GOVERNMENT INTEREST
[0001] This invention was made with Government support under Contract No. DE-NE0000633 awarded
by the Department of Energy. The Government has certain rights in this invention.
TECHNICAL FIELD
[0002] This disclosure generally relates to systems, devices, structures, and methods for
draining a containment vessel, such as a containment vessel in a nuclear reactor system.
BACKGROUND
[0003] Reactor modules, such as nuclear reactor modules, may be configured to operate in
and/or be subjected to a variety of different conditions. These operating conditions
may include a wide range of pressures, temperatures, and/or other types of environmental
conditions. For example, a number of reactor module components may be submerged in
water, or may be exposed to chemicals and/or high levels of radiation. Additionally,
performing maintenance on the reactor module may involve shutting down normal operation
of the reactor module for an extended period of time. When a typical reactor module
is shutdown, it is unable to generate power or electricity. Accordingly, the reactor
module should be designed to be a robust system capable of operating within the environmental
conditions and while requiring minimal downtime for repair, inspection, maintenance,
or refuelling.
[0004] Reactor modules which are configured to operate in a wet environment, such as where
one or more components or structures are located within and/or exposed to water, may
provide additional challenges during various operations or procedures associated with
the reactor module. For example, one or more components may be exposed to water or
water vapour during a maintenance operation. While it may be acceptable that the one
or more components are exposed to certain environmental conditions during some types
of operations, or for a limited period of time, the exposure to the environmental
conditions may not be acceptable during other operations, such as during a startup
operation or while the reactor module is generating power.
[0005] The present invention addresses these and other problems.
[0006] US6463819B1 discloses an oil supply system supplies oil under pressure to a bearing or journal
enclosure during normal positive gravity conditions as well as negative gravity and
zero gravity conditions. A closed oil storage tank containing a volume of oil below
a gas filled headspace with primary drain in a bottom portion normally supplies a
pressure pump which passes a pressure control valve before entering an inlet of the
enclosure. In negative gravity or zero gravity conditions oil is absent from the tank
bottom and the primary pressure pump is starved of oil. The invention solves this
problem with an auxiliary tank outlet disposed above the bottom drain (at the top
and/or sides of the tank) and the oil-air separator separates the air before pumping
the oil under pressure to the bearing or journal enclosure past a directional switch.
The directional control switch connects the switch oil inlet to the switch oil return
outlet and oil tank when oil pressure delivered by the pressure pump exceeds a predetermined
minimum threshold pressure; and connects the switch inlet to the oil supply outlet
and enclosure when oil pressure delivered by the pressure pump is less than the threshold
pressure.
[0007] GB191110752A discloses improvements in compensating for torpedoes discharged from submarine boats.
Means are provided whereby the ordinary trimming - tanks are utilized to preserve
the proper trim of submarine vessels when the trim is disturbed by the discharge of
a torpedo, instead of special compensating tanks.
[0008] WO 2010/150285 A2 discloses a Submarine Ice Ballast System based on water, air and 'ice'. The ice can
be formed using water and air (chilled).Its state can be changed from solid to liquid
and vice versa (solid<-=>liquid). Its functioning provides a submarine with the unique
capability to sink & dive by adding weight and buoyancy using ice. The Ice layer onboard
protects the crew from potable water shortage, torpedo attack, hull rupture adding
stealth and speed besides rescuing the crew and machines from lethal pressure depths
of the sea.
[0009] Further relevant prior art is known e.g. from
US3865688A which discloses a nuclear reactor emergency coolant system with passive pressure-responsive
coolant reservoir arrangement or from
US2004017877A1 which discloses a method for providing a pressurized fluid for passing onto a downstream
component of a plant, for example a nuclear power plant, in which the fluid is heated
as a result of heat being supplied in the upper region of the pressure accumulator.
SUMMARY OF INVENTION
[0010] According to a first aspect of the present disclosure, there is provided a system
for draining a containment vessel, the system comprising: a drain inlet located in
a lower portion of the containment vessel, wherein the containment vessel is configured
to be at least partially filled with a liquid, and wherein the drain inlet is located
below a surface of the liquid; an inlet located in an upper portion of the containment
vessel, wherein the inlet is configured to insert pressurized gas into the containment
vessel to form a pressurized region above the surface of the liquid, and wherein the
pressurized region is configured to apply a surface pressure that lowers the surface
of the liquid within the containment vessel and forces the liquid into the drain inlet;
and a fluid separation device located outside the containment vessel and operatively
connected to the drain inlet, wherein the fluid separation device is configured to
separate the liquid from the pressurized gas that enters the drain inlet after the
surface of the liquid falls below the drain inlet; characterized in that: the fluid
separation device includes (a) a fluid separation tank configured to be at least partially
filled with a volume of the liquid and (b) a fluid level device configured to maintain
the volume of the liquid within the fluid separation tank by discharging the liquid
from the fluid separation tank at approximately the same flow rate that the liquid
is forced into the drain inlet.
[0011] In some embodiments, the drain inlet is configured to release the pressurized gas
into the fluid separation device after the liquid is substantially removed from the
containment vessel.
[0012] In some embodiments, the fluid separation device is configured to discharge the liquid
into a holding tank, and wherein the volume of liquid within the fluid separation
tank operates to prohibit the pressurized gas from being discharged into the holding
tank; and/or wherein the fluid level device is configured to identify a pressure differential
within the fluid separation tank, and wherein in response to the identification of
the pressure differential the fluid separation device is configured to prohibit any
further discharge of the liquid from the fluid separation tank.
[0013] In some embodiments, the fluid separation tank comprises an air vent, and wherein
the air vent is configured to discharge the pressurized gas that is released into
the drain inlet.
[0014] In some embodiments, an acoustic damping device configured to diminish one or more
acoustic properties of the pressurized gas discharged through the air vent; and wherein,
in some embodiments, the acoustic damping device comprises a noise muffler, a noise
diffuser, a noise silencer, or a noise filter.
[0015] In some embodiments, one or more pumps configured to provide a suction force that
draws the liquid into the drain inlet, wherein the liquid is transferred to the fluid
separation device in response to both the suction force provided by the one or more
pumps and the surface pressure applied by the pressurized region within the containment
vessel; and wherein, in some embodiments, the one or more pumps are located outside
of the containment vessel.
[0016] In some embodiments, a reactor vessel housed within the containment vessel is at
least partially surrounded by the liquid prior to lowering the surface of the liquid;
and wherein, in some embodiments, the reactor vessel includes a reactor core submerged
in primary coolant, and wherein the surface of the liquid is lowered in the containment
vessel without removing the primary coolant from the reactor vessel.
[0017] In some embodiments, the one or more pumps are further configured to draw water from
a cooling pool located outside of the containment vessel, and wherein the liquid comprises
the water drawn from the cooling pool.
[0018] In some embodiments, a compression device operatively coupled to the containment
vessel, wherein the compression device is configured to insert the pressurized gas
into the containment vessel through the inlet to form the pressurized region, and
wherein the liquid is transferred to the fluid separation device in response to both
the suction force provided by the one or more pumps and the force provided by the
pressurized gas inserted into the containment vessel; and wherein the compression
device is located within the containment vessel.
[0019] In some embodiments, a compression device operatively coupled to the containment
vessel, wherein the compression device is configured to insert the pressurized gas
into the containment vessel to form the pressurized region, and wherein the liquid
is transferred to the fluid separation device in response to both the suction force
provided by the one or more pumps and the force provided by the pressurized gas inserted
into the containment vessel, and wherein the compression device is located outside
of the containment vessel.
