Technical Field
[0001] Example embodiments relate to a drone, and more particularly, to a drone including
a deployment device that enables the drone to fly both in a folded mode and a deployed
mode and vary an arrangement shape of propellers of the drone.
Background Art
[0002] In general, a drone refers to an unmanned aerial vehicle that is provided in a shape
of an aircraft or a helicopter and used for military purposes, and flies or steers
through induction of radio waves without a pilot or an operator. A drone was initially
used as a target, in place of an enemy aircraft, in firing or shooting practices of
air-force planes or anti-aircrafts, and it is currently used for various purposes,
for example, for reconnaissance and surveillance, and anti-submarine attacks. In addition,
around the year of 2010, it has become widely used for various civilian purposes in
addition to the military purposes. For example, it is used to capture an image of
a location, for example, a volcanic crater, where human beings cannot go themselves,
and also commercially used for an unmanned delivery service provided by online shopping
malls to deliver a lightweight parcel to a consumer by applying a global positioning
system (GPS) thereto.
[0003] Patent application
CN 104859836 discloses an unmanned aerial vehicle comprising an aerial vehicle body, a camcorder
lens mounted on the aerial vehicle body, and a plurality of foldable arm assemblies.
An aerial photography device adopting a foldable arm assembly structure is mounted
on the unmanned aerial vehicle, so that while in use, the aerial photography device
can be adapted to different flight spaces by changing the external dimension, and
the aerial photography device has the characteristics of being convenient and quick
to operate, wide in application field and broad in adaptability. Another patent application
(
CN 104085530) discloses a ducted coaxial multi-rotor type aircraft comprising an airframe structure,
a power system and a control system. The airframe structure comprises a central duct,
a main rotor and a plurality of assistant rotors evenly distributed at the peripheral
of the central duct. A rotation device is connected to the outside of a supporting
structure. The rotation device controls the rocker arms to drive the assistant rotors
to rotate around connection points of the assistant rotors and the supporting structure.
The assistant rotors can rotate and move freely, and therefore the aircraft can change
the lift force distribution of the aircraft according to flight needs and a good maneuvering
characteristic of the aircraft is achieved. The assistant rotors can be retracted
into the inside of the central duct so as to reduce the size of the aircraft, thus
facilitating flight in narrow spaces.
[0004] US 2009/008499 A1 discloses a modular flying vehicle having an air vehicle that can be coupled to cargo
containers, land vehicles, sea vehicles, medical transport modules, etc.
[0005] As research is actively conducted to commercialize drones, various attempts are also
being made to improve performance of the drones. For example, research has been conducted
to improve an arrangement structure of a body and propellers of a drone in order to
improve flight stability of the drone. As known in related fields of the art, when
a length of a support that connects a body and propellers of a drone increases, an
inertial moment of the entire drone may increase, and posture stability against disturbance
may also increase. In addition, as illustrated in FIG. 9 , when a length L of a support
increases, a torque relative to a floating force F of a propeller, for example, T
= L × F, may increase by a leverage principle, and thus rotation and mobility of a
drone may also be improved.
[0006] However, when the length L of the support increases, an entire volume of the drone
may also increase, and thus a greater space may be needed to store a large number
of drones. In addition, there may be an increasing risk of damage or breakage due
to an external impact when the drone moves or is carried around.
Disclosure of Invention
Technical Goals
[0007] Example embodiments provide a drone including a deployment device that enables the
drone to fly both in a folded mode and a deployed mode and vary or change an arrangement
shape of propellers thereof, and that differently adjusts a deployment angle of propellers
that normally operate in a deployed mode to maintain a posture balance and also flight
stability of the drone.
Technical Solutions
[0008] According to the present invention, there is provided a drone as set out in appended
claim 1.
[0009] The hinge device may include a hinge and a spring portion. The spring portion may
be disposed radially on an outer surface of the hinge to cover the hinge, and one
end of the spring portion may be fixed to the fixed support and an other end thereof
may be fixed to the rotating support.
[0010] A locking unit may be provided on an upper surface and/or a lower surface of the
platform, and may lock or release the propellers.
Advantageous Effects
[0011] According to example embodiments described herein, a deployment device including
a rotating support, a hinge device or a motor, and a fixed support may be provided
between a platform and propellers of a drone, and thus the drone may operate both
in a folded mode and a deployed mode of the propellers. In addition, because the propellers
are not deployed or unfolded in the folded mode, a volume of the drone may be minimized,
and thus it may be convenient to store and carry the drone around. Further, the drone
may also fly without baggage. In the deployed mode, an inertia moment and a torque
of the drone may be readjusted while some or all of the propellers are being deployed,
and thus the drone may fly irrespective of embarkation of baggage. Also, in the deployed
mode, a deployment angle may be differently applied to each of the propellers, and
thus the inertia moment and the torque may be adjusted differently based on each of
a roll axis, a pitch axis, and a yaw axis of the drone. Further, although a portion
of the propellers is broken, or a failure occurs in a portion of the propellers, it
is still possible to maintain a posture balance of the drone by differently adjusting
a deployment angle of a propeller that operates normally among the propellers.
