Field of endeavor
[0001] The monitoring and surveillance of air operated diaphragm pumps to determine the
number of pulses which has been conducted with a given pump is challenging, however
important as an air operated diaphragm pump shall only survive a predefined number
of pulses in a given environment due to diaphragm wear during pumping action. In order
to avoid brake down during operation it is thus required, that a precise measure of
pump strokes is obtained, such that the membrane may be changed in a planned maintenance
operation, which does not adversely affect the operation of a plant comprising the
pump.
Brief Description of the related are
[0002] It is known to add stroke counters fitted to the air exhaust system; however, such
elements are prone to be un-reliable and are not necessarily capable of detecting
erratic pump action due to different kinds of mal function.
[0003] US2012051945A1 discloses a pump control system for a diaphragm pump that helps increasing the lifecycle
of the pump by monitoring the pump. The pump control system, however, does not provide
a fail-safe detection of pump strokes. Further, this document does not give details
about the accelerometer and how its data is analysed.
[0004] Thus, there is a need for a method and an apparatus which enables reliable and fail-safe
detection of pump strokes and which eliminates the above- mentioned disadvantages
of the prior art. The invention provides a method and an apparatus according to claims
1 and 8 respectively, to address the above mentioned drawbacks.
Summary
[0005] A method for surveillance of an air operated diaphragm pump is provided whereby initially
an accelerometer with at least 3 orthogonal accelerometer measuring directions is
attached to an air operated diaphragm pump or to a structure directly connected with
an air operated diaphragm pump; agitation level of the accelerometer at a frequency
rate above a predefined pulse rate of the air operated diaphragm pump is registered,
and a base line noise level of the accelerometer agitation level during a period of
no pump action is measured and stored, and a pulse rate of the air operated diaphragm
pump is determined as the most significant frequency of pulses out of an entire power
spectrum calculated from the accelerometer readings, and lastly the most significant
frequency of pulses and the duration of registered pulse signals is determined and
stored.
[0006] Based on the pulse frequency which is determined as the most significant frequency
in the power spectrum and the duration of pulse or stroke action of the air operated
pump, it is now easy to determine the number of stroke actions provided within a given
time frame, and to also store this value.
[0007] By this method, a total number of stroke actions of a given pump may continually
be surveilled, and the surveillance date may be used for the generation of alerts,
in case the pump action is not according to plan, or an end of life for the membrane
is approaching. Maintenance, such as the exchange of a pump membrane may be initiated
timely and in a controlled manner, which does not negatively affect the operation
of the plant in which the pump serves.
[0008] It is an advantage that the frequency spectrum for the accelerometer readings is
determined from calculated values: aRMS(i) based on sampled accelerometer readings
at a sampling rate whereby,
[0009] and where i is the sample number, and M is the number of samples used to calculate
the value aRMS
i, at sample number i, and further
where X
i, Y
i and Z
i are normalized accelerometer output values in orthogonal directions x, y and z respectively
in each sample. It is the a
total(i) values which are used in the calculation of the aRMS(i) values. Normalization
if the X
i, Y
i and Z
i values are performed in a usual manner in order to exclude bias from gravitation
so that only accelerations due to the movements of the pump are included in the calculations.
[0010] The aRMS(i) time dependent values are indicative of the energy levels contained in
the accelerometer signal and thus indicative of the agitation level of the pump at
a particular sample. The M value, which counts the number of samples going into calculating
each aRMS(i) value determines, together with the sampling rate for the accelerometer
signal, the frequency resolution of the calculated power spectrum.
[0011] In an aspect of the invention, M is chosen such that at a given sampling rate, the
duration of the M samples spans a time of no more than half the time of a pulse duration
during normal operation of the pump being monitored. In this way it is ensured, that
the pump stroke signal is sure to show up in the power spectrum as a frequency with
a significant energy content.
[0012] In an aspect of the invention an externally threaded part of an accelerometer housing
is rotated into a threaded connection pipe or threaded pipe bracket located on a suction
or pressure pipe leading to/from the air operated diaphragm pump whereby the distance
between the connection pipe or bracket and the pump is adapted to be no more than
6 times the pipe diameter of suction or pressure pipe respectively, or preferably
no more than 4 times the pipe diameter og most preferred no more than 2 times the
pipe diameter. The working medium which the pump is to pressurize, shall also flow
to/from the pump in accordance with the stroke rate of the pump, and thus the pipes
leading to and from the pump and feeding the medium to the volume changing cavities
in front of the membranes, shall vibrate in accordance with the stroke rate, at least
close to the pump itself. Thus, it is preferred that the housing and accelerometer
is provided close to the pump.
[0013] In this way it is assured, that the accelerometer shall be intimately connected to
the vibrating part of the pump to be followed. Also, these pumps are usually connected
with pipes, such as water pipes, and here, it is easy to connect the threaded stub
to a connection pipe, such as an open pipe-end having internal threads. The threaded
connection ensures a play-free connection between the accelerometer housing and the
pump or pipe connection. Such a play free connection is important in ensuring that
resonance frequencies of pipes and accelerometer housing are not energized by the
sometimes-fierce vibrations of these pumps. It further allows the accelerometer housing
to be added to the pump or pipes at the pump without use of specialized tools, and
in fact the mounting of the accelerometer housing may be done by hand. The threads
on the exterior of the stub shall be chosen according to the threading standard, which
is most prominent in the country or region, where the pump is installed. The use of
a simple treaded stub is also instrumental in ensuring, that the pump rate may be
calculated fail safe with the relatively simple calculations given above.
[0014] In an aspect of the invention the following steps are performed:
- determine the pulse rate of the air operated diaphragm pump at regular intervals and
store the determined pulse rates at a data repository within the housing,
- feed pulse rate data through a wireless connection channel to a remote data repository
at regular intervals.
[0015] The determined pulse rates which have been collected at regular intervals allows
for the pump to be monitored or surveilled, such that any un-foreseen events may be
observed centrally for any number of pumps equipped with the surveillance means.
