(19) |
 |
|
(11) |
EP 3 720 622 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
22.03.2023 Bulletin 2023/12 |
(22) |
Date of filing: 13.11.2018 |
|
(51) |
International Patent Classification (IPC):
|
(86) |
International application number: |
|
PCT/US2018/060668 |
(87) |
International publication number: |
|
WO 2019/112758 (13.06.2019 Gazette 2019/24) |
|
(54) |
LOOPER-LESS SMART ROLLING IN LONG PRODUCT MILLS
LOOPERLOSES INTELLIGENTES WALZEN IN WALZWERKEN FÜR LANGERZEUGNISSE
LAMINAGE INTELLIGENT SANS BOUCLEUR DANS DES LAMINOIRS À PRODUITS LONGS
|
(84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
(30) |
Priority: |
07.12.2017 US 201715834714
|
(43) |
Date of publication of application: |
|
14.10.2020 Bulletin 2020/42 |
(73) |
Proprietor: Primetals Technologies USA LLC |
|
Alpharetta, GA 30005 (US) |
|
(72) |
Inventors: |
|
- MORGAN, Steven
Port Talbot SA13 1ES (GB)
- PALFREMAN, Matthew D.
Charlton
MA 01507 (US)
- RICHES, Paul Barry
Paxton
MA 01612 (US)
|
(74) |
Representative: Metals@Linz |
|
Primetals Technologies Austria GmbH
Intellectual Property Upstream IP UP
Turmstraße 44 4031 Linz 4031 Linz (AT) |
(56) |
References cited: :
EP-B1- 1 097 007 WO-A1-2013/109570
|
EP-B1- 1 097 009 JP-A- S59 118 212
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The invention is related to the field of long product mills, and in particular to
long product mills utilizing tensionless or loop-less smart rolling or a method thereof
according to the preamble of claims 1 and 9.
[0002] Inter-stand tension is inherent in all long rolling mills. The physical manifestation
of tension is the difference in speed from one rolling mill stand to the other, in
theory the speed of each rolling mill stand is derived from the work being carried
out, however due to differences in material spread, roll wear and stock control, the
speed between two rolling mill stands in a long products mill is never 100% matched.
This mismatch is called tension or compression as the material can be pushed and or
pulled dependent on the error in speed between the two rolling mill stands.
[0003] In the early part of a rolling mill, tension control is managed using a minimum control
tension system (MTC). The MTC calculates the speed and torque for each rolling mill
stand allowing for speed adjustments. Such a control arrangement is described by
JPS59118212A.
[0004] In the later part of the rolling mill, loopers are utilized that are natural breaks
in the mill rolling process. A loop is formed to give an area of float or a buffer
in the continuous process between two rolling stands. This loop can be pushed or pulled
as the mill speed changes. If the loop grows or shrinks out of a preset position the
rolling mill stands can adjust their speeds accordingly in an attempt to maintain
equilibrium.
[0005] The theory being that with the looper in the ideal or dead band position, an error
in speed between the rolling mill stands is compensated for and the process remains
stable. A looper, however, never removes all tension or compression in the mill as
by nature the true material speed is never known and the force of the push or pull
is inherent in the material. Loopers include mechanical and electrics/automation (EA)
equipment that has an added cost and they add length to the overall rolling mill further
adding to the overall cost of a rolling mill line.
[0006] According to one aspect of the invention as claimed in claim 1, there is provided
a rolling mill for producing rolling mill product. The rolling mill includes a rolling
mill line that moves the rolling mill product. A plurality of rolling mill stands
are coupled to the rolling mill line that receives the rolling mill product and rolls
the rolling mill product. A plurality of speed measuring devices that are positioned
in close proximity to each rolling mill stand, where each speed measuring device measures
the speed of the rolling mill product as it passes the speed measuring devices. A
control device receives information associated with the speed measuring devices and
adjusts the speed of the rolling mill product for any speed differential that might
exist between any of the rolling mill stands, wherein the speed differential is the
difference between the actual speed of the rolling mill product with a calculated
speed at a point on the rolling mill line.
