TECHNICAL FIELD
[0001] The present invention relates to a second-stage combustor for a sequential combustor
of a gas turbine.
BACKGROUND
[0002] As it is known, increase of power output and efficiency of gas turbines for power
plants involves several challenges and fuel injection to obtain efficient and emission-compliant
combustion is among the most critical ones. In order to achieve higher power output,
in fact, also fuel supply is to be significantly increased and injection must be carried
out in such a manner that the fuel flowrate is adequately mixed with a flowrate of
a dilutant fluid (e.g. fresh air or exhaust of first combustor stage in sequential
combustors). Poor mixing may negatively affect combustion and levels of pollutant
emissions.
[0003] The need to supply increased fuel flowrates and to provide adequate mixing led to
developing burners with complex structures. Known burners tend to meet heavy requirements
in terms of fuel supply and mixing capacity, nevertheless some limitations still stand,
in particular because complex structure has important implications. Depending on the
type of combustor, multipoint lance injectors or streamlined bodies with critical
aerodynamic properties need to be provided. Manufacturing of such complex structures
may be difficult and processes required to obtain acceptable results may involve substantial
cost.
[0004] Moreover, it is in general desired that burner assemblies (i.e. devices devoted to
fuel injection and mixing) can be retracted form their housings for the purpose of
maintenance or retrofitting without the need to disassemble large part of the combustors.
In particular, it is desired that burner assemblies are axially retractable for simple
extraction from can combustors. Exactly on account of their complex structure, however,
known burner assemblies cannot be retracted.
[0005] EP 3 015 772 A1 discloses a combustor of a gas turbine, comprising: a first-stage combustor, a second-stage
combustor, an axial lance injector and a flame stabilizer device. The second-stage
combustor is arranged downstream of the first-stage combustor and includes a second-stage
combustion chamber extending along an axial direction. The axial lance injector comprises
an elongated streamlined body extending in the axial direction from the first-stage
combustor through a transition region of the second-stage combustor. A plurality of
first cross-flow injection nozzles and a plurality of second cross-flow injection
nozzles are provided on the elongated streamlined body at respective axial locations.
The flame stabilizer device is arranged downstream of the first cross-flow injection
nozzles and of the second cross-flow injection nozzles.
SUMMARY OF THE INVENTION
[0007] It is an aim of the present invention to provide a second-stage combustor for a sequential
combustor of a gas turbine and a method of controlling a sequential combustor of gas
turbine with a first-stage combustor and a second-stage combustor, which allow to
overcome or at least to attenuate the limitations described.
[0008] According to the present invention, there is provided a combustor of a gas turbine,
comprising:
a first-stage combustor and a second-stage combustor, wherein the second-stage combustor
is arranged downstream of the first-stage combustor and includes a second-stage combustion
chamber extending along an axial direction;
an axial lance injector; and
a flame stabilizer device;
wherein the axial lance injector comprises:
an elongated streamlined body extending in the axial direction from the first-stage
combustor into the second-stage combustion chamber through a transition region of
the second-stage combustor, wherein the elongated streamlined body and the transition
region are configured to prevent gas flowing from the first-stage combustor to the
second-stage combustion chamber from recirculating in the transition region;
a plurality of first cross-flow injection nozzles and a plurality of second cross-flow
injection nozzles provided on the elongated streamlined body at respective axial locations;
and wherein the flame stabilizer device is arranged downstream of the first cross-flow
injection nozzles and of the second cross-flow injection nozzles;
characterized in that the flame stabilizer device comprises a full-load flame stabilizer
at a downstream end of the elongated streamlined body and at least one partial-load
flame stabilizer between the second cross-flow injection nozzles and the full-load
flame stabilizer.
[0009] The combustor combines an axial lance injector with extremely simple design and a
flame stabilizer device that allows to anchor the flame at one or more desired locations.
In particular, the front flame may be set at an axially downstream location at full
load, to reduce post-flame residence time and production of NOx.
[0010] The axial lance injector is essentially defined by an elongated streamlined body
that extends from the first-stage combustor into the second-stage combustion chamber
and exploits cross-flow injection for providing effective supply and mixing even when
large fuel flowrates are required. Cross-flow injection nozzles may be provided on
the surface of the elongated streamlined body and there is no need for special components,
creating complex fluid-dynamic structures. As a result, the axial lance injector may
be manufactured by conventional manufacturing processes and it is not necessary to
resort to additive techniques, to the advantage of cost. In addition, the axial lance
injector is easily retractable in the axial direction, thus simplifying maintenance
and retrofitting operations.