[0016] In an aspect of the invention an accelerometer housing houses a sub-giga radio which
receives pulse rate data from one or more accelerometers at nearby pumps and feeds
these pulse rate data through a cellular device via a cellular connection to a data
repository located away from the cellular device. The data are wirelessly transmitted
to a remote data repository and this will potentially create a digital version of
a life story of the pump, which if compared to life stories of other pumps may provide
valuable data concerning the reliability of a single pump, classes of pumps or populations
of pumps working with similar media.
[0017] In a further aspect of the invention NFC signals are captured within the housing
when an NFC enabled device such as a cell phone is placed in the vicinity of the housing.
Such NFC signals are used to modify a content of a control device which control device
facilitates the accelerometer measurements. In this way, an operator may change settings
locally based on observed events and conditions around the pump in question.
[0018] In a further aspect the control device is adapted to monitor a pulse rate from a
pump, and to provide an alert in case pulse rates are not within predetermined limits.
This allows a close monitoring of a pump locally, such that immediate alerts may be
provided to anyone in the vicinity of the pump.
[0019] The invention further relates to a surveillance device comprising a:
- housing and an accelerometer within the housing which accelerometer is adapted to
capture acceleration data in 3 orthogonal directions in space, and a
- data repository adapted to temporarily store captured acceleration data,
- a calculation unit adapted to determine a pump stroke rate based on the accelerometer
readings,
- a feed line adapted to wirelessly transmit stored accelerometer data which reflects
the pump stroke rate,
- control device adapted to:
- control the capture of accelerometer data and to
- process the captured data, and
- to control the feed line and control the wireless transmission of the stored accelerometer
data,
whereby the housing of the surveillance device comprises an externally threaded stub,
which is adapted to threadedly connect to an internally threaded connection pipe or
bracket at or associated with an air operated diaphragm pump.
[0020] In order to ensure, that accelerometer readings are sufficiently representative of
motions of a given air operated diaphragm pump, the accelerometer housing shall have
to be play-free and forcefully connected to the pump or piping connected to the pump.
This is ensured by the externally treaded stub of the accelerometer housing and its
being threadedly connected to an internally treaded connection pipe or bracket at
or connected with an air operated diaphragm pump.
[0021] It is an advantage that the surveillance device is adapted to calculate an overall
energy level measure based on registered accelerometer values in 3 orthogonal directions
whereby a frequency spectrum for the overall energy level measure is determined from
calculated values:
- aRMS(i) based on sampled accelerometer readings at a sampling rate whereby,
and where i is the sample number, and M is the number of samples used to calculate
the value aRMS, at sample number i and further
where Xi, Yi and Zi are normalized accelerometer output values in orthogonal directions x, y and z respectively
in each sample.
[0022] Hereby a secure and precise detection of the frequency spectrum for the energy level
at the accelerometer is provided, such that pump stroke rate may be securely and precisely
calculated when the frequency spectrum of the energy levels has been determined. A
frequency spectrum based on the data here will display a dominant frequency line at
the pulsation rate or pulsation frequency of the pump. And as these pulsations of
the pumps are always periodic, they do not change significantly over time and further,
the noise energy level is far below the energy level of the signal generated by the
pulsations of the pump at the pulsation frequency.
[0023] In an aspect of the invention, the externally threaded part of the accelerometer
housing is rotated into a threaded connection pipe or threaded pipe bracket located
on a suction or pressure pipe to/from the air operated diaphragm pump whereby the
distance between the connection pipe or bracket and the pump is adapted to be no more
than 6 times the pipe diameter of suction or pressure pipe respectively, or preferably
no more than 4 times the pipe diameter og most preferred no more than 2 times the
pipe diameter.
[0024] Hereby it is ensured, that the obtained measurement data may be used in the calculation
of the pump rate without the possibility of resonance frequencies of other parts of
the system being energized to levels, where they might disturb the measurements.
[0025] In an aspect of the invention the device further comprises a PCB (printed circuit
board) which PCB is mounted with the control device, a radio transmitter adapted to
transmit captured accelerometer data and the accelerometer. The accelerometer may
be a micromechanical device such as a MEMS device and thus adapted to be mounted onto
a PCB. PCB parts may be screwed onto and thus secured unmovably to any inside part
of the accelerometer housing.
[0026] In a further aspect of the invention an NFC enabled communication device and a sub-giga
radio are provided at the PCB. This allows communication to and from the housing in
various wireless formats, such as through the short-range NFC channel, which is part
of many telephones and similar devices, and through a sub-giga radio transmission,
which is used for standardized communication and data exchange in many industries.
[0027] In a further aspect of the invention, a battery is housed in the housing and connected
to the PCB in order to energize the electric parts mounted thereon. This allows the
device a stand-alone capability which is most important in places where electric power
cables are not easily provided.
[0028] In yet a further aspect of the invention, the control device is adapted to provide
an alarm in case the calculated pump rate is not according to expectation. In this
way, the surveillance device also shall work as a stand-alone device, and still provide
important benefits even if not in connection with a remote data repository.
[0029] In a further aspect, the surveillance device has a visual display which is mounted
on the housing.
Brief Description of the Drawings
[0030] The invention will become more fully understood from the detailed description given
herein below. The accompanying drawings are given by way of illustration only, and
thus, they are not limitative of the present invention. In the accompanying drawings:
- Fig. 1
- shows a schematic 3d representation of a housing;
- Fig. 2
- shows an exploded view of the housing;
- Fig. 3
- shows a sectional view of a lowermost part of the housing;
- Fig. 4
- shows a bundle of wires adapted to feed signal in and out of the housing;
- Fig. 5
- is a schematic representation of the most important parts of the surveillance device
according to the invention;
- Fig. 6
- is a route diagram with the main steps in the signal processing algorithm used to
detect the pump stroke rate;
- Fig. 7
- shows three graphs with X, Y and Z direction values of the accelerometer readings
displayed;
- Fig. 8
- shows the combined energy in the signal from the three axial direction calculated
according to a norm;
- Fig. 9
- displays the same digital values after low pass filtration according to a digital
filtering regime;
- Fig. 10
- is the data after an FFT conversion;
- Fig. 11
- is a pump and surveillance device disclosed with the surveillance device screwed into
a pipe end connecting the two working membranes of a pump;
- Fig. 12
- is a bracket with a surveillance device mounted therein with its threaded stub an
Detailed description exemplary embodiments
[0031] Referring now in detail to the drawings for the purpose of illustrating preferred
embodiments of the present invention, a housing 1 of the present invention is illustrated
in Fig. 1.
