Field of Invention
[0001] The present invention relates to a method of operating an aerosol generating device
for enhanced user experience. More specifically, it relates to an aerosol generating
device such as e-cigarettes, heat-not-burn devices, and the like which is capable
of measuring aerosol intake based on usage pattern.
Background
[0002] Inhalers or aerosol generating devices such as e-cigarettes or vaping devices are
becoming increasingly popular. They generally heat or warm an aerosolisable substance
to generate an aerosol for inhalation, as opposed to burning tobacco as in conventional
tobacco products. The generated aerosol may contain a flavour and/or a stimulant (e.g.,
nicotine or other active component). Users of such inhalers may wish to monitor the
amount of flavour or stimulant taken during use at times.
[0003] Most aerosol generating devices incorporate some form of electronic control circuit,
typically including a simple computer processor, allowing a user to control operation
of the aerosol generation device. However, these devices can be quite restrictive
in their settings and may not offer much flexibility to the user. Even in devices
that allow a user to customise settings, it requires some effort from the user and
may not be intuitive.
[0004] Therefore, there exists a need for a device that can be operated and controlled in
accordance with the user's preference for aerosol monitoring without requiring much
effort.
[0005] US 2014/278258 relates to an accessory for an electronic smoking article with a sensor configured
to detect an emission of the electronic smoking article;
US 2015/230521 relates to an aerosol generating device with a controller configured to detect a
change in air flow past a heater element indicative of a user inhalation; and
EP3042576 relates to a non-burning type flavour inhaler.
Summary of the Invention
[0006] According to an aspect of the present invention, there is provided a method of operating
an aerosol-generating device comprising detecting puffs taken by a user; monitoring
a time elapsed after each puff; counting the puffs in succession unless the time elapsed
is greater than a first preset value; restarting counting the puffs when the time
elapsed is greater than the first preset value; and providing a first indication to
the user when a number of puffs reaches a first count wherein the first indication
is only provided when the puffs are counted while the device is being held in a first
orientation.
[0007] Advantageously, by controlling a vaping device in accordance with this method it
is possible to safely monitor puffs taken by the user during a vaping session without
needing the user intervention. If the user takes a long break between puffs, it is
determined that the user is not engaging in sustained continuous vaping and thus puffs
taken after such a long break are counted in a new session.
[0008] Preferably, the method includes providing the first indication to the user when the
number of puffs reaches the first count when the device is determined to be temporarily
held in a second orientation, different from the first orientation, for less than
a predetermined period of time and is turned to the first orientation within the predetermined
period of time.
[0009] Preferably, the method includes providing a second indication to the user when the
total number of puffs at the end of a predetermined period of use reaches a second
count if the device is determined to be held in the first orientation at least once
during the predetermined period of use.
[0010] Preferably, in the said method, the total number of puffs is determined by a time
stamp associated with each puff.
[0011] Preferably, in the said method, the total number of puffs is determined by maintaining
a count of puffs for a period set by the user.
[0012] Preferably, in the said method, the second indication is only provided when an amount
of aerosol delivered in the total number of puffs exceeds a threshold level.
[0013] According to another aspect of the invention, there is provided an aerosol-generating
device comprising a body having an inlet and an outlet with an air channel defined
between the inlet and the outlet; an I/O interface configured to provide an indication
to a user; an orientation sensor configured to detect an orientation of the device;
a puff detector configured to detect puffs taken by the user; a timing unit configured
to determine a time elapsed after each puff; and a controller configured to start
a first counter to count the puffs in succession unless the time elapsed is greater
than a first preset value; reset the first counter when the time elapsed is greater
than the first preset value; and provide a first indication to the user when a number
of puffs reaches a first count, wherein the first indication is only provided when
the puffs are counted while the device is being held in a first orientation.
[0014] Preferably, in the said device, the timing unit is configured to start a timer at
an end of each puff and stop the timer when the puff detector detects a start of a
next puff.
[0015] Preferably, the device further includes a second counter configured to count puffs
taken by the user during a predetermined period of use.
[0016] Preferably, the device further includes a recognition sensor to identify an aerosol
source to monitor an amount of aerosol in each puff taken by the user.
[0017] Preferably, in the said device, the timing unit is further configured to associate
each puff session with a time stamp to monitor aerosol intake of the user over time.
Brief Description of the Drawings
[0018] Embodiments of the invention are now described, by way of example, with reference
to the drawings, in which:
Fig. 1 shows an aerosol generating device according to an aspect of the invention;
Fig. 2 shows a block diagram of various components of the device of Fig. 1;
Fig. 3 shows a flow diagram of a method of operating the device of Fig. 1; and
Figs. 4 and 5 show graphs illustrating a control operation of the device of Fig. 1.