[0011] Axial locations of the first and second cross-flow injection nozzles can be selected
to exploit different time delays from injection locations and the flame front. This
can be used for the purpose of mitigating thermoacoustic oscillations and for providing
short mixing paths for highly reactive fuels.
[0012] According to an aspect of the present invention, the second cross-flow injection
nozzles are axially displaced downstream of the first cross-flow injection nozzles.
[0013] According to an aspect of the present invention, the first cross-flow injection nozzles
are fluidly coupled to a fuel gas supply line and the second cross-flow injection
nozzles are fluidly coupled to a liquid fuel supply line.
[0014] Separate supply paths for different fuels may be provided. Advantages of separate
oil injection may thus be exploited. In particular, less strict purging requirements
are allowed. Also, separate supply valves can be used and mixing paths can be separately
optimized for different fuels.
[0015] According to an aspect of the present invention, at least one of the first cross-flow
injection nozzles is axially displaced with respect to the other first cross-flow
injection nozzles.
[0016] According to an aspect of the present invention, the first cross-flow injection nozzles
are staggered in the axial direction.
[0017] According to an aspect of the present invention, at least one of the second cross-flow
injection nozzles is axially displaced with respect to the other second cross-flow
injection nozzles.
[0018] According to an aspect of the present invention, the second cross-flow injection
nozzles are staggered in the axial direction.
[0019] All the above features, separately and possibly in combination, allow to optimize
beneficial effects of fuel injection at different axial locations, in particular with
respect to mixing paths, ignition time and damping of thermoacoustic oscillations.
[0020] According to an aspect of the present invention, the second cross-flow injection
nozzles are oriented at such an angle that fuel oil is injected in the second-stage
combustion chamber with a non-zero axial component of velocity.
[0021] Inclination of the second cross-flow injection nozzles allows to reduce residence
time of highly reactive fuel oil, because injected fuel leaves the nozzles with a
non-zero axial component of velocity. In turn, lower residence time reduces the need
for mixing additional water to fuel oil. In some cases, additional water may not be
required at all, especially when inclination of the second cross-flow injection nozzles
is supplemented by advanced flame location, as permitted by the flame stabilizer device.
[0022] According to an aspect of the present invention, the combustor comprises vortex generators
upstream of the second-stage combustion chamber.
[0023] Large vortex generators determine relatively slow mixing, i.e. longer distance and
time are required. At full load, however, the flame stabilizer device may be used
to set the flame location downstream. So, despite the large fuel flow rate at full
load, efficient mixing is achieved. Early self-ignition of the air and fuel mixture
is in any case avoided. The vortex generators may have quite simple shape (e.g. prismatic)
and manufacturing thereof does not entail substantial problems in relation to both
process complexity and cost.
[0024] According to an aspect of the present invention, the flame stabilizer device comprises
a full-load flame stabilizer at a downstream end of the elongated streamlined body.
[0025] Stabilizing the full-load flame at a downstream location helps to enhance beneficial
effects in terms of increased mixing distance and reduce post-flame residence time,
especially at full-load. This is particularly beneficial for the purpose of maintaining
low NOx emission at full-load.
[0026] According to an aspect of the present invention, the flame stabilizer device comprises
at least one partial-load flame stabilizer between the second cross-flow injection
nozzles and the full-load flame stabilizer.
[0027] Flame location may be adjusted during operation in accordance with load requirement.
At partial load, flame temperature is low and long post-flame residence time is desired
to achieve complete oxidation of carbon contained in the fuel flow and to reduce CO
emissions. Thus, it may be of advantage to set the flame location at an upstream position.
On the other hand, at full-load it is preferred to have the flame located as downstream
as possible in the second-stage combustion chamber, to obtain good air-fuel mixing
and reduce production of NOx.
[0028] According to an aspect of the present invention, the flame stabilizer device comprises
at least one of:
a downstream electrode system, operable to provide ignition energy in the second-stage
combustion chamber at least at one flame location; and
a change in cross section of the second-stage combustion chamber in the axial direction,
the change in cross section being configured to cause gas flowing through the second-stage
combustion chamber to recirculate at least at one flame location.
[0029] Flame location can be thus effectively and precisely controlled during operation
of the gas turbine.
[0030] According to an aspect of the present invention, the first-stage combustor comprises
an upstream end-cap and the elongated streamlined body is supported at the upstream
end-cap.
[0031] In this manner, extraction of the axial lance injector is favoured and operations
of maintenance and maintenance and retrofitting operations are simplified.
[0032] According to an aspect of the present invention, a flow channel is defined in the
first-stage combustor and in the second-stage combustor around the elongated streamlined
body and a cross section of the flow channel changes gradually along the flow direction
in the transition region.