[0032] Fig. 2 illustrates the various parts of the housing, whereby a cradle part 2, a lid
part 3 and an elastomeric safety band 4 are shown one above the other. A battery pack
5 is also disclosed.
[0033] The cradle comprises a PCB element 8, which is mounted therein, and is equipped with
a range of components.
[0034] In Fig. 3 the cradle part 2 is shown in a sectional view. Here, an externally threaded,
but hollow stub 6 is clearly visible. The external threads 7 of the stub 6 shall be
made according to a suitable standard, such as ISO metric pipe threads, NPT thread,
or other standardized pipe thread. The pipe tread 7 on an exterior surface of the
stub 6 allows the stub 6 to be threaded into a connection pipe or possibly a bracket
with an internally threaded hole. In connection with the air operated membrane pumps
it is mandatory to have a feed pipe and a delivery pipe for a fluid to be moved by
the pump, and it is also required to have a feed line for compressed air. The stub
6 shall thus be easy to fix to any well-known internally threaded connection pipe
or bracket with an internally threaded connection hole where such a bracket is adapted
to fit onto a standardized pipe connection to the pump. Thus, the threaded stub allows
the cradle part 2 to be connected to any one of a range of different membrane pumps.
[0035] When the stub 6 is connected to an internally threaded connection pipe at or near
an air operated membrane pump, the vibrations generated by the pump shall be transmitted
to the stub through the pipes, whether they be feed pipes to the pump or delivery
pipes from the pump.
[0036] In Fig. 3 the cross-sectional view of the cradle 2 shows that it comprises raised
screw stubs 11 added to the lower portion of the cradle 2. The screw stubs 11 allow
items such as a PCB board 8 to be fastened to the cradle 2 by threaded screws (not
shown).
[0037] The lid 3 has internally arranged threads on the skirt thereof, and these are adapted
to engage externally arranged corresponding threads on the cradle 2 on a raised portion
thereof.
[0038] The elastomeric safety band 4 is adapted to be preyed onto the assembly of cradle
2 and lid 3 to assume the position disclosed in Fig. 1. Here the band 4 shall cover
the intersection between the cradle 2 and the lid 3. Hereby it is ensured, that no
foreign substances shall enter into the enclosure formed by the cradle 2 and lid.
It is also ensured through locking engagement between a lover rim of the safety band
and the external side of the cradle 2, combined with a rotationally fixed connection
between the safety band 4 and the lid 3, that lid and cradle shall not come apart
in-advertently. This is of some importance, as the pumps in question often serve at
rugged places, where various kinds of commotions may interfere with installed delicate
equipment and cause distortions thereof. Such elements as intense vibrational levels
at varying frequencies could cause a loosening between the lid and the cradle were
it not for measures such as the safety band. Thus, the safety band 4 is important
in keeping the contents of the housing safe, protected against shocks and dry.
[0039] In Fig. 4, a wire feed line 9 is disclosed, which comprises a moulded-on connector
10. The connector 10 is adapted to fit inside the cavity of the hollow stub 7. In
order for the connector 10 to be installed inside the hollow stub, the bottom 12 thereof
must be removed. This is done by drilling the bottom out, and a drill bit indent 13
is provided to ensure that this operation may be performed safely. When the connector
10 with its wire feed 9 is installed in a drilled hole in the stub 6, the upper and
lower flanges of the connector shall secure the feed lines from being in-advertently
pulled out, and they also ensure against penetration into the enclosure 1 of gasses
or liquids. The feed line 9 may comprise a number of electric leads and thus allow
the PCB a wired connection to surroundings, such as a power line, wired connection
to one or more sensors, or allow a digital in/out wired connection to be facilitated
at the PCB board. The feed line 9, running through the stub is used when the cradle
part is installed into a wiring panel at a pump location and not directly onto a pump
or pump related structure.
[0040] In Fig. 5 there is a schematic representation of the key components associated with
the PCB. A sub-giga radio 14 is indicated, along with: an NFC-chip 15, a vibration
sensor 16, a battery pack, analog input connectors 17, a digital input connector and
a microcontroller 19. To make the different mentioned elements work together, they
are interconnected in the usual manner through leads in the PCB and solder connections
between PCB and parts mounted thereon. The battery pack may have a wire connection
with a connector, in order to facilitate battery change.
[0041] The digital input port 18 may be connected through a digital input line 22 to external
devices such as a high-speed counter in order to register strokes or flowmeter data.
[0042] The two analog input connectors 7 may be connected to external sensors, and also
these input channels may be programmed to receive current or voltage signals according
to need.
[0043] Further, a pressure/leek sensor 21 may be provided in the housing along with current/voltage
sensors 20.
[0044] With reference to Fig. 6, the algorithm used to calculate the pulse rate of a pump
based on a
x, a
y, a
z measured accelerometer data in 3-dimensional space comprise the following steps:
- a. The DC offset of each measured axis is removed. This offset is mainly due to gravitation
and may be removed according to usual practice.
- b. The three axes are combined to calculate a measure for the total acceleration.
- c. A low pass filter is applied to reduce the high frequency noise and emphasize temporal
power elevation (the measured pulses power).
- d. The filtered data is transformed to the frequency domain. An analogue or digital
implementation of this step are (FFT) are both possible.
- e. Periodic pulses in the time domain are transformed into spectral peaks in the frequency
domain and due to the repetitive nature of the pump action, evenly spaced spectral
peaks along the frequency axis is to be expected. The frequencies of the spectral
peaks are registered.