Detailed Description
[0019] Next, various aspects of the invention will be described. Note that the same or similar
portions are denoted with the same or similar reference signs in the descriptions
of the drawings below. Note that the drawings are schematic and a ratio of each size
is different from a real one. Therefore, specific sizes and the like should be judged
in consideration of the following descriptions.
[0020] Fig. 1 shows a non-combustion-type aerosol generating device 100, which is a device
for inhaling an aerosol by heating or vaporisation without combustion. The device
100 has a rod-like shape with a main body 101 extending from a non-mouthpiece end
102 to a mouthpiece end 103. An air channel or path is defined in the main body 100
between the opposite ends 102, 103. The aerosol-generating device 100 in the present
example is an electronic cigarette or a vaping device, and is referred to as e-cig
100 hereinafter. The e-cig 100 works by vaporizing or heating an aerosol source inserted
into the e-cig 100 to release a flavour and/or a stimulant for a user to inhale through
the mouthpiece end 103. The construction and operation of such a device to generate
aerosol is well-known in the art and it will be understood by a skilled person that
the invention disclosed herein can be applicable to aerosol generation devices in
any shapes, configured with any aerosol generating techniques, not limited to the
example.
[0021] The e-cig 100 may include an activation switch 104 that may be configured to perform
at least one of a turn-on and a turn-off of a power source of the e-cig 100. The activation
switch 104 may be a push button or a touch button disposed at any convenient location
on the surface of the main body 101 of the e-cig 100. Alternatively, the e-cig 100
does not rely on a switch button to activate power supply to heater, but rely on a
puff sensor to detect air flow and trigger the device to start generating aerosol.
[0022] Fig. 2 is a block diagram showing various components or modules of the e-cig 100.
In one example, the e-cig 100 comprises a consumables module 201a and a heating element
202 that vaporizes a consumable item 201b received by the consumables module 201a
to release aerosol containing the flavour and/or stimulant for the user to inhale.
In the present example, the consumable item 201b is a substance containing nicotine.
Presence of the consumable item 201b in the consumables module 201a may be detected
by a detector 201c. The consumable item 201b may be in the form of solid or liquid
and is heated by the heating element 202 to release the aerosol without combustion.
In case the consumable item 201b is a liquid store, more than one consumable items
can be received at the consumable module 201a. The heating element 202 may be powered
by a power source 203.
[0023] The power source 203 is, for example, a lithium ion battery. The power source 203
supplies an electric power necessary for an action of the e-cig 100. For example,
the power source 203 supplies the electric power to all other components or modules
included in the e-cig 100.
[0024] For the purposes of the present description, it will be understood that the terms
vapour and aerosol are interchangeable. In some examples, the heating element is arranged
within a capsule or cigarette-like aerosol generating material and connectable to
the aerosol generation device, rather than being a component of the aerosol generation
device itself.
[0025] In one embodiment, a flavouring is present in the consumable item 201b. The flavouring
may include Ethylvanillin (vanilla), menthol, Isoamyl acetate (banana oil) or similar.
In another embodiment, the consumable item 201b may include an additional flavour
source (not shown) provided on the side of the mouthpiece end 103 beyond the consumables
module 201a the consumable item 201b, and generates a flavour to be inhaled by the
user together with the aerosol generated from the consumable item 201b. In yet another
embodiment, the e-cig 100 comprises more than one consumable item each comprising
a flavouring and/or a certain level of active component (nicotine). In this case,
each consumable item can be independently heated to generate aerosol.
[0026] The e-cig 100 also includes a controller 204 that is configured to control various
components in the e-cig. For example, the controller 204 may control a timing unit
205 (comprising a timer), a communications unit 206, a memory 207, an orientation
sensor 208, and a puff sensor 209 included in the e-cig 100. The timing unit 205 is
configured to provide time information (e.g., time of the day) and generate timestamp
for puff data or event data, which is helpful to analyse user's vaping preference.
The timing unit 205 is further configured to monitor timing of each puff and breaks
in between and provide this information to the controller 204 to monitor and potentially
restrict the user's usage of the e-cig 100. For example, the timing unit 205 may determine
when to indicate the user on reaching a puff threshold. It is to be noted that the
functions of the timing unit 205 can be consolidated into the controller 204.
[0027] The communications unit 206 is configured to manage communication with any personal
computing device, a server, a tracking device, or other e-cigs in the vicinity of
the e-cig 100. The memory 207 is configured to store vaping usage history and information
such as user settings and preferences.