[0020] In some embodiments, an acoustic damping device configured to diminish one or more
acoustic properties of the pressurized gas after it is separated from the liquid by
the fluid separation device; and wherein, in some embodiments, the acoustic damping
device is configured to reduce a rate of expansion of the gas that is discharged from
the fluid separation device.
[0021] In some embodiments, the containment vessel contains a nuclear reactor having a reactor
vessel, and wherein the reactor vessel is configured to be submerged in the liquid
prior to lowering the surface of the liquid.
[0022] In some embodiments, the fluid separation tank includes an air vent configured to
discharge the pressurized gas that is released into the drain inlet, and further comprising
an acoustic damping device configured to diminish one or more acoustic properties
of the pressurized gas discharged through the air vent.
BRIEF DESCRIPTION OF THE DRAWINGS
[0023]
FIG. 1 illustrates an example reactor module comprising a containment vessel with
a drain.
FIG. 2 illustrates an example system for draining a vessel.
FIG. 3 illustrates an example containment vessel drain system.
FIG. 4 illustrates the example containment vessel drain system of FIG. 3 in a partially
drained condition.
FIG. 5 illustrates the example containment vessel drain system of FIG. 3 in a fully
drained condition.
FIG. 6 illustrates example drain system 600 for a reactor module.
FIG. 7 illustrates a simplified circuit for an example containment vessel drain system.
FIG. 8 illustrates an example containment vessel drain system for a reactor module
at least partially submerged in a pool of water.
FIG. 9 illustrates yet another example containment vessel drain system.
FIG. 10 illustrates an example process for draining a containment vessel.
DETAILED DESCRIPTION
[0024] FIG. 1 illustrates an example nuclear power system which may be suitable for implementation
of a containment vessel drain system of the invention including a reactor module 100
with a drain 50. The reactor module 100 may comprise a reactor core 6 surrounded by
a reactor vessel 2. Primary coolant 10, such as water, housed in reactor vessel 2
surrounds and may be heated by reactor core 6 during operation of reactor module 100.
Additionally, reactor vessel 2 may be surrounded by a containment vessel 4.
[0025] During an overpressure event, a valve 3 or vent may be configured to vent steam from
a reactor vessel 2 into a containment region 14 located between reactor vessel 2 and
containment vessel 4. Containment vessel 4 may be configured so that the primary coolant
10 contained within, or released from, reactor vessel 2 is not allowed to escape into
the surrounding environment outside of reactor module 100. In some examples, reactor
vessel 2 may be at least partially surrounded in a partial vacuum. The partial vacuum
in containment region 14 may be configured to provide thermal insulation for reactor
vessel 2.
[0026] Secondary coolant 17, or feedwater, may be circulated through a heat exchanger 7
to produce steam, which may in turn be used to generate electricity with a turbine
132 and a generator 134 of a secondary coolant system 130. The secondary coolant 17
may pass through heat exchanger 7 and become superheated due to a thermal heat transfer
between secondary coolant 17 and primary coolant 10. Additionally, the secondary cooling
system 130 may include a condenser 136 and a pump 138. In some examples, the secondary
coolant 17 is always kept isolated from the primary coolant 10 in reactor vessel 2,
such that the two coolants 10, 17 are not allowed to mix or come into direct contact
with each other.
[0027] As discussed above, containment region 14 may be evacuated or partially evacuated
during certain operations of power module 100, such as during the generation of power
and/or electricity. However, during other operations, such as refuelling, containment
region 14 may be at least partially filled with a liquid, such as water. In some examples,
at least a portion of containment vessel 4 may be surrounded and/or submerged in a
pool of water. The pool of water at least partially surrounding reactor module 100
may be housed in a containment building. During the refuelling operation, containment
vessel 4 may be flooded or partially flooded with water from the surrounding pool
of water or other type of holding tank. Both the primary coolant 10 and the secondary
coolant 17 may be kept isolated from the water used to flood the containment region
14 during the refuelling operation.
[0028] After the completion of the refuelling operation, containment vessel 4 may be bolted
back together, or otherwise closed to provide a water tight seal. The water entrained
in containment region 14 may allow for conductive and convective heat transfer from
reactor vessel 2 to the pool of water during and/or after the refuelling operation.
[0029] In preparation for a startup operation of reactor module 100, the drain 50 may be
configured to remove any liquid in containment region 14. In some examples, drain
50 may be fluidly connected to a pump. The pump may be configured to provide suction
for removing the liquid from containment region 14.
[0030] FIG. 2 illustrates an example system 200 for draining a vessel, such as a containment
vessel for a reactor module. System 200 comprises a fluid separation tank 210 operatively
connected to a drain inlet 230. Drain inlet 230 is configured to fluidly couple fluid
separation tank 210 to the vessel being drained. For example, liquid being drained
from the vessel is transferred by drain inlet 230 into fluid separation tank 210 as
liquid 220.
[0031] Liquid 220 is housed in fluid separation tank 210 at a substantially constant fluid
level 225. A first drain outlet 240 is configured to release the liquid 220 out of
fluid separation tank 210. First drain outlet 240 fluidly couples fluid separation
tank 210 with a reactor pressure containment system. In some examples, liquid 220
released out first drain outlet 240 is stored in a holding tank or a pool of water.
[0032] A fluid level control device 260 is configured to maintain the liquid 220 housed
within fluid separation tank 210 at the constant fluid level 225. For example, as
additional liquid 220 is drained from the vessel into fluid separation tank 210, fluid
level control device 260 is configured to allow substantially the same amount of the
additional liquid to be released out of first drain outlet 240. In some examples,
fluid level control device 260 may comprise a fluid level gauge, a fluid level sensor,
a float valve, other types of flow control devices, or any combination thereof. Additionally,
fluid level control device 260 may comprise and/or be operable with instruments or
devices which may be configured to maintain the constant fluid level 225 of liquid
220 based, at least in part, on a pressure differential within fluid separation tank
210. First drain outlet 240 is located at or near the bottom of fluid separation tank
210.
[0033] Additionally, system 200 comprises a second drain outlet 250 or air vent. Second
drain outlet 250 is located at or near the top of fluid separation tank 210. In some
examples, second drain outlet 250 is configured to release air, gas, and/or vapour
contained within fluid separation tank 210. Second drain outlet 250 couples fluid
separation tank 210 with an exhaust system or exhaust vent. In some examples, second
drain outlet 250 couples fluid separation tank 210 with a reactor building exhaust
stack. Any air, gas, and/or vapour which enters fluid separation tank 210 from drain
inlet 230 may exit second drain outlet 250. Accordingly, fluid separation tank 210
is configured to separate the liquid 220 from the air, gas, and/or vapour via the
first drain outlet 240 and the second drain outlet 250, respectively.
[0034] FIG. 3 illustrates an example containment vessel drain system 300 which may embody
and illustrate the principles of the invention, and in particular include the principles
of a fluid level control device such as illustrated in FIG. 2. A containment vessel
310 at least partially surrounding a reactor vessel 320 may comprise a containment
region 350 housing a liquid 360. Liquid 360 may at least partially surround reactor
vessel 320 about an annular region 325 located between reactor vessel 320 and containment
vessel 310. Containment region 350 may be associated with an initial pressure while
the surface of liquid 360 is at an elevation 365 within the annular region 325. Elevation
365 may be greater than 15,24 m (50 feet). In some examples elevation 365 may be somewhere
between 21 ,336 m (70 feet) and 30,48 m (100 feet). In still other examples, elevation
365 may be less than 15,24 m (50 feet) or greater than 30,48 m (100 feet).