- f. The spectral peak having the lowest frequency is related to the frequency of the
pulses.
- g. The pump rate is now estimated as half the determined lower one of the frequency
spectral peaks since in each pump period there are two pulses.
[0045] The algorithm provided in the block diagram may be implemented by an analog circuits
or digital logic or by software or any combinations of these (Processor, FPGA, ASIC
etc.).
[0046] It is generally assumed that:
- (1) The source of the strongest force detected by the accelerometer is the stroke
action of the pump.
- (2) Stroke count is between 0 to 5 strokes per second (0 to 300 strokes per minute).
- (3) The stroke count does not significantly change over a period of 30 seconds.
[0047] In a digital embodiment of the invention with a medium size air operated diaphragm
pump, the following parameters are chosen:
Sampling frequency |
Fs |
52 |
Hz |
Sampling Period |
Δt=1/Fs |
19.23 |
msec |
Data length |
N |
1560±100 |
Samples |
Power estimation period |
M |
5 |
Samples |
Power level threshold |
PULSE_THRESHOLD |
|
Normalized |
[0048] The accelerometer measures the acceleration x, y and z in all 3 axes. The accelerometer
measurements include acceleration related to the strokes and surrounding vibrations
as well as the constant acceleration of gravity. The gravity acceleration does not
contribute to the pulses vibrations and is eliminated in the usual manner as mentioned.
[0049] Calculating the constant component from gravity is provided by:
[0051] The total magnitude of acceleration of each sample i, is
[0052] The measured acceleration is composed from the power of the vibrations induced by
the pump, the power of other sources of vibrations in the vicinity and from additive
noise. It is desired to reduce the effect of the additive noise. For this purpose,
a Low Pass Filter (LPF) is applied.
[0053] An RMS filter is selected for its additional property of emphasizing temporal elevation
in the power. The temporal power of the total acceleration magnitude is estimated
by local RMS calculation. The RMS is calculated by a moving filter of length M:
M is selected to be 5 which reflects a cut-off frequency of ~10Hz and an estimation
of the power over a period of
in time.
[0054] The periodic pulses are detected based on the spectral topology (frequency domain)
of the calculated RMS signal. Periodic pulses in the time domain are transformed into
evenly spaced pulses or spectral lines in the frequency domain as well. Whereas the
lowest frequency pulse is the based pulse, having the frequency corresponding to pump
stroke rate.
[0055] Since the aRMS data still contains some random noise, the frequency domain is estimated
by Power Spectral Density (PSD).
[0056] In the frequency domain, only periodic pulses are transformed into distinguished
spectral peaks. Finding the frequency in which the first spectral peak is detected
obtains the frequency of the pulses.
[0057] Since a cycle of the pump contains two pulses (both sides) the actual rate of the
pump is slower by factor of 2 from the measured pulse rate.
[0058] Based on assumption (1), pulses having power weaker than the pump stroke power are
not related to a pump stroke action. The level of power that indicates the power of
a pump stroke depends on the pump interface to the surrounding frame and on the environment.
[0059] This must be calibrated on each individual pump. In the case of zero pulse rate (pump
is off), the accelerometer sensors may still detect pulse rates due to periodic noise
pulses, stemming from sources such as other pumps drawing air from the same air supply
line, or feeding liquid into the same pump line or transmitting vibrations to the
accelerometer through fixed construction parts. The classification of such noise as
noise is based on the power level of the detected real pump pulse. The value of a
parameter PULSE_THRESHOLD must be calibrated for each further pump to ensure fail-safe
detection of a no-stroke situation.
[0060] Accelerometers are sensitive to any force applied to the subject. Thus, the measurements
are noisy. The algorithm avoids the detection of noise as pump induced pulses. Random
noise in general has low power compared to the power of pump stroke pulses and therefore
random noise is not detected. A single erratic high-power pulse might be detected
but since it is not periodic, the frequency domain analysis filters it out.
[0061] In Fig. 7, the digital values from a live measurement on a pump are shown. Each of
directions X, Y and Z are represented with graphical display of the digital read out
values, and the time counter is given along the x-axis of the graph. Thus, measurements
over 60 seconds are presented.
[0062] In Fig. 8, the data from the X, Y and Z directions are provided at each sample according
to the measure:
, and the same 60 seconds digital data represented in the X, Y and Z directions have
now been consolidated to one scalar value at each sample. The y axis thus represents
an energy measure, but the digital read out values have not been translated into physical
values.
[0063] In Fig. 9, a_total is now represented after being subject to a filtering calculation
with the digital filter having the predefined filter window length. The window length
or number of samples in the filter calculation, and the sampling frequency for obtaining
the accelerometer data should be chosen according to the stroke rate of the pump,
such that a reasonable number of datapoints are obtained over a pump stroke action.
[0064] Fig. 10 discloses the results of an FFT or similar conversion into a frequency domain
of the data represented in Fig. 9. As can be seen, there is a basic frequency of around
3 Hz which translates into a pump stroke or full cycle rate of 1.5 Hz. Here the x
axis is in Hz, and the y axis, that is the vertical axis represents acceleration
2/Hz, or Power Spectral Density, again the values are not converted to the physical
units, but the digital values are presented.
[0065] Fig. 11 shows an air operated diaphragm pump 24 mounted with a housing 1, comprising
cradle part 2, lid part 3 and safety band 4. Inside the housing the PCB element 8
and battery pack 5 is provided. On a front side of the lid part 3, the visual display
30 may be provided in order to allow users to gain insight into internal conditions
or registered parameters of the pump 24. A suction side pipe 26 is provided below
the pump 24, and a pressure side pipe 25 is provided above the pump. A pipe end 28
is connected with the pressure side pipe 25. The housing 1 is screwed into the end
pipe 28 grace to the treads 7 on pipe stub 6 (see Fig. 1, 2 or 3).