[0033] The smooth transition between the first-stage combustor and the second-stage combustor
prevents flow stagnation at the inlet of the second-stage combustion chamber. In this
manner, stable flame anchorage is prevented and the flame location may be moved downstream
as desired during operation using the flame stabilizer device.
BRIEF DESCRIPTION OF THE DRAWINGS
[0034] The present invention will now be described with reference to the accompanying drawings,
which show some non-limitative embodiment thereof, in which:
- Figure 1 is simplified block diagram of a gas turbine assembly;
- Figure 2 is a longitudinal section through a sequential combustor including a second-stage
combustor in accordance to an embodiment of the present invention;
- Figure 3 is an enlarged longitudinal section through the second-stage combustor of
figure 2;
- Figure 4 is a perspective view of an enlarged detail of the second-stage combustor
of figure 2;
- Figure 5 is a longitudinal section through a second-stage combustor in accordance
to another embodiment of the present invention;
- Figure 6 is a side view an enlarged detail of the second-stage combustor of figure
5; and
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
[0035] Figure 1 shows a simplified view of a gas turbine assembly, designated as whole with
numeral 1. The gas turbine assembly 1 comprises a compressor section 2, a combustor
assembly 3 and a turbine section 5. The compressor section 2 and the turbine section
3 extend along a main axis A. An airflow compressed in the compressor section 2 is
mixed with fuel and is burned in the combustor assembly 3, possibly added with dilution
air. The burned mixture is then expanded to the turbine section 5 and converted in
mechanical power.
[0036] A controller 7, which is configured to define a setpoint for the gas turbine, receives
state signals from sensors 8 and operates the gas turbine through actuators 9 to provide
a controlled power output.
[0037] The combustor assembly 3 is a two-stage sequential combustor and comprises a plurality
of can combustors 10 arranged around the main axis A. Each of the can combustors 10,
one of which is shown in Figure 2, comprises a first-stage combustor 12 and a second-stage
combustor 13 sequentially arranged and defining a flow channel 15. An axial injector
lance 16 extends from the first-stage combustor 12 into the second-stage combustor
13.
[0038] More specifically, the first-stage combustor 12 comprises a burner 17 and a first-stage
combustion chamber 18.
[0039] The second-stage combustor 13, which is illustrated in greater detail in Figure 3,
is arranged downstream of the first-stage combustor 12 and includes a second-stage
combustion chamber 20 extending along an axial direction and a transition duct 22
for coupling to the turbine section 5, here not shown. Moreover, a flame stabilizer
device 23 is provided in the second-stage combustor 13.
[0040] The second-stage combustion chamber 20 extends along an axial direction downstream
of the first-stage combustor 12. In one embodiment, the second-stage combustion chamber
20 comprises an outer liner 24 and inner liner 25. The outer liner 24 surrounds the
inner liner 25 at a distance therefrom, so that a cooling channel 27 is defined between
the outer liner 24 and the inner liner 25. The inner liner 25 delimits the flow channel
15 outwards in the second-stage combustion chamber 20 and forms a transition region
28 that joins the first-stage combustor 12 in such a way to define a smooth transition
without steps and possibly sharp edges.
[0041] The axial lance injector 16 comprises an elongated streamlined body 30 that extends
in the axial direction from the first-stage combustor 12 into the second-stage combustion
chamber 20 through the transition region 28 of the second-stage combustor 13. A downstream
end of the elongated streamlined body 30 is arranged at an interface between the second-stage
combustion chamber 20 and the transition duct 22. In one embodiment, the first-stage
combustor 12 comprises an upstream end-cap 31 and the elongated streamlined body 30
is supported at the upstream end-cap 31 together with the burner 17 (see figure 2).
[0042] The elongated streamlined body 30 and the transition region 28 are configured to
prevent gas flowing from the first-stage combustor 12 to the second-stage combustion
chamber 20 from recirculating in the transition region 24. In one embodiment, for
example, the elongated streamlined body 30 has a smooth ellipsoidal surface tapering
towards a downstream end 30a. The surface of the elongated streamlined body 30 may
have different smooth shape, however, such as generally oblong, conical or cylindrical.
The downstream end 30a of the elongated streamlined body 30 may be truncated.
[0043] A plurality of first cross-flow injection nozzles 32 and a plurality of second cross-flow
injection nozzles 33 are provided on the elongated streamlined body 30 at respective
axial locations. In one embodiment, the first cross-flow injection nozzles 32 are
all at a first axial location and the second cross-flow injection nozzles 33 are all
at a second axial location. Moreover, the second cross-flow injection nozzles 33 are
axially displaced downstream of the first cross-flow injection nozzles 32. Thus the
second cross-flow injection nozzles 33 are arranged nearer to the outlet of the second-stage
combustion chamber 20 than the first cross-flow injection nozzles 32.