[0028] The e-cig 100 also includes various sensors such as the orientation sensor 208 and
the puff sensor 209. The orientation sensor 208, such as a gyroscope, is configured
to determine a positional orientation of the e-cig 100, for example, determining if
the e-cig 100 is held face up or face down when in use. When the e-cig 100 is used
with front face up (such that the activation button 104 and/or an LED is facing upwards),
a first mode of operation is activated in which the user is provided an indication
on reaching a puff threshold. This mode is also referred to as the session mode.
[0029] When the e-cig is used with front face down (such that the activation button 104
and/or an LED is facing downwards), a second mode of operation is activated in which
the user is provided with no indication on reaching the puff threshold. This mode
is also referred to as the free mode. In other words, the e-cig 100 is rotated or
turned by 180 degrees along its longitudinal axis to switch between the session mode
and the free mode. In the session mode, with the LED facing upwards, the user is indicated
of the puff threshold by the means of the LED which is easily visible to the user.
In the free mode, with the LED facing downwards, the puff threshold is not indicated
to the user.
[0030] It is to be noted that the e-cig 100 facing up or down may also be defined with respect
to any visual pattern, such as a logo or a surface design, to act as a reference for
the user. Activation button and LED may not be necessary to provide such reference.
In any case, sensors on the device may not be reliant on these physical or visual
elements.
[0031] The puff sensor 209 is configured to determine the number of puff actions of inhaling
the aerosol. The puff sensor 209 can also determine a time period required for one
puff action of inhaling the aerosol. The recorded usage data can comprise puff duration
(i.e., length of a puff), a puff interval (i.e., the time between consecutive puffs),
and a fluid and/or nicotine consumption amount.
[0032] The e-cig 100 may also include a consumable recognition sensor (now shown) configured
to identify the consumable item 201b inserted in the e-cig 100. The recognition sensor
may be included in the consumables module 201a or the detector 201c. The recognition
sensor may use NFC, RFID or any other known technique to recognise the strength of
the stimulant contained in the consumable item 201b from an NFC/RFID tag disposed
on the consumable 201b.
[0033] The e-cig 100 also includes an Input-Output (I/O) or user interface 210 configured
to provide indications to the user and to receive inputs from the user. The I/O interface
210 preferably comprises an indication device and an input device. The indication
device may comprise a visual light emitting element including one or more Light Emitting
Diodes (LEDs), a screen display, or a sound emitter, or other appropriate means to
provide indication to users. The visual light-emitting element such as an LED may
be disposed at the tip of the non-mouthpiece end 102, or on a side surface of the
e-cig 100. Such an LED may exhibit various light-emitting mode to provide to user
within indication of a puff state where the aerosol is being inhaled, a non-puff state
where the aerosol is not being inhaled, a pre-heating state when the heater is heating
up, a ready-to vape state when the heater operates at target temperature to generate
aerosol, a depletion state where LED bar shows depletion level of the aerosol source,
and any other information related to the operation status of the e-cig. The input
device can be one or more user operable buttons or sensible touch panel, responsible
to depression, toggling, or touch.
[0034] All the elements described above transmit and/or receive command and/or data via
communication bus 211.
[0035] In one embodiment, the e-cig 100 is also configured to communicate with a personal
computing device (now shown) owned by the user. The personal computing device may
be a smartphone, tablet, or, a laptop. For the sake of simplicity, the personal computing
device is referred to as smartphone hereinafter. Preferably, the e-cig 100 is configured
to communicably connect or pair with the smartphone wirelessly using Wi-Fi, Bluetooth,
or other wireless communication standards. The smartphone preferably runs a mobile
application (commonly referred to as App) that allows the user to interact with the
e-cig 100 through a user-friendly interface. The App may be hosted by the manufacturer
of the e-cig 100 and compatible with different mobile platforms such as iOS
™ and Android
™.
[0036] Fig. 3 shows a flow diagram for a process 300 of operating the e-cig 100. It is to
be noted that steps in the process 300 may not necessarily be performed in the same
sequence.
[0037] At step 301, puffs taken by a user are detected. In the present example, when the
user starts inhaling aerosol from the e-cig 100, the puff sensor 209 detects each
puff taken by the user. In each puff the user intakes a certain amount of aerosol
but the total amount of aerosol inhaled depends on the duration and number of puffs.
The puff sensor 209 communicates with the controller 204 and the timing unit 205 to
record the duration and number of puffs taken by the user.
[0038] At step 302, a time elapsed after each puff is monitored. In the present example,
the controller 204 monitors the usage of the e-cig 100 with the aid of the puff sensor
209 and the timing unit 205. The timing unit 205 starts and stops a timer between
two consecutive puffs and monitors periods of breaks taken after each puff. This is
explained later in detail with reference to Figs. 4 and 5. The time elapsed between
the end of one puff and the start of the next puff is recorded.
