BACKGROUND
[0001] The present invention relates to a respirator configured to provide air to a protective
device as defined in the preamble of claim 1. Such a respirator is known from
US 2009/266 361 A1.
[0002] FR 2 867 085 A1 describes an individual adaptive body conditioning device, operating according to
the effective body temperature of the wearer, comprising a garment, and especially
a vest, having ventilation channels communicating with the atmosphere at their entrance
and at their output, at least one temperature sensor sensing the body temperature
of the wearer, a fan supplying the ventilation ducts with ambient air, and a measuring
and analyzing unit connected to the at least one temperature sensor and to the fan.
US 2010/282260 A1 refers to a respirator assembly composed of a respirator, an air purifier, and a
connection tube. The respirator assembly can reduce the frequency of replacing the
respiratory screen and enhance the quality of filtering the air. Limitations and disadvantages
of conventional systems for providing air to an interior of a protective device worn
by a user, such as, for example, powered air purifying respirators, will become apparent
to one of skill in the art, through comparison of such approaches with some aspects
of the present method and system set forth in the remainder of this disclosure with
reference to the drawings.
SUMMARY
[0003] According to the present invention, a respirator as defined in claim 1 is provided.
Further features of said respirator are disclosed in the subclaims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0004] These and/or other aspects will become apparent and more readily appreciated from
the following description of some example embodiments, taken in conjunction with the
accompanying drawings.
FIG. 1A is a drawing of an example of a blower unit providing air to a helmet in accordance
with an embodiment of the disclosure.
FIG. 1B is a drawing of an example of a blower unit providing air to clothing in accordance
with an embodiment of the disclosure.
FIG. 1C is a description of an example of a blower unit in accordance with an embodiment
of the disclosure.
FIG. 1D is a drawing of an example of a blower unit that is a part of a protective
device in accordance with an embodiment of the disclosure.
FIG. 2 is a drawing of an example of a blower unit providing air to a welding helmet
in accordance with an embodiment of the disclosure.
FIG. 3A is a drawing of an example of a user interface on a blower unit for controlling
the blower unit in accordance with an embodiment of the disclosure.
FIG. 3B is a drawing of an example of a user interface on a helmet for controlling
a blower unit in accordance with an embodiment of the disclosure.
FIG. 4 is an example of a flow chart for a blower unit in accordance with an embodiment
of the disclosure.
FIG. 5 is an example of a flow chart for a blower unit in accordance with an embodiment
of the disclosure.
DETAILED DESCRIPTION
[0005] Devices such as a fan for providing air can be used for various purposes, including
cooling the user. However, if the user is wearing a protective device such as a helmet
or protective clothing, then equipment designed for this purpose may be needed to
enable the air to reach the interior of the protective device. This equipment can
be generally referred to in this disclosure as a "blower unit" or "respirator" where
the blower unit or respirator provides air to an interior of the helmet or the protective
clothing to cool the user. Additionally, where the air quality is not very good because
the user is in a dusty, smoky, or other undesirable environment, the air may need
to be filtered before it is provided to the user, especially if the air is provided
to a helmet where the air will be breathed by the user.
[0006] The filtering blower unit is also referred to as powered air purifying respirators
(PAPR) or a respirator, and can be used in conjunction with, for example, welding
helmets in environments where welding fumes can be hazardous or at least irritating
to welders. These systems usually come with either a belt mounted or helmet mounted
blower unit that blows purified air inside a positive pressure enclosure to the welder
via an air duct. The blower unit consists of a fan and motor that drives air through,
for example, a high efficiency particulate air (HEPA) filter to remove harmful and
unwanted particles from the air stream. The filter can be before or after the fan.
[0007] A blower fan may support two or more speeds for the airflow delivered to the protective
device, where the user can have an option to switch among the available speeds. A
higher speed can be more desirable to the user because it provides more airflow to
improve thermal comfort. However, a higher speed consumes more energy requiring more
frequent replacement of batteries, or the user would use (and carry) a heavier battery
pack.
[0008] The present invention refers to a blower unit or respirator, resp., configured to
provide air to a protective device, where the respirator includes a filter configured
to filter the air, a blower fan configured to provide continuous air flow at variable
speeds, an air duct configured to direct air from the blower fan to an exhaust location,
where the blower fan is configured to blow air through the air duct, and a blower
controller configured to control the blower fan to adjust an airflow speed of the
blower fan within an airflow speed range according to an airflow speed pattern. The
airflow speed pattern comprises multiple airflow speeds and each airflow speed is
for a certain corresponding amount of time. The respirator can include a battery as
a source of power for the respirator.
[0009] The respirator comprises at least one sensor configured to detect at least one environmental
condition, and the blower controller is configured to adjust the airflow speed in
response to the detected environmental condition. A sensor can be a temperature sensor,
where the blower controller is configured to adjust the airflow speed according to
the airflow speed pattern in response to detecting that ambient temperature around
the respirator has exceeded a temperature threshold and/or detecting that ambient
temperature in the protective device has exceeded a temperature threshold.
[0010] A sensor can be an air quality sensor, where the blower controller is configured
to adjust the airflow speed according to the airflow speed pattern in response to
detecting that air quality around the respirator has fallen below a pre-determined
air quality threshold and/or detecting that air quality in the protective device has
fallen below a pre-determined air quality threshold.
[0011] The respirator can also comprise a communication circuit configured to receive a
signal, where the blower controller is configured to use the received signal to control
the blower fan to adjust the airflow speed of the blower fan. For example, the communication
circuit can receive external sensor environmental information sensed by an external
sensor device external to the respirator, where the blower controller is configured
to adjust the airflow speed according to the airflow speed pattern in response to
the received external sensor environmental information. The communication circuit
can receive the environment information wirelessly or via a wired circuit.
[0012] The respirator can be set to a different minimum airflow speed including, for example,
160 liters per minute (L/min) or 170 L/min. The minimum speed may depend on where
the respirator is used.
[0013] The airflow speed pattern changes the airflow speed from a first airflow speed to
a second airflow speed and then changes the airflow speed back to the first airflow
speed, where the airflow speed pattern is completed at least once. Increasing the
airflow speed can be at a first airflow change rate, and decreasing the airflow speed
can be at a second airflow change rate, where the first airflow change rate and/or
the second airflow change rate is a variable airflow change rate.
[0014] The respirator is configured to connect to the protective device, such as, for example,
a head worn device and a protective clothing, to provide the air to an interior of
the protective device. The respirator can also comprise a user interface device configured
to receive input from a user, where the blower controller is configured to use the
input to control the blower fan to increase the airflow speed from a lower airflow
speed to a higher airflow speed for a first period of time to a first upper airflow
speed.
[0015] Successive inputs received by the user interface device can also be used to increase
the period of time to longer periods with each successive input until a maximum period
of time is reached. Then, the next input can reduce the time period to the first period
of time. Various embodiments of the disclosure can have different algorithms including,
for example, reducing the time to zero to thereby bring the airflow speed back to
the lower airflow speed.
[0016] Successive inputs received by the user interface device can also be used to increase
the airflow speed from a lower airflow speed to higher airflow speeds with each successive
input until a maximum upper airflow speed is reached. Then, the next input may reduce
the airflow speed to the lower airflow speed or to the next higher airflow speed depending
on the embodiment. Various embodiments may also have separate inputs for the time
period and the airflow speed.
