FIELD OF THE INVENTION
[0001] This disclosure relates to a lubricant composition for a direct injected, boosted,
spark ignited internal combustion engine that contains at least one zirconium-containing
compound. This disclosure also relates to a method for preventing or reducing low
speed pre-ignition in an engine lubricated with a formulated oil. The formulated oil
has a composition comprising at least one oil soluble or oil dispersible zirconium
compound.
BACKGROUND OF THE INVENTION
[0002] One of the leading theories surrounding the cause of low speed pre-ignition (LSPI)
is at least in part, due to auto-ignition of engine oil droplets that enter the engine
combustion chamber from the piston crevice under high pressure, during periods in
which the engine is operating at low speeds, and compression stroke time is longest
(
Amann et al.. SAE 2012-01-1140). Although some engine knocking and pre-ignition problems can be and are being resolved
through the use of new engine technology, such as electronic controls and knock sensors,
and through the optimization of engine operating conditions, there is a role for lubricating
oil compositions which can decrease or prevent the problem.
[0003] The present inventors have discovered a solution for addressing the problem of LSPI
through the use of zirconium containing additives.
SUMMARY OF THE INVENTION
[0004] In one aspect, the present disclosure provides a method for preventing or reducing
low speed pre-ignition in a direct injected, boosted, spark ignited internal combustion
engine, said method comprising the step of lubricating the crankcase of the engine
with a lubricating oil composition comprising from about 50 to about 3000 ppm of metal
from at least one zirconium-containing compound, based on the total weight of the
lubricating oil.
[0005] For example, the zirconium-containing compound is a zirconium alkoxide compound,
colloidal dispersion of zirconia, zirconium amido compound, zirconium acetylacetonate
compound, zirconium carboxylate, zirconium salicylate, zirconium arylsulfonate, zirconium
sulfurized or unsulfurized phenate, dialkyl,dihalo or thiocarbamto,thiophosphato bis(cyclopentadienyl)zirconium
compound, dithiocarbamato zirconium complex, dithiophosphato complex, salen zirconium
complex, phosphate ester, phospinate, or phosphinite zirconium complex, pyridyl, polypyridyl,
or quinolinolato zirconium complex, zirconium succinimide complex, or zirconium colloidal
suspension.
[0006] In yet another aspect, the present disclosure provides a lubricating engine oil composition
for a direct injected, boosted, spark ignited internal combustion engine comprising
from about 50 to about 3000 ppm of metal from at least one zirconium-containing compound,
based on the total weight of the lubricating oil.
DETAILED DESCRIPTION OF THE INVENTION
Definitions
[0007] The term "boosting" is used throughout the specification. Boosting refers to running
an engine at higher intake pressures than in naturally aspirated engines. A boosted
condition can be reached by use of a turbocharger (driven by exhaust) or a supercharger
(driven by the engine). Using smaller engines that provide higher power densities
has allowed engine manufacturers to provide excellent performance while reducing frictional
and pumping losses. This is accomplished by increasing boost pressures with the use
of turbochargers or mechanical superchargers, and by down-speeding the engine by using
higher transmission gear ratios allowed by higher torque generation at lower engine
speeds. However, higher torque at lower engine speeds has been found to cause random
pre-ignition in engines at low speeds, a phenomenon known as Low Speed Pre-Ignition,
or LSPI, resulting in extremely high cylinder peak pressures, which can lead to catastrophic
engine failure. The possibility of LSPI prevents engine manufacturers from fully optimizing
engine torque at lower engine speed in such smaller, high-output engines.
[0008] Throughout the specification and claims the expression oil soluble or dispersible
is used. By oil soluble or dispersible is meant that an amount needed to provide the
desired level of activity or performance can be incorporated by being dissolved, dispersed
or suspended in an oil of lubricating viscosity. Usually, this means that at least
about 0.001% by weight of the material can be incorporated in a lubricating oil composition.
For a further discussion of the terms oil soluble and dispersible, particularly "stably
dispersible", see
U.S. Pat. No. 4,320,019 which is expressly incorporated herein by reference for relevant teachings in this
regard.
[0009] The term "sulfated ash" as used herein refers to the non-combustible residue resulting
from detergents and metallic additives in lubricating oil. Sulfated ash may be determined
using ASTM Test D874.
[0010] The term "Total Base Number" or "TBN" as used herein refers to the amount of base
equivalent to milligrams of KOH in one gram of sample. Thus, higher TBN numbers reflect
more alkaline products, and therefore a greater alkalinity. TBN was determined using
ASTM D 2896 test. Unless otherwise specified, all percentages are in weight percent.
[0011] In general, the level of sulfur in the lubricating oil compositions of the present
invention is less than or equal to about 0.7 wt. %, based on the total weight of the
lubricating oil composition, e.g., a level of sulfur of about 0.01 wt. % to about
0.70 wt. %, 0.01 to 0.6 wt.%, 0.01 to 0.5 wt.%, 0.01 to 0.4 wt.%, 0.01 to 0.3 wt.%,
0.01 to 0.2 wt.%, 0.01 wt. % to 0.10 wt. %. In one embodiment, the level of sulfur
in the lubricating oil compositions of the present invention is less than or equal
to about 0.60 wt. %, less than or equal to about 0.50 wt. %, less than or equal to
about 0.40 wt. %, less than or equal to about 0.30 wt. %, less than or equal to about
0.20 wt. %, less than or equal to about 0.10 wt. % based on the total weight of the
lubricating oil composition.
[0012] In one embodiment, the levels of phosphorus in the lubricating oil compositions of
the present invention is less than or equal to about 0.12 wt. %, based on the total
weight of the lubricating oil composition, e.g., a level of phosphorus of about 0.01
wt. % to about 0.12 wt. %. In one embodiment, the levels of phosphorus in the lubricating
oil compositions of the present invention is less than or equal to about 0.11 wt.
%, based on the total weight of the lubricating oil composition, e.g., a level of
phosphorus of about 0.01 wt. % to about 0.11 wt. %. In one embodiment, the levels
of phosphorus in the lubricating oil compositions of the present invention is less
than or equal to about 0.10 wt. %, based on the total weight of the lubricating oil
composition, e.g., a level of phosphorus of about 0.01 wt. % to about 0.10 wt. %.
In one embodiment, the levels of phosphorus in the lubricating oil compositions of
the present invention is less than or equal to about 0.09 wt. %, based on the total
weight of the lubricating oil composition, e.g., a level of phosphorus of about 0.01
wt. % to about 0.09 wt. %. In one embodiment, the levels of phosphorus in the lubricating
oil compositions of the present invention is less than or equal to about 0.08 wt.
%, based on the total weight of the lubricating oil composition, e.g., a level of
phosphorus of about 0.01 wt. % to about 0.08 wt. %. In one embodiment, the levels
of phosphorus in the lubricating oil compositions of the present invention is less
than or equal to about 0.07 wt. %, based on the total weight of the lubricating oil
composition, e.g., a level of phosphorus of about 0.01 wt. % to about 0.07 wt. %.
In one embodiment, the levels of phosphorus in the lubricating oil compositions of
the present invention is less than or equal to about 0.05 wt. %, based on the total
weight of the lubricating oil composition, e.g., a level of phosphorus of about 0.01
wt. % to about 0.05 wt. %.
[0013] In one embodiment, the level of sulfated ash produced by the lubricating oil compositions
of the present invention is less than or equal to about 1.60 wt. % as determined by
ASTM D 874, e.g., a level of sulfated ash of from about 0.10 to about 1.60 wt. % as
determined by ASTM D 874. In one embodiment, the level of sulfated ash produced by
the lubricating oil compositions of the present invention is less than or equal to
about 1.00 wt. % as determined by ASTM D 874, e.g., a level of sulfated ash of from
about 0.10 to about 1.00 wt. % as determined by ASTM D 874. In one embodiment, the
level of sulfated ash produced by the lubricating oil compositions of the present
invention is less than or equal to about 0.80 wt. % as determined by ASTM D 874, e.g.,
a level of sulfated ash of from about 0.10 to about 0.80 wt. % as determined by ASTM
D 874. In one embodiment, the level of sulfated ash produced by the lubricating oil
compositions of the present invention is less than or equal to about 0.60 wt. % as
determined by ASTM D 874, e.g., a level of sulfated ash of from about 0.10 to about
0.60 wt. % as determined by ASTM D 874.
[0014] Suitably, the present lubricating oil composition may have a total base number (TBN)
of 4 to 15 mg KOH/g (e.g., 5 to 12 mg KOH/g, 6 to 12 mg KOH/g, or 8 to 12 mg KOH/g).
[0015] Low Speed Pre-Ignition is most likely to occur in direct-injected, boosted (turbocharged
or supercharged), spark-ignited (gasoline) internal combustion engines that, in operation,
generate a break mean effective pressure level of greater than about 15 bar (peak
torque), such as at least about 18 bar, particularly at least about 20 bar at engine
speeds of from about 1500 to about 2500 rotations per minute (rpm), such as at engine
speeds of from about 1500 to about 2000 rpm. As used herein, break mean effective
pressure (BMEP) is defined as the work accomplished during one engine cycle, divided
by the engine swept volume; the engine torque normalized by engine displacement. The
word "brake" denotes the actual torque/power available at the engine flywheel, as
measured on a dynamometer. Thus, BMEP is a measure of the useful power output of the
engine.