[0035] Containment vessel 310 may comprise a lower vessel head 312 and an upper vessel head
314. In some examples, lower vessel head 312 may comprise a sump. The liquid 360 may
be understood as filling the lower vessel head 312. A drain pipe 340 may comprise
a first end 342 located at or near the bottom of lower vessel head 312 and/or in the
sump. Additionally, drain pipe 340 may comprise a second end 344 located at or near
upper vessel head 314. In some examples, the second end 344 of drain pipe 340 may
penetrate through the upper vessel head 314 of containment vessel 310.
[0036] An inlet 330 may be configured to transfer air and/or gas into containment region
350. Inlet 330 may couple containment vessel 310 with an air compressor or other type
of gas compression device that may be configured to force the air and/or gas into
containment vessel 310. Air and/or gas released into containment vessel 310 may operate
to increase the initial pressure associated with containment region 350.
[0037] FIG. 4 illustrates the example containment vessel drain system 300 of FIG. 3 in a
partially drained condition. As the initial pressure within containment region 350
increases due to the insertion of additional air and/or gas via inlet 330, liquid
360 contained within containment vessel 310 may be forced into the first end 342 of
drain pipe 340 and expelled out of the containment vessel 310 via the second end 344
of drain pipe 340. Additionally, the pressure within containment region 350 may continue
to increase, and the elevation 365 of liquid 360 may drop down towards the bottom
of lower vessel head 312, while still remaining above the first end 342 of drain pipe
340.
[0038] FIG. 5 illustrates the example containment vessel drain system 300 of FIG. 3 in a
fully drained condition. In the fully drained condition, the liquid 360 (FIG. 3) may
be completely or substantially completely removed from within containment vessel 310.
Similarly, the entire outer surface of reactor vessel 320, including annular region
325, may be substantially dry. Containment region 350 may be understood as being fully
pressurized. The pressure within containment region 350 may be greater than 2,7579
bar (40 psia). In some examples, the pressure within containment region 350 may be
approximately 4,82633 (70 psia). The pressure within containment region 350 may vary
depending on the physical design of the system, such as the length and diameter of
the pipes, the elevation, and/or other design variables. Additionally, one or both
of first end 342 and second end 344 of drain pipe 340 may be configured to prohibit
the re-entry of liquid into containment vessel 310. A one-way valve may be configured
to restrict the direction or flow of the liquid.
[0039] In some examples, containment vessel drain system 300 may be configured to release
pressurized air and/or gas out of drain pipe 340. The air and/or gas may be released
after the liquid has been removed from containment region 350. The liquid, air, and/or
gas which is released out of containment vessel 310 may be transferred to a fluid
separation system, such as the fluid separation tank 210 described with respect to
the example system 200 of FIG. 2.
[0040] Following the release of the air via drain pipe 340, the pressure within containment
region 350 may return to the initial pressure described with respect to the operating
condition described at FIG. 3. Inlet 330 may be connected to a source of service air.
In other examples, containment region 350 may be further evacuated of air and/or gas
in order to create a vacuum or a partial vacuum that may substantially surround reactor
vessel 320 after the liquid has been removed. A pump attached to inlet 330, or some
other system for removing the air and/or gas from containment region 350, may be configured
to create the partial vacuum. In some examples, the evacuated containment region may
be created after a refuelling operation and before a reactor startup operation.
[0041] FIG. 6 illustrates an example drain system 600 for a reactor module which may embody
and illustrate the principles of the invention, and in particular include the principles
of a fluid level control device such as illustrated in FIG. 2. The reactor module
may comprise a containment vessel 610 comprising a lower head 612 and an upper head
614. In some examples, one or both of lower head 612 and upper head 614 may be removably
attached to containment vessel 610, such as by a containment flange 615. Additionally,
containment vessel 610 may comprise a base support 650 that is configured to support
the weight of the reactor module on the floor, ground, and/or support surface of a
containment building or reactor bay.
[0042] Drain system 600 may comprise a drain pipe 640 including a first end 642 and a second
end 644. Similar to that described with respect to the drain pipe 340 of FIGS. 3-5,
first end 642 of drain pipe 640 may be located at or near the bottom of lower head
612. Additionally, second end 644 of drain pipe 640 may be located at or near upper
head 614. In some examples, the reactor module may not include any penetrations through
the lower head 612 that could otherwise be used to drain any liquid contained within
containment vessel 610. Rather, second end 644 of drain pipe may penetrate and/or
pass through the upper head 614 to provide a passageway for any liquid and/or gas
to be released an/or expelled out containment vessel 610.
[0043] Additionally, the containment module may comprise one more plenum 630 associated
with a secondary cooling system. In some examples, an intermediate portion 645 of
drain pipe 640 may be configured to pass around one or more of the plenum 630 and/or
a portion of secondary coolant tube bundles that may be contained within containment
vessel 610.
[0044] Containment vessel 610 may be configured to be flooded with liquid or water. Additionally,
drain system 600 may be configured to remove the water from within containment vessel
610. However, the reactor module may be designed without any pumps being contained
within containment vessel 610. Additionally, the use of a pump to provide the motive
force to lift water from the bottom of containment vessel 610 could create a suction
pressure which is below the vapour pressure of the water. The suction pressure could
in turn create a vapour lock or cause the pump to cavitate due to lack of Net Positive
Suction Head (NPSH) available.
[0045] To increase NPSH within containment vessel 610, air pressure may be applied to containment
vessel 610 to meet the required NPSH. For example, an air compression system may be
used to inject or force air into containment vessel 610 to facilitate removing the
water via drain system 600. The air compression system may be located outside of,
or external to, containment vessel 610. The air pressure added to containment vessel
610 during the draining operation may be in excess of 2,7579 bar (40 psia), or some
other pressure depending on the size of containment vessel 610 and/or the amount of
water contained therein, in addition to the length, diameter, and/or elevation of
any connecting pipes.
[0046] Drain system 600 may comprise one or more Containment Flooding and Drain System (CFDS)
pumps operatively connected to the second end 644 of drain pipe 640. The one or more
CFDS pumps may operate in conjunction with the air compression system to remove the
water from containment vessel 610. In some examples, an air compression system may
be configured to create sufficient pressure to reliably operate one or more pumps,
such as the CFDS pumps, configured to provide a suction force that draws the liquid
from containment vessel 610 into drain pipe 640.
[0047] Following the completion of containment draining, the air and/or gas injected into
containment vessel 610 may be at a relatively high pressure. In some examples, the
air pressure within containment vessel 610 may be somewhere between approximately
2,7579 bar (40 psia) to 8,27371 bar (120 psia). If the air and/or gas is released
through the CFDS system, the air and/or gas may follow the same path the liquid took.
In some examples, the CFDS system may be configured to release the liquid into a reactor
cooling pool and/or into a reactor cooling system.
[0048] The reactor cooling pool may comprise an open pool of water within the containment
building. Rapidly expanding air released into the cooling pool may cause a sudden
increase in sound pressure levels in the reactor building due to the volume and pressure
difference between containment vessel 610 and the reactor building atmosphere.
