficiencies when it transmits power.
[0047] In addition, the presence of a reduction group adapted to generate a transmission
ratio continuously varying along the overall operative range of the machine, makes
possible to eliminate the gearboxes and the cited mechanical clutches.
1. Assembly made of a railway axle and a motor assembly (1), the railway axle comprising:
- at least one axle (2) comprising at least one driving wheel (R) configured for abutting
at least on a railway rail, said axle (2) together with said driving wheel being configured
for rotating around an axis (A),
- a main wheel (3) fixed to the axle (2) and adapted to rotate with this latter around
the same axis (A), the motor assembly comprising:
- a first actuating wheel (4) constrained to the axle (2) and configured for rotating
with respect to this latter around the axis (A), said first actuating wheel (4) exhibiting
an outer coupling surface (4a) actuatable by a first motor (8) configured for putting
in rotation said first actuating wheel (4),
- at least one connecting wheel (5) attached to the first actuating wheel (4) and
configured for cooperating with the main wheel (3) for enabling to rotate the axle
(2) around the axis (A), said connecting wheel (5) being configured for rotating at
least around the main wheel (3),
- a second actuating wheel (6), distinct from the first actuating wheel (4), constrained
to the axle (2) and configured for rotating with respect to this latter around the
axis (A), the second actuating wheel (6) exhibiting an outer coupling surface (6a)
actuatable by a second motor (9) configured for putting in rotation said second actuating
wheel (6),
- at least one coupling portion (7) fixed and integral with the second actuating wheel
(6), placed at least partially around the connecting wheel (5), and which exhibits
an inner coupling surface (7a) engaged with the connecting wheel so that this latter
is interposed between the main wheel (3) and said inner coupling surface (7a),
wherein the main wheel (3), the first actuating wheel (4), the second actuating wheel
(6) and the connecting wheel (5) are geared wheels,
or
wherein the main wheel (3), the first actuating wheel (4), the second actuating wheel
(6) and the connecting wheel (5) are friction wheels.
2. Assembly according to the preceding claim, wherein the second actuating wheel (6)
is rotatively movable with respect to the main wheel (3) and to the first actuating
wheel (4), optionally the second wheel (6) is constrained to the axle (2) by means
of at least one radial bearing.
3. Assembly according to anyone of the preceding claims, comprising at least one connecting
element (10) fixed to the first actuating wheel (4) and fixed to the connecting wheel
(5), the connecting element (10) being interposed and connecting the first actuating
wheel (4) to the connecting wheel (5), the connecting element (10) comprising an abutment
portion (10a) comprising an outer surface (10b) having a circular cross-section which
the second actuating wheel (6) is engaged around,
wherein the second actuating wheel (6) is constrained to the axle (2) by interposing
the connecting element (10), optionally the second actuating wheel (6) is constrained
to the connecting element by means of at least one radial bearing acting, on one side,
on the outer surface (10b) of the abutment portion and, on the other side, on an inner
reciprocal coupling surface (6b) of the second actuating wheel (6).
4. Assembly according to anyone of the preceding claims, wherein the first actuating
wheel (4), according to a view along the axis (A), is concentric with the second actuating
wheel (6), particularly the first and second actuating wheels rotate around the same
axis (A) of the axle (2), optionally the first and second actuating wheels (4, 6)
are spaced from each other along the axis (A).
5. Assembly according to anyone of the preceding claims, wherein the connecting wheel
(5) exhibits a center spaced from the axis (A), particularly the connecting wheel
(5) being offset from the axle (2), wherein the connecting wheel (5) is directly constrained,
on one side, to the main wheel (3) and, on the other side, to the inner coupling surface
(7a) of the coupling portion (7), particularly the inner coupling surface (7a) is
connected to the main wheel (3) exclusively by interposing the connecting wheel (5).
6. Assembly according to anyone of the preceding claims, wherein the main wheel (3) and
the connecting wheel (5) comprise respectively a geared wheel, for example a straight
teeth one, the geared wheel of the main wheel (3) exhibiting a rotation axis parallel
to an axis of the connecting wheel (5),
the geared wheel of the connecting wheel (5) being active and operates in contact
with an inner geared wheel defined by the inner coupling surface (7a), the geared
wheel of the connecting wheel (5) exhibiting a rotation axis parallel to a rotation
axis of the inner geared wheel, for example a straight teeth one, defined by the inner
coupling surface (7a).