[0016] In one embodiment of the invention, the engine is operated at speeds between 500
rpm and 3000 rpm, or 800 rpm to 2800 rpm, or even 1000 rpm to 2600 rpm. Additionally,
the engine may be operated with a break mean effective pressure of 10 bars to 30 bars,
or 12 bars to 24 bars.
[0017] LSPI events, while comparatively uncommon, may be catastrophic in nature. Hence drastic
reduction or even elimination of LSPI events during normal or sustained operation
of a direct fuel injection engine is desirable. In one embodiment, the method of the
invention is such that there are less than 15 LSPI events per 100,000 combustion events
or less than 10 LSPI events per 100,000 combustion events. In one embodiment, there
may be less than 5 LSPI events per 100,000 combustion events, less than 4 LSPI events
per 100,000 combustion events, less than 3 LSPI events per 100,000 combustion events,
less than 2 LSPI events per 100,000 combustion events, less than 1 LSPI event per
100,000 combustion events, or there may be 0 LSPI events per 100,000 combustion events.
[0018] Therefore, in an aspect the present disclosure provides a method for preventing or
reducing low speed pre-ignition in a direct injected, boosted, spark ignited internal
combustion engine, said method comprising the step of lubricating the crankcase of
the engine with a lubricating oil composition comprising at least one zirconium-containing
compound. In one embodiment, the amount of metal from the at least one zirconium compound
is from about 50 to about 3000 ppm, from about 100 to about 3000 ppm, from about 200
to about 3000 ppm, from about 250 to about 2500 ppm, from about 300 to about 2500
ppm, from about 350 to about 2500 ppm, from about 400 ppm to about 2500 ppm, from
about 500 to about 2500 ppm, from about 600 to about 2500 ppm, from about 700 to about
2500 ppm, from about 700 to about 2000 ppm, from about 700 to about 1500 ppm in the
lubricating oil composition. In one embodiment, the amount of metal from the zirconium
containing compound is no more than about 2000 ppm or no more than 1500 ppm in the
lubricating oil composition.
[0019] In one embodiment, the method of the invention provides a reduction in the number
of LSPI events of at least 10 percent, or at least 20 percent, or at least 30 percent,
or at least 50 percent, or at least 60 percent, or at least 70 percent, or at least
80 percent, or at least 90 percent, or at least 95 percent, compared to an oil that
does not contain the at least one zirconium-containing compound.
[0020] In another aspect, the present disclosure provides a method for reducing the severity
of low speed pre-ignition events in a direct injected, boosted, spark ignited internal
combustion engine, said method comprising the step of lubricating the crankcase of
the engine with a lubricating oil composition comprising at least one zirconium-containing
compound. LSPI events are determined by monitoring peak cylinder pressure (PP) and
mass fraction burn (MFB) of the fuel charge in the cylinder. When either or both criteria
are met, it can be said that an LSPI event has occurred. The threshold for peak cylinder
pressure varies by test, but is typically 4-5 standard deviations above the average
cylinder pressure. Likewise, the MFB threshold is typically 4-5 standard deviations
earlier than the average MFB (represented in crank angle degrees). LSPI events can
be reported as average events per test, events per 100,000 combustion cycles, events
per cycle, and/or combustion cycles per event. In one embodiment, the number of LSPI
events, where both MFB02 and Peak Pressure (PP) Requirements that were greater than
90 bar of pressure, is less than 5 events, less than 4 events, less than 3 events,
less than 2 events, or less than 1 event. In one embodiment, the number of LSPI events
that were greater than 90 bar was zero events, or in other words completely suppressed
LSPI events greater than 90 bar. In one embodiment, the number of LSPI events where
both MFB02 and Peak Pressure (PP) Requirements that were greater than 100 bar of pressure
is less than 5 events, less than 4 events, less than 3 events, less than 2 events,
or less than 1 event. In one embodiment, the number of LSPI events that were greater
than 100 bar was zero events, or in other words completely suppressed LSPI events
greater than 100 bar. In one embodiment, the number of LSPI events where both MFB02
and Peak Pressure (PP) Requirements that were greater than 110 bar of pressure is
less than 5 events, less than 4 events, less than 3 events, less than 2 events, or
less than 1 event. In one embodiment, the number of LSPI events that were greater
than 110 bar was zero events, or in other words completely suppressed LSPI events
greater than 110 bar. For example, the number of LSPI events where both MFB02 and
Peak Pressure (PP) Requirements that were greater than 120 bar of pressure is less
than 5 events, less than 4 events, less than 3 events, less than 2 events, or less
than 1 event. In one embodiment, the number of LSPI events that were greater than
120 bar was zero events, or in other words completely suppressed very severe LSPI
events (i.e., events greater than 120 bar). It has now been found that the occurrence
of LSPI in engines susceptible to the occurrence of LSPI can be reduced by lubricating
such engines with lubricating oil compositions containing a zirconium-containing compound.
[0021] The disclosure further provides the method described herein in which the engine is
fueled with a liquid hydrocarbon fuel, a liquid nonhydrocarbon fuel, or mixtures thereof.
[0022] The disclosure further provides the method described herein in which the engine is
fueled by natural gas, liquefied petroleum gas (LPG), compressed natural gas (CNG),
or mixtures thereof.
[0023] Lubricating oil compositions suitable for use as passenger car motor oils conventionally
comprise a major amount of oil of lubricating viscosity and minor amounts of performance
enhancing additives, including ash-containing compounds. Conveniently, zirconium is
introduced into the lubricating oil compositions used in the practice of the present
disclosure by one or more zirconium containing compounds.
Oil of Lubricating viscosity/Base Oil Component
[0024] The oil of lubricating viscosity for use in the lubricating oil compositions of this
disclosure, also referred to as a base oil, is typically present in a major amount,
e.g., an amount of greater than 50 wt. %, preferably greater than about 70 wt. %,
more preferably from about 80 to about 99.5 wt. % and most preferably from about 85
to about 98 wt. %, based on the total weight of the composition. The expression "base
oil" as used herein shall be understood to mean a base stock or blend of base stocks
which is a lubricant component that is produced by a single manufacturer to the same
specifications (independent of feed source or manufacturer's location); that meets
the same manufacturer's specification; and that is identified by a unique formula,
product identification number, or both. The base oil for use herein can be any presently
known or later-discovered oil of lubricating viscosity used in formulating lubricating
oil compositions for any and all such applications, e.g., engine oils, marine cylinder
oils, functional fluids such as hydraulic oils, gear oils, transmission fluids, etc.
Additionally, the base oils for use herein can optionally contain viscosity index
improvers, e.g., polymeric alkylmethacrylates; olefinic copolymers, e.g., an ethylene-propylene
copolymer or a styrene-diene copolymer; and the like and mixtures thereof.
[0025] As one skilled in the art would readily appreciate, the viscosity of the base oil
is dependent upon the application. Accordingly, the viscosity of a base oil for use
herein will ordinarily range from about 2 to about 2000 centistokes (cSt) at 100°
Centigrade (C.). Generally, individually the base oils used as engine oils will have
a kinematic viscosity range at 100° C. of about 2 cSt to about 30 cSt, preferably
about 3 cSt to about 16 cSt, and most preferably about 4 cSt to about 12 cSt and will
be selected or blended depending on the desired end use and the additives in the finished
oil to give the desired grade of engine oil, e.g., a lubricating oil composition having
an SAE Viscosity Grade of 0W, 0W-8, 0W-12, 0W-16, 0W-20, 0W-26, 0W-30, 0W-40, 0W-50,
0W-60, 5W, 5W-20, 5W-30, 5W-40, 5W-50, 5W-60, 10W, 10W-20, 10W-30, 10W-40, 10W-50,
15W, 15W-20, 15W-30, 15W-40, 30, 40 and the like.
[0026] Group I base oils generally refer to a petroleum derived lubricating base oil having
a saturates content of less than 90 wt. % (as determined by ASTM D 2007) and/or a
total sulfur content of greater than 300 ppm (as determined by ASTM D 2622, ASTM D
4294, ASTM D 4297 or ASTM D 3120) and has a viscosity index (VI) of greater than or
equal to 80 and less than 120 (as determined by ASTM D 2270).
[0027] Group II base oils generally refer to a petroleum derived lubricating base oil having
a total sulfur content equal to or less than 300 parts per million (ppm) (as determined
by ASTM D 2622, ASTM D 4294, ASTM D 4927 or ASTM D 3120), a saturates content equal
to or greater than 90 weight percent (as determined by ASTM D 2007), and a viscosity
index (VI) of between 80 and 120 (as determined by ASTM D 2270).