[0049] FIG. 7 illustrates a simplified fluid circuit for an example containment vessel drain
system 700 which may be suitable for implementation of the containment vessel drain
system of the invention. Containment vessel drain system 700 may be configured to
controllably release liquid, air, and/or gas contained within a containment vessel
710. In some examples, containment vessel 710 may at least partially surround a reactor
vessel 720, similar to one or more of the systems described at FIGS. 3-6. Additionally,
a drain pipe 740 may be configured to extract liquid and/or release air from containment
vessel 710. Drain pipe 740 may be fluidly coupled to containment vessel 710 that is
partially filled with a liquid. In some examples, a drain inlet of drain pipe 740
may be located below a surface of the liquid, in a lower portion of containment vessel
710. Additionally, a gaseous volume may be located above the surface of the liquid.
The gaseous volume may be pressurized.
[0050] One or more drain valves 715 may be configured to regulate, restrict, prohibit, limit,
or otherwise control the flow of liquid and/or air in at least one direction through
the fluid circuit. A drain line 745 and one or more drain line valves 705 may fluidly
connect drain pipe 740 to one or more pumps 750. The one or more pumps 750 may be
configured to provide a suction force that draws liquid from containment vessel 710
into drain pipe 740. In some examples, the one or more pumps 750 may be located outside
of containment vessel 710. Additionally, the one or more pumps 750 may be configured
to draw water from a cooling pool 785 located outside of containment vessel 710. The
liquid partially filling containment vessel 710 may comprise the water drawn from
the cooling pool.
[0051] Drain line 745 may operate to fluidly connect drain pipe 740 to a fluid separation
system, such as a system including fluid separation container 210 and fluid level
control device 260 as described at FIG. 2. Fluid separation container 210 may be located
outside of containment vessel 710. The fluid separation system may be configured to
separate liquid from the gaseous volume that enters drain pipe 740 after the surface
of the liquid falls below the drain inlet.
[0052] Drain line valves 705 may be interconnected to allow liquid and/or air to be selectively
drained from a plurality of reactor modules operatively connected to the containment
vessel drain system 700. Accordingly, pumps 750 and/or fluid separation container
210 may be configured to operate as one or more shared system components for the plurality
of reactor modules. In some examples six or more reactor modules may be connected
to the fluid circuit and/or to one or more of the shared components.
[0053] Additionally, containment vessel drain system 700 may comprise one or more air compression
systems 725. Compression system 725 may be operatively coupled to containment vessel
710, and may comprise an inlet located in an upper portion of containment vessel 710.
Air and/or gas may be inserted through the pressure inlet into containment vessel
710 by compression system 725 in combination with, or followed by, the removal of
liquid through drain pipe 740. The air and/or gas may form a gaseous volume that is
used to push the liquid out of containment vessel 710 and into drain pipe 740. The
gaseous volume may form a pressurized region above the surface of the liquid, and
the pressurized region may operate to apply a surface pressure on the liquid.
[0054] In some examples, liquid may be transferred from containment vessel 710 to fluid
separation tank 210 in response to both the suction force provided by the one or more
pumps 750 and the pressurized gas inserted into containment vessel 710 by compression
system 725. Depending on the size of containment vessel 710 and/or the amount of liquid
contained therein, it may take several hours to clear the liquid from containment
vessel 710. In some examples, the liquid may be removed from containment vessel 710
at a flow rate of approximately 378,541 litres (100 gallons) per minute. Liquid that
is removed from containment vessel 710 may be discharged in a relatively large holding
tank or into a cooling pool 785. A cooling tank valve 780 may be configured to regulate,
restrict, prohibit, limit, or otherwise control the flow of liquid and/or air in one
or more directions through the fluid circuit. In some examples, in addition to pulling
and discharging the liquid drawn from containment vessel 710 into cooling pool 785,
pumps 750 may be configured to draw water from cooling pool 785 in order to fill containment
vessel 710 with water prior to a refuelling operation.
[0055] One or more circuit valves 755 may be configured to selectively regulate, restrict,
prohibit, limit, or otherwise control the direction of flow of liquid and/or air through
the circuit. In some examples, the one or more circuit valves 755 may be configured
to allow water pumped from cooling pool 785 to be transferred into containment vessel
710. Additionally, the one or more circuit valves 755 may be configured to allow water
and/or air housed in containment vessel 710 to be transferred to the separation tank
210.
[0056] Fluid separation tank 210 may be at least partially filled with a volume of the liquid
that is forced into the drain inlet of drain pipe 740 at a flow rate. Fluid level
device 260 may be configured to maintain the volume of liquid within fluid separation
tank 210 by discharging the liquid from fluid separation tank 210 at approximately
the same flow rate that the liquid is forced into the drain inlet.
[0057] Water that is transferred to fluid separation tank 210 may be discharged or released
into a relatively large holding tank 265 or cooling pool. In some examples, holding
tank 265 and cooling pool 785 may comprise the same body of water and/or be fluidly
connected to each other. In other examples, one or both of the holding tank 265 and
cooling pool 785 may comprise a suppression pool.
[0058] Fluid level control device 260 may be configured to control the level of water in
fluid separation tank 210 and/or control the rate of flow of water into holding tank
265. In some examples, fluid level control drive 260 may be configured to identify
a pressure differential within fluid separation tank 210. In response to the identification
of the pressure differential, fluid level control device 260 may be configured to
prohibit any further discharge of the liquid from fluid separation tank 210.
[0059] Once the water level in containment vessel 710 and/or in fluid separation tank 210
is low enough, pressurized air and/or gas in containment vessel 210 may be released
into the drain line 745 and transferred to fluid separation tank 210. The volume of
liquid contained within fluid separation tank 210 may operate to prohibit the pressurized
gas from being discharged into holding tank 265.
[0060] Fluid separation tank 210 may comprise an air vent. The air vent may be configured
to discharge the pressurized gas that is released into the drain inlet of drain pipe
740. The air and/or gas may then be diverted into one or more noise dampers, noise
filters, particulate filters, noise silencers, and/or noise diffusers, such as a muffler
760 and/or a filter 770, connected to fluid separation tank 210. Muffler 760 and/or
filter 770 may be configured to reduce the decibel level, reduce radioactive particulates
associated with the released air, and/or otherwise mitigate or diminish the acoustic
effects of the released air and/or gas while controlling the depressurization of containment
vessel 710.
[0061] In some examples, muffler 760 and/or filter 770 may be configured to restrict or
limit the rate of release of the pressurized gas in order to reduce the rate of expansion
of the discharged gas or otherwise mitigate or reduce the acoustical response of the
discharged gas. Rather than discharging the pressurized gas in a large acoustic event,
the pressurized gas may be controllably released over a period of time ranging from
several minutes to one or more hours, depending on the rate of release.
[0062] In some examples, a lower water level and/or pressure differential inside fluid separation
tank 210 may be configured to cause fluid level control device 260 to shut. The water
inside fluid separation tank 210 may operate to provide a margin to allow for a drain
valve closure time. Shutting fluid level control device 260 may seal the path to holding
tank 265 and/or to the reactor building atmosphere, and instead divert the pressurized
air and/or gas to muffler 760 and/or filter 770. The air and/or gas may be ultimately
discharged out of a reactor building stack or external exhaust. In some examples,
the air and/or gas may be discharged into the reactor building if the noise level
is acceptably low to any nearby plant operators.
[0063] One or more of the fluid separation tank 210, muffler 760 and/or filter 770 may be
combined with a Containment Evacuation System (CES), a Reactor Pressure Containment
System (RPCS) or a Heating, Ventilation and Air Conditioning (HVAC) system associated
with a reactor module and/or a reactor building.