[0066] In Fig. 12 the suction side pipe 26 is seen with a pipe stub leading away from the
suction side pipe 26, similar to the pressure side pipe end 28. The housing 1 may
be mounted into any of pressure side pipe or suction side pipe in case suitable pipe
ends are provided for the receipt of the stub 6 through the threads 7 thereon. To
this purpose the pipe ends adapted to this purpose may be provided with internal threads.
[0067] Fig. 13 shows the housing 1 mounted at a bracket 27. The bracket 27 is adapted to
be tightly connected to a pipe, such as a suction or pressure pipe 25,26 connected
directly to an air operated diaphragm pump 24.
[0068] The housing 1 in Figs. 11, 12 and 13 shall be mounted quite close to the air operated
diaphragm pump 24, and preferably the distance between the pump 24 and the housing
1 shall be no more than 6 times the diameter of suction or pressure side pipes 25,26
and preferably no more than 4 times this diameter. Ideally the distance shall not
exceed 2 times the diameter of either pressure side or suction side pipe 25, 26. Hereby
it is further ensured, that the vibrations which are transmitted through the housing
and the PCB and to the accelerometer on the PCB originates from the pumping action
or stroke action of the pump 24.
List of reference numerals
[0069]
- 1
- - housing
- 2
- - cradle part
- 3
- - lid part
- 4
- - safety band
- 5
- - battery pack
- 6
- - stub
- 7
- - threads
- 8
- - PCB element
- 9
- - wire feed line
- 10
- - connector
- 12
- - bottom
- 13
- - drill bit indent
- 14
- - sub-giga radio
- 15
- - NFC chip
- 16
- - vibration sensor or accelerometer
- 17
- - analog input connectors
- 18
- - digital input port
- 19
- - microcontroller
- 20
- - sensor
- 21
- - pressure and/or leak sensors
- 22
- - digital input line
- 23
- - analog input line
- 24
- - air operated diaphragm pump
- 25
- - suction side pipe
- 26
- - pressure side pipe
- 27
- - bracket
- 28
- - pipe end
- 30
- - display
[0070] While the invention has been described in detail with reference to exemplary embodiments
thereof, it will be apparent to one skilled in the art that various changes can be
made, and equivalents employed, without departing from the scope of the invention.
The foregoing description of the preferred embodiments of the invention has been presented
for purposes of illustration and description. It is not intended to be exhaustive
or to limit the invention to the precise form disclosed, and modifications and variations
are possible in light of the above teachings or may be acquired from practice of the
invention. The embodiments were chosen and described in order to explain the principles
of the invention and its practical application to enable one skilled in the art to
utilize the invention in various embodiments as are suited to the particular use contemplated.
It is intended that the scope of the invention be defined by the claims appended hereto.
1. A method for surveillance of an air operated diaphragm pump, whereby the method comprises
the following steps:
- attaching an accelerometer with at least 3 orthogonal accelerometer measuring directions
to an air operated diaphragm pump or to a structure directly connected with an air
operated diaphragm pump,
- register agitation level of the accelerometer at a frequency rate above a predefined
pulse rate of the air operated diaphragm pump,
- determine a base line noise level of the accelerometer agitation level during a
period of no pump action,
- determine the pulse rate of the air operated diaphragm pump as the most significant
frequency of pulses out of an entire power spectrum calculated from the accelerometer
readings,
- register the most significant frequency of pulses and the duration of registered
pulse signals,
wherein the frequency spectrum for accelerometer readings is determined from calculated
values named aRMS
i based on sampled accelerometer readings at a sampling rate whereby,
and where i is the sample number, and M is the number of samples used to calculate
the value aRMS, at sample number i, and further
where X(i), Y(i) and Z(i) are normalized accelerometer output values in orthogonal
directions x, y and z respectively in each sample.
2. A method according to claim 1, wherein a sampling rate is selected and a number of
samples M is chosen, which reflects the pulse rate of the pump, such that the number
of samples M spans a time fraction of a pump pulse duration of no more than half the
time of a pulse duration.
3. A method according to claim 1, wherein an externally threaded part of an accelerometer
housing is rotated into a threaded connection pipe or threaded pipe bracket located
on a suction or pressure pipe to/from the air operated diaphragm pump whereby the
distance between the connection pipe or bracket and the pump is adapted to be no more
than 6 times the pipe diameter of suction or pressure pipe respectively, or preferably
no more than 4 times the pipe diameter og most preferred no more than 2 times the
pipe diameter.
4. A method according to claim 1, wherein the method comprises the following steps
- determine the pulse rate of the air operated diaphragm pump at regular intervals
and store the determined pulse rates at a data repository within the housing,
- feed pulse rate data through a wireless connection channel to a remote data repository
at regular intervals.
5. A method according to claim 2, wherein a sub-giga radio in the accelerometer housing
receives pulse rate data from one or more accelerometers it nearby pumps and feeds
these pulse rate data through a cellular device via cellular connection to a data
repository located away from the cellular device.
6. A method according to claim 1, wherein NFC signals are captured within the housing
when an NFC enabled device such as a cell phone is placed in the vicinity of the housing,
and that the NFC signals are used to modify the contents of a control device which
control device facilitates the accelerometer measurements.
7. A method according to claim 1, wherein the control device is adapted to monitor a
pulse rate from a pump, and to provide an alert in case pulse rates are not within
predetermined limits.
8. A surveillance device comprising a:
- housing and an accelerometer within the housing which accelerometer is adapted to
capture acceleration data in 3 orthogonal directions in space, and a
- data repository adapted to temporarily store captured acceleration data,
- calculation unit adapted to determine a pump stroke rate based on the accelerometer
readings,
- feed line adapted to wirelessly transmit stored accelerometer data which reflects
the pump stroke rate,
- control device adapted to:
- control the capture of accelerometer data and to
- process the captured data, and
- to control the feed line and control the wireless transmission of the stored accelerometer
data,
whereby the housing of the surveillance device comprises an externally threaded stub,
which is adapted to threadedly connect to an internally threaded connection pipe or
bracket at or associated with an air operated diaphragm pump, wherein the control
device is adapted to calculate an overall energy level measure based on registered
accelerometer values in 3 orthogonal directions whereby a frequency spectrum for the
overall energy level measure is determined from calculated values:
- aRMS(i) based on sampled accelerometer readings at a sampling rate whereby,
and where i is the sample number, and M is the number of samples used to calculate
the value aRMS, at sample number i and further
where X(i), Y(i) and Z(i) are normalized accelerometer output values in orthogonal
directions x, y and z respectively in each sample.