[0028] Group III base oils generally refer to a petroleum derived lubricating base oil having
less than 300 ppm sulfur, a saturates content greater than 90 weight percent, and
a VI of 120 or greater. Group IV base oils are polyalphaolefins (PAOs).
[0029] Group V base oils include all other base oils not included in Group I, II, III, or
IV.
[0030] The lubricating oil composition can contain minor amounts of other base oil components.
For example, the lubricating oil composition can contain a minor amount of a base
oil derived from natural lubricating oils, synthetic lubricating oils or mixtures
thereof. Suitable base oil includes base stocks obtained by isomerization of synthetic
wax and slack wax, as well as hydrocracked base stocks produced by hydrocracking (rather
than solvent extracting) the aromatic and polar components of the crude.
[0031] Suitable natural oils include mineral lubricating oils such as, for example, liquid
petroleum oils, solvent-treated or acid-treated mineral lubricating oils of the paraffinic,
naphthenic or mixed paraffinic-naphthenic types, oils derived from coal or shale,
animal oils, vegetable oils (e.g., rapeseed oils, castor oils and lard oil), and the
like.
[0032] Suitable synthetic lubricating oils include, but are not limited to, hydrocarbon
oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized
olefins, e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated
polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes), and the like and
mixtures thereof; alkylbenzenes such as dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes,
di(2-ethylhexyl)-benzenes, and the like; polyphenyls such as biphenyls, terphenyls,
alkylated polyphenyls, and the like; alkylated diphenyl ethers and alkylated diphenyl
sulfides and the derivative, analogs and homologs thereof and the like.
[0033] Other synthetic lubricating oils include, but are not limited to, oils made by polymerizing
olefins of less than 5 carbon atoms such as ethylene, propylene, butylenes, isobutene,
pentene, and mixtures thereof. Methods of preparing such polymer oils are well known
to those skilled in the art.
[0034] Additional synthetic hydrocarbon oils include liquid polymers of alpha olefins having
the proper viscosity. Especially useful synthetic hydrocarbon oils are the hydrogenated
liquid oligomers of C
6 to C
12 alpha olefins such as, for example, 1-decene trimer.
[0035] Another class of synthetic lubricating oils include, but are not limited to, alkylene
oxide polymers, i.e., homopolymers, interpolymers, and derivatives thereof where the
terminal hydroxyl groups have been modified by, for example, esterification or etherification.
These oils are exemplified by the oils prepared through polymerization of ethylene
oxide or propylene oxide, the alkyl and phenyl ethers of these polyoxyalkylene polymers
(e.g., methyl poly propylene glycol ether having an average molecular weight of 1,000,
diphenyl ether of polyethylene glycol having a molecular weight of 500-1000, diethyl
ether of polypropylene glycol having a molecular weight of 1,000-1,500, etc.) or mono-
and polycarboxylic esters thereof such as, for example, the acetic esters, mixed C
3-C
8 fatty acid esters, or the C
13 oxo acid diester of tetraethylene glycol.
[0036] Yet another class of synthetic lubricating oils include, but are not limited to,
the esters of dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic
acids, alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid,
fumaric acid, adipic acid, linoleic acid dimer, malonic acids, alkyl malonic acids,
alkenyl malonic acids, etc., with a variety of alcohols, e.g., butyl alcohol, hexyl
alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol
monoether, propylene glycol, etc. Specific examples of these esters include dibutyl
adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl
azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate,
the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting
one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic
acid and the like.
[0037] Esters useful as synthetic oils also include, but are not limited to, those made
from carboxylic acids having from about 5 to about 12 carbon atoms with alcohols,
e.g., methanol, ethanol, etc., polyols and polyol ethers such as neopentyl glycol,
trimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, and the
like.
[0038] Silicon-based oils such as, for example, polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxy-siloxane
oils and silicate oils, comprise another useful class of synthetic lubricating oils.
Specific examples of these include, but are not limited to, tetraethyl silicate, tetra-isopropyl
silicate, tetra-(2-ethylhexyl) silicate, tetra-(4-methyl-hexyl)silicate, tetra-(p-tert-butylphenyl)
silicate, hexyl-(4-methyl-2-pentoxy)disiloxane, poly(methyl)siloxanes, poly(methylphenyl)siloxanes,
and the like. Still yet other useful synthetic lubricating oils include, but are not
limited to, liquid esters of phosphorous containing acids, e.g., tricresyl phosphate,
trioctyl phosphate, diethyl ester of decane phosphionic acid, etc., polymeric tetrahydrofurans
and the like.
[0039] The lubricating oil may be derived from unrefined, refined and rerefined oils, either
natural, synthetic or mixtures of two or more of any of these of the type disclosed
hereinabove. Unrefined oils are those obtained directly from a natural or synthetic
source (e.g., coal, shale, or tar sands bitumen) without further purification or treatment.
Examples of unrefined oils include, but are not limited to, a shale oil obtained directly
from retorting operations, a petroleum oil obtained directly from distillation or
an ester oil obtained directly from an esterification process, each of which is then
used without further treatment. Refined oils are similar to the unrefined oils except
they have been further treated in one or more purification steps to improve one or
more properties. These purification techniques are known to those of skill in the
art and include, for example, solvent extractions, secondary distillation, acid or
base extraction, filtration, percolation, hydrotreating, dewaxing, etc. Rerefined
oils are obtained by treating used oils in processes similar to those used to obtain
refined oils. Such rerefined oils are also known as reclaimed or reprocessed oils
and often are additionally processed by techniques directed to removal of spent additives
and oil breakdown products.
[0040] Lubricating oil base stocks derived from the hydroisomerization of wax may also be
used, either alone or in combination with the aforesaid natural and/or synthetic base
stocks. Such wax isomerate oil is produced by the hydroisomerization of natural or
synthetic waxes or mixtures thereof over a hydroisomerization catalyst.
[0041] Natural waxes are typically the slack waxes recovered by the solvent dewaxing of
mineral oils; synthetic waxes are typically the wax produced by the Fischer-Tropsch
process.
[0042] Other useful fluids of lubricating viscosity include non-conventional or unconventional
base stocks that have been processed, preferably catalytically, or synthesized to
provide high performance lubrication characteristics.
Zirconium Compound
[0043] The lubrication oil compositions herein can contain one or more zirconium-containing
compounds. Those skilled in the art will recognize suitable additives have been described
in
Cardin et al., "Chemistry of Organo-Zirconium and -Hafnium Compounds", 1st Edition,
Chichester, Ellis Horwood Limited, (1986), which is incorporated herein by reference. The zirconium complexes described in
this disclosure are typically prepared by reacting a tetravalent zirconium reactant
with a suitable ligand using methods apparent to a practitioner of ordinary skill
in the art. Typically, these zirconium reactants are represented by the following
compounds: zirconium(IV) n-butoxide, zirconium(IV) t-butoxide, zirconium(IV) n-propoxide,
zirconium(IV) i-propoxide, zirconium(IV) ethoxide, zirconium(IV) oxide, zirconium(IV)
hydrogenphosphate, zirconium(IV) chloride, tetrachlorobis(tetrahydrofuran)zirconium,
zirconium (IV) dichloride oxide hydrate, zirconium(IV) bromide, zirconium(IV) iodide,
zirconium(IV) fluoride, tetrabenzylzirconium, tetrakis(diethylamino)zirconium, zirconium(IV)
acetylacetonate, or similar zirconium compounds. Any one of these zirconium compounds
described above can be used as the zirconium compound of the present disclosure. Preferred
zirconium compounds are zirconium(IV) chloride, zirconium(IV) oxide, and zirconium(IV)
alkoxides. The zirconium reactants can also be the zirconium compound of the present
disclosure. The zirconium complexes described herein are oil-soluble or oil dispersible.
[0044] In one embodiment, the zirconium compound can be a zirconium alkoxide compound. For
example, the zirconium alkoxides can be of the form Zr(OR
A)
nL
X where R
A is a linear, cyclic, or branched, saturated or unsaturated, aliphatic hydrocarbon
moiety having from 1 to about 30 carbon atoms, n is an integer from 0 to 4, L is absent
or a ligand that saturates the coordination sphere of zirconium, and
x is an integer from 0 to 4. In certain embodiments the Ligand, L, is selected from
the group consisting of water, hydroxide, alkoxide, oxo, phosphine, phosphite, ammonia,
amino, amido, halide, and combinations thereof. Examples include, but are not limited
to zirconium(IV) n-butoxide, zirconium(IV) t-butoxide, zirconium(IV) n-propoxide,
zirconium(IV) i-propoxide, zirconium(IV) ethoxide and combinations thereof.
[0045] In one embodiment, the zirconium compound can be a colloidal dispersion of zirconia.