[0064] FIG. 8 illustrates an example containment vessel drain system 800 for a reactor module
850 at least partially submerged in a pool of water 825. The pool of water 825 may
be contained in a reactor building 805 and/or a reactor bay that houses reactor module
850. In some examples, the pool of water 825 and/or reactor module 850 may be located
below ground level. Reactor module 850 may comprise a containment vessel 810 and a
reactor vessel 820 housed within the containment vessel 810. One or both of containment
vessel 810 and reactor vessel 820 may be manufactured out of metal, such as steel
or a steel alloy. The walls of reactor building 805 may include steel-reinforced concrete.
[0065] A means for removing liquid from containment vessel 810 filled with both liquid and
a pressurized gas may comprise drain pipe 840 and/or one or more other devices or
systems connected to drain pipe 840 via a hydraulic line 845. For example, hydraulic
line 845 may be configured to operatively connect drain pipe 840 to one or more pumps,
such as pumps 750 of FIG. 7. The pressurized gas may enter the means for removing
after the liquid is substantially removed from the containment vessel.
[0066] Additionally, drain pipe 840 may be connected to a means for separating the liquid
from the pressurized gas after both the liquid and at least a portion of the pressurized
gas have been removed from the containment vessel. The means for separating may comprise
one or more systems or devices described herein, such as system 200 (FIG. 2) including
fluid separation tank 210 and fluid level control device 260, other systems for separating
liquid from gas, or any combination thereof.
[0067] Still further, drain pipe 840 may be connected to a means for diminishing acoustic
properties of the pressurized gas after it has been separated from the liquid. The
means for diminishing may comprise one or more systems or devices described herein,
such as noise dampers, noise filters, noise silencers, and/or noise diffusers, muffler
760 and/or filter 770 (FIG. 7), other systems for diminishing acoustic properties,
or any combination thereof.
[0068] In some examples, a means for flooding the containment vessel may comprise an inlet
885 located within the pool of water 825, together with the hydraulic line 880 and
one or more valves, such as valve 875. Valve 875 may comprise a one-way valve which
can be opened to draw in water through inlet 885. Additionally, hydraulic line 880
may be connected to drain pipe 840, such that water drawn into inlet 885 may be released
into containment vessel 810. In still other examples, the means for flooding may comprise
one or more pumps and/or holding tanks which may be configured to provide the water
or other type of liquid that is released into the containment vessel 810.
[0069] Liquid separated from the gas by the means for separating may be discharged by one
or more discharge devices 865 connected to a hydraulic line 860. The discharge devices
865 may be located in the pool of water 825. In some examples, the liquid that is
discharged by the one or more discharge devices 865 may comprise water that was originally
drawn from the pool of water 825 through inlet 885 and used to flood containment vessel
810.
[0070] In some examples, hydraulic line 860, hydraulic line 880, inlet 885, one or more
valves 875, and/or discharge devices 865 may comprise components used for an emergency
core cooling system. In still other examples, one or more of hydraulic line 860, hydraulic
line 880, inlet 885, one or more valves 875, and discharge devices 865 may comprise
components of a system for providing an auxiliary source of water to a secondary coolant
system.
[0071] A means for pressurizing containment vessel 810 with a pressurized gas may comprise
pressurizer pipe 830 and/or one or more other devices or systems connected to pressurizer
pipe 830 via a hydraulic line 835. For example, hydraulic line 835 may be configured
to operatively connect pressurizer pipe 830 to one or more compression systems, such
as compression system 725 of FIG. 7. Additionally, pressurizer pipe 830 and/or hydraulic
line 835 may be operatively connected to an air evacuation system.
[0072] In some examples, all of the functionality described for the means disclosed herein
may be performed without the primary coolant 10 ever being allowed to leave reactor
vessel 820. Additionally, during normal operation of reactor module 850 while a reactor
core 815 is generating power, the containment vessel 810 may be internally dry and/or
substantially evacuated of all liquid and gases.
[0073] FIG. 9 illustrates yet another example containment vessel drain system 900 comprising
a containment vessel 910 at least partially filled with a liquid 980. A drain pipe
940 inserted into containment vessel 910 may be configured to transfer the liquid
980 into a holding tank 920. In some examples, holding tank 920 may be similarly sized
and/or able to hold a similar amount of liquid as containment vessel 910.
[0074] In addition to liquid 980, containment vessel 910 may be configured to contain a
gaseous region 915. Gaseous region 915 may comprise air other types of gases and/or
vapour. In some examples, gaseous region 915 may be pressurized. A gas inlet 930 may
be operatively connected to and/or penetrate into containment vessel 910. Gas inlet
930 may be configured to insert, release, or inject pressurized gas into containment
vessel 910.
[0075] A first containment control device 945, such as a valve or other type of flow control
device, may be configured to control the flow of liquid into or out of containment
vessel 910. Similarly, a second containment control device 935 may be configured to
control the flow of gas into or out of containment vessel 910. One or both of first
containment control device 945 and second containment control device 935 may be operatively
connected to a fluid separation device 950. In some examples, fluid separation device
950 may be configured to separate gas from liquid, similar to the system 200 of FIG.
2.
[0076] One or more pumps such as pump 960 may be configured to provide a suction force which
may draw the liquid 980 out of container vessel 910 into fluid separation device 950.
Liquid 980 drawn from containment vessel 910 may form a pool of liquid 990 within
fluid separation device 950. Fluid separation device 950 may be configured as a temporary
holding tank to transfer the liquid 980 into holding tank 920. A holding tank control
device 975, such as a valve or other type of flow control device, may be configured
to control the flow of liquid into or out of holding tank 920.
[0077] Additionally, fluid separation device 950 may be operatively connected to an acoustic
sound reduction device 970, such as a noise damper, a noise filter, a noise silencer,
a noise diffuser, a muffler, a noise filter, other types of acoustic control devices,
or any combination thereof. An acoustic control device 965, such as a valve or other
type of flow control device, may be configured to control the flow of air, gas, and/or
vapour from fluid separation device 950 to acoustic sound reduction device 970.
[0078] In some examples, a containment region 925 associated with holding tank 920 may be
held at a vacuum or a partial vacuum. The vacuum may be used to create a suction force
that draws the liquid 980 through drain pipe 940 and into holding tank 920. In other
examples, containment region 925 may initially be pressurized. Pressurized gas within
holding tank 920 may be injected into the gaseous region 915 of containment vessel
910 prior to, or contemporaneously with, withdrawing liquid 980. In still other examples,
one or more pumps may be used to pressurize the gaseous region 915 of containment
vessel 910. For example, the operation of pump 960 may effectively be reversed to
force gas into containment vessel 910 via second containment control device 935.
[0079] FIG. 10 illustrates an example process 1000 for draining a containment vessel which
may be suitable for implementation with a containment vessel drain system of the invention.
At operation 1010, a containment vessel in a reactor module may be flooded with a
liquid, such as water.
[0080] At operation 1020, a refuelling and/or maintenance operation may be performed on
the reactor module.
[0081] At operation 1030, the containment vessel may be pressurized with a gas, such as
air. In some examples, the containment vessel may be pressurized following the completion
of operation 1020.
[0082] At operation 1040, the liquid may be extracted, withdrawn, siphoned, and/or otherwise
removed from the containment vessel. In some examples, the pressure associated with
the pressurized gas may be sufficient to force the liquid into and through the drain
pipe. In other examples, a suction force provided by one or more pumps may augment
the pressurized air to remove the liquid from the containment vessel.
[0083] At operation 1050, the liquid removed from the containment vessel may be discharged
into a holding tank, a cooling pool, or a suppression pool.