9. A surveillance device according to claim 8, wherein the externally threaded part of
the accelerometer housing is rotated into a threaded connection pipe or threaded pipe
bracket located on a suction or pressure pipe to/from the air operated diaphragm pump
whereby the distance between the connection pipe or bracket and the pump is adapted
to be no more than 6 times the pipe diameter of suction or pressure pipe respectively,
or preferably no more than 4 times the pipe diameter og most preferred no more than
2 times the pipe diameter.
10. A surveillance device according to claim 8, wherein the device further comprises a
PCB which PCB is mounted with the control device, a radio transmitter adapted to transmit
captured accelerometer data and the accelerometer.
11. A surveillance device according to claim 8, wherein an NFC enabled communication device
and a sub-giga radio is provided at the PCB.
12. A surveillance device according to claim 8, wherein a battery is housed in the housing
and connected to the PCB in order to energize the electric parts mounted thereon.
13. A surveillance device according to claim 10, wherein the control device is adapted
to provide an alarm in case the calculated pump rate is not according to expectation.
14. A surveillance device according to claim 8, wherein a visual display is mounted on
the housing.
1. Verfahren für die Überwachung einer luftbetriebenen Membranpumpe, wodurch das Verfahren
die folgenden Schritte umfasst:
- Befestigen eines Beschleunigungsmessers mit wenigstens 3 orthogonalen Messrichtungen
des Beschleunigungsmessers an einer luftbetriebenen Membranpumpe oder an eine Struktur,
die direkt mit einer luftbetriebenen Membranpumpe verbunden ist,
- Registrieren des Erregungsniveaus des Beschleunigungsmessers bei einer Frequenzrate
über einer vordefinierten Impulsrate der luftbetriebenen Membranpumpe,
- Bestimmen eines Grundlinienrauschniveaus des Erregungsniveaus des Beschleunigungsmessers
während eines Zeitraums ohne Pumpaktion,
- Bestimmen einer Impulsrate der luftbetriebenen Membranpumpe als die bedeutendste
Frequenz von Impulsen aus einem gesamten Leistungsspektrum, das aus den Beschleunigungsmessermesswerten
berechnet wird,
- Registrieren der bedeutendsten Frequenz der Impulse und der Dauer der registrierten
Impulssignale,
wobei das Frequenzspektrum für die Beschleunigungsmessermesswerte aus den berechneten
Werten, genannt aRMSi, auf Grundalge der abgetasteten Beschleunigungsmessermesswerte mit einer Abtastrate,
wodurch
und wobei i die Abtastanzahl ist, und M die Anzahl von Abtastungen ist, die verwendet
wird, um den Wert aRMS bei einer Abtastnummer i zu berechnen, und ferner
wobei X(i), Y(i) und Z(i) normalisierte Beschleunigungsmesserausgabewerte in orthogonalen
Richtungen x, y beziehungsweise z in jeder Abtastung sind.
2. Verfahren nach Anspruch 1, wobei eine Abtastrate ausgewählt wird und eine Anzahl von
Abtastungen M gewählt wird, die die Impulsrate der Pumpe widerspiegelt, sodass die
Anzahl von Abtastungen M eine Zeitfraktion einer Pumpenimpulsdauer von nicht mehr
als die Hälfte der Zeit einer Impulsdauer überspannt.
3. Verfahren nach Anspruch 1, wobei ein äußerer mit einem Gewinde versehener Teil eines
Beschleunigungsmessergehäuses in ein mit einem Gewinde versehenes Verbindungsrohr
oder eine mit einem Gewinde versehene Rohrhalterung gedreht wird, die sich auf einem
Saug- oder Druckrohr zu/von der luftbetriebene Membranpumpe befindet, wodurch die
Entfernung zwischen dem Verbindungsrohr oder -halterung und der Pumpe angepasst ist,
um nicht mehr als das 6-Fache des Rohrdurchmessers des Saug- beziehungsweise des Druckrohrs,
oder vorzugsweise nicht mehr als das 4-Fache des Rohrdurchmessers oder am stärksten
bevorzugt nicht mehr als das 2-Fache des Rohrdurchmessers zu sein.
4. Verfahren nach Anspruch 1, wobei das Verfahren die folgenden Schritte umfasst:
- Bestimmen der Impulsrate der luftbetriebenen Membranpumpe in regelmäßigen Intervallen
und Speichern der bestimmten Impulsraten in einem Daten-Repository innerhalb des Gehäuses,
- Zuführen von Impulsratendaten durch einen drahtlosen Verbindungskanal zu einem entfernten
Daten-Repository in regelmäßigen Intervallen.
5. Verfahren nach Anspruch 2, wobei ein Unter-Giga-Radio in dem Beschleunigungsmessergehäuse
Impulsratendaten von einem oder mehreren Beschleunigungsmessern empfängt, das in der
Nähe pumpt, und führt diese Impulsratendaten durch einen zelluläre Vorrichtung über
eine zelluläre Verbindung an ein Daten-Repository, das sich von der zellulären Vorrichtung
entfernt befindet.
6. Verfahren nach Anspruch 1, wobei NFC-Signale innerhalb des Gehäuses erfasst werden,
wenn eine NFC-fähige Vorrichtung, wie ein Mobiltelefon in die Nähe des Gehäuses platziert
wird, und dass diese NFC-Signale verwendet werden, um die Inhalte einer Steuervorrichtung
zu modifizieren, wobei diese Steuervorrichtung die Beschleunigungsmessermessungen
erleichtert.