For example, zirconia has the net molecular formula of ZrO
2, but can comprise of repeating [Zr-O-Zr]
n units. In certain embodiments, the colloidal dispersion of zirconia will comprise
of nanoparticle size < 100 nm average particle size as determined by TEM. To assist
in the dispersion of the colloidal particles, a solvent can be added. In some embodiments,
the solvent can be glycol ethers such as Propyl CELLOSOLVE
™ (Dow), Butyl CELLOSOLVE
™ (Dow), Hexyl CELLOSOLVE
™ (Dow), CARBITOL
™ (Dow), Methyl CARBITOL
™ (Dow), Butyl CARBITOL
™ (Dow), Hexyl CARBITOL
™ (Dow), Methoxytriglycol (Dow), Ethoxytrigylcol (Dow), Butoxytriglycol (Dow), Eastman
™ DB Solvent, Eastman
™ DE Solvent, Eastman
™ DP Solvent, Eastman
™ EP Solvent, Eastman
™ EP Solvent, Eastman
™ EEH Solvent, or related species. In some embodiments, the solvents can be reduced
or unsaturated fatty acids such as oleic acid, lauric acid, stearic acid, and palmitic
acid and related species, or synthetic carboxylic acids such as ExxonMobil
™ neopentanoic acid, ExxonMobil
™ neodecanoic acid, Eastman
™ 2-Ethylhaxanoic Acid, or other related species. Generally, the amount of the colloidal
dispersion of zirconia can be from about 0.01 wt. % to about 5 wt. % if a solvent
is used.
[0046] In one embodiment, the zirconium compound can be a zirconium amido compound. For
example, the zirconium amido compound can be of the form Zr(NR
B)
nL
X where R
B is a linear, cyclic, or branched, and saturated or unsaturated, aliphatic hydrocarbon
moiety having from 1 to about 30 carbon atoms,
n is an integer from 0 to 4, L is absent or a ligand that saturates the coordination
sphere of zirconium, and
x is an integer from 0 to 4. In certain embodiments the Ligand, L, is selected from
the group consisting of water, hydroxide, alkoxide, oxo, phosphine, phosphite, ammonia,
amino, amido, halide, and combinations thereof.
[0047] In one embodiment, the zirconium compound can be a zirconium acetylacetonate compound.
For example, the zirconium acetylacetonate is of the following Formula 1:
where Rc can be a symmetric or asymmetric linear, cyclic, or branched, saturated or
unsaturated, aliphatic hydrocarbon moiety having from 1 to about 30 carbon atoms,
or an aromatic moiety,
n is an integer from 0 to 4, L is absent or a ligand that saturates the coordination
sphere of zirconium, and
x is an integer from 0 to 4. In certain embodiments the Ligand, L, is selected from
the group consisting of water, hydroxide, alkoxide, oxo, phosphine, phosphite, ammonia,
amino, amido, halide, and combinations thereof.
[0048] In one embodiment, the zirconium compound can be a zirconium carboxylate. For example,
the zirconium carboxylate is of the following Formula 2:
where R
D can be a linear, cyclic, or branched, saturated or unsaturated, aliphatic hydrocarbon
moiety having from 1 to about 30 carbon atoms, or aromatic and alkylaromatic rings
with alkyl groups that can be linear, cyclic, or branched, and saturated or unsaturated,
aliphatic hydrocarbon moiety having from 1 to about 30 carbon atoms,
n is an integer from 0 to 4, L is a ligand that saturates the coordination sphere of
zirconium, and
x is an integer from 0 to 4. In certain embodiments, the Ligand, L, is absent or selected
from the group consisting of water, hydroxide, alkoxide, oxo, phosphine, phosphite,
ammonia, amino, amido, halide, and combinations thereof. For example, the zirconium
carboxylate can be Zirconium (IV) 2-ethylhexanoate or a zirconium fatty acid such
as zirconium (IV) stearate.
[0049] In one embodiment, the zirconium compound can be a zirconium salicylate. For example,
the zirconium carboxylate is of the following Formula 3:
where R
E is a hydrogen atom, a linear, cyclic, or branched, saturated or unsaturated, aliphatic
hydrocarbon moiety having from 1 to about 40 carbon atoms,
p is an integer from 1 to 4,
n is an integer from 0 to 4, L is absent or a ligand that saturates the coordination
sphere of zirconium, and
x is an integer from 0 to 4. Particularly, n is an integer from 0 to 2. In certain
embodiments, the Ligand, L, is selected from the group consisting of water, hydroxide,
alkoxide, oxo, phosphine, phosphite, ammonia, amino, amido, halide, and combinations
thereof. In some embodiments, alkali earth metals such as magnesium, calcium, strontium,
and barium may be added. Alkali earth metals are typically basic salts which can include,
but are not limited to, metal oxides, metal alkoxides, metal carbonates, and metal
bicarbonates.
[0050] In another embodiment, the zirconium compound can be a zirconium arylsulfonate. For
example, the zirconium arylsufonate is of the following Formula 4:
where R
J is a hydrogen atom, a linear, cyclic, or branched, saturated or unsaturated, aliphatic
hydrocarbon moiety having from 1 to about 40 carbon atoms,
p is an integer from 1 to 5,
n is an integer from 0 to 4, L is a ligand that saturates the coordination sphere of
zirconium, and
x is an integer from 0 to 4. Particularly,
n is an integer from 0 to 2. Particularly, p is 1 or 2. In certain embodiments the
Ligand, L, is absent or selected from the group consisting of water, hydroxide, alkoxide,
oxo, phosphine, phosphite, ammonia, amino, amido, halide, and combinations thereof.
In some embodiments, alkali earth metals such as magnesium, calcium, strontium, and
barium may be added. Alkali earth metals are typically basic salts which can include,
but are not limited to, metal oxides, metal alkoxides, metal carbonates, and metal
bicarbonates..
[0051] In one embodiment, the zirconium compound can be a zirconium sulfurized or unsulfurized
phenate. For example, the zirconium sulfurized or unsulfurized phenate is of the following
Formula 5:
where R
K is a hydrogen atom, a linear, cyclic, or branched, saturated or unsaturated, aliphatic
hydrocarbon moiety having from 1 to about 40 carbon atoms, x' is 0 or an integer from
1 to about 8,
n is an integer from 1 to about 15, L is absent or a ligand that saturates the coordination
sphere of zirconium, and
x is an integer from 0 to 4. In some embodiments, there is no phosphorous present.
In some embodiments, calcium carbonate may be added. In certain embodiments, the Ligand,
L, is selected from the group consisting of water, hydroxide, alkoxide, oxo, phosphine,
phosphite, ammonia, amino, amido, halide, and combinations thereof.
[0052] In one embodiment, the zirconium compound can be a dialkyl, dihalo or thiocarbamto,
thiophosphato bis(cyclopentadienyl)zirconium compound. Other related zirconium metallocene
complexes are known to a person of ordinary skill in the art and may be used in the
lubricating oil compositions disclosed herein. For example, the zirconium metallocene
is of the following Formula 6:
where each R
F is a hydrogen atom, a linear, cyclic, or branched, saturated or unsaturated, aliphatic
hydrocarbon moiety having from 1 to about 30 carbon atoms,
n is an integer from 0 to 5, X is a linear, cyclic, or branched, saturated or unsaturated,
aliphatic hydrocarbon moiety having from 1 to about 30 carbon atoms; a halogen substituent
selected from fluoride, chloride, bromide, and iodide, or thiocarbamto ligand of Formula
7:
where each R
G is independently selected from a linear, cyclic, or branched, saturated or unsaturated,
aliphatic hydrocarbon moiety having from 1 to about 30 carbon atoms, or thiophosphato
ligand of Formula 8:
where each R
H is independently selected from linear, cyclic, or branched, saturated or unsaturated,
aliphatic hydrocarbon moiety having from 1 to about 30 carbon atoms. Those skilled
in the art will appreciate the zirconium metallocene will contain the appropriate
number of X ligands to result in a formally neutral complex.
[0053] In one embodiment, the zirconium compound can be a dithiocarbamato zirconium complex.
For example, the zirconium dithiocarbamato is of Formula 9:
where each R
G is independently a linear, cyclic, or branched, saturated or unsaturated, aliphatic
hydrocarbon moiety having from 1 to about 30 carbon atoms,
n is an integer from 0 to 4, L is absent or a ligand that saturates the coordination
sphere of zirconium, and
x is an integer from 0 to 4. In certain embodiments the Ligand, L, is selected from
the group consisting of water, hydroxide, alkoxide, oxo, phosphine, phosphite, ammonia,
amino, amido, halide, and combinations thereof.
[0054] In one embodiment, the zirconium compound can be a dithiophosphato zirconium complex.
For example, the zirconium dithiophosphato is of Formula 10:
where each R
H is independently a linear, cyclic, or branched, saturated or unsaturated, aliphatic
hydrocarbon moiety having from 1 to about 30 carbon atoms,
n is an integer from 0 to 4, L absent or is a ligand that saturates the coordination
sphere of zirconium, and
x is an integer from 0 to 4. In certain embodiments the Ligand, L, is selected from
the group consisting of water, hydroxide, alkoxide, oxo, phosphine, phosphite, ammonia,
amino, amido, halide, and combinations thereof.