[0084] At operation 1060, the pressurized gas may be released from the containment vessel.
In some examples, the pressurized gas may be released following the completion of
operation 1050, or after substantially all of the liquid has been removed from the
containment vessel.
[0085] At operation 1070, the pressurized gas may be processed and/or operated on in one
or acoustic devices such as a muffler or a noise filter.
[0086] At operation 1080, the pressurized gas may be discharged with mitigated acoustic
properties. In some examples, the rate of discharge of the pressurized gas may be
controlled to reduce the rate of expansion of the discharged gas or otherwise reduce
the acoustical response of the discharged gas.
[0087] In addition to operating with a pressurized water reactor and/or a light water reactor,
it should be apparent to one skilled in the art that at least some of the examples
provided herein may be understood to also apply to other types of systems or liquid
containment structures. For example, one or more of the examples or variations thereof
may also be made operable with a boiling water reactor or certain other types or reactor
designs. It should further be noted that any rates and values described herein are
provided by way of example only. Other rates and values may be determined through
experimentation such as by construction of full scale or scaled models of a nuclear
reactor system.
[0088] Having described and illustrated various examples herein, it should be apparent that
other examples may be modified in arrangement and detail. We claim all modification
and variations coming within the scope of the following claims.
1. A system (300, 600, 700, 800, 900) for draining a containment vessel (310, 610, 710,
810, 910), the system comprising:
a drain inlet located in a lower portion of the containment vessel (310, 610, 710,
810, 910), wherein the containment vessel is configured to be at least partially filled
with a liquid, and wherein the drain inlet is located below a surface of the liquid;
an inlet located in an upper portion of the containment vessel (310, 610, 710, 810,
910), wherein the inlet is configured to insert pressurized gas into the containment
vessel to form a pressurized region above the surface of the liquid, and wherein the
pressurized region is configured to apply a surface pressure that lowers the surface
of the liquid within the containment vessel and forces the liquid into the drain inlet;
and
a fluid separation device (200) located outside the containment vessel and operatively
connected to the drain inlet, wherein the fluid separation device (200) is configured
to separate the liquid from the pressurized gas that enters the drain inlet after
the surface of the liquid falls below the drain inlet;
characterized in that:
the fluid separation device includes (a) a fluid separation tank (210) configured
to be at least partially filled with a volume of the liquid and (b) a fluid level
device (260) configured to maintain the volume of the liquid within the fluid separation
tank by discharging the liquid from the fluid separation tank at approximately the
same flow rate that the liquid is forced into the drain inlet.
2. The system of claim 1,
wherein the drain inlet is configured to release the pressurized gas into the fluid
separation device (200, 950) after the liquid is substantially removed from the containment
vessel (310, 610, 710, 810, 910).
3. The system of claim 1,
wherein the fluid separation device (200) is configured to discharge the liquid into
a holding tank (265), and wherein the volume of liquid within the fluid separation
tank (210) operates to prohibit the pressurized gas from being discharged into the
holding tank; and/or
wherein the fluid level device (260) is configured to identify a pressure differential
within the fluid separation tank, and wherein in response to the identification of
the pressure differential the fluid separation device is configured to prohibit any
further discharge of the liquid from the fluid separation tank.
4. The system of any of claims 1-3, wherein the fluid separation tank (210) comprises
an air vent, and wherein the air vent is configured to discharge the pressurized gas
that is released into the drain inlet.
5. The system of claim 4,
further comprising an acoustic damping device configured to diminish one or more acoustic
properties of the pressurized gas discharged through the air vent; and
wherein, in some embodiments, the acoustic damping device comprises a noise muffler,
a noise diffuser, a noise silencer, or a noise filter.
6. The system of any of claims 1-5,
further comprising one or more pumps (960) configured to provide a suction force that
draws the liquid into the drain inlet, wherein the liquid is transferred to the fluid
separation device (950) in response to both the suction force provided by the one
or more pumps and the surface pressure applied by the pressurized region within the
containment vessel; and
wherein, in some embodiments, the one or more pumps are located outside of the containment
vessel.
7. The system of any of claims 1-6,
wherein a reactor vessel (320, 720, 820) housed within the containment vessel is at
least partially surrounded by the liquid prior to lowering the surface of the liquid;
and
wherein, in some embodiments, the reactor vessel (820) includes a reactor core (815)
submerged in primary coolant, and wherein the surface of the liquid is lowered in
the containment vessel without removing the primary coolant from the reactor vessel.
8. The system of claim 6,
wherein the one or more pumps are further configured to draw water from a cooling
pool located outside of the containment vessel, and wherein the liquid comprises the
water drawn from the cooling pool.
9. The system of claim 8,
further comprising a compression device operatively coupled to the containment vessel,
wherein the compression device is configured to insert the pressurized gas into the
containment vessel through the inlet to form the pressurized region, and wherein the
liquid is transferred to the fluid separation device in response to both the suction
force provided by the one or more pumps and the force provided by the pressurized
gas inserted into the containment vessel; and
wherein the compression device is located within the containment vessel.
10. The system of claim 8, further comprising a compression device operatively coupled
to the containment vessel, wherein the compression device is configured to insert
the pressurized gas into the containment vessel to form the pressurized region, and
wherein the liquid is transferred to the fluid separation device in response to both
the suction force provided by the one or more pumps and the force provided by the
pressurized gas inserted into the containment vessel, and wherein the compression
device is located outside of the containment vessel.
11. The system of claim 4,
further comprising an acoustic damping device configured to diminish one or more acoustic
properties of the pressurized gas after it is separated from the liquid by the fluid
separation device; and
wherein, in some embodiments, the acoustic damping device is configured to reduce
a rate of expansion of the gas that is discharged from the fluid separation device.
12. The system of claim 1 wherein the containment vessel (310, 610, 710, 810, 910) contains
a nuclear reactor having a reactor vessel (320, 720, 820), and wherein the reactor
vessel is configured to be submerged in the liquid prior to lowering the surface of
the liquid.
13. The system of claim 12 wherein the fluid separation tank includes an air vent configured
to discharge the pressurized gas that is released into the drain inlet, and further
comprising an acoustic damping device configured to diminish one or more acoustic
properties of the pressurized gas discharged through the air vent.
1. Ein System (300, 600, 700, 800, 900) zum Entleeren eines Sicherheitsbehälters (310,
610, 710, 810, 910), wobei das System Folgendes beinhaltet:
einen Entleerungszugang, der sich in einem unteren Abschnitt des Sicherheitsbehälters
(310, 610, 710, 810, 910) befindet, wobei der Sicherheitsbehälter konfiguriert ist,
um mindestens teilweise mit einer Flüssigkeit gefüllt zu sein, und wobei sich der
Entleerungszugang unterhalb einer Oberfläche der Flüssigkeit befindet;
einen Zugang, der sich in einem oberen Abschnitt des Sicherheitsbehälters (310, 610,
710, 810, 910) befindet, wobei der Zugang konfiguriert ist, um unter Druck stehendes
Gas in den Sicherheitsbehälter einzuführen, um einen unter Druck stehenden Bereich
oberhalb der Oberfläche der Flüssigkeit zu bilden, und wobei der unter Druck stehende
Bereich konfiguriert ist, um einen Oberflächendruck auszuüben, der die Oberfläche
der Flüssigkeit innerhalb des Sicherheitsbehälters absenkt und die Flüssigkeit in
den Entleerungszugang zwingt; und
eine Fluidtrennvorrichtung (200), die sich außerhalb des Sicherheitsbehälters befindet
und mit dem Entleerungszugang betriebsfähig verbunden ist, wobei die Fluidtrennvorrichtung
(200) konfiguriert ist, um die Flüssigkeit von dem unter Druck stehenden Gas zu trennen,
welches in den Entleerungszugang eintritt, nachdem die Oberfläche der Flüssigkeit
unter den Entleerungszugang gesunken ist;
dadurch gekennzeichnet, dass:
die Fluidtrennvorrichtung Folgendes umfasst: (a) einen Fluidtrenntank (210), der konfiguriert
ist, um mindestens teilweise mit einem Volumen der Flüssigkeit gefüllt zu sein, und
(b) eine Fluidpegelvorrichtung (260), die konfiguriert ist, um das Volumen der Flüssigkeit
innerhalb des Fluidtrenntanks zu halten, indem sie die Flüssigkeit mit ungefähr derselben
Durchflussrate aus dem Fluidtrenntank ablässt, mit der die Flüssigkeit in den Entleerungszugang
gezwungen wird.