[0044] The first cross-flow injection nozzles 32 and the second cross-flow injection nozzles
33 are fluidly coupled to a fuel gas supply line 35 and to a fuel oil supply line
36, respectively. Terminal portions of the fuel gas supply line 35 and of a fuel oil
supply line 36 are accommodated inside the elongated streamlined body 30. Accordingly,
fuel gas and fuel oil may be separately fed to the second-stage combustion chamber
20. In addition, fuel oil is supplied at a location displaced axially downstream with
respect to the fuel gas.
[0045] Fuel gas is injected through the first cross-flow injection nozzles 32 in a direction
substantially perpendicular to an axis B of the axial lance injector 16. The second
cross-flow injection nozzles 33 may be inclined to inject fuel oil in an inclined
direction, that form an injection angle α with the axis B of the axial lance injector
16. The angle α may be comprised between 30° and 90°. Hence, due to the orientation
of the second cross-flow injection nozzles 33, fuel oil is injected in the second-stage
combustion chamber with a non-zero axial component of velocity. Radial and/or inclined
sleeves (not shown) may be provided as desired to increase penetration of fuel gas
and fuel oil, respectively.
[0046] The flame stabilizer device 23 is arranged downstream of the first cross-flow injection
nozzles 32 and of the second cross-flow injection nozzles 33 and is configured to
anchor the flame selectively at one of a plurality of flame locations. In one embodiment,
the flame stabilizer device 23 is controlled by the controller 7 and comprises a full-load
flame stabilizer 40 at a downstream end of the elongated streamlined body 30 and a
at least one partial-load flame stabilizer 41 between the second cross-flow injection
nozzles 33 and the full-load flame stabilizer 40.
[0047] The full-load flame stabilizer 40 comprises a set of full-load electrodes 40a on
the elongated streamlined body 30 and a full-load voltage supply line 40b running
inside the elongated streamlined body 30. Through the full-load electrodes 40a, the
full-load flame stabilizer 40 produces sparks across the second-stage combustion chamber
20 and causes ignition of the mixture flowing through the second-stage combustion
chamber 20 irrespective of temperature conditions and of the self-ignition time of
the mixture. In this respect, the self-ignition time of the mixture may be even so
long that the mixture would not self-ignite within the second-stage combustion chamber
20, but the full-load flame stabilizer 40 is in any case capable of stabilizing the
flame at the downstream end of the elongated streamlined body 30.
[0048] The partial-load flame stabilizer 41 comprises a set of partial-load electrodes 41a
on the streamlined body 30 and an upstream voltage supply line 41b. The partial-load
electrodes 41a are arranged between the second cross-flow injection nozzles 33 and
the full-load flame stabilizer 40.
[0049] The full-load flame stabilizer 40 and the partial-load flame stabilizer 41 are selectively
activated by the controller 7 on the basis of the load determined for the gas turbine
assembly 1. When the load exceeds a high load threshold, the controller 7 activates
the full-load flame stabilizer 40 and deactivates the partial-load flame stabilizer
41, thus setting a current flame location at the downstream end of the elongated streamlined
body 30. Instead, when the load is below a low load threshold, the controller 7 activates
the partial-load flame stabilizer 41 and deactivates the full-load flame stabilizer
40. Accordingly, the current flame location is moved upstream towards the crossflow
injection nozzles 32, 33. The low load threshold does not exceed the high load threshold.
In addition, the controller 7 controls an inlet gas temperature of hot gas flowing
from the first-stage combustor 12 to the second-stage combustor 13. For the purpose
of controlling the inlet gas temperature, the controller 7 may act e.g. on a power
split or power ratio of power delivered by the first-stage combustor 12 to power delivered
by the second-stage combustor 13, and/or on a flow of dilution air admixed to the
hot gas from the first-stage combustor 12 before entering the second-stage combustor
13. The controller 7 uses temperature control to help set a current flame location
at an upstream region of the second-stage combustion chamber 20 (by increasing the
inlet gas temperature at partial-load, with or without the aid of a flame stabilizer)
or at a downstream region of the outlet of the second-stage combustion chamber 20
(by decreasing the inlet gas temperature at full-load; the full-load flame stabilizer
40 causes ignition of the mixture flowing through the second-stage combustion chamber
20 irrespective of temperature conditions, so the self-ignition time of the mixture
may be even so long that the mixture would not self-ignite within the second-stage
combustion chamber 20).