[0055] In one embodiment, the zirconium compound can be a salen zirconium complex. For example,
the zirconium salen is of Formula 11:
where each R
M is independently a hydrogen atom, or a linear, cyclic, or branched, saturated or
unsaturated, hydrocarbon moiety having from 1 to about 40 carbon atoms, each Y is
independently -C(R
M")
z where each R
M" is a hydrogen atom, a linear, cyclic, or branched, saturated or unsaturated, aliphatic
hydrocarbon moiety having from 1 to about 20 carbon atoms, or an aromatic ring,
z is 1 or 2 when each N is imido or amino, respectively, each R
M' is independently a hydrogen atom,a linear, cyclic, or branched, saturated or unsaturated,
aliphatic chains hydrocarbon moiety having from 1 to about 20 carbon atoms, or taken
together with the atoms to which they are connected form a 5-, 6-, or 7-membered ring
(can be aromatic, completely saturated, or contain varying levels of unsaturation),
n is an integer from 0 to 2, L is absent or a ligand that saturates the coordination
sphere of zirconium, and
x is an integer from 0 to 4. In certain embodiments the Ligand, L, is selected from
the group consisting of water, hydroxide, alkoxide, oxo, phosphine, phosphite, ammonia,
amino, amido, halide, and combinations thereof.
[0056] In one embodiment, the zirconium compound can be a phosphate ester, phospinate, or
phosphinite zirconium complex. For example, the zirconium phosphate esters, phosphite,
phospinates, or phosphinites are of the following Formula12:
where W is an oxo or an unbonded pair of electrons when the phosphorous atom is in
the +5 or +3 oxidation state, respectively, each R
N is independently a linear, cyclic, or branched, saturated or unsaturated, aliphatic
hydrocarbon moiety having from 1 to about 30 carbon atoms, an aromatic ring or an
alkoxide moiety,
n is an integer from 0 to 4, L is absent or a ligand that saturates the coordination
sphere of zirconium, and
x is an integer from 0 to 4. In some embodiments, the zirconium phosphate esters, phosphite,
phospinates, and phosphinites structures are dimeric with bridging ligand groups.
In certain embodiments the Ligand, L, is selected from the group consisting of water,
hydroxide, alkoxide, oxo, phosphine, phosphite, ammonia, amino, amido, halide, and
combinations thereof.
[0057] In one embodiment, the zirconium compound can be pyridyl, polypyridyl, and quinolinolato
zirconium complexes. For example, pyridyl, polypyridyl, and quinolinolato complexes
of zirconium are of the following Formula13:
where each Ro is independently a hydrogen atom or a linear, cyclic, or branched, saturated
or unsaturated, aliphatic hydrocarbon moiety having from 1 to about 40 carbon atoms,
or a pyridyl ring typically substituted at the 2 position which can be unfuctionalized
or can be connected to the other functionalized pyridyl rings to make fused ring systems
commonly referred to 8-hydroxyquinolines, quinolines, or phenanthrolines,
n is an integer from 0 to 4, L is absent or a ligand that saturates the coordination
sphere of zirconium, and
x is an integer from 0 to 4. In certain embodiments the Ligand, L, is selected from
the group consisting of water, hydroxide, alkoxide, oxo, phosphine, phosphite, ammonia,
amino, amido, halide, and combinations thereof.
[0058] In one embodiment, a zirconium reactant can be complexed to a basic nitrogen dispersant
succinimide. The basic nitrogen succinimide used to prepare the zirconium complexes
has at least one basic nitrogen and is preferably oil-soluble. The succinimide compositions
may be post-treated with, e.g., boron, using procedures well known in the art so long
as the compositions continue to contain basic nitrogen. The mono and polysuccinimides
that can be used to prepare the zirconium complexes described herein are disclosed
in numerous references and are well known in the art. Certain fundamental types of
succinimides and the related materials encompassed by the term of art "succinimide"
are taught in U.S. Pat. No's. 3,219,666; 3,172,892; and 3,272,746, the disclosures
of which are hereby incorporated by reference. The term "succinimide" is understood
in the art to include many of the amide, imide, and amidine species which may also
be formed. The predominant product however is a succinimide and this term has been
generally accepted as meaning the product of a reaction of an alkenyl substituted
succinic acid or anhydride with a nitrogen-containing compound. Preferred succinimides,
because of their commercial availability, are those succinimides prepared from a hydrocarbyl
succinic anhydride, wherein the hydrocarbyl group contains from about 24 to about
350 carbon atoms, and an ethylene amine, said ethylene amines being especially characterized
by ethylene diamine, diethylene triamine, triethylene tetramine, and tetraethylene
pentamine. Particularly preferred are those succinimides prepared from polyisobutenyl
succinic anhydride of 70 to 128 carbon atoms and tetraethylene pentamine or triethylene
tetramine or mixtures thereof. Also included within the term "succinimide" are the
cooligomers of a hydrocarbyl succinic acid or anhydride and a poly secondary amine
containing at least one tertiary amino nitrogen in addition to two or more secondary
amino groups. Ordinarily this composition has between 1,500 and 50,000 average molecular
weight. A typical compound would be that prepared by reacting polyisobutenyl succinic
anhydride and ethylene dipiperazine.
[0059] Succinimides having an average molecular weight of 1000 or 1300 or 2300 and mixtures
thereof are most preferred.
[0060] In another embodiment, the zirconium compound can be a stable colloidal suspension.
For example,
US Pat. 7,884,058 incorporated herein by reference, discloses stable colloidal suspensions of various
inorganic oxides. These can be prepared in the presence of an oil phase with a dispersing
agent that includes polyalkylene succinic anhydrides, non-nitrogen containing derivatives
of a polyalkylene succinic anhydride selected from the group consisting of a polyalkylene
succinic acid, a Group I and/or Group II mono- or di-salt of a polyalkylene succinic
acid, a polyalkylene succinate ester formed by the reaction of a polyalkylene succinic
anhydride or an acid chloride with an alcohol and mixtures thereof, and mixtures thereof
and a diluent oil, wherein the stable colloidal suspension is substantially clear.
[0061] Generally, the amount of the zirconium containing compound can be from about 0.001
wt. % to about 25 wt. %, from about 0.05 wt. % to about 20 wt. %, or from about 0.1
wt. % to about 15 wt. %, or from about 0.5 wt. % to about 5 wt. %, from about, 1.0
wt. % to about 4.0 wt. %, based on the total weight of the lubricating oil composition.
[0062] In an aspect, the present disclosure provides a lubricating engine oil composition
for a direct injected, boosted, spark ignited internal combustion engine comprising
at least one zirconium-containing compound. In one embodiment, the amount of metal
from the at least one zirconium compound is from about 50 to about 3000 ppm, from
about 100 to about 3000 ppm, from about 200 to about 3000 ppm, or from about 250 to
about 2500 ppm, from about 300 to about 2500 ppm, from about 350 to about 2500 ppm,
from about 400 ppm to about 2500 ppm, from about 500 to about 2500 ppm, from about
600 to about 2500 ppm, from about 700 to about 2500 ppm, from about 700 to about 2000
ppm, from about 700 to about 1500 ppm. In one embodiment, the amount of metal from
the zirconium containing compound is no more than about 2000 ppm or no more than about
1500 ppm.
[0063] In one embodiment, the zirconium-containing compound can be combined with conventional
lubricating oil detergent additives which contain magnesium and/or calcium. In one
embodiment the calcium detergent(s) can be added in an amount sufficient to provide
the lubricating oil composition from 0 to about 2400 ppm of calcium metal, from 0
to about 2200 ppm of calcium metal, from 100 to about 2000 ppm of calcium metal, from
200 to about 1800 ppm of calcium metal, or from about 100 to about 1800 ppm, or from
about 200 to about 1500 ppm, or from about 300 to about 1400 ppm, or from about 400
to about 1400 ppm, of calcium metal in the lubricating oil composition. In one embodiment
the magnesium detergent(s) can be added in an amount sufficient to provide the lubricating
oil composition from about 100 to about 1000 ppm of magnesium metal, or from about
100 to about 600 ppm, or from about 100 to about 500 ppm, or from about 200 to about
500 ppm of magnesium metal in the lubricating oil composition.
[0064] In one embodiment, the zirconium-containing compound can be combined with conventional
lubricating oil detergent additives which contain lithium. In one embodiment the lithium
detergent(s) can be added in an amount sufficient to provide the lubricating oil composition
from 0 to about 2400 ppm of lithium metal, from 0 to about 2200 ppm of lithium metal,
from 100 to about 2000 ppm of lithium metal, from 200 to about 1800 ppm of lithium
metal, or from about 100 to about 1800 ppm, or from about 200 to about 1500 ppm, or
from about 300 to about 1400 ppm, or from about 400 to about 1400 ppm, of lithium
metal in the lubricating oil composition.
[0065] In one embodiment, the zirconium-containing compound can be combined with conventional
lubricating oil detergent additives which contain sodium. In one embodiment the sodium
detergent(s) can be added in an amount sufficient to provide the lubricating oil composition
from 0 to about 2400 ppm of sodium metal, from 0 to about 2200 ppm of sodium metal,
from 100 to about 2000 ppm of sodium metal, from 200 to about 1800 ppm of sodium metal,
or from about 100 to about 1800 ppm, or from about 200 to about 1500 ppm, or from
about 300 to about 1400 ppm, or from about 400 to about 1400 ppm, of sodium metal
in the lubricating oil composition.