2. System gemäß Anspruch 1,
wobei der Entleerungszugang konfiguriert ist, um das unter Druck stehende Gas in die
Fluidtrennvorrichtung (200, 950) entweichen zu lassen, nachdem die Flüssigkeit im
Wesentlichen aus dem Sicherheitsbehälter (310, 610, 710, 810, 910) entfernt wurde.
3. System gemäß Anspruch 1,
wobei die Fluidtrennvorrichtung (200) konfiguriert ist, um die Flüssigkeit in einen
Vorratstank (265) abzulassen, und wobei das Flüssigkeitsvolumen innerhalb des Fluidtrenntanks
(210) dazu dient, zu verhindern, dass das unter Druck stehende Gas in den Vorratstank
abgelassen wird; und/oder
wobei die Fluidpegelvorrichtung (260) konfiguriert ist, um eine Druckdifferenz innerhalb
des Fluidtrenntanks zu erkennen, und wobei die Fluidtrennvorrichtung als Reaktion
auf das Erkennen der Druckdifferenz konfiguriert ist, um jegliches weitere Ablassen
der Flüssigkeit aus dem Fluidtrenntank zu verhindern.
4. System gemäß einem der Ansprüche 1-3, wobei der Fluidtrenntank (210) einen Luftauslass
beinhaltet und wobei der Luftauslass konfiguriert ist, um das unter Druck stehende
Gas, das in den Entleerungszugang entweicht, abzulassen.
5. System gemäß Anspruch 4,
ferner beinhaltend eine Vorrichtung zur akustischen Dämpfung, die konfiguriert ist,
um eine oder mehrere akustische Eigenschaften des unter Druck stehenden Gases, das
durch den Luftauslass abgelassen wird, zu verringern; und
wobei die Vorrichtung zur akustischen Dämpfung in einigen Ausführungsformen einen
Schalldämpfer, einen Schalldiffusor oder einen Schallfilter beinhaltet.
6. System gemäß einem der Ansprüche 1-5,
ferner beinhaltend eine oder mehrere Pumpen (960), die konfiguriert sind, um eine
Ansaugkraft bereitzustellen, die die Flüssigkeit in den Entleerungszugang saugt, wobei
die Flüssigkeit als Reaktion sowohl auf die Ansaugkraft, die durch die eine oder die
mehreren Pumpen bereitgestellt wird, als auch den Oberflächendruck, der durch den
unter Druck stehenden Bereich innerhalb des Sicherheitsbehälters ausgeübt wird, zu
der Fluidtrennvorrichtung (950) befördert wird; und
wobei sich die eine oder die mehreren Pumpen in einigen Ausführungsformen außerhalb
des Sicherheitsbehälters befinden.
7. System gemäß einem der Ansprüche 1-6,
wobei ein Reaktorbehälter (320, 720, 820), der innerhalb des Sicherheitsbehälters
untergebracht ist, mindestens teilweise von der Flüssigkeit umgeben ist, bevor die
Oberfläche der Flüssigkeit abgesenkt wird; und
wobei der Reaktorbehälter (820) in einigen Ausführungsformen einen Reaktorkern (815)
umfasst, der in ein Primärkühlmittel eingetaucht ist, und wobei die Oberfläche der
Flüssigkeit in dem Sicherheitsbehälter abgesenkt wird, ohne dass das Primärkühlmittel
aus dem Reaktorbehälter entfernt wird.
8. System gemäß Anspruch 6,
wobei die eine oder die mehreren Pumpen ferner konfiguriert sind, um Wasser aus einem
Kühlbecken, das sich außerhalb des Sicherheitsbehälters befindet, zu saugen, und wobei
die Flüssigkeit das aus dem Kühlbecken gesaugte Wasser beinhaltet.
9. System gemäß Anspruch 8,
ferner beinhaltend eine Kompressionsvorrichtung, die mit dem Sicherheitsbehälter betriebsfähig
gekoppelt ist, wobei die Kompressionsvorrichtung konfiguriert ist, um das unter Druck
stehende Gas durch den Zugang in den Sicherheitsbehälter einzuführen, um den unter
Druck stehenden Bereich zu bilden, und wobei die Flüssigkeit als Reaktion auf sowohl
die Ansaugkraft, die durch die eine oder die mehreren Pumpen bereitgestellt wird,
als auch die Kraft, die durch das unter Druck stehende Gas, das in den Sicherheitsbehälter
eingeführt wird, bereitgestellt wird, zu der Fluidtrennvorrichtung befördert wird;
und
wobei sich die Kompressionsvorrichtung innerhalb des Sicherheitsbehälters befindet.
10. System gemäß Anspruch 8, ferner beinhaltend eine Kompressionsvorrichtung, die mit
dem Sicherheitsbehälter betriebsfähig gekoppelt ist, wobei die Kompressionsvorrichtung
konfiguriert ist, um das unter Druck stehende Gas in den Sicherheitsbehälter einzuführen,
um den unter Druck stehenden Bereich zu bilden, und wobei die Flüssigkeit als Reaktion
auf sowohl die Ansaugkraft, die durch die eine oder die mehreren Pumpen bereitgestellt
wird, als auch die Kraft, die durch das unter Druck stehende Gas, das in den Sicherheitsbehälter
eingeführt wird, bereitgestellt wird, zu der Fluidtrennvorrichtung befördert wird
und wobei sich die Kompressionsvorrichtung außerhalb des Sicherheitsbehälters befindet.
11. System gemäß Anspruch 4,
ferner beinhaltend eine Vorrichtung zur akustischen Dämpfung, die konfiguriert ist,
um eine oder mehrere akustische Eigenschaften des unter Druck stehenden Gases zu verringern,
nachdem es durch die Fluidtrennvorrichtung von der Flüssigkeit getrennt wurde; und
wobei die Vorrichtung zur akustischen Dämpfung in einigen Ausführungsformen konfiguriert
ist, um eine Ausdehnungsgeschwindigkeit des Gases, das aus der Fluidtrennvorrichtung
abgelassen wird, zu reduzieren.
12. System gemäß Anspruch 1, wobei der Sicherheitsbehälter (310, 610, 710, 810, 910) einen
Kernreaktor enthält, der einen Reaktorbehälter (320, 720, 820) aufweist, und wobei
der Reaktorbehälter konfiguriert ist, um in die Flüssigkeit eingetaucht zu sein, bevor
die Oberfläche der Flüssigkeit abgesenkt wird.