7. Assembly according to anyone of the preceding claims, comprising at least one first
motor (8) exhibiting a drive shaft (8a) on which a drive wheel (8b) is fitted, said
drive wheel (8b) being configured for putting in rotation, by the action of the first
motor (8), the first actuating wheel (4),
wherein the drive wheel (8b) of the first motor comprises a geared wheel,
wherein the first motor comprises an electric motor;
wherein the motor assembly comprises at least one second motor (9) exhibiting a drive
shaft (9a) on which a drive wheel (9b) is fitted, said drive wheel (9b) being configured
for putting in rotation, by the action of the second motor (9), the second actuating
wheel (6),
wherein the drive wheel (9b) of the second motor comprises a geared wheel;
wherein the second motor comprises an electric motor or comprises a hydraulic motor
supplied by an endothermic engine, for example a Diesel engine.
8. Assembly according to anyone of the preceding claims, comprising a plurality of connecting
wheels (5) active and in direct contact with the main wheel (3), particularly interposed
between the main wheel (3) and the inner coupling surface (7a) of the coupling portion
(7), optionally the connecting wheels are equidistant from each other.
9. Assembly according to the preceding claim,
wherein each connecting wheel (5) comprises a straight teeth geared wheel identical
to each other by shape and size;
wherein the connecting wheels exhibit symmetry axes parallel, particularly parallel
to a symmetry axis of the main wheel (3).
10. Railway wagon (100) comprising:
- at least one assembly ) according to anyone of the preceding claims,
- at least one frame (101) engaged with the motor assembly (1), adapted to define
the load and support structure of the railway wagon.
1. Anordnung, hergestellt aus einer Eisenbahnachse und einer Motoranordnung (1), wobei
die Eisenbahnachse folgendes umfasst:
- wenigstens eine Radachse (2), umfassend wenigstens ein Triebrad (R), welches dazu
eingerichtet ist, an wenigstens einer Eisenbahnschiene anzuliegen, wobei die Radachse
(2) zusammen mit dem Triebrad dazu eingerichtet ist, um eine Achse (A) zu rotieren,
- ein Hauptrad (3), welches an der Radachse (2) fixiert ist und dazu eingerichtet
ist, mit Letzterem um die gleiche Achse (A) zu rotieren,
wobei die Motoranordnung folgendes umfasst:
- ein erstes Betätigungsrad (4), welches an die Radachse (2) gebunden ist und dazu
eingerichtet ist, in Bezug auf Letztere um die Achse (A) zu rotieren, wobei das erste
Betätigungsrad (4) eine äußere Kopplungsfläche (4a) aufweist, welche durch einen ersten
Motor (8) betätigbar ist, welcher dazu eingerichtet ist, das erste Betätigungsrad
(4) in Rotation zu versetzen,
- wenigstens ein Verbindungsrad (5), welches an dem ersten Betätigungsrad (4) angebracht
ist und dazu eingerichtet ist, mit dem Hauptrad (3) zusammenzuwirken, um die Rotation
der Radachse (2) um die Achse (A) zu ermöglichen, wobei das Verbindungsrad (5) dazu
eingerichtet ist, wenigstens um das Hauptrad (3) zu rotieren,
- ein zweites sich von dem ersten Betätigungsrad (4) unterscheidendes Betätigungsrad
(6), welches an die Radachse (2) gebunden ist und dazu eingerichtet ist, in Bezug
auf Letztere um die Achse (A) zu rotieren, wobei das zweite Betätigungsrad (6) eine
äußere Kopplungsfläche (6a) aufweist, welche durch einen zweiten Motor (9) betätigbar
ist, welcher dazu eingerichtet ist, das zweite Betätigungsrad (6) in Rotation zu versetzen,
- wenigstens einen mit dem zweiten Betätigungsrad (6) fixierten und integralen Kopplungsabschnitt
(7), welcher wenigstens teilweise um das Verbindungsrad (5) angeordnet ist, und welcher
eine innere Kopplungsfläche (7a) aufweist, welche mit dem Verbindungsrad derart in
Eingriff steht, dass Letzteres zwischen dem Hauptrad (3) und der inneren Kopplungsfläche
(7a) eingefügt ist,
wobei das Hauptrad (3), das erste Betätigungsrad (4), das zweite Betätigungsrad (6)
und das Verbindungsrad (5) Zahnräder sind,
oder
wobei das Hauptrad (3), das erste Betätigungsrad (4), das zweite Betätigungsrad (6)
und das Verbindungsrad (5) Reibräder sind.