7. Verfahren nach Anspruch 1, wobei die Steuervorrichtung angepasst ist, um eine Impulsrate
von einer Pumpe zu überwachen und eine Warnung bereitzustellen, falls Impulsraten
nicht innerhalb vorbestimmter Grenzen liegen.
8. Überwachungsvorrichtung, umfassend ein/eine:
- Gehäuse und ein Beschleunigungsmesser innerhalb des Gehäuses, wobei der Beschleunigungsmesser
angepasst ist, um Beschleunigungsdaten in 3 orthogonalen Richtungen im Raum zu erfassen,
und ein
- Daten-Repository, das angepasst ist, um erfasste Beschleunigungsdaten vorläufig
zu speichern,
- Berechnungseinheit, die angepasst ist, um eine Pumpenhubrate auf Grundlage der Beschleunigungsmessermesswerte
zu bestimmen,
- Zufuhrleitung, die angepasst ist, um gespeicherte Beschleunigungsmesserdaten drahtlos
zu übertragen, die die Pumpenhubrate widerspiegeln,
- eine Steuervorrichtung, die angepasst ist, zum:
- Steuern der Erfassung von Beschleunigungsmesserdaten und zum
- Verarbeiten der erfassten Daten, und
- Steuern der Zufuhrleitung und Steuern der drahtlosen Übertragung der gespeicherten
Beschleunigungsmesserdaten,
wodurch das Gehäuse der Überwachungsvorrichtung eine extern mit einem Gewinde versehene
Nase umfasst, die angepasst ist, um mit einem intern mit einem Gewinde versehenen
Verbindungsrohr oder -halterung an oder einer luftbetriebenen Membranpumpe zugeordnet
gewindemäßig verbunden zu werden, wobei die Steuervorrichtung angepasst ist, um eine
Gesamtenergieniveaumessung auf Grundlage von registrierten Beschleunigungsmesserwerten
in 3 orthogonalen Richtungen zu berechnen, wodurch ein Frequenzspektrum für die Gesamtenergieniveaumessung
aus berechneten Werten bestimmt wird:
- aRMS(i) auf Grundlage von abgetasteten Beschleunigungsmessermesswerten bei einer
Abtastrate, wodurch
und wobei i die Abtastanzahl ist, und M die Anzahl von Abtastungen ist, die verwendet
wird, um den Wert aRMS bei einer Abtastnummer i zu berechnen, und ferner
wobei X(i), Y(i) und Z(i) normalisierte Beschleunigungsmesserausgabewerte in orthogonalen
Richtungen x, y beziehungsweise z in jeder Abtastung sind.
9. Überwachungsvorrichtung nach Anspruch 8, wobei das außen mit einem Gewinde versehener
Teil des Beschleunigungsmessergehäuses in ein mit einem Gewinde versehenes Verbindungsrohr
oder eine mit einem Gewinde versehene Rohrhalterung gedreht wird, die sich auf einem
Saug- oder Druckrohr zu/von der luftbetriebene Membranpumpe befindet, wodurch die
Entfernung zwischen dem Verbindungsrohr oder -halterung und der Pumpe angepasst ist,
um nicht mehr als das 6-Fache des Rohrdurchmessers des Saug- beziehungsweise des Druckrohrs,
oder vorzugsweise nicht mehr als das 4-Fache des Rohrdurchmessers oder am stärksten
bevorzugt nicht mehr als das 2-Fache des Rohrdurchmessers zu sein.
10. Überwachungsvorrichtung nach Anspruch 8, wobei die Vorrichtung ferner eine PCB, wobei
die PCB mit der Steuervorrichtung montiert ist, einen Funküberträger, der angepasst
ist, um erfasste Beschleunigungsmesserdaten zu übertragen, und den Beschleunigungsmesser
umfasst.
11. Überwachungsvorrichtung nach Anspruch 8, wobei eine NFC-fähige Kommunikationsvorrichtung
und ein Sub-Giga-Radio an der PCB bereitgestellt werden.
12. Überwachungsvorrichtung nach Anspruch 8, wobei eine Batterie in dem Gehäuse aufgenommen
ist und mit der PCB verbunden ist, um die elektrischen Teile, die darauf montiert
sind, mit Energie zu versorgen.
13. Überwachungsvorrichtung nach Anspruch 10, wobei die Steuervorrichtung angepasst ist,
um einen Alarm bereitzustellen, falls die berechnete Pumpenrate nicht gemäß der Erwartung
ist.
14. Überwachungsvorrichtung nach Anspruch 8, wobei eine visuelle Anzeige auf dem Gehäuse
montiert ist.
1. Procédé de surveillance d'une pompe à membrane pneumatique, le procédé comprenant
les étapes suivantes consistant à :
- fixer un accéléromètre avec au moins 3 directions de mesure d'accéléromètre orthogonales
à une pompe à membrane pneumatique ou à une structure directement reliée à une pompe
à membrane pneumatique,
- enregistrer le niveau d'agitation de l'accéléromètre à une fréquence supérieure
à une fréquence d'impulsions prédéfinie de la pompe à membrane pneumatique,
- déterminer un niveau de bruit de base du niveau d'agitation de l'accéléromètre pendant
une période sans action de la pompe,
- déterminer le taux d'impulsions de la pompe à membrane pneumatique comme la fréquence
d'impulsions la plus significative sur un spectre de puissance entier calculé à partir
des lectures de l'accéléromètre,
- enregistrer la fréquence d'impulsions la plus significative et la durée des signaux
d'impulsion enregistrés,
dans lequel le spectre de fréquence pour les lectures de l'accéléromètre est déterminé
à partir de valeurs calculées appelées aRMSi sur la base de lectures échantillonnées de l'accéléromètre à un taux d'échantillonnage,
de sorte que,
et où i est le numéro d'échantillon, et M est le nombre d'échantillons utilisés pour
calculer la valeur aRMS, au numéro d'échantillon i, et en outre
où X(i), Y(i) et Z(i) sont des valeurs de sortie normalisées de l'accéléromètre dans
les directions orthogonales x, y et z respectivement dans chaque échantillon.