[0007] According to another aspect of the invention, as claimed in claim 9, there is provided
a method for producing rolling mill product in a rolling mill. The method includes
providing a rolling mill line that moves the rolling mill product. Also, the method
includes providing a plurality of rolling mill stands that are coupled to the rolling
line that receives the rolling mill product and rolls the rolling mill product. A
plurality of speed measuring devices are positioned in close proximity to each rolling
mill stand, where each speed measuring device measures the speed of the rolling mill
product as it passes the speed measuring devices. Furthermore, the method includes
adjusting the speed of the rolling mill product for any speed differential that might
exist between any of the rolling mill stands using a control device that receives
information associated with the speed measuring devices, wherein the speed differential
is the difference between the actual speed of the rolling mill product with a calculated
speed at a point on the rolling mill line.
[0008] These and further advantageous aspects of the claimed invention will now be described
in further detail with reference to the accompanying drawings..
FIG. 1 is a schematic diagram illustrating the looper-less rolling mill arrangement
used in accordance with the invention; and
FIG. 2 is a schematic diagram illustrating another embodiment of the looper-less rolling
mill arrangement used in accordance with the invention.
[0009] The invention describes a systematic approach that eliminates the need for a mechanical
looper in a rolling mill and its associated control. The looper is replaced with a
simple laser velocimetry system and/or camera arrangement where one laser is positioned
in-between each individual rolling mill stand. This can include machines of multiple
rolls but with one drive motor.
[0010] In the prior art, the tension and loop control systems work from a theoretical speed
calculated from a theoretical working diameter. This diameter change is dependent
on the process section being rolled. Furthermore, as the material is rolled in the
rolling mill, its area is reduced and passes through each subsequent rolling mill
stand at higher velocities. This complicates a looper design and control as enough
buffer "storage" must be accounted for each looper to effectively support and control
smaller product or sections sizes.
[0011] As an example, if a section in question is travelling at 15 m/s and the rolling stands
in question have the ability to adjust at 2.5 m/s/s. Then the required loop storage
for a speed differential of 3% would be 0.18m of material, from the initial start
position or pass line to reach equilibrium.
[0012] The invention eliminates the need for the complications and limitations referenced
above, as the actual product speed between rolling mill stands is measured with non-contact
velocimetry. In the early part of the rolling mill line, speed measurements can be
utilized as the rolling mill stands are positioned close to one another as the metallurgical
process in the mill does not require water-quenching and/or equalization.
[0013] FIG. 1 shows an illustrative example of the looper-less rolling mill arrangement
2 used in accordance with the invention. The looper-less roll mill arrangement 2 includes
a rolling mill line 4, rolling mill stands STD13 and STD14, cameras C12o, C13o and
C14o, and output lasers L12o, L13o and L140. The rolling mill product is moved thru
various points in the mill 2 using a rolling mill line 4 that passes thru a number
of rolling mill stands. Each rolling mill stand STD13, STD14 includes a respective
camera C12o, C13o, C14o and output laser L12o, L13o, L14o.
[0014] Each camera C12o, C13o, C14o is used as a visual tool to assess the quality of the
rolling mill product, such as the height of a stock section for accurate control.
Each laser L12o, L13o, L14o measures the true product speed of the rolling mill line
4 and compares this with the calculated speed at this point and makes the necessary
speed adjustments to the rolling mill stand in question and the subsequent rolling
mill stands if needed to balance the rolling process. The rolling mill stands are
connected to a control system that allows for the speed adjustment at each rolling
mill stand. Both the laser and the camera can share a common mount or enclosure.
[0015] In most rolling mills, the individual rolling mill stands are controlled from a master
speed reference. This speed reference takes into consideration the calculated reduction
in area achieved in each rolling mill stand, the roll diameter of each rolling mill
stand, and the associated gear ratio.
[0016] The error can manifest itself due to slightly incorrect roll profiles or diameters,
poor section control in the mill, or slight differences in the theoretical and actual
gearbox ratios in the rolling mill stands. In the slower part of the rolling mill,
a MTC (minimum tension control) system is utilized that leverages an iterative self-learning
system to match the rolling mill stand speeds. Further upstream in the rolling mill,
this iterative approach is not possible as the speed error grows and the risk of a
rolling mill cobble increases.
[0017] The means for controlling this error in speed in most rolling mills in the prior
art is the looper. The looper is effectively a mechanical piece of equipment that
is controlled by a loop. The looper allows for a mismatch in equipment speed by giving
the rolling mill product a buffer space to either grow a loop or collapse a loop to
a setpoint with limits for loop growth or decay dependent upon process changes. The
looper effectively balances any error in the rolling mill speed reference. A new speed
reference is then sent to a control device in the mill to control the rolling speeds
so as to ensure the speed of each rolling mill stand is correct relative to the one
before it and/or after it. As one can theorize, the speed reference is a calculated
value and is subject to error.