[0039] At step 303, the puffs in succession are counted. In the present example, the controller
204 initiates a counter to count the number of puffs inhaled by the user. As the puff
sensor 209 detects the start and end of each puff, the counter is successively incremented
by one to record the number of puffs taken by the user in one puff session. Any breaks
taken by the user between two consecutive puffs is monitored by the timing unit 205
and controller 204 as explained above and the duration of the break determines the
counting of puffs. The count of puffs is monitored to warn the user of sustained continuous
vaping in the session mode of operation and is recorded in general to analyse the
user's vaping pattern over time.
[0040] In one embodiment, the user can set up the number of puffs in a session in the session
mode based on the user preferences. For example, none, 5, 10, 15, or 20 puffs in one
session and user is notified when the set number of puffs in a session are reached.
When "none" is selected, no minimum number of puffs are set for a session. Moreover,
when the user in the middle of a session and a new parameter or criteria is set, the
number of puffs and vaped amount is reset to zero.
[0041] At step 304, it is determined if the time elapsed exceeds a preset value. In the
present example, the timing unit 205 monitors the period of break taken by the user
between two puffs and compares that with a preset value (e.g. 7 minutes). When the
break period exceeds that preset value, the process proceeds to step 305, else it
goes back to step 303 where the controller 204 continues to count the next puff after
the break in succession.
[0042] At step 305, the puff counting is restarted. In the present example, when the period
of break exceeds the preset value, the controller 205 ends the current puff session
and resets the counter. Accordingly, the puffs taken by the user after the long break
are counted in a new session. This is explained further below with reference to Fig.
4.
[0043] When the e-cig 100 is determined to be in the face up orientation, the session mode
is activated and an indication is provided to the user. In the present example, upon
determining that the count of number of puffs has reached a puff threshold, the controller
204 activates one or more indicators on the I/O interface 210. For instance, on reaching
the 15th puff, an LED on the I/O interface 210 is lit up with soft glow as well as
the e-cig 100 is vibrated to provide both visual and haptic indication to the user
to remind him or her of sustained continuous vaping. If the user continues to vape
after this, a further indication may be provided to the user after another threshold,
say after 30 puffs, is reached.
[0044] On the other hand, when the e-cig 100 is determined to be in the face down orientation,
the free mode is activated and no such indication is provided to the user. In the
present example, upon determined that the e-cig 100 is used while facing down, the
controller 204 activates the free mode. While in the free mode, the controller 204
continues to monitor the number of counts and a change in the positional orientation
of the e-cig 100, but no activate control is done. Therefore, no indication is provided
to the user while operating in the free mode, as shown by step 308. However, if during
a predefined time period (e.g. during one day), the session mode is activated even
once, the e-cig 100 enters a safety mode to provide an indication to the user when
a safe threshold is reached in that predefined time period, irrespective of the current
active mode of operation. For example, if the user is currently vaping in the free
mode and has reached 50 puffs in that day and had at least once vaped with active
session mode during that day, the controller 204 provides an indication to the user
through the I/O interface 210 on reaching the 50th puff.
[0045] In one embodiment, the safe threshold may be based on the strength of the consumable
item 201b as identified by the recognition sensor. For example, if the nicotine strength
of the consumable item 201b is 12 mg/ml, then the safe threshold may be automatically
set to 50 puffs per day and if the strength is 18 mg/ml, then the safe threshold is
set to 40 puffs per day. In another embodiment, the safe threshold may be set based
on a user input.
[0046] Fig. 4 shows a graph 400 illustrating related responses of the timing unit 205 and
the puff sensor 209 in the e-cig 100. The response of the timing unit 205 is plotted
on the X-axis against the response of the puff sensor 209 on the Y-axis. The puff
sensor 209 detects a first puff 400-1 taken by the user. As soon as the first puff
400-1 is ended, the timing unit 205 starts a timer, i.e. at the trailing edge of the
puff wave. The timing unit 205 keeps monitoring the time and the timer is ON until
a next puff is detected. As soon as the next puff is detected, i.e. at the leading
edge of the next puff wave, the timer is turned OFF. The timer is turned ON again
at the trailing edge of this puff wave.