[0017] The respirator is also configured use the input to change the airflow speed pattern
to another airflow speed pattern, or to use the input to control the blower fan to
go from using an airflow speed pattern to output varying air flow to outputting a
substantially constant air flow, or to control the blower fan to go from outputting
a substantially constant air flow to using the airflow speed pattern to output varying
air flow.
[0018] The blower controller is configured to control the blower fan using the airflow speed
pattern by adjusting the airflow speed among a plurality of airflow speeds, where
each of the plurality of airflow speeds is associated with a respective one of a plurality
of time periods. Accordingly, the blower fan blows at a lower airflow speed for a
first period of time and a higher airflow speed for a second period of time, where
at least one of the first period of time and the second period of time is adjustable.
The number of airflow speeds and periods of times are variable depending on the implementation,
and various implementations may allow adjustment of at least one of the airflow speeds
and/or at least one of the periods of time.
[0019] The communication circuit is configured to receive a signal, where the blower controller
uses the received signal to control the blower fan to adjust the airflow speed of
the blower fan. Accordingly, there may be a remote control for the respirator.
[0020] The blower controller can be configured to control the blower fan to adjust the airflow
speed of the blower fan according to the airflow speed pattern for a selected time
period, and to control the blower fan to use another airflow speed pattern when the
selected time period has elapsed.
[0021] A non-claimed example useful for the understanding of the invention is a welding
helmet that includes a blower fan configured to provide continuous flow of air to
an interior of the welding helmet, a blower controller configured to control the blower
fan to adjust an airflow speed of the blower fan within an airflow speed range according
to an airflow speed pattern, a filter to filter the air, and a battery configured
to provide power to the welding helmet.
[0022] A further non-claimed comparison example useful for the understanding of the invention
is a blower device for providing air to a protective device includes a blower fan
configured to provide air flow to an interior of the protective device, a blower controller
configured to control the blower fan to adjust an airflow speed of the blower fan
within an airflow speed range according to an airflow speed pattern, and a battery
configured to provide power to the blower device. The blower device can also include
a filter to filter the air and/or at least one sensor to detect an environmental condition
such as air quality, temperature, and/or humidity, where the blower controller being
configured to adjust the airflow speed in response to the detected environmental condition.
The protective device can be a device that is worn on the head such as, for example,
a helmet, or worn on the body such as clothing or gloves/mittens.
[0023] FIG. 1A is a drawing of an example of a blower unit providing air to a helmet in
accordance with an embodiment of the disclosure. Referring to FIG. 1A, there is shown
a blower unit 100 that is able to provide air to an interior of the helmet 104 via
the tube (or air duct) 102. Some embodiments may not include a filter for the blower
unit 100.
[0024] FIG. 1B is a drawing of an example of a blower unit providing air to clothing in
accordance with an embodiment of the disclosure. Referring to FIG. 1B, there is shown
a blower unit 100 that is able to provide air to the clothing 106 via the tube (or
air duct) 102.
[0025] FIG. 1C is a description of an example of a blower unit in accordance with an embodiment
of the disclosure. Referring to FIG. 1C, there is shown the blower unit 100 with a
blower controller 110, memory 112, user interface 114, communication interface 116,
filter 118, a blower fan 120, and a battery 130. The blower controller 110 can comprise
hardware and/or software (also firmware) that can controller the various parts of
the blower unit 100. The software can be stored in the memory 112, where the memory
112 comprises non-volatile memory, volatile memory, and/or other mass storage device.
The mass storage device can be, for example, a hard drive. The memory 112 can also
store other information such as, for example, airflow speed pattern, minimum and maximum
airflow speeds (rates) for different uses (use in EU, USA), etc. The airflow speed
pattern can comprise the airflow speed for different modes of blower unit 100 operation
and the durations for the different airflow speeds.
[0026] The blower controller 110 can control the speed of the blower fan 120, receive inputs
and output messages via the user interface 114, communicate with other devices via
the communications interface 116, enable use of the filter 118 and/or control power
supplied by the battery 130.
[0027] The user interface 114 can comprise, for example, input devices such as buttons that
can be pushed and/or rotated, number pads, arrow pads, keyboard, mouse, etc. The user
interface 114 can also be a display (LED/LCD text/graphics/video display, LED lights,
etc.) where status and/or messages can be displayed. The user interface 114 can also
comprise a touch sensitive screen, and the touch sensitive screen may also be able
to display text, graphics, and/or video.
[0028] The communication interface 116 can comprise hardware and/or software that can be
used to exchange information with other devices via wireless or wired communication.
The communication can be via protocols such as, for example, WiFi, Bluetooth, USB,
etc. Some of the information that can be received by the blower unit 100 can be environmental
information measured by devices external to the blower unit 100. This information
can be used by the blower controller 110 to determine, for example, the airflow speed
for the blower fan 120, various airflow speed patterns, etc. An airflow speed pattern
causes the blower fan 120 to operate at different speeds, where each speed is for
a certain corresponding amount of time. For example, one airflow speed pattern causes
the blower fan 120 to blow at a first airflow speed for a first period of time and
then for a second airflow speed for a second period of time. This cycle then repeats
continuously. The first airflow speed and the second airflow speed are different,
but the first period of time and the second period of time can be different or the
same.
[0029] The filter 118 is needed to filter the air. The filtering comprises removing particulates,
as well as scrubbing different gases, humidity, and/or odors from the air. This allows
the user to enjoy a better air quality when the air is blown in to the user's protective
device, especially if the protective device is a head worn device such as a helmet.
Even when air is blown in to a non-head worn device, filtering particulates from the
air is appropriate to keep the clothes under the protective device cleaner than if
the air was unfiltered.
[0030] Some embodiments, which do not form part of the claimed invention, might not include
the filter 118 if that embodiment is to be used for cooling a user and is not expected
to be in an environment with poor air quality. The filter 118 of the present invention
includes a HEPA filter, a carbon filter, an electrostatic filter, and/or any other
types of appropriate filters. The filter 118 may be placed or removed, and the filter
118 may be replaced with a filter 118 of a different type. For example, the filter
118 can be a HEPA filter that can be replaced with a carbon filter. The blower fan
120 acts to move air, and can use any type of appropriate technology such as, for
example, bladed fans or bladeless fans.
[0031] There is also a hardware logic block 122 for the general miscellaneous logic that
may be present in any hardware device. The hardware logic block 122 can include, for
example, timers that can be set to interrupt the blower controller 110 upon expiration
of time.
[0032] The sensor block 124 can comprise one or more sensors that sense environmental conditions
such as, for example, temperature, humidity, smoke, dust, etc. These environmental
conditions can be used to determine the airflow speed and/or the airflow speed pattern.
The environmental conditions may also be used to filter the air for those embodiments
that are able to turn on and off filtering of air. These sensors in the sensor block
124 may be in the blower unit 100, on the outside of the blower unit 100, or remote
sensor(s) that communicate to the blower unit 100. The blower unit 100 may also receive
sensor signals from other sensors that are not part of the sensor block 124. For example,
these other sensors can be part of the protective device.
[0033] The battery 130 provides power for the blower unit 100. Some embodiments can have
the battery 130 separated from the rest of the blower unit 100, while other embodiments
can have the battery 130 as part of the blower unit 100.