[0050] Vortex generators 42 may be provided upstream of the second-stage combustion chamber
20 on the inner liner 25, for example in the transition region 32. In one embodiment,
the vortex generators 42 are configured to cause flow swirl by adding tangential component
of velocity. The vortex generators 42 may be e.g. in the form of prismatic projections
(see figure 4 by way of example), baffles, deflectors, lobes superficial roughness
of the inner liner 25 or have any other suitable shape.
[0051] In another embodiment of the invention, illustrated in figures 5 and 6, at least
one of the first cross-flow injection nozzles, here designated by numeral 132, is
axially displaced with respect to the other first cross-flow injection nozzles 132.
For example, the first cross-flow injection nozzles 132 may be staggered in the axial
direction and arranged along a helical line on the elongated streamlined body 30 with
uniform spacing in the circumferential direction.
[0052] Likewise, at least one of the second cross-flow injection nozzles, here designated
by numeral 133, is axially displaced with respect to the other second cross-flow injection
nozzles 133. For example, the second cross-flow injection nozzles 133 are staggered
in the axial direction and arranged along a helical line on the elongated streamlined
body 30 with uniform spacing in the circumferential direction.
1. A combustor of a gas turbine, comprising:
a first-stage combustor (12) and a second-stage combustor (13), wherein the second-stage
combustor (13) is arranged downstream of the first-stage combustor (12) and includes
a second-stage combustion chamber (20; 220) extending along an axial direction;
an axial lance injector (16);
a flame stabilizer device (23; 223);
wherein the axial lance injector (16) comprises:
an elongated streamlined body (30) extending in the axial direction from the first-stage
combustor (12) into the second-stage combustion chamber (20; 220) through a transition
region (28) of the second-stage combustor (13), wherein the elongated streamlined
body (30) and the transition region (28) are configured to prevent gas flowing from
the first-stage combustor (12) to the second-stage combustion chamber (20; 220) from
recirculating in the transition region (28);
a plurality of first cross-flow injection nozzles (32; 132) and a plurality of second
cross-flow injection nozzles (33; 133) provided on the elongated streamlined body
(30) at respective axial locations;
and wherein the flame stabilizer device (23; 223) is arranged downstream of the first
cross-flow injection nozzles (32; 132) and of the second cross-flow injection nozzles
(33; 133);
characterized in that the flame stabilizer device (23; 223) comprises a full-load flame stabilizer (40)
at a downstream end of the elongated streamlined body (30) and at least one partial-load
flame stabilizer (41) between the second cross-flow injection nozzles (33; 133) and
the full-load flame stabilizer (40).
2. The combustor of claim 1, wherein the second cross-flow injection nozzles (33; 133)
are axially displaced downstream of the first cross-flow injection nozzles (32; 132)
.
3. The combustor of claim 2, wherein the first cross-flow injection nozzles (32; 132)
are fluidly coupled to a fuel gas supply line (35) and the second cross-flow injection
nozzles (33; 133) are fluidly coupled to a fuel oil supply line (36).
4. The combustor of claim 2 or 3, wherein at least one of the first cross-flow injection
nozzles (32; 132) is axially displaced with respect to the other first cross-flow
injection nozzles (32; 132).
5. The combustor of any one of claims 2 to 4, wherein the first cross-flow injection
nozzles (32; 132) are staggered in the axial direction.
6. The combustor of any one of claims 2 to 5, wherein at least one of the second cross-flow
injection nozzles (33; 133) is axially displaced with respect to the other second
cross-flow injection nozzles (33; 133).
7. The combustor of any one of claims 2 to 6, wherein the second cross-flow injection
nozzles (33; 133) are staggered in the axial direction.
8. The combustor of any one of the preceding claims, wherein the second cross-flow injection
nozzles (33; 133) are oriented at such an angle (α) that fuel oil is injected in the
second-stage combustion chamber (20; 220) with a non-zero axial component of velocity.
9. The combustor of any one of the preceding claims, comprising vortex generators (42)
upstream of the second-stage combustion chamber (20; 220).
10. The combustor of any one of the preceding claims, wherein the flame stabilizer device
(23; 223) comprises at least one of:
a downstream electrode system (40a, 41a), operable to provide ignition energy in the
second-stage combustion chamber (20; 220) at least at one flame location; and
a change in cross section of the second-stage combustion chamber (20; 220) in the
axial direction, the change in cross section being configured to cause gas flowing
through the second-stage combustion chamber (20; 220) to recirculate at least at one
flame location.