[0066] In one embodiment, the zirconium-containing compound can be combined with conventional
lubricating oil detergent additives which contain potassium. In one embodiment the
potassium detergent(s) can be added in an amount sufficient to provide the lubricating
oil composition from 0 to about 2400 ppm of potassium metal, from 0 to about 2200
ppm of potassium metal, from 100 to about 2000 ppm of potassium metal, from 200 to
about 1800 ppm of potassium metal, or from about 100 to about 1800 ppm, or from about
200 to about 1500 ppm, or from about 300 to about 1400 ppm, or from about 400 to about
1400 ppm, of potassium metal in the lubricating oil composition.
[0067] In one embodiment, the disclosure provides a lubricating engine oil composition comprising
a lubricating oil base stock as a major component; and at least one zirconium-containing
compound, as a minor component; and wherein the engine exhibits greater than 50% reduced
low speed pre-ignition, based on normalized low speed pre-ignition (LSPI) counts per
100,000 engine cycles, engine operation at between 500 and 3,000 revolutions per minute
and brake mean effective pressure (BMEP) between 10 and 30 bar, as compared to low
speed pre-ignition performance achieved in an engine using a lubricating oil that
does not comprise the at least one zirconium-containing compound.
[0068] In one aspect, the disclosure provides a lubricating engine oil composition for use
in a down-sized boosted engine comprising a lubricating oil base stock as a major
component; and at least one zirconium-containing compound, as a minor component; where
the downsized engine ranges from about 0.5 to about 3.6 liters, from about 0.5 to
about 3.0 liters, from about 0.8 to about 3.0 liters, from about 0.5 to about 2.0
liters, or from about 1.0 to about 2.0 liters. The engine can have two, three, four,
five or six cylinders.
[0069] In an aspect, the present disclosure provides the use of a at least one zirconium-containing
compound for preventing or reducing low speed pre-ignition in a direct injected, boosted,
spark ignited internal combustion engine.
Lubricating Oil Additives
[0070] In addition to the zirconium compound described herein, the lubricating oil composition
can comprise additional lubricating oil additives.
[0071] The lubricating oil compositions of the present disclosure may also contain other
conventional additives that can impart or improve any desirable property of the lubricating
oil composition in which these additives are dispersed or dissolved. Any additive
known to a person of ordinary skill in the art may be used in the lubricating oil
compositions disclosed herein. Some suitable additives have been described in
Mortier et al., "Chemistry and Technology of Lubricants", 2nd Edition, London, Springer,
(1996); and
Leslie R. Rudnick, "Lubricant Additives: Chemistry and Applications", New York, Marcel
Dekker (2003), both of which are incorporated herein by reference. For example, the lubricating
oil compositions can be blended with antioxidants, anti-wear agents, metal detergents,
rust inhibitors, dehazing agents, demulsifying agents, metal deactivating agents,
friction modifiers, pour point depressants, antifoaming agents, co-solvents, corrosion-inhibitors,
ashless dispersants, multifunctional agents, dyes, extreme pressure agents and the
like and mixtures thereof. A variety of the additives are known and commercially available.
These additives, or their analogous compounds, can be employed for the preparation
of the lubricating oil compositions of the disclosure by the usual blending procedures.
[0072] The lubricating oil composition of the present invention can contain one or more
detergents. Metal-containing or ash-forming detergents function as both detergents
to reduce or remove deposits and as acid neutralizes or rust inhibitors, thereby reducing
wear and corrosion and extending engine life. Detergents generally comprise a polar
head with a long hydrophobic tail. The polar head comprises a metal salt of an acidic
organic compound. The salts may contain a substantially stoichiometric amount of the
metal in which case they are usually described as normal or neutral salts. A large
amount of a metal base may be incorporated by reacting excess metal compound (e.g.,
an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide).
[0073] Detergents that may be used include oil-soluble neutral and overbased sulfonates,
phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and
other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth
metals, e.g., barium, sodium, potassium, lithium, calcium, and magnesium. The most
commonly used metals arc calcium and magnesium, which may both be present in detergents
used in a lubricant, and mixtures of calcium and/or magnesium with sodium.
[0074] The lubricating oil composition of the present invention can contain one or more
anti-wear agents that can reduce friction and excessive wear. Any anti-wear agent
known by a person of ordinary skill in the art may be used in the lubricating oil
composition. Non-limiting examples of suitable anti-wear agents include zinc dithiophosphate,
metal (e.g., Pb, Sb, Mo and the like) salts of dithiophosphates, metal (e.g., Zn,
Pb, Sb, Mo and the like) salts of dithiocarbamates, metal (e.g., Zn, Pb, Sb and the
like) salts of fatty acids, boron compounds, phosphate esters, phosphite esters, amine
salts of phosphoric acid esters or thiophosphoric acid esters, reaction products of
dicyclopentadiene and thiophosphoric acids and combinations thereof. The amount of
the anti-wear agent may vary from about 0.01 wt. % to about 5 wt. %, from about 0.05
wt. % to about 3 wt. %, or from about 0.1 wt. % to about 1 wt. %, based on the total
weight of the lubricating oil composition.
[0075] In certain embodiments, the anti-wear agent is or comprises a dihydrocarbyl dithiophosphate
metal salt, such as zinc dialkyl dithiophosphate compounds. The metal of the dihydrocarbyl
dithiophosphate metal salt may be an alkali or alkaline earth metal, or aluminum,
lead, tin, molybdenum, manganese, nickel or copper. In some embodiments, the metal
is zinc. In other embodiments, the alkyl group of the dihydrocarbyl dithiophosphate
metal salt has from about 3 to about 22 carbon atoms, from about 3 to about 18 carbon
atoms, from about 3 to about 12 carbon atoms, or from about 3 to about 8 carbon atoms.
In further embodiments, the alkyl group is linear or branched.
[0076] The amount of the dihydrocarbyl dithiophosphate metal salt including the zinc dialkyl
dithiophosphate salts in the lubricating oil composition disclosed herein is measured
by its phosphorus content. In some embodiments, the phosphorus content of the lubricating
oil composition disclosed herein is from about 0.01 wt. % to about 0.14 wt. %, based
on the total weight of the lubricating oil composition.
[0077] The lubricating oil composition of the present invention can contain one or more
friction modifiers that can lower the friction between moving parts. Any friction
modifier known by a person of ordinary skill in the art may be used in the lubricating
oil composition. Non-limiting examples of suitable friction modifiers include fatty
carboxylic acids; derivatives (e.g., alcohol, esters, borated esters, amides, metal
salts and the like) of fatty carboxylic acid; mono-, di- or tri-alkyl substituted
phosphoric acids or phosphonic acids; derivatives (e.g., esters, amides, metal salts
and the like) of mono-, di- or tri-alkyl substituted phosphoric acids or phosphonic
acids; mono-, di- or tri-alkyl substituted amines; mono- or di-alkyl substituted amides
and combinations thereof. In some embodiments examples of friction modifiers include,
but are not limited to, alkoxylated fatty amines; borated fatty epoxides; fatty phosphites,
fatty epoxides, fatty amines, borated alkoxylated fatty amines, metal salts of fatty
acids, fatty acid amides, glycerol esters, borated glycerol esters; and fatty imidazolines
as disclosed in
U.S. Patent No. 6,372,696, the contents of which are incorporated by reference herein; friction modifiers obtained
from a reaction product of a C
4 to C
75, or a C
6 to C
24, or a C
6 to C
20, fatty acid ester and a nitrogen-containing compound selected from the group consisting
of ammonia, and an alkanolamine and the like and mixtures thereof. The amount of the
friction modifier may vary from about 0.01 wt. % to about 10 wt. %, from about 0.05
wt. % to about 5 wt. %, or from about 0.1 wt. % to about 3 wt. %, based on the total
weight of the lubricating oil composition.
[0078] The lubricating oil composition of the disclosure can contain a molybdenum-containing
friction modifier. The molybdenum-containing friction modifier can be any one of the
known molybdenum-containing friction modifiers or the known molybdenum-containing
friction modifier compositions.
[0079] Preferred molybdenum-containing friction modifier is, for example, sulfurized oxymolybdenum
dithiocarbamate, sulfurized oxymolybdenum dithiophosphate, amine-molybdenum complex
compound, oxymolybdenum diethylate amide, and oxymolybdenum monoglyceride. Most preferred
is a molybdenum dithiocarbamate friction modifier.
[0080] The lubricating oil composition of the invention generally contains the molybdenum-containing
friction modifier in an amount of 0.01 to 0.15 wt. % in terms of the molybdenum content.
[0081] The lubricating oil composition of the invention preferably contains an organic oxidation
inhibitor in an amount of 0.01-5 wt. %, preferably 0.1-3 wt. %. The oxidation inhibitor
can be a hindered phenol oxidation inhibitor or a diarylamine oxidation inhibitor.