[0034] FIG. 1D is a drawing of an example of a blower unit that is a part of a protective
device in accordance with an embodiment of the disclosure. Referring to FIG. 1D, there
is shown a blower unit 160 that is a part of the protective device 150. If the protective
device 150 is a welding helmet, the blower unit 160 would not need to be connected
to the welding helmet by an air duct.
[0035] FIG. 2 is a block diagram of an example of a blower unit providing air to a welding
helmet in accordance with an embodiment of the disclosure. Referring to FIG. 2, there
is shown a welding system 200 connected to the blower unit 100 providing air to an
interior of the welding helmet 270 in accordance with an embodiment of the disclosure.
The welding system 200 includes a power source 240 that converts input power to AC
and/or DC power suitable for use in welding operations. The power source 240 includes
a power converter 246 that converts input power 248 to either AC and/or DC welding
power for output to a torch 280 connected to power outputs 242, 243. In the example
of FIG. 2, the welding system 200 is connected to the torch 280 via the power output
242 and to the work clamp 282 via the power output 243 to form an electrical circuit
with a workpiece 284 when an electrical arc is started.
[0036] The power source 240 includes a controller 256 that is operatively coupled to the
power converter 246. The controller 256 may also be referred to as a welding processor.
The controller 256 may be implemented using one or more of logic circuits, general-purpose
microprocessors, special-purpose microprocessors, application-specific integrated
circuits (ASIC), field programmable gate arrays (FPGA)s, digital signal processors
(DSPs), and/or any other type of logic and/or processing device. For example, the
controller 256 may include one or more digital signal processors (DSPs). Alternatively,
the controller 256 could include discrete component control circuitry to perform control
functions. The controller 256 controls the output power from power converter 246 by
generating control signals 257 to control switching components (e.g., the SCRs) in
power converter 246. The controller 256 may also generally control operation of the
welding system 200.
[0037] The controller 256 receives user-selected operating parameters from the user interface
244. The controller 256 also transmits to the user interface 244 information about
the welding operation that is valuable to the welder, including arc voltage, arc amperage,
and/or preferred selector settings. The example user interface 244 can include any
type of interface device, such as a keyboard, a pointing device (e.g., a mouse, a
trackpad), a microphone, a camera (e.g., gesturebased input), a touch sensitive screen,
and/or any other type of user input and/or output device.
[0038] The controller 256 can also be configured to control various aspects of the welding
system 200. For example, the controller 256 can control input and output via the user
interface 44 and/or the communications interface 245. As described above, the controller
256 can generically refer to a plurality of devices, including processors, which work
in concert to control various aspects of the welding system 200.
[0039] In some examples, the welding system 200 can be configured to communicate via the
communication interface 245 using a wired and/or wireless communication from another
device. The communication can be, for example, the welding system 200 transmitting
various environmental measurements sensed by the sensors 247 to the blower unit 100
and/or the welding helmet 270. The sensors 247 may be able to measure, for example,
temperature, humidity, air quality, etc.
[0040] A memory device 258 and a storage device 260 are coupled to the controller 256 for
storing data including the settings of the selectors on user interface 244 for future
retrieval after power-down and/or between welding cycles. The memory device 258 can
include a volatile memory, such as random access memory (RAM) 258b, and/or a nonvolatile
memory, such as readonly memory (ROM) 258a. The storage device 260 can include magnetic
media such as a hard disk, solid state storage, optical media, and/or any other short
and/or long term storage device. The memory device 258 and/or the storage device 260
can store information (e.g., data) for any purpose and/or transmit stored data upon
request by the controller 256. For example, the memory device 258 and/or the storage
device 260 may store processor executable instructions (e.g., firmware or software)
for the controller 256 to execute.
[0041] The memory device 258 can store a variety of information and can be used for various
purposes. For example, the memory device 258 can store processor executable instructions
(e.g., firmware or software) for the controller 256 to execute. The stored information
may also comprise, for example, information regarding airflow patterns and speeds.
[0042] There is also a hardware logic block 250 for the general miscellaneous logic that
may be present in any hardware device. The hardware logic block 250 may include, for
example, timers that can be set to interrupt the controller 256 upon expiration of
time.
[0043] The air flow speed from the blower unit 100 can be constant for a time or the air
flow speed can vary depending on various conditions of the environment, and also under
control of a welder. For example, the welder may control the blower unit to blow at
a different constant speed, at speeds that vary over time, or at a different speed(s)
for a period of time before going back to the original speed. The air flow speed can
change due to environmental conditions such as temperature, humidity, air quality,
etc. that can be detected by one or more sensors in the sensor block 124 in the blower
unit 100 or the sensors 247 in the welding system 200. Various embodiments of the
disclosure can receive the environmental condition information via, for example, the
communication interface 116.
[0044] Accordingly, the cycling of air at two airflow settings creates a breathable pocket
for the user above atmospheric pressure at all times and more effectively refresh
the users. The blower unit 100 provides filtered air by filtering undesirable substances
from welding environments at a flow rate at or above 170 L/min in the United States
and at least 160 L/min in the European Union. Appropriate standards will be met by
those embodiments designed for operation in other foreign countries.
[0045] When the user selects the intermittent airflow mode the fan speed controls will blow
air with, for example, a lower airflow speed of 175 L/min for a period of time and
a higher airflow speed of 200 L/min for another period of time at a certain frequency.
Furthermore the duty cycles for the low/high airflow speeds could be symmetric or
asymmetric. These variables described can be set by the manufacturer and/or customized
by end users.
[0046] For reduced power consumption the rate and frequency of the oscillation can be adjusted
to maximize fan efficiency to minimize power consumption. The welder has to carry
the weight of the battery system and it is generally desirable to minimize this weight
because it can create neck and back fatigue with prolonged use. A reduction in power
consumption could be achieved by taking into account the current draw required for
the motor to maintain a certain fan speed. A quicker increase in airflow speed would
require a larger current draw than a more gradual increase. Thus the frequency and
rate of intermittent airflow can be adjusted to take advantage of this to minimize
power consumption. Similarly, as the airflow goes from its higher speed to its lower
speed, the fan speed can be reduced by letting it naturally decay from the higher
airflow speed to the lower airflow speed.
[0047] As stated, PAPR systems used in welding applications in the US are required to be
above 170 L/min. Accordingly, a factor of safety (chosen by manufacturer or customized
by end user) can also be applied and to prevent the blower unit (respirator) 100 from
going below, for example, 175 L/min. Alternatively, these parameters could be automatically
set through wireless communication to a sensor input such as temperature, humidity,
or air quality measurement. The information obtained from these sensors could be inputted
into a pre-configured algorithm that can determine the intermittent airflow parameters
and/or turbo airflow mode parameters. Based on sensor inputs an algorithm could also
automatically determine when to trigger and turn-off these modes.
[0048] It should be noted that these are only some examples of different sensor types and
the disclosure is not limited to these particular sensor types when relating adjustable
variables on the intermittent and turbo airflow modes on the PAPR system. For example,
the system could also take input from the PAPR blower system to detect filter clogs
or other system restrictions and modify the airflow speeds accordingly within the
limits of the motor. If the "turbo" and intermittent airflow modes are not possible
to be used safely within the requirements of a PAPR various embodiments of the system
could provide a visual, auditory, or vibration warning to the user.
[0049] Alternate embodiments could include an input signal from a temperature sensor located
externally to the blower unit or welding helmet that can wirelessly activate either
an "intermittent" or "burst" mode of airflow. The input signal isn't limited to a
sensor. Various controls of the blower unit 100 may be activated by a person or device
remote to the blower unit 100.