11. The combustor of any one of the preceding claims, wherein the first-stage combustor
(12) comprises an upstream end-cap (31) and the elongated streamlined body (30) is
supported at the upstream end-cap (31).
12. The combustor of any one of the preceding claims, wherein a flow channel is defined
in the first-stage combustor (12) and in the second-stage combustor (13) around the
elongated streamlined body (30) and a cross section of the flow channel changes gradually
along the flow direction in the transition region (28).
13. A gas turbine assembly comprising a compressor section (2), a combustor assembly (3),
a turbine section (5) and a controller (7), configured to operate the gas turbine
assembly to provide a controlled power output, wherein the combustor assembly (3)
includes a combustor according to any one of the preceding claims and the controller
(7) is further configured to control a hot gas temperature of hot gas flowing from
the first-stage combustor (12) to the second-stage combustor (13) so that the hot
gas temperature is higher at partial-load and lower at full-load.
1. Brennereinrichtung einer Gasturbine, umfassend:
eine Erste-Stufe-Brennereinrichtung (12) und eine Zweite-Stufe-Brennereinrichtung
(13), wobei die Zweite-Stufe-Brennereinrichtung (13) stromabwärts der Erste-Stufe-Brennereinrichtung
(12) angeordnet ist und eine Zweite-Stufe-Brennkammer (20; 220) aufweist, die sich
entlang einer axialen Richtung erstreckt;
einen axialen Lanzeninjektor (16);
eine Flammenstabilisierungsvorrichtung (23; 223);
wobei der axiale Lanzeninjektor (16) umfasst:
einen langgestreckten stromlinienförmigen Körper (30), der sich in der axialen Richtung
von der Erste-Stufe-Brennereinrichtung (12) in die Zweite-Stufe-Brennkammer (20; 220)
durch einen Übergangsbereich (28) der Zweite-Stufe-Brennereinrichtung (13) erstreckt,
wobei der langgestreckte stromlinienförmige Körper (30) und der Übergangsbereich (28)
dazu konfiguriert sind, zu verhindern, dass Gas, das von der Erste-Stufe-Brennereinrichtung
(12) zu der Zweite-Stufe-Brennkammer (20; 220) strömt, in dem Übergangsbereich (28)
rezirkuliert;
mehrere erste Querstrom-Injektionsdüsen (32; 132) und mehrere zweite Querstrom-Injektionsdüsen
(33; 133), die an dem langgestreckten stromlinienförmigen Körper (30) an entsprechenden
axialen Stellen vorgesehen sind;
und wobei die Flammenstabilisierungsvorrichtung (23; 223) stromabwärts der ersten
Querstrom-Injektionsdüsen (32; 132) und der zweiten Querstrom-Injektionsdüsen (33;
133) angeordnet ist;
dadurch gekennzeichnet, dass die
Flammenstabilisierungsvorrichtung (23; 223) einen Volllastflammenstabilisator (40)
an einem stromabwärts gelegenen Ende des langgestreckten stromlinienförmigen Körpers
(30) und wenigstens einen Teillastflammenstabilisator (41) zwischen den zweiten Querstrom-Injektionsdüsen
(33; 133) und dem Volllastflammenstabilisator (40) umfasst.
2. Brennereinrichtung nach Anspruch 1, wobei die zweiten Querstrom-Injektionsdüsen (33;
133) von den ersten Querstrom-Injektionsdüsen (32; 132) axial stromabwärts verschoben
sind.
3. Brennereinrichtung nach Anspruch 2, wobei die ersten Querstrom-Injektionsdüsen (32;
132) strömungstechnisch mit einer Brennstoffgas-Zuführungsleitung (35) verbunden sind
und die zweiten Querstrom-Injektionsdüsen (33; 133) strömungstechnisch mit einer Brennstofföl-Zuführungsleitung
(36) verbunden sind.
4. Brennereinrichtung nach Anspruch 2 oder 3, wobei wenigstens eine der ersten Querstrom-Injektionsdüsen
(32; 132) in Bezug auf die anderen ersten Querstrom-Injektionsdüsen (32; 132) axial
verschoben ist.
5. Brennereinrichtung nach einem der Ansprüche 2 bis 4, wobei die ersten Querstrom-Injektionsdüsen
(32; 132) in axialer Richtung gestaffelt sind.
6. Brennereinrichtung nach einem der Ansprüche 2 bis 5, wobei wenigstens eine der zweiten
Querstrom-Injektionsdüsen (33; 133) in Bezug auf die anderen zweiten Querstrom-Injektionsdüsen
(33; 133) axial verschoben ist.