The diarylamine oxidation inhibitor is advantageous in giving a base number originating
from the nitrogen atoms. The hindered phenol oxidation inhibitor is advantageous in
producing no NOx gas.
[0082] Examples of the hindered phenol oxidation inhibitors include 2,6-di-t-butyl-p-cresol,
4,4'-methylenebis(2,6-di-t-butylphenol), 4,4'-methylenebis(6-t-butyl-o-cresol), 4,4'-isopropylidenebis(2,6-di-t-butylphenol),
4,4'-bis(2,6-di-t-butylphenol), 2,2'-methylenebis(4-methyl-6-t-butylphenol), 4,4'-thiobis(2-methyl-6-t-butylphenol),
2,2-thio-diethylenebis[3-(3 ,5-di-t-butyl-4-hydroxyphenyl)propionate], octyl 3 -(3,5
-di-t-butyl-4-hydroxyphenyl)propionate, octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate,
and octyl 3-(3,54-butyl-4-hydroxy-3-methylphenyl)propionate, and commercial products
such as, but not limited to, Irganox L135
® (BASF), Naugalube 531
® (Chemtura), and Ethanox 376
® (SI Group).
[0083] Examples of the diarylamine oxidation inhibitors include alkyldiphenylamine having
a mixture of alkyl groups of 4 to 9 carbon atoms, p,p'-dioctyldiphenylamine, phenyl-naphthylamine,
phenyl-naphthylamine, alkylated-naphthylamine, and alkylated phenyl-naphthylamine.
[0084] Each of the hindered phenol oxidation inhibitor and diarylamine oxidation inhibitor
can be employed alone or in combination. If desired, other oil soluble oxidation inhibitors
can be employed in combination with the above-mentioned oxidation inhibitor(s).
[0085] The lubricating oil composition of the invention may further contain an oxymolybdenum
complex of succinimide, particularly a sulfur-containing oxymolybdenum complex of
succinimide. The sulfur-containing oxymolybdenum complex of succinimide can provide
increased oxidation inhibition when it is employed in combination with the above-mentioned
phenolic or amine oxidation inhibitors.
[0086] In the preparation of lubricating oil formulations, it is common practice to introduce
the additives in the form of 10 to 80 wt. % active ingredient concentrates in hydrocarbon
oil, e.g. mineral lubricating oil, or other suitable solvent.
[0087] Usually these concentrates may be diluted with 3 to 100, e.g., 5 to 40, parts by
weight of lubricating oil per part by weight of the additive package in forming finished
lubricants, e.g. crankcase motor oils. The purpose of concentrates, of course, is
to make the handling of the various materials less difficult and awkward as well as
to facilitate solution or dispersion in the final blend.
Processes of Preparing Lubricating Oil Compositions
[0088] The lubricating oil compositions disclosed herein can be prepared by any method known
to a person of ordinary skill in the art for making lubricating oils. In some embodiments,
the base oil can be blended or mixed with the zirconium-containing compounds described
herein. Optionally, one or more other additives in additional to the zirconium-containing
compounds can be added. The zirconium-containing compounds and the optional additives
may be added to the base oil individually or simultaneously. In some embodiments,
the zirconium-containing compounds and the optional additives are added to the base
oil individually in one or more additions and the additions may be in any order. In
other embodiments, the zirconium-containing compounds and the additives are added
to the base oil simultaneously, optionally in the form of an additive concentrate.
In some embodiments, the solubilizing of the zirconium-containing compounds or any
solid additives in the base oil may be assisted by heating the mixture to a temperature
from about 25 °C to about 200 °C, from about 50 °C to about 150 °C or from about 75
°C to about 125 °C.
[0089] Any mixing or dispersing equipment known to a person of ordinary skill in the art
may be used for blending, mixing or solubilizing the ingredients. The blending, mixing
or solubilizing may be carried out with a blender, an agitator, a disperser, a mixer
(
e.
g., planetary mixers and double planetary mixers), a homogenizer (
e.
g., Gaulin homogenizers and Rannie homogenizers), a mill (
e.g., colloid mill, ball mill and sand mill) or any other mixing or dispersing equipment
known in the art.
Application of the Lubricating Oil Compositions
[0090] The lubricating oil composition disclosed herein may be suitable for use as motor
oils (that is, engine oils or crankcase oils), in a spark-ignited internal combustion
engine, particularly a direct injected, boosted, engine that is susceptible to low
speed pre-ignition.
[0091] The following examples are presented to exemplify embodiments of the invention but
are not intended to limit the invention to the specific embodiments set forth. Unless
indicated to the contrary, all parts and percentages are by weight. All numerical
values are approximate. When numerical ranges are given, it should be understood that
embodiments outside the stated ranges may still fall within the scope of the invention.
Specific details described in each example should not be construed as necessary features
of the invention.
EXAMPLES
[0092] The following examples are intended for illustrative purposes only and do not limit
in any way the scope of the present invention.
Baseline Formulation
[0093] The base line formulation contained a Group 3 base oil, a mixture of primary and
secondary dialkyl zinc dithiophosphates in an amount to provide 792 ppm phosphorus
to the lubricating oil composition, a mixture of polyisobutenyl succinimide dispersants
(borated and ethylene carbonate post-treated), a molybdenum succinimide complex in
an amount to provide 192 ppm molybdenum to the lubricating oil composition, an alkylated
diphenylamine antioxidant, a borated friction modifier, a foam inhibitor, a pour point
depressant, and an olefin copolymer viscosity index improver.
[0094] The lubricating oil compositions were blended into a 5W-30 or 10W-30 viscosity grade
oil.
Zirconium compound A
[0095] The zirconium compound A was a commercially available zirconium compound which was
Zirconium(IV) 2-ethylhexanoate (6% Zr) with the chemical formula Zr(C
8H
15O
2)
4.
Zirconium compound B
[0096] The zirconium compound B was a commercially available zirconium compound which was
Zirconium(IV) tert-butoxide (5.89% Zr) with the chemical formula Zr(OC(CH
3)
3)
4
Zirconium compound C
[0097] Zirconium compound C was a Zirconium(IV) Salicylate prepared as in the reaction scheme
below:.
[0098] Substituted salicylic acid above (182.3 g, 0.405 moles, 2 equiv) was dissolved in
200 mL of toluene and heated to 70°C. When a clear solution of the salicylate in toluene
was observed, zirconium propoxide 94.8 g, 0.20 mol, 1.0 equiv, 70% in propanol) was
added to the reaction mixture. The reaction mixture was then heated at reflux for
3 hours. The reaction mixture was cooled to ambient temperature and the solvent was
removed under reduced pressure. The resultant product was afforded as a brown, low
viscosity oil compound containing 9.63 wt% Zr as determined by ICP-AES.
Zirconium compound D
[0099] Zirconium compound D was a commercially available compound Zirconium(IV) bis(acetylacetonato)
dibutoxide) with chemical formula Zr(CH
3COCHCOCH
3)
2 (O(CH
2)
3CH
3)
2.
Example 1
[0100] A lubricating oil composition was prepared by adding 1049 ppm of zirconium from the
zirconium-containing compound A and 2192 ppm of calcium from a combination of overbased
Ca sulfonate and phenate detergents to the baseline formulation.
Example 2
[0101] A lubricating oil composition was prepared by adding 491 ppm of zirconium from the
zirconium-containing compound A and 1876 ppm of calcium from a combination of overbased
Ca sulfonate and phenate detergents to the baseline formulation.
Example 3
[0102] A lubricating oil composition was prepared by adding 983 ppm of zirconium from the
zirconium-containing compound A and 1924 ppm of calcium from a combination of overbased
Ca sulfonate and phenate detergents to the baseline formulation.
Example 4
[0103] A lubricating oil composition was prepared by adding 894 ppm of zirconium from the
zirconium-containing compound B and 2230 ppm of calcium from a combination of overbased
Ca sulfonate and phenate detergents to the baseline formulation.
Example 5
[0104] A lubricating oil composition was prepared by adding 895 ppm of zirconium from the
zirconium-containing compound C and 2181 ppm of calcium from a combination of overbased
Ca sulfonate and phenate detergents to the baseline formulation.
Example 6
[0105] A lubricating oil composition was prepared by adding 1000 ppm of zirconium from the
zirconium-containing compound D and 2399 ppm of calcium from a combination of overbased
Ca sulfonate and phenate detergents to the baseline formulation.
Example 7
[0106] A lubricating oil composition was prepared by adding 2196 ppm of zirconium from the
zirconium-containing compound A and 2155 ppm of calcium from a combination of overbased
Ca sulfonate and phenate detergents to the baseline formulation.
Comparative Example 1
[0107] A lubricating oil composition was prepared by adding 2148 ppm of calcium from a combination
of overbased Ca sulfonate phenate detergents to the baseline formulation.
Comparative Example 2
[0108] A lubricating oil composition was prepared by adding 1858 ppm of calcium from a combination
of overbased Ca sulfonate phenate detergents to the baseline formulation.