[0050] With an embodiment of the disclosure, a welder can customize the pattern of intermittent
air flow or burst of high velocity air flow by using, for example, the user interface
114. A user may be able to adjust parameters such as frequency of air flow variation
or length of burst mode. Although various descriptions have been given for a PAPR
system used with a welding helmet, the blower unit 100 can be used with any head worn
protective respirator used in an industrial welding environment such as hard hats
and grinding face shields, for example. The blower unit 100 can also be used with
users of other protective devices such as, for example, other head worn devices and
protective clothing. As described, the blower unit 100 can be integrated in a head
worn protective device or other protective devices/clothing.
[0051] The blower unit 100 can also be adapted for use in a using a thermoelectric cooling
device. This can include any system where highly compressed air is released on one
side of the thermoelectric device or a heat sink fin to cool the air that comes into
contact with the other side those devices. The "turbo" mode for example could be linked
with the release of this highly compressed air so that as air blows on to the heat
sink or thermoelectric device it provides a short burst of cool air. Various embodiments
can also be used with an air system that provides clean breathable air with filtered
air moving through an air compressor. A digital automatic pressure regulator may be
used to create the intermittent air flow.
[0052] FIG. 3A is a drawing of an example of a user interface on a blower for controlling
the blower in accordance with an embodiment of the disclosure. Referring to FIG. 3A,
there is shown the user interface 300 for the blower unit 100 with a power button
302 and an airflow button 305. The power button 302 can be used to turn a blower unit
on and off. The airflow button 305 can be pressed, for example, to step through the
different airflow modes. The airflow modes can be, for example, one or more airflow
speeds, with each airflow speed on for a set period of time. There may be, for example,
three different airflow modes - normal, intermittent, and turbo.
[0053] The normal mode can be a constant airflow at a certain airflow speed. The intermittent
mode may cycle between two airflow speeds, with each airflow speed set for a corresponding
period of time. In the intermittent mode, the airflow speed can vary from the first
airflow speed to the second airflow speed then back to the first airflow speed. This
can continue until the blower unit is turned off or switched to another mode. The
turbo mode may be a mode where the blower unit increases the airflow speed for a certain
period of time.
[0054] Various embodiments can allow changing the airflow speed(s) and/or the periods of
time for the intermittent mode and/or the turbo mode. While a specific user interface
was described for user input, various embodiments can use other user interfaces such
as touch sensitive displays, rotary knobs, rocker switches, etc. Also, while not shown,
there may be a separate button to activate the turbo mode.
[0055] FIG. 3B is a drawing of an example of a user interface on a helmet for controlling
a blower unit in accordance with an embodiment of the disclosure. Referring to FIG.
3B, there is shown helmet user interface with a button 325 that controls the blower
unit to enter the turbo mode as described with respect to FIG. 3A. Accordingly, the
user may push or tap the button 325 for a blast of air for a period of time when he
feels the need for additional air. The period of time for the turbo mode may be adjustable
for various embodiments.
[0056] Various embodiments may also have more than two airflow speeds. Accordingly, each
tap of, for example, the button 325 may allow the turbo mode to go to successively
higher airflow speeds until a maximum airflow speed is reached. The next tap of the
button 325 may then bring the airflow speed to the lowest airflow speed. Another embodiment
of the disclosure may bring the airflow speed from the maximum airflow speed to the
first airflow speed above the lowest airflow speed.
[0057] Additionally, each tap of, for example, the button 325 may allow the turbo mode to
go to successively to longer periods of time until a maximum period of time is reached.
The next tap of the button 325 may then bring the period of time to the first (smallest)
period of time. Various embodiments of the disclosure can have different algorithms
including, for example, reducing the time from maximum to zero to thereby end the
turbo mode to bring the airflow speed back to the lowest airflow speed.
[0058] Still other embodiments may allow changing the airflow speeds and the periods of
time.
[0059] FIG. 4 is an example of a flow chart for a blower unit in accordance with an embodiment
of the disclosure. Referring to FIG. 4, references to devices described in the previous
figures will be made for convenience of description. At 402, the blower unit 100 may
be powered on and in a state of providing continuous airflow at a constant first airflow
speed. Depending on the usage of the blower unit 100, the airflow may be continuous
at a minimum airflow speed to meet regulatory requirements. For example, presently,
in the United States a respirator should have a minimum airflow speed of 170 L/min
and 160 L/min in the European Union. At 404, the blower controller 110 may check to
see if an intermittent mode may be requested. If not, the blower unit 100 may stay
at the constant first airflow speed. If intermittent mode has been requested, the
blower unit 100 initiates intermittent mode at 406 using the first airflow speed and
a second airflow speed according to the airflow speed pattern that is in use.
[0060] At 408, the blower unit 100 will control the blower fan 120 to an appropriate second
airflow speed. It should be noted that at 408, the blower controller 110 switches
the blower fan 120 to operate at the second airflow speed if it is presently operating
at the first airflow speed, and vice versa. After the blower fan has been operating
for the second airflow speed for a corresponding period of time indicated in the airflow
speed pattern, the blower controller 110 checks at 410 whether to exit the intermittent
mode. If so, the blower controller 110 sets the blower fan 120 to blow at the constant
first airflow speed at 412 and the blower unit 100 returns to 402.
[0061] If the blower unit 100 is to remain in the intermittent mode, the other airflow speed
is set for the blower fan 120 at 408, and the flow chart operations continue.
[0062] While FIG. 4 shows explicit stages for an example flowchart, other embodiments can
use different stages or different methodology. For example, the flowchart of FIG.
4 may be performed with software instructions, or the control may also be done using
a hardware state machine in the hardware logic block 122 or 250, or some combination
of hardware state machine and software control may be used. A timer may also be used
for some functionality such as, for example, waiting for the appropriate time periods
before switching from the first airflow speed to the second airflow speed, and from
the second airflow speed to the first airflow speed. The expiration of time may be
indicated by a number of different methods. For example, expiration of time may trigger
an interrupt, a flag may be set, a hardware signal may be set, etc.
[0063] Additionally, while two different airflow speeds were given as examples, various
embodiments need not be so limited. The number of airflow speeds and the switching
from one airflow speed to another are implementation dependent.
[0064] FIG. 5 is an example of a flow chart for a blower unit in accordance with an embodiment
of the disclosure. Referring to FIG. 5, references to devices described in the previous
figures will be made for convenience of description. The blower unit 100 may be in
a run state at 502, where the blower unit 100 is running in a selected mode. The blower
unit 100 may start, for example, when the power button 302 is pressed and may run
at 502. The blower unit 100 may start in a default state of constant first airflow
speed, for example. Other embodiments may start in the last mode that the blower unit
100 was in when it was turned off. Other embodiments may start in the turbo mode.
The mode in which the blower unit 100 starts may be set to different options for different
embodiments. Various embodiments may also allow the start mode to be selected by a
user as part of a setup option.
[0065] Additionally, depending on the usage of the blower unit 100, the airflow may be continuous
at a minimum airflow speed to meet regulatory requirements. For example, presently,
in the United States a respirator should have a minimum airflow speed of 170 L/min
and 160 L/min in the European Union.