2. Anordnung nach dem vorhergehenden Anspruch, wobei das zweite Betätigungsrad (6) in
Bezug auf das Hauptrad (3) und das erste Betätigungsrad (4) rotierbar beweglich ist,
wobei das zweite Rad (6) optional mittels eines radialen Lagers an die Radachse (2)
gebunden ist.
3. Anordnung nach einem der vorhergehenden Ansprüche, umfassend wenigstens ein Verbindungselement
(10), welches an dem ersten Betätigungsrad (4) fixiert ist und an dem Verbindungsrad
(5) fixiert ist, wobei das Verbindungselement (10) eingefügt ist und das erste Betätigungsrad
(4) mit dem Verbindungsrad (5) verbindet, wobei das Verbindungselement (10) einen
Anlageabschnitt (10a) umfasst, welcher eine einen kreisförmigen Querschnitt aufweisende
äußere Fläche (10b) umfasst, welche das zweite Betätigungsrad (6) umgreift,
wobei das zweite Betätigungsrad (6) durch Einfügen des Verbindungselements (10) an
die Radachse (2) gebunden ist, wobei das zweite Betätigungsrad (6) optional mittels
wenigstens einem radialen Lager an das Verbindungselement gebunden ist, welches an
einer Seite auf die äußere Fläche (10b) des Anlageabschnitts und an der anderen Seite
auf eine innere reziproke Kopplungsfläche (6b) des zweiten Betätigungsrads (6) wirkt.
4. Anordnung nach einem der vorhergehenden Ansprüche, wobei das erste Betätigungsrad
(4) gemäß einer Ansicht entlang der Achse (A) konzentrisch mit dem zweiten Betätigungsrad
(6) ist, wobei das erste und das zweite Betätigungsrad insbesondere um die gleiche
Achse (A) der Radachse (2) rotieren, wobei das erste und das zweite Betätigungsrad
(4, 6) optional entlang der Achse (A) voneinander beabstandet sind.
5. Anordnung nach einem der vorhergehenden Ansprüche, wobei das Verbindungsrad (5) einen
Mittelpunkt aufweist, welcher von der Achse (A) beabstandet ist, wobei das Verbindungsrad
(5) insbesondere von der Radachse (2) versetzt ist, wobei das Verbindungsrad (5) an
einer Seite an das Hauptrad (3) und an der anderen Seite an die innere Kopplungsfläche
(7a) des Kopplungsabschnitts (7) direkt gebunden ist, wobei die innere Kopplungsfläche
(7a) insbesondere ausschließlich durch Einfügen des Verbindungsrads (5) mit dem Hauptrad
(3) verbunden ist.
6. Anordnung nach einem der vorhergehenden Ansprüche, wobei das Hauptrad (3) und das
Verbindungsrad (5) jeweils ein Zahnrad umfassen, beispielsweise ein gerade Gezahntes,
wobei das Zahnrad des Hauptrads (3) eine Rotationsachse aufweist, welche parallel
zu einer Achse des Verbindungsrads (5) verläuft,
wobei das Zahnrad des Verbindungsrads (5) aktiv ist und in Kontakt mit einem inneren
Zahnrad arbeitet, welches durch die innere Kopplungsfläche (7a) definiert ist, wobei
das Zahnrad des Verbindungsrads (5) eine Rotationsachse aufweist, welche parallel
zu einer Rotationsachse des durch die innere Kopplungsfläche (7a) definierten inneren
Zahnrads verläuft, welches beispielsweise ein gerade Gezahntes ist.
7. Anordnung nach einem der vorhergehenden Ansprüche, umfassend wenigstens einen ersten
Motor (8), welcher eine Antriebswelle (8a) aufweist, an welche ein Antriebsrad (8b)
angepasst ist, wobei das Antriebsrad (8b) dazu eingerichtet ist, das erste Betätigungsrad
(4) durch das Wirken des ersten Motors (8) in Rotation zu versetzen,
wobei das Antriebsrad (8b) des ersten Motors ein Zahnrad umfasst,
wobei der erste Motor einen Elektromotor umfasst;
wobei die Motoranordnung wenigstens einen zweiten Motor (9) umfasst, welcher eine
Antriebswelle (9a) aufweist, an welche ein Antriebsrad (9b) angepasst ist, wobei das
Antriebsrad (9b) dazu eingerichtet ist, das zweite Betätigungsrad (6) durch das Wirken
des zweiten Motors (9) in Rotation zu versetzen,
wobei das Antriebsrad (9b) des zweiten Motors ein Zahnrad umfasst;
wobei der zweite Motor einen Elektromotor umfasst oder einen hydraulischen Motor umfasst,
welcher durch einen endothermen Motor versorgt wird, beispielsweise einen Dieselmotor.