[0018] The invention eliminates the need for the mechanical looper and its associated control.
The looper is replaced with a simple laser velocimetry system described herein. One
laser is positioned in-between each individual rolling mill stand. This can include
machines of multiple rolls but with one drive motor.
[0019] FIG. 2 shows an illustrative example of another embodiment of the looper-less rolling
mill arrangement 20 used in accordance with the invention. The looper-less rolling
mill arrangement 20 includes a rolling mill having a line 4, roll milling stands STD13
and STD14, input lasers L13i and L14i, and output lasers L13o and L140. Note the looper-less
arrangement 20 is similar to the looper-less rolling mill arrangement 2 of FIG. 1.
Each rolling mill stand STD13, STD14 includes a respective input laser L13i, L14i
and output laser L13o, L14o. The input lasers L13i, L14i measure the incoming speed
of the rolling mill product to its respective rolling stand STD13, STD14. The output
lasers L13o, L14o measure the outgoing speed of the rolling mill product from its
respective rolling stand STD13, STD14.
[0020] The incoming speeds and outgoing speeds of the rolling mill product at each rolling
mill stand is compared to its theoretically controlled rolling speed as well as comparing
the incoming speed and outgoing speed form a previous rolling mill stand.
[0021] Using the invention and tying the actual rolling mill product speed into the control
device of a rolling mill, one could further improve the control of ancillary machines,
such as head and tail crop shears, or achieve shorter crop lengths thus reducing metallic
yield loss.
[0022] Moreover, the invention can allow the ring spacing at the laying head area of a rolling
mill to be maintained perfectly from head to tail of a rolling mill product. Any change
in product speed could be instantly adjusted using the lasers and cameras discussed
herein. Moreover, the information provided by the cameras and lasers can be used to
devise an intelligent mill system that requires less mechanical equipment. This can
reduce the building length and any associated costs as well as the cost of maintaining
less equipment, and the product quality is improved due to the overall increase in
accurate seed control of the rolling mill.
[0023] Where metallurgical processes dictate larger inter-stand distance due to the necessity
to quenching and equalization, then two non-contact gauges can be utilized, one at
the exit of the first rolling mill stand and one at the entry to the subsequent rolling
mill stand. This ensures any effects from quenching and resistance to forward motion
is accounted by the control device.
[0024] Although the present invention has been shown and described with respect to several
preferred embodiments thereof, various changes, omissions and additions to the form
and detail thereof, may be made therein, without departing from the scope of the invention
as defined by the appended claims.
1. A rolling mill for producing rolling mill product, said rolling mill comprising:
a rolling mill line (4) that moves the rolling mill product;
a plurality of rolling mill stands (STD13, STD14) that are coupled to the rolling
mill line that receives the rolling mill product and rolls the rolling mill product;
a plurality of speed measuring devices that are positioned in close proximity to each
rolling mill stand, each speed measuring device measures the speed of the rolling
mill product as it passes the speed measuring devices; and
a control device that receives information associated with the speed measuring devices
characterized in that said control device adjusts the speed of the rolling mill product for any speed differential
that might exist between any of the rolling mill stands, wherein the speed differential
is the difference between the actual speed of the rolling mill product with a calculated
speed at a point on the rolling mill line.
2. The rolling mill of claim 1, wherein the speed measuring devices comprise a laser
(L12o, L13i, L13o, L14i, L14o) and a camera (C12o, C13o, C14o).
3. The rolling mill of claim 2, wherein the camera (C12o, C13o, C14o) assesses the quality
of the rolling mill product.
4. The rolling mill of claim 3, wherein the laser (L12o, L13i, L13o, L14i, L14o) measures
the actual speed of the rolling mill product.
5. The rolling mill of claim 1, wherein the speed measuring devices comprise a plurality
of lasers (L12o, L13i, L13o, L14i, L14o).
6. The rolling mill of claim 5, wherein the lasers (L12o, L13i, L13o, L14i, L14o) are
arranged such that a selective number of the lasers is associated with each rolling
mill stand (STD13, STD14).
7. The rolling mill of claim 6, wherein the selective number of the lasers (L12o, L13i,
L13o, L14i, L14o) measure the incoming and outgoing speeds of the rolling mill product
for its respective rolling mill stand (STD13, STD14).