[0047] In the session mode, the controller 204 uses this information from the timing unit
205 to monitor breaks taken by the user between the puffs. If the period of break
taken between two consecutive puffs, as determined by the timer being turned ON and
OFF, is within a preset time period the controller 204 keeps counting the puffs in
succession in the same session. When the number of puffs in that session reaches the
puff threshold, the controller 204 triggers the I/O interface 210 to provide an indication
to the user. On the other hand, when the period of break exceeds the preset time period,
e.g. 7 minutes, the controller 204 restarts counting the puffs in a new session. As
shown in Fig. 4, after the third puff 400-3 the user takes a long break and then takes
the next puff 400-4. If this long break is shorter than 7 minutes, then the timing
unit 205 counts this as fourth puff in the same session. However, if this long break
is longer than 7 minutes (i.e., the timer in ON state is longer than 7 minutes), the
timing unit 205 resets the counter and counts the puff 400-4 is the first puff in
a new session. In one embodiment, resetting the counter is only dependent on the state
of the timer and irrespective of detection of the next puff. The counter is reset
to zero when the timer in "ON" state has reached 7 minutes, and when the next puff
is detected, the counter is incremented by one. In this way, no unnecessary indication
is provided to the user when he or she is taking long breaks in between and therefore
not engaging in sustained continuous vaping at a time.
[0048] Fig. 5 shows a graph 500 illustrating a puff counting correction methodology employed
by the controller 204. The parameters of the graph 500 are same as those of the graph
400. In the present example, the controller 204 monitors a situation in which the
user accidently holds the e-cig 100 with face down (hence operate in the free mode)
when the user actually intended to continue holding the e-cig 100 with face up (hence
operate in the session mode). The controller 204 determines that the e-cig 100 is
accidently held in the face down orientation if the user turns it back to the face
up orientation within a correction threshold. The controller 204 therefore continues
counting the puffs in the session mode and triggers an indication when the puff count
exceeds the puff threshold. The correction threshold can be set based on the number
of puffs, a set time period, or a combination of the two. For example, if the user
takes 3 puffs within 1 minute and then turns the e-cig 100 to face up, then the controller
204 determines that to be accidental and continues counting the puffs in the session
mode. However, if the user takes 3 puffs in 5 minutes before turning the e-cig 100
to face up, then the controller 204 determines that to be intentional and does not
count those puffs in the session mode.
[0049] In a first scenario, consider the user holding the e-cig 100 with face up (activating
the first/session mode) and taking ten puffs in one session up to the tenth puff 500-10
as shown in Fig. 5. Then, following a 2 minutes break period, the user accidently
takes the next two puffs with the e-cig 100 facing down (activating the second/free
mode). The user soon realises the mistake and turns the e-cig 100 facing up (assuming
the correction threshold as three puffs within one minute) and takes three further
puffs. In this scenario, the controller 204 would understand that the two puffs taken
in the face down orientation were accidental, therefore would count those two puffs
in the session mode and thus determine the total number of puffs taken to be 15 (puff
threshold) and thus provide an indication to the user after the fifteenth puff 500-15.
[0050] In a second scenario, with other things being the same as in the first scenario,
the user ends up taking five puffs with the e-cig 100 facing down (free mode) before
turning the e-cig 100 face up. In this scenario, the controller 204 would not count
these five puffs in the session mode as the number of puffs exceeds the correction
threshold (as explained above). Therefore, even though the total number of puffs taken
by the user is fifteen, no indication is provided to the user.
[0051] It is to be understand that the above described device and the method may be modified
according to design choices and manufacturer's preferences. For example, modes of
operation may be changed based on other positional orientations of the device. Moreover,
the timing control and puff counting sequence may be altered. In addition, various
thresholds and preset values may be either hard coded or user configurable.
[0052] The controller 204 may also regulate aerosol delivery to increase or decrease the
substance in the aerosol and/or add flavours to the aerosol depending on the user's
preference. The amount of substance in the aerosol can be modified (increased or decreased)
in a number of ways. In one example, the amount of aerosol released from the consumable
item 201b may be changed, thereby affecting the quantity of substance to be inhaled
by the user. In another example, a multi-tank vaping device may be used which includes
two or more liquid reservoirs each containing a liquid with different concentration
of substance. By switching supply to the reservoir containing a different concentration
liquid, it is possible to regulate the substance intake while maintaining the same
aerosol amount. In yet another example, substance delivery can be modified by controlling
the heating operation (e.g., by controlling the energy supplied to a heater) in heat-not-burn
and vapour-based devices, or controlling a pressurized liquid source in vapour-based
devices.
[0053] The processing steps described herein carried out by the main control unit, or controller,
may be stored in a non-transitory computer-readable medium, or storage, associated
with the main control unit. A computer-readable medium can include non-volatile media
and volatile media. Volatile media can include semiconductor memories and dynamic
memories, amongst others. Non-volatile media can include optical disks and magnetic
disks, amongst others.