7. Die Brennereinrichtung nach einem der Ansprüche 2 bis 6, wobei die zweiten Querstrom-Injektionsdüsen
(33; 133) in axialer Richtung gestaffelt sind.
8. Brennereinrichtung nach einem der vorangehenden Ansprüche, wobei die zweiten Querstrom-Injektionsdüsen
(33; 133) in einem solchen Winkel (α) ausgerichtet sind, dass Brennstofföl mit einer
axialen Geschwindigkeitskomponente ungleich Null in die Zweite-Stufe-Brennkammer (20;
220) injiziert wird.
9. Brennereinrichtung nach einem der vorangehenden Ansprüche, die Wirbelgeneratoren (42)
stromaufwärts der Zweite-Stufe-Brennkammer (20; 220) umfasst.
10. Brennereinrichtung nach einem der vorangehenden Ansprüche, wobei die Flammenstabilisierungsvorrichtung
(23; 223) wenigstens eines umfasst von:
einem stromabwärts gelegenen Elektrodensystem (40a, 41a), das so betreibbar ist, dass
es Zündenergie in der Zweite-Stufe-Brennkammer (20; 220) an wenigstens einer Flammenstelle
bereitstellt; und
einer Änderung des Querschnitts der Zweite-Stufe-Brennkammer (20; 220) in axialer
Richtung, wobei die Änderung des Querschnitts dazu konfiguriert ist, das durch die
Zweite-Stufe-Brennkammer (20; 220) strömende Gas zu veranlassen, an wenigstens einer
Flammenstelle zu rezirkulieren.
11. Brennereinrichtung nach einem der vorangehenden Ansprüche, wobei die Erste-Stufe-Brennereinrichtung
(12) eine stromaufwärts gelegene Endkappe (31) umfasst und der langgestreckte stromlinienförmige
Körper (30) an der stromaufwärts gelegenen Endkappe (31) abgestützt ist.
12. Brennereinrichtung nach einem der vorangehenden Ansprüche, wobei in der Erste-Stufe-Brennereinrichtung
(12) und in der Zweite-Stufe-Brennereinrichtung (13) um den langgestreckten stromlinienförmigen
Körper (30) herum ein Strömungskanal definiert ist und sich ein Querschnitt des Strömungskanals
im Übergangsbereich (28) entlang der Strömungsrichtung allmählich ändert.
13. Gasturbinenanordnung, umfassend eine Verdichtersektion (2), eine Brennereinrichtungs-Anordnung
(3), eine Turbinensektion (5) und eine Steuereinrichtung (7), die dazu konfiguriert
ist, die Gasturbinenanordnung zu betreiben, um eine gesteuerte/geregelte Leistungsabgabe
bereitzustellen, wobei die Brennereinrichtungs-Anordnung (3) eine Brennereinrichtung
nach einem der vorangehenden Ansprüche aufweist und die Steuereinrichtung (7) ferner
dazu konfiguriert ist, eine Heißgastemperatur des von der Erste-Stufe-Brennereinrichtung
(12) zu der Zweite-Stufe-Brennereinrichtung (13) strömenden Heißgases so zu steuern/regeln,
dass die Heißgastemperatur bei Teillast höher und bei Volllast niedriger ist.
1. Chambre de combustion d'une turbine à gaz, comprenant :
une chambre de combustion de premier étage (12) et une chambre de combustion de second
étage (13), dans laquelle la chambre de combustion de second étage (13) est agencée
en aval de la chambre de combustion de premier étage (12) et comprend une chambre
de combustion de second étage (20 ; 220) s'étendant le long d'une direction axiale
;
un injecteur à lance axiale (16) ;
un dispositif de stabilisation de la flamme (23 ; 223) ;
dans laquelle l'injecteur à lance axiale (16) comprend :
un corps profilé allongé (30) s'étendant dans la direction axiale depuis la chambre
de combustion de premier étage (12) dans la chambre de combustion de second étage
(20 ; 220) à travers une région de transition (28) de la chambre de combustion de
second étage (13), dans laquelle le corps profilé allongé (30) et la région de transition
(28) sont configurés pour empêcher le gaz s'écoulant de la chambre de combustion de
premier étage (12) vers la chambre de combustion de second étage (20 ; 220) de recirculer
dans la région de transition (28) ;
une pluralité de premières buses d'injection à écoulements croisés (32 ; 132) et une
pluralité de secondes buses d'injection à écoulements croisés (33 ; 133) prévues sur
le corps profilé allongé (30) à des emplacements axiaux respectifs ;
et dans laquelle le dispositif de stabilisation de la flamme (23 ; 223) est agencé
en aval des premières buses d'injection à écoulements croisés (32 ; 132) et des secondes
buses d'injection à écoulements croisés (33 ; 133) ;
caractérisée en ce que le dispositif de stabilisation de la flamme (23 ; 223) comprend un stabilisateur
de flamme à pleine charge (40) à une extrémité d'aval du corps profilé allongé (30)
et au moins un stabilisateur de flamme à charge partielle (41) entre les secondes
buses d'injection à écoulements croisés (33 ; 133) et le stabilisateur de flamme à
pleine charge (40).