8. The rolling mill of claim 1, wherein the control device increases or decreases the
rolling speed of one or more rolling mill stands (STD13, STD14) to ensure the mill
speeds are equalized to stabilize the rolling mill.
9. A method for producing rolling mill product in a rolling mill, said method comprising:
providing a rolling mill line (4) that moves the rolling mill product;
providing a plurality of rolling mill stands (STD13, STD14) that are coupled to the
rolling line that receives the rolling mill product and rolls the rolling mill product;
positioning in close proximity to each rolling mill stand a plurality of speed measuring
devices, each speed measuring device measures the speed of the rolling mill product
as it passes the speed measuring devices; and characterized by
adjusting the speed of the rolling mill product for any speed differential that might
exist between any of the rolling mill stands using a control device that receives
information associated with the speed measuring devices, wherein the speed differential
is the difference between the actual speed of the rolling mill product with a calculated
speed at a point on the rolling mill line.
10. The method of claim 9, wherein the speed measuring devices comprise a laser (L12o,
L13i, L13o, L14i, L14o) and a camera (C12o, C13o, C14o).
11. The method of claim 10, wherein the camera (C12o, C13o, C14o) assesses the quality
of the rolling mill product.
12. The method of claim 10 or 11, wherein the laser (L12o, L13i, L13o, L14i, L14o) measures
the actual speed of the rolling mill product.
13. The method of claim 9, wherein the speed measuring devices comprises a plurality of
lasers (L12o, L13i, L13o, L14i, L14o).
14. The method of claim 13, wherein the lasers (L12o, L13i, L13o, L14i, L14o) are arranged
such that a selective number of the lasers is associated with each rolling mill stand
(STD13, STD14).
15. The method of claim 14, wherein the selective number of the lasers (L13i, L13o, L14i,
L14o) measure the incoming and outgoing speeds of the rolling mill product for its
respective rolling mill stand (STD13, STD14).
16. The method of claim 9, wherein the control device increases or decreases the rolling
speed of one or more rolling mill stands (STD13, STD14) to stabilize the rolling mill.
1. Walzwerk zur Produktion von Walzerzeugnissen, wobei das Walzwerk Folgendes umfasst:
eine Walzwerklinie (4), die das Walzerzeugnis bewegt;
mehrere Walzgerüste (STD13, STD14), die mit der Walzwerklinie gekoppelt sind, die
das Walzerzeugnis aufnehmen und das Walzerzeugnis walzen;
mehrere Geschwindigkeitsmessvorrichtungen, die in unmittelbarer Nähe zu den einzelnen
Walzgerüsten positioniert sind, wobei jede Geschwindigkeitsmessvorrichtung die Geschwindigkeit
des Walzerzeugnisses misst, wenn dieses die Geschwindigkeitsmessvorrichtungen passiert;
und
eine Steuervorrichtung, die Informationen in Verbindung mit den Geschwindigkeitsmessvorrichtungen
empfängt, dadurch gekennzeichnet, dass die Steuervorrichtung die Geschwindigkeit des Walzerzeugnisses für ein beliebiges
Geschwindigkeitsdifferenzial anpasst, das zwischen beliebigen der Walzgerüste vorhanden
sein kann, wobei das Geschwindigkeitsdifferenzial die Differenz zwischen der tatsächlichen
Geschwindigkeit des Walzerzeugnisses und einer berechneten Geschwindigkeit an einem
Punkt an der Walzwerklinie ist.
2. Walzwerk nach Anspruch 1, wobei die Geschwindigkeitsmessvorrichtungen einen Laser
(L12o, L13i, L13o, L14i, L14o) und eine Kamera (C12o, C13o, C14o) umfassen.
3. Walzwerk nach Anspruch 2, wobei die Kamera (C12o, C13o, C14o) die Qualität des Walzerzeugnisses
beurteilt.
4. Walzwerk nach Anspruch 3, wobei der Laser (L12o, L13i, L13o, L14i, L14o) die tatsächliche
Geschwindigkeit des Walzerzeugnisses misst.
5. Walzwerk nach Anspruch 1, wobei die Geschwindigkeitsmessvorrichtungen mehrere Laser
(L12o, L13i, L13o, L14i, L14o) umfassen.
6. Walzwerk nach Anspruch 5, wobei die Laser (L12o, L13i, L13o, L14i, L14o) so angeordnet
sind, dass eine selektive Anzahl von Lasern mit den einzelnen Walzgerüsten (STD13,
STD14) verknüpft ist.