[0066] At 504, the blower controller 110 checks to see if there is any input for the blower
fan mode. For example, in an embodiment, a user can enter via the user interface 300
and/or 320 whether to use a normal (constant airflow speed) mode, an intermittent
airflow speed mode, or a turbo mode, and also to turn off the blower unit 100.
[0067] If the input indicates a normal mode, then at 506 the blower controller 110 sets
the blower fan 120 for normal mode. At 508, the blower controller 110 controls the
blower fan 120 to blow at the constant first airflow speed. Then the blower unit 100
may start the process again by running at the selected speed at 502. The first airflow
speed may be adjustable in various embodiments of the disclosure.
[0068] If the input indicates a turbo mode, then at 510 the blower controller 110 sets the
blower fan 120 for turbo mode. At 512, the blower controller 110 controls the blower
fan 120 to blow at the second airflow speed for a period of time where the second
airflow speed is greater than the first airflow speed. Then the blower unit 100 may
start the process again by running the blower fan at the second airflow speed at 502
for the period of time. After the period of time is up, the blower fan 120 at the
first airflow speed.
[0069] If the input indicates intermittent mode, then at 514 the blower controller 110 sets
the blower fan 120 for intermittent mode. At 516, the blower controller 110 controls
the blower fan 120 to blow at the first airflow speed for a first period of time,
and at a second airflow speed for a second period of time, where the second airflow
speed is greater than the first airflow speed. Then the blower unit 100 may start
the process again by running at the appropriate speed at 502. Accordingly, the blower
fan 120 will blow air at the two different speeds until the blower unit 100 exits
the intermittent mode.
[0070] The first period of time may be independent of the second period of time. The airflow
speeds and the periods of time for the various modes are dependent on the airflow
speed pattern. The airflow speed pattern may be adjustable in various embodiments
of the disclosure.
[0071] The periods of time for the first airflow speed and/or the second airflow speed may
be measured using any appropriate technology that may be appropriate. For example,
the time may be measured by software loops, or a timer in the hardware logic block
122 or 250 may be set and the timer may be checked periodically or the timer may set
an interrupt upon reaching the time it is set to count. A timer may also be available,
for example, in the blower controller 110 or another processor such as the controller
256.
[0072] If the input indicates that the blower unit 100 should be shut off, the blower unit
100 will enter shutdown mode at 518. The shutdown mode 518 may include, for example,
saving the present mode into memory 112 to use the next time the blower unit 100 is
turned on. At 520, an indication of shutdown may be output to the user interface 114
and/or 244. The indication may be flashing an LED, turning on an LED, or displaying
a message indicating shutdown, or some other appropriate indication. The power may
be turned off at 522, and the flowchart is at an end stage at 524.
[0073] Various embodiments disclose changing the airflow speed from a lower speed to a higher
speed and vice versa. During the changing of the speed, the rate of change of speed
may be different when going from high speed to low speed and when going from low speed
to high speed. For example, when going from high speed to low speed, power to the
blower fan 120 can be reduced or removed to let the blower fan 120 slow down by itself.
Going from low speed to high speed may use different amounts of power depending on
the remaining capacity of the battery 130 and/or other parameters that may be used
by the blower controller 110. However, the blower fan 120 may also use power to slow
down the blower fan 120 more quickly. Again, the amount of power used may be controlled
by the blower controller 110. Accordingly, the rate of change for changing the airflow
speed can be variable.
[0074] Again, while an example flow diagram has been described, various embodiments need
not be limited to this example. For example, the number of airflow speeds and the
switching from one airflow speed to another are implementation dependent.
[0075] As utilized herein the terms "circuits" and "circuitry" refer to physical electronic
components (i.e. hardware) and any software and/or firmware ("code") which may configure
the hardware, be executed by the hardware, and or otherwise be associated with the
hardware. As used herein, for example, a particular processor and memory may comprise
a first "circuit" when executing a first one or more lines of code and may comprise
a second "circuit" when executing a second one or more lines of code. As utilized
herein, "and/or" means any one or more of the items in the list joined by "and/or."
As an example, "x and/or y" means any element of the three-element set {(x), (y),
(x, y)}. In other words, "x and/or y" means "one or both of x and y". As another example,
"x, y, and/or z" means any element of the seven-element set {(x), (y), (z), (x, y),
(x, z), (y, z), (x, y, z)}. In other words, "x, y and/or z" means "one or more of
x, y and z". As utilized herein, the term "exemplary" means serving as a non-limiting
example, instance, or illustration. As utilized herein, the terms "e.g." and "for
example" set off lists of one or more non-limiting examples, instances, or illustrations.
As utilized herein, circuitry is "operable" to perform a function whenever the circuitry
comprises the necessary hardware and code (if any is necessary) to perform the function,
regardless of whether performance of the function is disabled or not enabled (e.g.,
by a user-configurable setting, factory trim, etc.).
1. A respirator (100) configured to provide air to a protective device (104, 106, 150),
comprising:
- a filter (118) configured to filter the air;
- a blower fan (120) configured to provide continuous air flow at variable speeds;
- an air duct (102) configured to direct air from the blower fan (120) to an exhaust
location, the blower fan (120) configured to blow air through the air duct (102);
and
- a blower controller (110) configured to control the blower fan (120) to adjust an
airflow speed of the blower fan (120) within an airflow speed range according to an
airflow speed pattern,
characterized in that
the airflow speed pattern comprises multiple airflow speeds and each airflow speed
is for a certain corresponding amount of time.
2. The respirator (100) as defined in claim 1, further comprising at least one sensor
configured to detect at least one environmental condition, the blower controller (110)
being configured to adjust the airflow speed in response to the detected environmental
condition.
3. The respirator (100) as defined in claim 2,
wherein the at least one sensor is a temperature sensor, the blower controller (110)
being configured to adjust the airflow speed according to the airflow speed pattern
in response to at least one of detecting that ambient temperature around the respirator
(100) has exceeded a temperature threshold and detecting that ambient temperature
in the protective device has exceeded a temperature threshold, and/ or
wherein the at least one sensor is an air quality sensor, the blower controller (110)
being configured to adjust the airflow speed according to the airflow speed pattern
in response to at least one of detecting that air quality around the respirator (100)
has fallen below a pre-determined air quality threshold and detecting that air quality
in the protective device has fallen below a pre-determined air quality threshold.
4. The respirator (100) as defined in claim 2 or 3, further comprising a communication
circuit configured to receive external sensor environmental information sensed by
an external sensor device (247) external to the respirator (100),
wherein the blower controller (110) is configured to adjust the airflow speed according
to the airflow speed pattern in response to the received external sensor environmental
information,
wherein the communication circuit receives the external sensor environmental information
wirelessly.
5. The respirator (100) as defined in one of the preceding claims,
wherein the airflow speed range includes a lower airflow speed of at least 160 liters
per minute, or
wherein the airflow speed range includes a lower airflow speed of at least 170 liters
per minute.
6. The respirator (100) as defined in one of the preceding claims,
wherein the airflow speed pattern comprises changing the airflow speed from a first
airflow speed to a second airflow speed and then to the first airflow speed, wherein
the airflow speed pattern is completed at least once.
7. The respirator (100) as defined in claim 6,
wherein changing from the first airflow speed to the second airflow speed is at a
first airflow change rate, and changing the airflow speed from the second airflow
speed to the first airflow speed is at a second airflow change rate, wherein at least
one of the first airflow change rate and the second airflow change rate is a variable
airflow change rate.