2. Chambre de combustion selon la revendication 1, dans laquelle les secondes buses d'injection
à écoulements croisés (33 ; 133) sont déplacées axialement en aval des premières buses
d'injection à écoulements croisés (32 ; 132).
3. Chambre de combustion selon la revendication 2, dans laquelle les premières buses
d'injection à écoulements croisés (32 ; 132) sont couplées de manière fluide à une
conduite d'alimentation en gaz combustible (35) et les secondes buses d'injection
à écoulements croisés (33 ; 133) sont couplées de manière fluide à une conduite d'alimentation
en fioul (36).
4. Chambre de combustion selon la revendication 2 ou 3, dans laquelle au moins une des
premières buses d'injection à écoulements croisés (32 ; 132) est déplacée axialement
par rapport aux autres premières buses d'injection à écoulements croisés (32 ; 132).
5. Chambre de combustion selon l'une quelconque des revendications 2 à 4, dans laquelle
les premières buses d'injection à écoulements croisés (32 ; 132) sont décalées dans
la direction axiale.
6. Chambre de combustion selon l'une quelconque des revendications 2 à 5, dans laquelle
au moins l'une des secondes buses d'injection à écoulements croisés (33 ; 133) est
déplacée axialement par rapport aux autres secondes buses d'injection à écoulements
croisés (33 ; 133).
7. Chambre de combustion selon l'une quelconque des revendications 2 à 6, dans laquelle
les secondes buses d'injection à écoulements croisés (33 ; 133) sont décalées dans
la direction axiale.
8. Chambre de combustion selon l'une quelconque des revendications précédentes, dans
laquelle les secondes buses d'injection à écoulements croisés (33 ; 133) sont orientées
selon un angle (a) tel que le fioul est injecté dans la chambre de combustion de second
étage (20 ; 220) avec une composante de vitesse axiale non nulle.
9. Chambre de combustion selon l'une quelconque des revendications précédentes, comprenant
des générateurs de tourbillons (42) en amont de la chambre de combustion de second
étage (20 ; 220).
10. Chambre de combustion selon l'une quelconque des revendications précédentes, dans
laquelle le dispositif de stabilisation de la flamme (23 ; 223) comprend au moins
l'un des éléments suivants :
un système d'électrodes en aval (40a, 41a), pouvant fonctionner pour fournir une énergie
d'allumage dans la chambre de combustion de second étage (20 ; 220) au moins à un
emplacement de flamme ; et
une modification de la section transversale de la chambre de combustion de second
étage (20 ; 220) dans la direction axiale, la modification de la section transversale
étant configurée pour amener le gaz s'écoulant à travers la chambre de combustion
de second étage (20 ; 220) à recirculer au moins à un emplacement de flamme.
11. Chambre de combustion selon l'une quelconque des revendications précédentes, dans
laquelle la chambre de combustion de premier étage (12) comprend un bouchon d'extrémité
amont (31) et le corps profilé allongé (30) est supporté au niveau du bouchon d'extrémité
amont (31).
12. Chambre de combustion selon l'une quelconque des revendications précédentes, dans
laquelle un canal d'écoulement est défini dans la chambre de combustion de premier
étage (12) et dans la chambre de combustion de second étage (13) autour du corps profilé
allongé (30) et une section transversale du canal d'écoulement change progressivement
le long de la direction d'écoulement dans la région de transition (28).
13. Ensemble de turbine à gaz comprenant une section de compresseur (2), un ensemble de
chambre de combustion (3), une section de turbine (5) et un dispositif de commande
(7), configuré pour faire fonctionner l'ensemble de turbine à gaz pour fournir une
puissance de sortie contrôlée, dans lequel l'ensemble de chambre de combustion (3)
comprend une chambre de combustion selon l'une quelconque des revendications précédentes
et le dispositif de commande (7) est en outre configuré pour contrôler une température
de gaz chaud du gaz chaud s'écoulant de la chambre de combustion de premier étage
(12) à la chambre de combustion de second étage (13) de sorte que la température du
gaz chaud soit plus élevée à charge partielle et plus faible à pleine charge.