8. Anordnung nach einem der vorhergehenden Ansprüche, umfassend eine Mehrzahl von Verbindungsrädern
(5), welche aktiv sind und in direktem Kontakt mit dem Hauptrad (3) sind, insbesondere
zwischen das Hauptrad (3) und die innere Kopplungsfläche (7a) des Kopplungsabschnitts
(7) eingefügt, wobei die Verbindungsräder optional gleich weit voneinander entfernt
sind.
9. Anordnung nach dem vorhergehenden Anspruch, wobei jedes Verbindungsrad (5) ein gerade
gezahntes Zahnrad umfasst, welche in Bezug auf Form und Größe identisch zueinander
sind;
wobei die Verbindungsräder parallele Symmetrieachsen aufweisen, welche insbesondere
parallel zu einer Symmetrieachse des Hauptrads (3) sind.
10. Eisenbahnwagen (100), umfassend:
- wenigstens eine Anordnung nach einem der vorhergehenden Ansprüche,
- wenigstens einen mit der Motoranordnung (1) in Eingriff gebrachten Rahmen (101),
welcher dazu eingerichtet ist, die Last- und Stützstruktur des Eisenbahnwagens zu
definieren.
1. Ensemble constitué d'un essieu ferroviaire et d'un ensemble moteur (1), l'essieu ferroviaire
comprenant :
- au moins un essieu (2) comprenant au moins une roue d'entraînement (R) conçue pour
venir en butée au moins sur un rail ferroviaire, ledit essieu (2) conjointement à
ladite roue d'entraînement étant conçus pour tourner autour d'un axe (A),
- une roue principale (3) fixée à l'essieu (2) et adaptée pour tourner avec ce dernier
autour du même axe (A), l'ensemble moteur comprenant :
- une première roue d'actionnement (4) contrainte à l'essieu (2) et conçue pour tourner
par rapport à ce dernier autour de l'axe (A), ladite première roue d'actionnement
(4) faisant preuve d'une surface d'accouplement externe (4a) pouvant être actionnée
par un premier moteur (8) conçu pour mettre en rotation ladite première roue d'actionnement
(4),
- au moins une roue de raccordement (5) fixée à la première roue d'actionnement (4)
et conçue pour coopérer avec la roue principale (3) pour permettre de faire tourner
l'essieu (2) autour de l'axe (A), ladite roue de raccordement (5) étant conçue pour
tourner au moins autour de la roue principale (3),
- une seconde roue d'actionnement (6), distincte de la première roue d'actionnement
(4), contrainte à l'essieu (2) et conçue pour tourner par rapport à ce dernier autour
de l'axe (A), la seconde roue d'actionnement (6) faisant preuve d'une surface d'accouplement
externe (6a) pouvant être actionnée par un second moteur (9) conçu pour placer en
rotation ladite seconde roue d'actionnement (6),
- au moins une portion d'accouplement (7) fixée et solidaire de la seconde roue d'actionnement
(6), placée au moins partiellement autour de la roue de raccordement (5), et qui fait
preuve d'une surface d'accouplement interne (7a) engagée avec la roue de raccordement
de sorte que cette dernière est interposée entre la roue principale (3) et ladite
surface d'accouplement interne (7a),
la roue principale (3), la première roue d'actionnement (4), la seconde roue d'actionnement
(6) et la roue de raccordement (5) étant des roues d'engrenage, ou
la roue principale (3), la première roue d'actionnement (4), la seconde roue d'actionnement
(6) et la roue de raccordement (5) étant des roues de friction.
2. Ensemble selon la revendication précédente, la seconde roue d'actionnement (6) étant
mobile de manière à pouvoir tourner par rapport à la roue principale (3) et à la première
roue d'actionnement (4), éventuellement la seconde roue (6) étant contrainte à l'essieu
(2) à l'aide d'au moins un palier radial.