8. The respirator (100) as defined in one of the preceding claims, further comprising
a battery (130) configured to provide power to the respirator (100).
9. The respirator (100) as defined in one of the preceding claims,
wherein the respirator (100) is configured to connect to the protective device to
provide the air to an interior of the protective device,
wherein the protective device (104, 106, 150) is one of a head worn device (104) and
a protective clothing (106).
10. The respirator (100) as defined in one of the preceding claims, further comprising
a user interface device (114) configured to receive an input from a user, wherein
the blower controller (110) is configured to use the input to control the blower fan
(120) to increase the airflow speed for a first period of time to a first upper airflow
speed,
wherein the blower controller (110) is configured to increase the first period of
time to a longer period with each successive input received by the user interface
device (114) until a maximum period of time is reached, wherein a next input received
by the user interface device (114) decreases the maximum period of time to the first
period of time, and/ or
wherein the blower controller (110) is configured to increase the first upper airflow
speed to a higher upper airflow speed with each successive input received by the user
interface device (114) until a maximum upper airflow speed is reached, wherein a next
input received by the user interface device (114) decreases the maximum upper airflow
speed to the first upper airflow speed.
11. The respirator (100) as defined in one of the preceding claims, further comprising
a user interface device (114) configured to receive an input from a user, wherein
the blower controller (110) is configured to use the input to change the airflow speed
pattern to another airflow speed pattern.
12. The respirator (100) as defined in one of the preceding claims, further comprising
a user interface device (114) configured to receive an input from a user,
wherein the blower controller (110) is configured to use the input to control the
blower fan (120) to go from using the airflow speed pattern to output varying air
flow to outputting a substantially constant air flow, or to control the blower fan
(120) to go from outputting a substantially constant air flow to using the airflow
speed pattern to output varying air flow.
13. The respirator (100) as defined in one of the preceding claims,
wherein the blower controller (110) is configured to control the blower fan (120)
using the airflow speed pattern by adjusting the airflow speed among a plurality of
airflow speeds, wherein each of the plurality of airflow speeds is associated with
a respective one of a plurality of time periods, wherein at least one of the plurality
of airflow speeds is adjustable, and/ or
wherein at least one of the plurality of time periods is adjustable.
14. The respirator (100) as defined in one of the preceding claims, further comprising
a communications circuit configured to at least receive a signal, wherein the blower
controller (110) is configured use the received signal to control the blower fan (120)
to adjust the airflow speed of the blower fan (120).
15. The respirator (100) as defined in one of the preceding claims,
wherein the blower controller (110) is configured to control the blower fan (120)
to adjust the airflow speed of the blower fan (120) according to the airflow speed
pattern for a selected time period, and to control the blower fan (120) to use another
airflow speed pattern when the selected time period has elapsed.
1. Atmungsgerät (100), das so konfiguriert ist, dass es Luft für eine Schutzvorrichtung
(104, 106, 150) bereitstellt, aufweisend:
- einen Filter (118), der so konfiguriert ist, dass er die Luft filtert;
- einen Gebläseventilator (120), der so konfiguriert ist, dass er einen kontinuierlichen
Luftstrom mit variablen Geschwindigkeiten bereitstellt;
- einen Luftkanal (102), der so konfiguriert ist, dass er Luft von dem Gebläseventilator
(120) zu einer Auslassstelle leitet, wobei der Gebläseventilator (120) so konfiguriert
ist, dass er Luft durch den Luftkanal (102) bläst; und
- eine Gebläsesteuerung (110), die konfiguriert ist, den Gebläseventilator (120) zu
steuern, um eine Luftströmungsgeschwindigkeit des Gebläseventilators (120) innerhalb
eines Luftströmungsgeschwindigkeitsbereichs gemäß einem Luftströmungsgeschwindigkeitsmuster
anzupassen,
dadurch gekennzeichnet, dass
das Luftströmungsgeschwindigkeitsmuster mehrere Luftströmungsgeschwindigkeiten aufweist
und jede Luftströmungsgeschwindigkeit für eine bestimmte entsprechende Zeitdauer gilt.
2. Atmungsgerät (100) nach Anspruch 1, das ferner zumindest einen Sensor aufweist, der
konfiguriert ist, zumindest eine Umgebungsbedingung zu erfassen, wobei die Gebläsesteuerung
(110) konfiguriert ist, die Luftströmungsgeschwindigkeit in Reaktion auf die erfasste
Umgebungsbedingung anzupassen.
3. Atmungsgerät (100) nach Anspruch 2,
wobei der zumindest eine Sensor ein Temperatursensor ist, wobei die Gebläsesteuerung
(110) konfiguriert ist, die Luftströmungsgeschwindigkeit gemäß dem Luftströmungsgeschwindigkeitsmuster
in Reaktion auf zumindest eines von einem Erfassen, dass die Umgebungstemperatur um
das Atmungsgerät (100) herum einen Temperaturschwellenwert überschritten hat, und/oder
ein Erfassen, dass die Umgebungstemperatur in der Schutzvorrichtung einen Temperaturschwellenwert
überschritten hat, anzupassen, und/oder wobei der zumindest eine Sensor ein Luftqualitätssensor
ist, wobei die Gebläsesteuerung (110) konfiguriert ist, die Luftströmungsgeschwindigkeit
gemäß dem Luftströmungsgeschwindigkeitsmuster in Reaktion auf zumindest eines von
einem Erfassen, dass die Luftqualität um das Atmungsgerät (100) herum unter einen
vorbestimmten Luftqualitätsschwellenwert gefallen ist, und ein Erfassen, dass die
Luftqualität in der Schutzvorrichtung unter einen vorbestimmten Luftqualitätsschwellenwert
gefallen ist, anzupassen.
4. Atmungsgerät (100) nach Anspruch 2 oder 3, das ferner eine Kommunikationsschaltung
aufweist, die konfiguriert ist, externe Sensorumgebungsinformationen zu empfangen,
die von einer externen Sensorvorrichtung (247) außerhalb des Atmungsgeräts (100) erfasst
werden,
wobei die Gebläsesteuerung (110) konfiguriert ist, die Luftströmungsgeschwindigkeit
gemäß dem Luftströmungsgeschwindigkeitsmuster in Reaktion auf die empfangenen externen
Sensorumgebungsinformationen anzupassen,
wobei die Kommunikationsschaltung die externen Sensorumgebungsinformationen drahtlos
empfängt.
5. Atmungsgerät (100) nach einem der vorhergehenden Ansprüche,
wobei der Luftströmungsgeschwindigkeitsbereich eine niedrigere Luftströmungsgeschwindigkeit
von zumindest 160 Liter pro Minute beinhaltet, oder
wobei der Luftströmungsgeschwindigkeitsbereich eine niedrigere Luftströmungsgeschwindigkeit
von zumindest 170 Liter pro Minute beinhaltet.
6. Atmungsgerät (100) nach einem der vorhergehenden Ansprüche, wobei das Luftströmungsgeschwindigkeitsmuster
ein Ändern der Luftströmungsgeschwindigkeit von einer ersten Luftströmungsgeschwindigkeit
zu einer zweiten Luftströmungsgeschwindigkeit und anschließend zu der ersten Luftströmungsgeschwindigkeit
aufweist, wobei das Luftströmungsgeschwindigkeitsmuster zumindest einmal abgeschlossen
wird.