13. System gemäß Anspruch 12, wobei der Fluidtrenntank einen Luftauslass umfasst, der
konfiguriert ist, um das unter Druck stehende Gas, das in den Entleerungszugang entweicht,
abzulassen, und ferner beinhaltend eine Vorrichtung zur akustischen Dämpfung, die
konfiguriert ist, um eine oder mehrere akustische Eigenschaften des unter Druck stehenden
Gases, das durch den Luftauslass abgelassen wird, zu verringern.
1. Un système (300, 600, 700, 800, 900) pour vidanger une enceinte de confinement (310,
610, 710, 810, 910), le système comprenant :
une admission de vidange située dans une partie basse de l'enceinte de confinement
(310, 610, 710, 810, 910), l'enceinte de confinement étant configurée pour être au
moins partiellement remplie d'un liquide, et l'admission de vidange étant située au-dessous
d'une surface du liquide ;
une admission située dans une partie haute de l'enceinte de confinement (310, 610,
710, 810, 910), l'admission étant configurée pour introduire du gaz sous pression
dans l'enceinte de confinement afin de former une zone sous pression au-dessus de
la surface du liquide, et la zone sous pression étant configurée pour appliquer une
pression de surface qui abaisse la surface du liquide à l'intérieur de l'enceinte
de confinement et pousse le liquide dans l'admission de vidange ; et
un dispositif de séparation de fluides (200) situé à l'extérieur de l'enceinte de
confinement et raccordé fonctionnellement à l'admission de vidange, le dispositif
de séparation de fluides (200) étant configuré pour séparer le liquide du gaz sous
pression qui entre dans l'admission de vidange après que la surface du liquide est
tombée au-dessous de l'admission de vidange ;
caractérisé en ce que :
le dispositif de séparation de fluides inclut (a) un réservoir de séparation de fluides
(210) configuré pour être au moins partiellement rempli d'un volume du liquide et
(b) un dispositif de niveau de fluide (260) configuré pour maintenir le volume du
liquide à l'intérieur du réservoir de séparation de fluides en évacuant le liquide
du réservoir de séparation de fluides approximativement au même débit d'écoulement
auquel le liquide est poussé dans l'admission de vidange.
2. Le système de la revendication 1,
dans lequel l'admission de vidange est configurée pour libérer le gaz sous pression
dans le dispositif de séparation de fluides (200, 950) après que le liquide a été
substantiellement retiré de l'enceinte de confinement (310, 610, 710, 810, 910).
3. Le système de la revendication 1,
dans lequel le dispositif de séparation de fluides (200) est configuré pour évacuer
le liquide dans un réservoir de rétention (265), et dans lequel le volume de liquide
à l'intérieur du réservoir de séparation de fluides (210) fonctionne pour empêcher
que le gaz sous pression ne soit évacué dans le réservoir de rétention ; et/ou
dans lequel le dispositif de niveau de fluide (260) est configuré pour identifier
une différence de pression à l'intérieur du réservoir de séparation de fluides, et
dans lequel en réponse à l'identification de la différence de pression le dispositif
de séparation de fluides est configuré pour empêcher toute évacuation supplémentaire
du liquide du réservoir de séparation de fluides.
4. Le système de n'importe lesquelles des revendications 1 à 3, dans lequel le réservoir
de séparation de fluides (210) comprend un évent, et dans lequel l'évent est configuré
pour évacuer le gaz sous pression qui est libéré dans l'admission de vidange.
5. Le système de la revendication 4,
comprenant en outre un dispositif d'amortissement acoustique configuré pour amoindrir
une ou plusieurs propriétés acoustiques du gaz sous pression évacué à travers l'évent
; et
dans lequel, dans certains modes de réalisation, le dispositif d'amortissement acoustique
comprend un atténuateur de bruit, un diffuseur de bruit, un piège à bruit, ou un filtre
de bruit.
6. Le système de n'importe lesquelles des revendications 1 à 5,
comprenant en outre une ou plusieurs pompes (960) configurées pour apporter une force
de succion qui aspire le liquide dans l'admission de vidange, le liquide étant transféré
au dispositif de séparation de fluides (950) en réponse à la fois à la force de succion
apportée par les une ou plusieurs pompes et à la pression de surface appliquée par
la zone sous pression à l'intérieur de l'enceinte de confinement ; et dans lequel,
dans certains modes de réalisation, les une ou plusieurs pompes sont situées à l'extérieur
de l'enceinte de confinement.
7. Le système de n'importe lesquelles des revendications 1 à 6,
dans lequel une cuve de réacteur (320, 720, 820) logée à l'intérieur de l'enceinte
de confinement est au moins partiellement entourée par le liquide avant l'abaissement
de la surface du liquide ; et
dans lequel, dans certains modes de réalisation, la cuve de réacteur (820) inclut
un coeur de réacteur (815) submergé dans du fluide de refroidissement primaire, et
dans lequel la surface du liquide est abaissée dans l'enceinte de confinement sans
retrait du fluide de refroidissement primaire de la cuve de réacteur.
8. Le système de la revendication 6,
dans lequel les une ou plusieurs pompes sont configurées en outre pour aspirer de
l'eau à partir d'une piscine de refroidissement située à l'extérieur de l'enceinte
de confinement, et dans lequel le liquide comprend l'eau aspirée à partir de la piscine
de refroidissement.
9. Le système de la revendication 8,
comprenant en outre un dispositif de compression relié fonctionnellement à l'enceinte
de confinement, le dispositif de compression étant configuré pour introduire le gaz
sous pression dans l'enceinte de confinement à travers l'admission afin de former
la zone sous pression, et dans lequel le liquide est transféré au dispositif de séparation
de fluides en réponse à la fois à la force de succion apportée par les une ou plusieurs
pompes et à la force apportée par le gaz sous pression introduit dans l'enceinte de
confinement ; et
le dispositif de compression étant situé à l'intérieur de l'enceinte de confinement.
10. Le système de la revendication 8, comprenant en outre un dispositif de compression
relié fonctionnellement à l'enceinte de confinement, le dispositif de compression
étant configuré pour introduire le gaz sous pression dans l'enceinte de confinement
afin de former la zone sous pression, et dans lequel le liquide est transféré au dispositif
de séparation de fluides en réponse à la fois à la force de succion apportée par les
une ou plusieurs pompes et à la force apportée par le gaz sous pression introduit
dans l'enceinte de confinement, et le dispositif de compression étant situé à l'extérieur
de l'enceinte de confinement.
11. Le système de la revendication 4,
comprenant en outre dispositif d'amortissement acoustique configuré pour amoindrir
une ou plusieurs propriétés acoustiques du gaz sous pression après qu'il a été séparé
du liquide par le dispositif de séparation de fluides ; et
dans lequel, dans certains modes de réalisation, le dispositif d'amortissement acoustique
est configuré pour réduire un taux d'expansion du gaz qui est évacué du dispositif
de séparation de fluides.
12. Le système de la revendication 1 dans lequel l'enceinte de confinement (310, 610,
710, 810, 910) contient un réacteur nucléaire ayant une cuve de réacteur (320, 720,
820), et dans lequel la cuve de réacteur est configurée pour être submergée dans le
liquide avant l'abaissement de la surface du liquide.
13. Le système de la revendication 12 dans lequel le réservoir de séparation de fluides
inclut un évent configuré pour évacuer le gaz sous pression qui est libéré dans l'admission
de vidange, et comprenant en outre un dispositif d'amortissement acoustique configuré
pour amoindrir une ou plusieurs propriétés acoustiques du gaz sous pression évacué
à travers l'évent.