Comparative Example 3
[0109] A lubricating oil composition was prepared by adding 2399 ppm of calcium from a combination
of overbased Ca sulfonate phenate detergents to the baseline formulation.
LSPI Testing
[0110] Low Speed Pre-ignition events were measured in a Ford 2.0L Ecoboost engine. This
engine is a turbocharged gasoline direct injection (GDI) engine.
[0111] The Ford Ecoboost engine is operated in four-roughly 4 hours iterations. The engine
is operated at 1750 rpm and 1.7 MPa break mean effective pressure (BMEP) with an oil
sump temperature of 95 °C. The engine is run for 175,000 combustion cycles in each
stage, and LSPI events are counted.
[0112] LSPI events are determined by monitoring peak cylinder pressure (PP) and mass fraction
burn (MFB) of the fuel charge in the cylinder. When either or both criteria are met,
it can be said that an LSPI event has occurred. The threshold for peak cylinder pressure
varies by test, but is typically 4-5 standard deviations above the average cylinder
pressure. Likewise, the MFB threshold is typically 4-5 standard deviations earlier
than the average MFB (represented in crank angle degrees). LSPI events can be reported
as average events per test, events per 100,000 combustion cycles, events per cycle,
and/or combustion cycles per event. The results for this test is shown below.
Table 1. Ford LSPI Test Results
|
Ex. 1 |
Ex. 4 |
Ex. 5 |
Ex. 7 |
Comp. Ex. 1 |
Ex. 2 |
Ex. 3 |
Comp Ex. 2 |
Zr (ppm) |
1049 |
894 |
895 |
2196 |
0 |
491 |
983 |
0 |
Ca (ppm) |
2192 |
2230 |
2181 |
2155 |
2148 |
1876 |
1924 |
1858 |
Average Cycles "Both"∗ |
7 |
9.25 |
9.5 |
3.5 |
19.25 |
7.75 |
3.5 |
9.25 |
Average Cycles "Both"∗ > 90 bar |
2.5 |
7.25 |
6.75 |
2.5 |
12 |
3.75 |
2.5 |
4.5 |
Average Cycles "Both"∗ > 100 bar |
1.25 |
5.5 |
5.5 |
2.5 |
11 |
3.25 |
2.5 |
4.25 |
Average Cycles "Both"∗ > 110 bar |
1 |
5 |
5 |
2.25 |
9.5 |
3.25 |
2.25 |
3.75 |
Average Cycles "Both"∗ > 120 bar |
1 |
4.25 |
4 |
2.25 |
8.5 |
2.5 |
2.25 |
3.5 |
∗Counts all cycles of LSPI where both MFB02 and Peak Pressure Requirements are met |
[0113] Additionally, a GM 2.0 L LHU 4-cylinder gasoline turbocharged direct-injected engine
was used for LSPI testing. Each cylinder was equipped with a combustion pressure sensor.
[0114] A six-segment test procedure was used to determine the number of LSPI events that
occurred under conditions of an engine speed of 2000 rpm and a load of 275 Nm. The
LSPI test condition is run for 28 minutes with each segment separated by an idle period.
Each segment is slightly truncated to eliminate the transient portion. Each truncated
segment typically has approximately 110,000 combustion cycles (27,500 combustion cycles
per cylinder). In total, the six truncated segments have approximately 660,000 combustion
cycles (165,000 combustion cycles per cylinder).
[0115] LSPI-impacted combustion cycles were determined by monitoring peak cylinder pressure
(PP) and crank angle at 5% total heat release (AI5). LSPI-impacted combustion cycles
are defined as having both (1) a PP greater than five standard deviations than the
average PP for a given cylinder and truncated segment and (2) an AI5 greater than
five standard deviations less than the average for a given cylinder and truncated
segment.
[0116] The LSPI frequency is reported as the number of LSPI-impacted combustion cycles per
million combustion cycles and is calculated as follows:
[0117] An additive associated with a test lubricant that reduces the LSPI frequency, when
compared to the corresponding baseline lubricant, is considered an additive that mitigates
LSPI frequency. The test results are set forth in Table 2.
Table 2. LSPI Test Results
|
Example 6 |
Comparative Example 3 |
Zr (ppm) |
1000 |
0 |
Ca (ppm) |
2339 |
2339 |
LSPI Activity (events/million combustion cycles) (events/100,000 combustion cycles) |
185 (18.5) |
348 (34.8) |
Reduction in LSPI Activity |
47% |
NA |
[0118] The data shows that Applicant's inventive examples comprising zirconium provided
significantly better LSPI performance both in terms of number of events but also the
number of severe LSPI events than the comparative examples which did not contain zirconium
in the Ford engines. Severity is reduced by decreasing the number of high pressure
events (i.e. over 120 bar) that can damage an engine.
- 1. A method for preventing or reducing low speed pre-ignition in a direct injected,
boosted, spark ignited internal combustion engine, said method comprising the step
of lubricating the crankcase of the engine with a lubricating oil composition comprising
from about 50 to about 3000 ppm of metal from at least one zirconium-containing compound,
based on the total weight of the lubricating oil composition.
- 2. The method of para 1, wherein the engine is operated under a load with a break
mean effective pressure (BMEP) of from about 12 to about 30 bars.
- 3. The method of para 1, wherein the engine is operated at speeds between 500 and
3,000 rpm.
- 4. The method of para 1, wherein the zirconium-containing compound is a zirconium
alkoxide compound, colloidal dispersion of zirconia, zirconium amido compound, zirconium
acetylacetonate compound, zirconium carboxylate, zirconium salicylate, zirconium arylsulfonate,
zirconium sulfurized or unsulfurized phenate, dialkyl, dihalo or thiocarbamto, thiophosphato
bis(cyclopentadienyl)zirconium compound, dithiocarbamato zirconium complex, dithiophosphato
complex, salen zirconium complex, phosphate ester, phospinate, or phosphinite zirconium
complex, pyridyl, polypyridyl, or quinolinolato zirconium complex, zirconium succinimide
complex, or zirconium colloidal suspension.
- 5. The method of para 1, wherein the lubricating oil further comprises a detergent
selected from calcium detergents, magnesium detergents, sodium detergents, lithium
detergents, and potassium detergents.
- 6. The method of para 5, wherein the detergent is a carboxylate, salicylate, phenate,
or sulfonate detergent.
- 7. The method of para 1, wherein the lubricating oil further comprises a molybdenum
containing compound.
- 8. The method of para 1, wherein the lubricant composition further comprises at least
one other additive selected from an ashless dispersant, an ashless antioxidant, a
phosphorus-containing anti-wear additive, a friction modifier, and a polymeric viscosity
modifier.
- 9. A lubricating engine oil composition for a direct injected, boosted, spark ignited
internal combustion engine comprising from about 50 to about 3000 ppm of metal from
at least one zirconium-containing compound, based on the total weight of the lubricating
oil composition.
- 10. The lubricating engine oil of para 9, wherein the zirconium-containing compound
is a zirconium alkoxide compound, colloidal dispersion of zirconia, zirconium amido
compound, zirconium acetylacetonate compound, zirconium carboxylate, zirconium salicylate,
zirconium arylsulfonate, zirconium sulfurized or unsulfurized phenate, dialkyl, dihalo
or thiocarbamto, thiophosphato bis(cyclopentadienyl)zirconium compound, dithiocarbamato
zirconium complex, dithiophosphato complex, salen zirconium complex, phosphate ester,
phospinate, or phosphinite zirconium complex, pyridyl, polypyridyl, or quinolinolato
zirconium complex, zirconium succinimide complex, or zirconium colloidal suspension.
- 11. The lubricating engine oil composition of para 9, wherein the lubricating oil
composition further comprises a detergent selected from calcium detergent, magnesium
detergent, sodium detergent, lithium detergent, and potassium detergent.
- 12. The lubricating engine oil composition of para 11, wherein the detergent is a
carboxylate, salicylate, phenate, or sulfonate detergent.
- 13. The lubricating engine oil composition of para 9, wherein the lubricating oil
composition further comprises a molybdenum containing compound.
- 14. The lubricating engine oil composition of para 9, wherein the lubricating oil
composition further comprises at least one other additive selected from an ashless
dispersant, an ashless antioxidant, a phosphorus- containing anti-wear additive, a
friction modifier, and a polymeric viscosity modifier.
- 15. Use of at least one zirconium-containing compound in a lubricating engine oil
composition, wherein the lubricating engine oil composition prevents or reduces low
speed pre-ignition in a direct injected, boosted, spark ignited internal combustion
engine.
- 16. Use of para 15, wherein the at least one zirconium-containing compound is present
in from about 50 to about 3000 ppm of metal from the at least one zirconium-containing
compound, based on the total weight of the lubricating oil composition.
- 17. Use of a lubricating engine oil composition in a down-sized boosted engine, wherein
the lubricating engine oil composition comprises a lubricating oil base stock as a
major component; and at least one zirconium-containing compound, as a minor component;
wherein the downsized engine ranges from 0.5 liters to 3.6 liters.