7. Atmungsgerät (100) nach Anspruch 6,
wobei das Ändern von der ersten Luftströmungsgeschwindigkeit zu der zweiten Luftströmungsgeschwindigkeit
mit einer ersten Luftströmungsänderungsrate erfolgt und das Ändern der Luftströmungsgeschwindigkeit
von der zweiten Luftströmungsgeschwindigkeit zu der ersten Luftströmungsgeschwindigkeit
mit einer zweiten Luftströmungsänderungsrate erfolgt, wobei zumindest eine von der
ersten Luftströmungsänderungsrate oder der zweiten Luftströmungsänderungsrate eine
variable Luftströmungsänderungsrate ist.
8. Atmungsgerät (100) nach einem der vorhergehenden Ansprüche, das ferner eine Batterie
(130) aufweist, die konfiguriert ist, das Atmungsgerät (100) mit Strom zu versorgen.
9. Atmungsgerät (100) nach einem der vorhergehenden Ansprüche, wobei das Atmungsgerät
(100) so konfiguriert ist, dass es sich mit der Schutzvorrichtung verbindet, um die
Luft in einem Innenraum der Schutzvorrichtung bereitzustellen, wobei die Schutzvorrichtung
(104, 106, 150) eine von einer am Kopf getragenen Vorrichtung (104) und einer Schutzbekleidung
(106) ist.
10. Atmungsgerät (100) nach einem der vorhergehenden Ansprüche, das ferner eine Benutzerschnittstellenvorrichtung
(114) aufweist, die konfiguriert ist, eine Eingabe von einem Benutzer zu empfangen,
wobei die Gebläsesteuerung (110) konfiguriert ist, die Eingabe zu verwenden, um den
Gebläseventilator (120) so zu steuern, dass die Luftströmungsgeschwindigkeit für eine
erste Zeitdauer auf eine erste obere Luftströmungsgeschwindigkeit erhöht wird, wobei
die Gebläsesteuerung (110) konfiguriert ist, die erste Zeitdauer mit jeder folgenden
Eingabe, die durch die Benutzerschnittstellenvorrichtung (114) empfangen wird, auf
eine längere Zeitdauer zu erhöhen, bis eine maximale Zeitdauer erreicht ist, wobei
eine nächste Eingabe, die durch die Benutzerschnittstellenvorrichtung (114) empfangen
wird, die maximale Zeitdauer auf die erste Zeitdauer verringert, und/oder wobei die
Gebläsesteuerung (110) konfiguriert ist, die erste obere Luftströmungsgeschwindigkeit
mit jeder folgenden Eingabe, die durch die Benutzerschnittstellenvorrichtung (114)
empfangen wird, auf eine höhere obere Luftströmungsgeschwindigkeit zu erhöhen, bis
eine maximale obere Luftströmungsgeschwindigkeit erreicht ist, wobei eine nächste
Eingabe, die durch die Benutzerschnittstellenvorrichtung (114) empfangen wird, die
maximale obere Luftströmungsgeschwindigkeit auf die erste obere Luftströmungsgeschwindigkeit
verringert.
11. Atmungsgerät (100) nach einem der vorhergehenden Ansprüche, das ferner eine Benutzerschnittstellenvorrichtung
(114) aufweist, die konfiguriert ist, eine Eingabe von einem Benutzer zu empfangen,
wobei die Gebläsesteuerung (110) konfiguriert ist, die Eingabe zu verwenden, um das
Luftströmungsgeschwindigkeitsmuster zu einem anderen Luftströmungsgeschwindigkeitsmuster
zu ändern.
12. Atmungsgerät (100) nach einem der vorhergehenden Ansprüche, das ferner eine Benutzerschnittstellenvorrichtung
(114) aufweist, die konfiguriert ist, eine Eingabe von einem Benutzer zu empfangen,
wobei die Gebläsesteuerung (110) konfiguriert ist, die Eingabe zu verwenden, um den
Gebläseventilator (120) so zu steuern, dass er von einer Verwendung des Luftströmungsgeschwindigkeitsmusters
zum Ausgeben einer variierenden Luftströmung zu einem Ausgeben einer im Wesentlichen
konstanten Luftströmung übergeht, oder den Gebläseventilator (120) so zu steuern,
dass er von einem Ausgeben einer im Wesentlichen konstanten Luftströmung zu einer
Verwendung des Luftströmungsgeschwindigkeitsmusters zum Ausgeben eines variierenden
Luftstroms übergeht.
13. Atmungsgerät (100) nach einem der vorhergehenden Ansprüche, wobei die Gebläsesteuerung
(110) konfiguriert ist, den Gebläseventilator (120) unter Verwendung des Luftströmungsgeschwindigkeitsmusters
durch Anpassen der Luftströmungsgeschwindigkeit unter einer Vielzahl von Luftströmungsgeschwindigkeiten
zu steuern, wobei jede der Vielzahl von Luftströmungsgeschwindigkeiten einer jeweiligen
von einer Vielzahl von Zeitdauern zugeordnet ist, wobei zumindest eine der Vielzahl
von Luftströmungsgeschwindigkeiten anpassbar ist, und/oder wobei zumindest eine der
Vielzahl von Zeitdauern anpassbar ist.
14. Atmungsgerät (100) nach einem der vorhergehenden Ansprüche, das ferner eine Kommunikationsschaltung
aufweist, die konfiguriert ist, zumindest ein Signal zu empfangen, wobei die Gebläsesteuerung
(110) konfiguriert ist, das empfangene Signal zu verwenden, um den Gebläseventilator
(120) so zu steuern, dass die Luftströmungsgeschwindigkeit des Gebläseventilators
(120) angepasst wird.
15. Atmungsgerät (100) nach einem der vorhergehenden Ansprüche, wobei die Gebläsesteuerung
(110) konfiguriert ist, den Gebläseventilator (120) so zu steuern, dass die Luftströmungsgeschwindigkeit
des Gebläseventilators (120) gemäß dem Luftströmungsgeschwindigkeitsmuster für eine
ausgewählte Zeitdauer angepasst wird, und den Gebläseventilator (120) so zu steuern,
dass er ein anderes Luftströmungsgeschwindigkeitsmuster verwendet, wenn die ausgewählte
Zeitdauer abgelaufen ist.
1. Respirateur (100) configuré pour fournir de l'air à un dispositif de protection (104,
106, 150), comprenant :
- un filtre (118) configuré pour filtrer l'air ;
- un ventilateur de soufflage (120) configuré pour fournir un flux d'air continu à
des vitesses variables ;
- un conduit d'air (102) configuré pour diriger l'air du ventilateur de soufflage
(120) à un emplacement d'évacuation, le ventilateur de soufflage (120) étant configuré
pour souffler de l'air à travers le conduit d'air (102) ; et
- un dispositif de commande de soufflage (110) configuré pour commander le ventilateur
de soufflage (120) pour régler une vitesse de flux d'air du ventilateur de soufflage
(120) à l'intérieur d'une plage de vitesse de flux d'air selon un modèle de vitesse
de flux d'air,
caractérisé en ce que
le modèle de vitesse de flux d'air comprend de multiples vitesses de flux d'air et
chaque vitesse de flux d'air est pour une certaine quantité de temps correspondante.