[0054] The foregoing description of illustrative embodiments has been presented for purposes
of illustration and of description. It is not intended to be exhaustive or limiting
with respect to the precise form disclosed, and modifications and variations are possible
in light of the above teachings or may be acquired from practice of the disclosed
embodiments.
[0055] As used herein, the term "non-transitory computer-readable media" is intended to
be representative of any tangible computer-based device implemented in any method
or technology for short-term and long-term storage of information, such as, computer-readable
instructions, data structures, program modules and submodules, or other data in any
device. Therefore, the methods described herein may be encoded as executable instructions
embodied in a tangible, non-transitory, computer readable medium, including, without
limitation, a storage device, and/or a memory device. Such instructions, when executed
by a processor, cause the processor to perform at least a portion of the methods described
herein. Moreover, as used herein, the term "non-transitory computer-readable media"
includes all tangible, computer-readable media, including, without limitation, non-transitory
computer storage devices, including, without limitation, volatile and non-volatile
media, and removable and non-removable media such as a firmware, physical and virtual
storage, CD-ROMs, DVDs, and any other digital source such as a network or the Internet,
as well as yet to be developed digital means, with the sole exception being a transitory,
propagating signal.
[0056] As will be appreciated based on the foregoing specification, the above-described
embodiments of the disclosure may be implemented using computer programming or engineering
techniques including computer software, firmware, hardware or any combination or subset
thereof. Any such resulting program, having computer-readable code means, may be embodied
or provided within one or more computer-readable media, thereby making a computer
program product, i.e., an article of manufacture, according to the discussed embodiments
of the disclosure. The article of manufacture containing the computer code may be
made and/or used by executing the code directly from one medium, by copying the code
from one medium to another medium, or by transmitting the code over a network.
1. A method of operating an aerosol-generating device (100) comprising:
detecting (301) puffs taken by a user;
monitoring (302) a time elapsed after each puff;
counting (303) the puffs in succession unless the time elapsed is greater than a first
preset value;
restarting counting (305) the puffs when the time elapsed is greater than the first
preset value; and
providing a first indication to the user when a number of puffs reaches a first count,
characterised in that the first indication is only provided when the puffs are counted while the device
(100) is being held in a first orientation.
2. The method of claim 1, further comprising providing the first indication to the user
when the number of puffs reaches the first count when the device (100) is determined
to be temporarily held in a second orientation, different from the first orientation,
for less than a predetermined period of time and is turned to the first orientation
within the predetermined period of time.
3. The method of claim 1 or 2, further comprising providing a second indication to the
user when the total number of puffs at the end of a predetermined period of use reaches
a second count if the device (100) is determined to be held in the first orientation
at least once during the predetermined period of use.
4. The method of claim 3, wherein the total number of puffs is determined by a time stamp
associated with each puff.
5. The method of claim 3, wherein the total number of puffs is determined by maintaining
a count of puffs for a period set by the user.
6. The method of any of claims 3 to 5, wherein the second indication is only provided
when an amount of aerosol delivered in the total number of puffs exceeds a threshold
level.
7. An aerosol-generating device (100) comprising:
a body (101) having an inlet and an outlet with an air channel defined between the
inlet and the outlet;
an I/O interface (210) configured to provide an indication to a user;
an orientation sensor (208) configured to detect an orientation of the device (100);
a puff detector (209) configured to detect puffs taken by the user;
a timing unit (205) configured to determine a time elapsed after each puff; and
a controller (204) configured to:
start a first counter to count the puffs in succession unless the time elapsed is
greater than a first preset value;
reset the first counter when the time elapsed is greater than the first preset value;
and
provide a first indication to the user when a number of puffs reaches a first count,
characterised in that the first indication is only provided when the puffs are counted while the device
(100) is being held in a first orientation.
8. The device of claim 7, wherein the timing unit (205) is configured to start a timer
at an end of each puff and stop the timer when the puff detector (209) detects a start
of a next puff.
9. The device of claim 7 or 8, wherein the device (100) further comprises a second counter
configured to count puffs taken by the user during a predetermined period of use.
10. The device of any of claims 7 to 9, further comprising a recognition sensor to identify
an aerosol source to monitor an amount of aerosol in each puff taken by the user.
11. The device of any claims 7 to 10, wherein the timing unit (205) is further configured
to associate each puff session with a time stamp to monitor aerosol intake of the
user over time.