3. Ensemble selon l'une quelconque des revendications précédentes, comprenant au moins
un élément de raccordement (10) fixé à la première roue d'actionnement (4) et fixé
à la roue de raccordement (5), l'élément de raccordement (10) étant interposé et raccordant
la première roue d'actionnement (4) à la roue de raccordement (5), l'élément de raccordement
(10) comprenant une portion de butée (10a) comprenant une surface externe (10b) ayant
une section transversale circulaire autour de laquelle la seconde roue d'actionnement
(6) est engagée,
la seconde roue d'actionnement (6) étant contrainte à l'essieu (2) par interposition
de l'élément de raccordement (10), éventuellement la seconde roue d'actionnement (6)
étant contrainte à l'élément de raccordement à l'aide d'au moins un palier radial
agissant, sur un côté, sur la surface externe (10b) de la portion de butée et, sur
l'autre côté, sur une surface d'accouplement réciproque interne (6b) de la seconde
roue d'actionnement (6).
4. Ensemble selon l'une quelconque des revendications précédentes, la première roue d'actionnement
(4), en vue le long de l'axe (A), étant concentrique par rapport à la seconde roue
d'actionnement (6), particulièrement la première et la seconde roue d'actionnement
tournant autour du même axe (A) de l'essieu (2), éventuellement la première et la
seconde roue d'actionnement (4, 6) étant espacées l'une de l'autre le long de l'axe
(A).
5. Ensemble selon l'une quelconque des revendications précédentes, la roue de raccordement
(5) faisant preuve d'un centre espacé de l'axe (A), particulièrement la roue de raccordement
(5) étant décalée de l'essieu (2),
la roue de raccordement (5) étant directement contrainte, sur un côté, à la roue principale
(3) et, sur l'autre côté, à la surface d'accouplement interne (7a) de la portion d'accouplement
(7), particulièrement la surface d'accouplement interne (7a) étant raccordée à la
roue principale (3) exclusivement par interposition de la roue de raccordement (5).
6. Ensemble selon l'une quelconque des revendications précédentes, la roue principale
(3) et la roue de raccordement (5) comprenant respectivement une roue d'engrenage,
par exemple une à dents droites, la roue d'engrenage de la roue principale (3) faisant
preuve d'un axe de rotation parallèle à un axe de la roue de raccordement (5),
la roue d'engrenage de la roue de raccordement (5) étant active et fonctionnant en
contact avec une roue d'engrenage interne définie par la surface d'accouplement interne
(7a), la roue d'engrenage de la roue de raccordement (5) faisant preuve d'un axe de
rotation parallèle à un axe de rotation de la roue d'engrenage interne, par exemple
une à dents droites, définie par la surface d'accouplement interne (7a).
7. Ensemble selon l'une quelconque des revendications précédentes, comprenant au moins
un premier moteur (8) faisant preuve d'un arbre d'entraînement (8a) sur lequel une
roue d'entraînement (8b) est ajustée, ladite roue d'entraînement (8b) étant conçue
pour mettre en rotation, par l'action du premier moteur (8), la première roue d'actionnement
(4),
la roue d'entraînement (8b) du premier moteur comprenant une roue d'engrenage,
le premier moteur comprenant un moteur électrique ;
l'ensemble moteur comprenant au moins un second moteur (9) faisant preuve d'un arbre
d'entraînement (9a) sur lequel une roue d'entraînement (9b) est ajustée, ladite roue
d'entraînement (9b) étant conçue pour placer en rotation, par l'action du second moteur
(9), la seconde roue d'actionnement (6), la roue d'entraînement (9b) du second moteur
comprenant une roue d'engrenage ;
le second moteur comprenant un moteur électrique ou comprenant un moteur hydraulique
alimenté par un moteur endothermique, par exemple un moteur Diesel.
8. Ensemble selon l'une quelconque des revendications précédentes, comprenant une pluralité
de roues de raccordement (5) actives et en contact direct avec la roue principale
(3), particulièrement interposées entre la roue principale (3) et la surface d'accouplement
interne (7a) de la portion d'accouplement (7), éventuellement les roues de raccordement
étant équidistantes l'une de l'autre.
9. Ensemble selon la revendication précédente,
chaque roue de raccordement (5) comprenant une roue d'engrenage à dents droites identiques
l'une par rapport à l'autre en forme et en taille ;
les roues de raccordement faisant preuve d'axes de symétrie parallèles, particulièrement
parallèles à un axe de symétrie de la roue principale (3).
10. Wagon ferroviaire (100) comprenant :
- au moins un ensemble selon l'une quelconque des revendications précédentes,
- au moins un cadre (101) engagé avec l'ensemble moteur (1), adapté pour définir la
charge et la structure de support du wagon ferroviaire.