2. Respirateur (100) selon la revendication 1, comprenant en outre au moins un capteur
configuré pour détecter au moins une condition d'environnement, le dispositif de commande
de soufflage (110) étant configuré pour régler la vitesse de flux d'air en réponse
à la condition d'environnement détectée.
3. Respirateur (100) selon la revendication 2,
dans lequel l'au moins un capteur est un capteur de température, le dispositif de
commande de soufflage (110) étant configuré pour régler la vitesse de flux d'air selon
le modèle de vitesse de flux d'air en réponse à au moins une parmi la détection que
la température ambiante autour du respirateur (100) a dépassé un seuil de température
et la détection que la température ambiante dans le dispositif de protection a dépassé
un seuil de température, et/ou dans lequel l'au moins un capteur est un capteur de
qualité de l'air, le dispositif de commande de soufflage (110) étant configuré pour
régler la vitesse de flux d'air selon le modèle de vitesse de flux d'air en réponse
à au moins une parmi la détection que la qualité d'air autour du respirateur (100)
a chuté en dessous d'un seuil de qualité d'air prédéterminé et la détection que la
qualité d'air dans le dispositif de protection a chuté en dessous d'un seuil de qualité
d'air prédéterminé.
4. Respirateur (100) selon la revendication 2 ou 3, comprenant en outre un circuit de
communication configuré pour recevoir des informations environnementales de capteur
externe détectées par un dispositif de capteur externe (247) externe au respirateur
(100),
dans lequel le dispositif de commande de soufflage (110) est configuré pour régler
la vitesse de flux d'air selon le modèle de vitesse de flux d'air en réponse aux informations
environnementales de capteur externe reçues,
dans lequel le circuit de communication reçoit les informations environnementales
de capteur externe sans fil.
5. Respirateur (100) selon l'une quelconque des revendications précédentes,
dans lequel la plage de vitesse de flux d'air comprend une vitesse de flux d'air inférieure
d'au moins 160 litres par minute, ou
dans lequel la plage de vitesse de flux d'air comprend une vitesse de flux d'air inférieure
d'au moins 170 litres par minute.
6. Respirateur (100) selon l'une quelconque des revendications précédentes,
dans lequel le modèle de vitesse de flux d'air comprend le changement de la vitesse
de flux d'air d'une première vitesse de flux d'air à une deuxième vitesse de flux
d'air et ensuite à la première vitesse de flux d'air, dans lequel le modèle de vitesse
de flux d'air est atteint au moins une fois.
7. Respirateur (100) selon la revendication 6,
dans lequel le changement de la première vitesse de flux d'air à la deuxième vitesse
de flux d'air est à un premier taux de changement de flux d'air, et le changement
de la vitesse de flux d'air de la deuxième vitesse de flux d'air à la première vitesse
de flux d'air est à un deuxième taux de changement de flux d'air, dans lequel au moins
un parmi le premier taux de changement de flux d'air et le deuxième taux de changement
de flux de flux d'air est un taux de changement de flux d'air variable.
8. Respirateur (100) selon l'une quelconque des revendications précédentes, comprenant
en outre une batterie (130) configurée pour fournir de l'énergie au respirateur (100).
9. Respirateur (100) selon l'une quelconque des revendications précédentes,
dans lequel le respirateur (100) est configuré pour se connecter au dispositif de
protection pour fournir l'air à l'intérieur du dispositif de protection,
dans lequel le dispositif de protection (104, 106, 150) est un parmi un dispositif
porté sur la tête (104) ou un vêtement de protection (106).
10. Respirateur (100) selon l'une quelconque des revendications précédentes, comprenant
en outre un dispositif d'interface utilisateur (114) configuré pour recevoir une entrée
provenant d'un utilisateur, dans lequel le dispositif de commande de soufflage (110)
est configuré pour utiliser l'entrée pour commander le ventilateur de soufflage (120)
pour augmenter la vitesse de flux d'air pour une première période de temps à une première
vitesse de flux d'air supérieure,
dans lequel le dispositif de commande de soufflage (110) est configuré pour augmenter
la première période de temps à une période plus longue avec chaque entrée successive
reçue par le dispositif d'interface utilisateur (114) jusqu'à ce qu'une période de
temps maximale soit atteinte, dans lequel une entrée suivante reçue par le dispositif
d'interface utilisateur (114) diminue la période de temps maximale jusqu'à la première
période de temps, et/ou dans lequel le dispositif de commande de soufflage (110) est
configuré pour augmenter la première vitesse de flux d'air supérieure à une vitesse
de flux d'air supérieure plus élevée avec chaque entrée successive reçue par le dispositif
d'interface utilisateur (114) jusqu'à ce qu'une vitesse de flux d'air supérieure maximale
soit atteinte, dans lequel une entrée suivante reçue par le dispositif d'interface
utilisateur (114) diminue la vitesse de flux d'air supérieure maximale à la première
vitesse de flux d'air supérieure.
11. Respirateur (100) selon l'une quelconque des revendications précédentes, comprenant
en outre un dispositif d'interface utilisateur (114) configuré pour recevoir une entrée
provenant d'un utilisateur, dans lequel le dispositif de commande de soufflage (110)
est configuré pour utiliser l'entrée pour changer le modèle de vitesse de flux d'air
en un autre modèle de vitesse de flux d'air.
12. Respirateur (100) selon l'une quelconque des revendications précédentes, comprenant
en outre un dispositif d'interface utilisateur (114) configuré pour recevoir une entrée
provenant d'un utilisateur,
dans lequel le dispositif de commande de soufflage (110) est configuré pour utiliser
l'entrée pour commander le ventilateur de soufflage (120) pour passer de l'utilisation
du modèle de vitesse de flux d'air à la sortie d'un flux d'air variable pour l'émission
d'un flux d'air sensiblement constant, ou pour commander le ventilateur de soufflage
(120) pour passer de l'émission d'un flux d'air sensiblement constant à l'utilisation
du modèle de vitesse de flux d'air pour émettre un flux d'air variable.
13. Respirateur (100) selon l'une quelconque des revendications précédentes,
dans lequel le dispositif de commande de soufflage (110) est configuré pour commander
le ventilateur de soufflage (120) à l'aide du modèle de vitesse de flux d'air par
le réglage de la vitesse de flux d'air parmi une pluralité de vitesses de flux d'air,
dans lequel chacune parmi la pluralité de vitesses de flux d'air est associée à l'une
respective parmi une pluralité de périodes de temps, dans lequel au moins une parmi
la pluralité de vitesses de flux d'air est réglable, et/ou
dans lequel au moins une parmi la pluralité de périodes de temps est réglable.
14. Respirateur (100) selon l'une quelconque des revendications précédentes, comprenant
en outre un circuit de communication configuré pour au moins recevoir un signal, dans
lequel le dispositif de commande de soufflage (110) est configuré pour utiliser le
signal reçu pour commander le ventilateur de soufflage (120) pour régler la vitesse
de flux d'air du ventilateur de soufflage (120).
15. Respirateur (100) selon l'une quelconque des revendications précédentes,
dans lequel le dispositif de commande de soufflage (110) est configuré pour commander
le ventilateur de soufflage (120) pour régler la vitesse de flux d'air du ventilateur
de soufflage (120) selon le modèle de vitesse de flux d'air pour une période de temps
sélectionnée, et pour commander le ventilateur de soufflage (120) pour utiliser un
autre modèle de vitesse de flux d'air lorsque la période de temps sélectionnée s'est
écoulée.