1. Verfahren zum Betrieb einer aerosolerzeugenden Vorrichtung (100), umfassend:
Detektieren (301) von einem Nutzer genommener Züge;
Überwachen (302) einer nach jedem Zug abgelaufenen Zeit;
Zählen (303) der aufeinander folgenden Züge, außer die abgelaufene Zeit ist größer
als ein erster voreingestellter Wert;
Neustarten (305) der Züge, wenn die abgelaufene Zeit größer als der erste voreingestellte
Wert ist; und
Bereitstellen einer ersten Anzeige an den Nutzer, wenn eine Zahl von Zügen eine erste
Zählung erreicht, dadurch gekennzeichnet, dass die erste Anzeige nur bereitgestellt wird, wenn die Züge gezählt werden, während
die Vorrichtung (100) in einer ersten Orientierung gehalten wird.
2. Verfahren nach Anspruch 1, das ferner das Bereitstellen der ersten Anzeige an den
Nutzer umfasst, wenn die Zahl von Zügen die erste Zählung erreicht, wenn festgestellt
wird, dass die Vorrichtung (100) vorübergehend in einer zweiten Orientierung, verschieden
von der ersten Orientierung, für weniger als eine vorbestimmte Zeitspanne gehalten
und innerhalb der vorbestimmten Zeitspanne in die erste Orientierung gedreht wird.
3. Verfahren nach Anspruch 1 oder 2, das ferner das Bereitstellen einer zweiten Anzeige
an den Nutzer umfasst, wenn die Gesamtzahl von Zügen am Ende einer vorbestimmten Nutzungsdauer
eine zweite Zählung erreicht, falls festgestellt wird, dass die Vorrichtung (100)
wenigstens einmal, während der vorbestimmten Nutzungsdauer, in der ersten Orientierung
gehalten wird.
4. Verfahren nach Anspruch 3, wobei die Gesamtzahl von Zügen durch einen Zeitstempel
bestimmt wird, der mit jedem Zug verbunden ist.
5. Verfahren nach Anspruch 3, wobei die Gesamtzahl von Zügen durch Beibehalten einer
Zählung von Zügen für eine vom Nutzer eingestellte Dauer bestimmt wird.
6. Verfahren nach irgendeinem der Ansprüche 3 bis 5, wobei die zweite Anzeige nur bereitgestellt
wird, wenn eine in der Gesamtzahl von Zügen gelieferte Aerosolmenge einen Schwellenwert
überschreitet.
7. Aerosolerzeugende Vorrichtung (100), umfassend:
Einen Körper (101) mit einem Einlass und einem Auslass, wobei ein Luftkanal zwischen
dem Einlass und dem Auslass definiert ist;
eine E/A-Schnittstelle (210), die ausgelegt ist, einem Nutzer eine Anzeige bereitzustellen;
einen Orientierungssensor (208), der ausgelegt ist, eine Orientierung der Vorrichtung
(100) zu detektieren;
einen Zugdetektor (209), der ausgelegt ist, vom Nutzer genommene Züge zu detektieren;
eine Zeitsteuereinheit (205), die ausgelegt ist, eine nach jedem Zug abgelaufene Zeit
zu bestimmen; und
einen Controller (204), der ausgelegt ist, Folgendes zu tun:
Starten eines ersten Zählers, um aufeinander folgenden Züge zu zählen, außer die abgelaufene
Zeit ist größer als ein erster voreingestellter Wert;
Rückstellen des ersten Zählers, wenn die abgelaufene Zeit größer als der erste voreingestellte
Wert ist; und
Bereitstellen einer ersten Anzeige an den Nutzer, wenn eine Zahl von Zügen eine erste
Zählung erreicht, dadurch gekennzeichnet, dass die erste Anzeige nur bereitgestellt wird, wenn die Züge gezählt werden, während
die Vorrichtung (100) in einer ersten Orientierung gehalten wird.
8. Vorrichtung nach Anspruch 7, wobei die Zeitsteuereinheit (205) ausgelegt ist, einen
Zeitgeber am Ende jedes Zugs zu starten und den Zeitgeber zu stoppen, wenn der Zugdetektor
(209) einen Beginn eines nächsten Zugs detektiert.
9. Vorrichtung nach Anspruch 7 oder 8, wobei die Vorrichtung (100) ferner einen zweiten
Zähler umfasst, der ausgelegt ist, vom Nutzer genommene Züge, während einer vorbestimmten
Nutzungsdauer, zu zählen.
10. Vorrichtung nach irgendeinem der Ansprüche 7 bis 9, die ferner einen Erkennungssensor
zum Identifizieren einer Aerosolquelle umfasst, um eine Aerosolmenge in jedem vom
Nutzer genommenen Zug zu überwachen.
11. Vorrichtung nach irgendeinem der Ansprüche 7 bis 10, wobei die Zeitsteuereinheit (205)
ferner ausgelegt ist, jede Zugsitzung mit einem Zeitstempel zu verbinden, um die Aerosol-Einnahme
des Nutzers über einen Zeitraum zu überwachen.