2. Procédé selon la revendication 1, dans lequel un taux d'échantillonnage est sélectionné
et un nombre d'échantillons M est choisi, qui reflète le taux d'impulsion de la pompe,
de sorte que le nombre d'échantillons M couvre une fraction de temps d'une durée d'impulsion
de pompe de pas plus de la moitié du temps d'une durée d'impulsion.
3. Procédé selon la revendication 1, dans lequel une partie filetée extérieurement d'un
boîtier d'accéléromètre est tournée dans un tuyau de raccordement fileté ou un support
de tuyau fileté situé sur un tuyau d'aspiration ou de pression vers/depuis la pompe
à membrane pneumatique, la distance entre le tuyau de raccordement ou support et la
pompe est adaptée pour ne pas être supérieure à 6 fois le diamètre du tuyau d'aspiration
ou de pression respectivement, ou de préférence pas plus de 4 fois le diamètre du
tuyau et le plus préférablement pas plus de 2 fois le diamètre du tuyau.
4. Procédé selon la revendication 1, dans lequel le procédé comprend les étapes suivantes
consistant à
- déterminer le taux d'impulsions de la pompe à membrane pneumatique à intervalles
réguliers et stocker les taux d'impulsions déterminés dans un référentiel de données
à l'intérieur du boîtier,
- fournir des données de taux d'impulsions via un canal de connexion sans fil à un
référentiel de données distant à intervalles réguliers.
5. Procédé selon la revendication 2, dans lequel une radio sous-giga dans le boîtier
de l'accéléromètre reçoit des données de taux d'impulsions d'un ou plusieurs accéléromètres
qu'elle pompe à proximité et transmet ces données de taux d'impulsions via un dispositif
cellulaire via une connexion cellulaire à un référentiel de données situé à distance
du dispositif cellulaire.
6. Procédé selon la revendication 1, dans lequel des signaux NFC sont capturés à l'intérieur
du boîtier lorsqu'un dispositif compatible NFC tel qu'un téléphone portable est placé
à proximité du boîtier, et que les signaux NFC sont utilisés pour modifier le contenu
d'un dispositif de commande, lequel dispositif de commande facilite les mesures de
l'accéléromètre.
7. Procédé selon la revendication 1, dans lequel le dispositif de commande est adapté
pour surveiller un taux d'impulsions à partir d'une pompe, et pour fournir une alerte
dans le cas où les taux d'impulsions ne sont pas dans des limites prédéterminées.
8. Dispositif de surveillance comprenant :
- un boîtier et un accéléromètre à l'intérieur du boîtier, lequel accéléromètre est
adapté pour capturer des données d'accélération dans 3 directions orthogonales dans
l'espace, et
- un référentiel de données adapté pour stocker temporairement les données d'accélération
capturées,
- une unité de calcul adaptée pour déterminer une fréquence d'impulsions de pompe
en fonction des lectures de l'accéléromètre,
- une ligne d'alimentation adaptée pour transmettre sans fil les données stockées
de l'accéléromètre qui reflètent la fréquence d'impulsions de la pompe,
- un dispositif de commande adapté à :
- commander la capture des données de l'accéléromètre et
- traiter les données capturées, et
- commander la ligne d'alimentation et commander la transmission sans fil des données
stockées de l'accéléromètre,
dans lequel le boîtier du dispositif de surveillance comprend un embout fileté extérieurement,
qui est adapté pour se connecter par filetage à un tuyau ou support de raccordement
fileté intérieurement à ou associé à une pompe à membrane pneumatique, dans lequel
le dispositif de commande est adapté pour calculer une mesure de niveau d'énergie
globale sur la base des valeurs enregistrées de l'accéléromètre dans 3 directions
orthogonales, un spectre de fréquences pour la mesure du niveau d'énergie global étant
déterminé à partir des valeurs calculées :
- aRMS(i) basé sur des lectures d'accéléromètre échantillonnées à un taux d'échantillonnage
selon lequel,
et où i est le numéro d'échantillon, et M est le nombre d'échantillons utilisés pour
calculer la valeur aRMS, au numéro d'échantillon i et en outre
où X(i), Y(i) et Z(i) sont des valeurs de sortie normalisées de l'accéléromètre dans
les directions orthogonales x, y et z respectivement dans chaque échantillon.
9. Dispositif de surveillance selon la revendication 8, dans lequel la partie filetée
extérieurement du boîtier de l'accéléromètre est tournée dans un tuyau de raccordement
fileté ou un support de tuyau fileté situé sur un tuyau d'aspiration ou de pression
vers/depuis la pompe à membrane pneumatique, la distance entre le tuyau de raccordement
ou le support et la pompe est adaptée pour ne pas dépasser 6 fois le diamètre du tuyau
d'aspiration ou de pression respectivement, ou de préférence pas plus de 4 fois le
diamètre du tuyau ou le plus préférablement pas plus de 2 fois le diamètre du tuyau.
10. Dispositif de surveillance selon la revendication 8, dans lequel le dispositif comprend
en outre une PCB, laquelle PCB est montée avec le dispositif de commande, un émetteur
radio adapté pour transmettre des données d'accéléromètre capturées et l'accéléromètre.
11. Dispositif de surveillance selon la revendication 8, dans lequel un dispositif de
communication compatible NFC et une radio sous-giga sont fournis à la PCB.
12. Dispositif de surveillance selon la revendication 8, dans lequel une batterie est
logée dans le boîtier et connectée à la PCB afin d'alimenter les pièces électriques
montées sur celle-ci.
13. Dispositif de surveillance selon la revendication 10, dans lequel le dispositif de
commande est adapté pour fournir une alarme dans le cas où le taux de pompe calculé
n'est pas conforme à l'attente.
14. Dispositif de surveillance selon la revendication 8, dans lequel un affichage visuel
est monté sur le boîtier.