7. Walzwerk nach Anspruch 6, wobei die selektive Anzahl der Laser (L12o, L13i, L13o,
L14i, L14o) die eingehenden und ausgehenden Geschwindigkeiten des Walzerzeugnisses
für ihr entsprechendes Walzgerüst (STD13, STD14) messen.
8. Walzwerk nach Anspruch 1, wobei die Steuervorrichtung die Walzgeschwindigkeit eines
oder mehrerer Walzgerüste (STD13, STD14) erhöht oder verringert, um sicherzustellen,
dass die Walzgeschwindigkeiten ausgeglichen werden, um das Walzwerk zu stabilisieren.
9. Verfahren zum Produzieren von Walzerzeugnissen in einem Walzwerk, wobei das Verfahren
Folgendes umfasst:
Bereitstellen einer Walzwerklinie (4), die das Walzerzeugnis bewegt;
Bereitstellen von mehreren Walzgerüsten (STD13, STD14), die mit der Walzlinie gekoppelt
sind, die das Walzerzeugnis aufnehmen und das Walzerzeugnis walzen;
Positionieren, in unmittelbarer Nähe zu jedem Walzgerüst, von mehreren Geschwindigkeitsmessvorrichtungen,
wobei jede Geschwindigkeitsmessvorrichtung die Geschwindigkeit des Walzerzeugnisses
misst, wenn dieses die Geschwindigkeitsmessvorrichtungen passiert; und gekennzeichnet durch
Anpassen der Geschwindigkeit des Walzerzeugnisses für ein beliebiges Geschwindigkeitsdifferenzial,
das zwischen beliebigen der Walzgerüste vorhanden sein kann, unter Verwendung einer
Steuervorrichtung, die Informationen in Verbindung mit den Geschwindigkeitsmessvorrichtungen
empfängt, wobei das Geschwindigkeitsdifferenzial die Differenz zwischen der tatsächlichen
Geschwindigkeit des Walzerzeugnisses und einer berechneten Geschwindigkeit an einem
Punkt an der Walzwerklinie ist.
10. Verfahren nach Anspruch 9, wobei die Geschwindigkeitsmessvorrichtungen einen Laser
(L12o, L13i, L13o, L14i, L14o) und eine Kamera (C12o, C13o, C14o) umfassen.
11. Verfahren nach Anspruch 10, wobei die Kamera (C12o, C13o, C14o) die Qualität des Walzerzeugnisses
beurteilt.
12. Verfahren nach Anspruch 10 oder 11, wobei der Laser (L12o, L13i, L13o, L14i, L14o)
die tatsächliche Geschwindigkeit des Walzerzeugnisses misst.
13. Verfahren nach Anspruch 9, wobei die Geschwindigkeitsmessvorrichtungen mehrere Laser
(L12o, L13i, L13o, L14i, L14o) umfassen.
14. Verfahren nach Anspruch 13, wobei die Laser (L12o, L13i, L13o, L14i, L14o) so angeordnet
sind, dass eine selektive Anzahl von Lasern mit den einzelnen Walzgerüsten (STD13,
STD14) verknüpft ist.
15. Verfahren nach Anspruch 14, wobei die selektive Anzahl der Laser (L13i, L13o, L14i,
L14o) die eingehenden und ausgehenden Geschwindigkeiten des Walzerzeugnisses für ihr
entsprechendes Walzgerüst (STD13, STD14) messen.
16. Verfahren nach Anspruch 9, wobei die Steuervorrichtung die Walzgeschwindigkeit eines
oder mehrerer Walzgerüste (STD13, STD14) erhöht oder verringert, um das Walzwerk zu
stabilisieren.
1. Laminoir pour produire un produit de laminoir, ledit laminoir comprenant :
une ligne de laminoir (4) qui déplace le produit de laminoir ;
une pluralité de cages de laminoir (STD13, STD14) qui sont accouplées à la ligne de
laminoir qui reçoit le produit de laminoir et lamine le produit de laminoir ;
une pluralité de dispositifs de mesure de vitesse qui sont positionnés à proximité
immédiate de chaque cage de laminoir, chaque dispositif de mesure de vitesse mesurant
la vitesse du produit de laminoir lorsqu'il passe par les dispositifs de mesure de
vitesse ; et
un dispositif de commande qui reçoit des informations associées aux dispositifs de
mesure de vitesse caractérisé en ce que ledit dispositif de commande ajuste la vitesse du produit de laminoir pour n'importe
quel différentiel de vitesse qui pourrait exister entre des cages de laminoir quelconques,
dans lequel le différentiel de vitesse est la différence entre la vitesse réelle du
produit de laminoir et une vitesse calculée en un point sur la ligne de laminoir.