1. Un procédé de fonctionnement d'un dispositif de génération d'aérosol (100) composé
des éléments suivants :
la détection (301) des bouffées prises par un utilisateur
la surveillance (302) du temps qui s'écoule après chaque bouffée le comptage (303)
du nombre de bouffées successives, à moins que le temps qui s'écoule ne soit plus
long qu'une première valeur préprogrammée le redémarrage du comptage (305) du nombre
de bouffées lorsque le temps qui s'écoule est plus long qu'une première valeur préprogrammée
et
la fourniture à l'utilisateur d'une première indication lorsqu'un nombre de bouffées
atteint un premier compte, et se caractérisant par le fait que cette première indication n'est fournie que lorsque les bouffées sont comptées lorsque
le dispositif (100) est tenu sous une première orientation.
2. Le procédé que décrit la revendication 1, si ce n'est qu'il fournit, en outre, à l'utilisateur
la première indication lorsque le nombre de bouffées atteint le premier compte lorsque
le dispositif (100) est identifié comme étant tenu, momentanément, sous une deuxième
orientation, différente de la première orientation, pendant une durée inférieure à
une durée prédéterminée, puis est ramené à la première orientation avant que la durée
prédéterminée ne se soit écoulée.
3. Le procédé que décrit la revendication 1 ou 2, si ce n'est qu'il fournit, en outre,
à l'utilisateur une deuxième indication lorsque le nombre total de bouffées à la fin
d'une durée prédéterminée d'utilisation atteint un deuxième nombre si le dispositif
(100) est identifié comme étant tenu sous la première orientation à au moins une reprise
pendant cette durée prédéterminée d'utilisation.
4. Le procédé que décrit la revendication 3, si ce n'est que le nombre total de bouffées
est déterminé par un horodateur associé à chaque bouffée.
5. Le procédé que décrit la revendication 3, si ce n'est que le nombre total de bouffées
est déterminé en maintenant un compte de bouffées pendant une durée fixée par l'utilisateur.
6. Le procédé que décrit l'une ou l'autre des revendications 3 à 5, si ce n'est que la
deuxième indication n'est fournie que lorsque le volume d'aérosol fourni dans le nombre
total de bouffées dépasse un certain seuil.
7. Un dispositif de production d'aérosol (100) composé des éléments suivants :
un corps (101) qui a une entrée et une sortie et une galerie d'air qui vient s'implanter
entre cette entrée et cette sortie
une interface E/S (210) configurée pour fournir une indication à un utilisateur un
capteur d'orientation (208) configuré pour détecter une orientation du dispositif
(100)
un détecteur de bouffées (209) configuré pour détecter les bouffées prises par l'utilisateur
un groupe de chronométrage (205) configuré pour déterminer le temps qui s'écoule après
chaque bouffée et
un contrôleur (204) configuré pour :
lancer un premier compteur pour compter le nombre de bouffées successives, à moins
que le temps qui s'écoule ne soit plus long qu'une première valeur préprogrammée
remettre à zéro le premier compteur lorsque le temps qui s'est écoulé est plus long
que la première valeur préprogrammée et
fournir à l'utilisateur une première indication lorsqu'un nombre de bouffées atteint
un premier compte, et se caractérisant par le fait que cette première indication n'est fournie que lorsque les bouffées sont comptées lorsque
le dispositif (100) est tenu sous une première orientation.
8. Le dispositif que décrit la revendication 7, si ce n'est que le groupe de chronométrage
(205) est configuré pour lancer un chronomètre à la fin de chaque bouffée et pour
arrêter ce chronomètre dès que le détecteur de bouffée (209) détecte le début de la
bouffée suivante.
9. Le dispositif que décrit la revendication 7 ou 8, si ce n'est que ce dispositif (100)
comporte, en outre, un deuxième compteur configuré pour compter les bouffées prises
par l'utilisateur pendant une durée prédéterminée d'utilisation.
10. Le dispositif que décrit l'une ou l'autre des revendications 7 à 9, si ce n'est qu'il
comporte, en outre, un capteur de reconnaissance qui a pour but d'identifier une source
d'aérosol configurée pour surveiller le volume d'aérosol présent dans chaque bouffée
prise par l'utilisateur.
11. Le dispositif que décrit l'une ou l'autre des revendications 7 à 10, si ce n'est que
le groupe de chronométrage (205) est en outre configuré pour associer chaque session
à bouffée avec un horodateur afin de surveiller le volume d'aérosol que reçoit l'utilisateur
au bout d'un certain temps.