2. Laminoir selon la revendication 1, dans lequel les dispositifs de mesure de vitesse
comprennent un laser (L12o, L13i, L13o, L14i, L14o) et une caméra (C12o, C13o, C14o).
3. Laminoir selon la revendication 2, dans lequel la caméra (C12o, C13o, C14o) évalue
la qualité du produit de laminoir.
4. Laminoir selon la revendication 3, dans lequel le laser (L12o, L13i, L13o, L14i, L14o)
mesure la vitesse réelle du produit de laminoir.
5. Laminoir selon la revendication 1, dans lequel les dispositifs de mesure de vitesse
comprennent une pluralité de lasers (L12o, L13i, L13o, L14i, L14o).
6. Laminoir selon la revendication 5, dans lequel les lasers (L12o, L13i, L13o, L14i,
L14o) sont agencés de telle sorte qu'un nombre sélectif des lasers soit associé à
chaque cage de laminoir (STD13, STD14).
7. Laminoir selon la revendication 6, dans lequel le nombre sélectif des lasers (L12o,
L13i, L13o, L14i, L14o) mesurent les vitesses d'entrée et de sortie du produit de
laminoir pour sa cage de laminoir (STD13, STD14) respective.
8. Laminoir selon la revendication 1, dans lequel le dispositif de commande augmente
ou diminue la vitesse de laminage d'une ou de plusieurs cages de laminoir (STD13,
STD14) afin de garantir que les vitesses de laminoir soient égalisées afin de stabiliser
le laminoir.
9. Procédé pour produire un produit de laminoir dans un laminoir, ledit procédé comprenant
:
la fourniture d'une ligne de laminoir (4) qui déplace le produit de laminoir ;
la fourniture d'une pluralité de cages de laminoir (STD13, STD14) qui sont accouplées
à la ligne de laminage qui reçoit le produit de laminoir et lamine le produit de laminoir
;
le positionnement à proximité immédiate de chaque cage de laminoir d'une pluralité
de dispositifs de mesure de vitesse, chaque dispositif de mesure de vitesse mesurant
la vitesse du produit de laminoir lorsqu'il passe par les dispositifs de mesure de
vitesse ; et caractérisé par
l'ajustement de la vitesse du produit de laminoir pour n'importe quel différentiel
de vitesse qui pourrait exister entre des cages de laminoir quelconques à l'aide d'un
dispositif de commande qui reçoit des informations associées aux dispositifs de mesure
de vitesse, dans lequel le différentiel de vitesse est la différence entre la vitesse
réelle du produit de laminoir et une vitesse calculée en un point sur la ligne de
laminoir.
10. Procédé selon la revendication 9, dans lequel les dispositifs de mesure de vitesse
comprennent un laser (L12o, L13i, L13o, L14i, L14o) et une caméra (C12o, C13o, C14o).
11. Procédé selon la revendication 10, dans lequel la caméra (C12o, C13o, C14o) évalue
la qualité du produit de laminoir.
12. Procédé selon la revendication 10 ou la revendication 11, dans lequel le laser (L12o,
L13i, L13o, L14i, L14o) mesure la vitesse réelle du produit de laminoir.
13. Procédé selon la revendication 9, dans lequel les dispositifs de mesure de vitesse
comprennent une pluralité de lasers (L12o, L13i, L13o, L14i, L14o).
14. Procédé selon la revendication 13, dans lequel les lasers (L12o, L13i, L13o, L14i,
L14o) sont agencés de telle sorte qu'un nombre sélectif des lasers soit associé à
chaque cage de laminoir (STD13, STD14).
15. Procédé selon la revendication 14, dans lequel le nombre sélectif des lasers (L13i,
L13o, L14i, L14o) mesurent les vitesses d'entrée et de sortie du produit de laminoir
pour sa cage de laminoir (STD13, STD14) respective.
16. Procédé selon la revendication 9, dans lequel le dispositif de commande augmente ou
diminue la vitesse de laminage d'une ou de plusieurs cages de laminoir (STD13, STD14)
afin de stabiliser le laminoir.


REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description