Brief Description of Drawings
[0012]
FIG. 1 is a diagram illustrating an example of a structure of a drone according to
an example embodiment;
FIG. 2 is a diagram illustrating an overall shape of the drone of FIG. 1 in a deployed
mode;
FIGS. 3a and 3b are diagrams illustrating examples of a joint hinge of the drone of
FIG. 1 in a folded mode and a deployed mode, respectively, to which a spring portion
and a locking unit are applied;
FIGS. 4a and 4b are diagrams illustrating examples of a joint hinge of the drone of
FIG. 1 in a folded mode and a deployed mode, respectively, to which a motor is applied;
FIG. 5 is a diagram illustrating a shape of a deployment device and a shape of propellers
in a folded mode of the drone of FIG. 1;
FIG. 6 is a diagram illustrating a shape of a deployment device and a shape of propellers
in a deployed mode of the drone of FIG. 1;
FIG. 7 is a diagram illustrating an arrangement of propellers that maximizes an inertial
moment and a torque in a deployed mode of the drone of FIG. 1;
FIGS. 8a and 8b are diagrams illustrating an example of a method of recovering a failure
by changing an arrangement shape of propellers when the failure occurs in a portion
of the propellers of the drone of FIG. 1; and
FIG. 9 is a diagram illustrating a relationship among a length of a support connecting
a body and propellers of the drone of FIG. 1, a floating force of the propellers,
and a torque.
Best Mode for Carrying Out the Invention
[0013] Reference will now be made in detail to example embodiments, examples of which are
illustrated in the accompanying drawings, wherein like reference numerals refer to
the like elements throughout.
[0014] FIGS. 1 and 2 are diagrams illustrating an example of a structure of a drone according
to an example embodiment.
[0015] Referring to FIGS. 1 and 2, according to an example embodiment, a drone includes
a plurality of propellers 100, a deployment device 200, a platform 300, a body 400,
a holder 500, and a landing structure 600. The holder 500 is integrally disposed on
an inner lower surface of the landing structure 600.
[0016] The body 400 has an upper surface curved in a predetermined shape for an appearance,
and a vertical body extension 410 is formed between a lower center of the body 400
and an upper portion of the landing structure 600. The platform 300 of a disc shape
is fixedly disposed on the body extension 410. The deployment device 200 is disposed
radially on an outer side of the platform 300 that is disposed horizontally in a middle
of the body 400.
[0017] The deployment device 200 includes a rotating support 210, a hinge device 220, and
a fixed support 230. The fixed support 230 is extended outwards radially from an outer
surface of the platform 300 by a predetermined length, and extended to form a radial
symmetry based on a center of the platform 300 for an operation stability and balance
of the drone. More desirably, eight fixed supports may be provided as the fixed support
230 and extended outwards radially from the outer surface of the platform 300 by the
predetermined length, and an angle therebetween with respect to the center of the
platform 300 is 45 degrees (°). Although an octo-rotor is provided herein as an example
thereof for convenience of description, it is readily understood by those having ordinary
skill in the art that various types of unmanned aerial vehicles, for example, a tri-rotor,
a quad-rotor, a penta-rotor, a hexa-rotor, and an octo-rotor, may be embodied irrespective
of the number and configuration of propellers.
[0018] The rotating support 210 is rotatably coupled to an outer free end of the fixed support
230 by the hinge device 220. The hinge device 220 may be embodied variously as needed,
and thus the hinge device 220 may be configured as a single hinge device or a plurality
of hinge devices. In such a case, it is readily understood by those having ordinary
skill in the art that the number of the rotating support 210 may also increase proportionally.
FIGS. 3a and 3b illustrate an example of the hinge device 220 to which a hinge 222
and a spring portion 240 are applied.
[0019] Referring to FIGS. 3a and 3b, the hinge device 220 includes the hinge 222 and the
spring portion 240 for automatic deployment. As illustrated, the spring portion 240
is disposed radially on an outer surface of the hinge 222 to cover the hinge 222.
One end of the spring portion 240 is fixed to the fixed support 230, and the other
end of the spring portion 240 is fixed to the rotating support 210. Through such a
structure, a radial inner end of the rotating support 210 is rotatably supported at
an outer free end of the fixed support 230 by the hinge device 220. The propellers
100 are fixedly provided radially at an outer end of the rotating support 210.
[0020] A locking unit 700 is provided where the propellers 100 are folded in a folded mode
of the drone and disposed on an upper surface and/or a lower surface of the platform
300. The locking unit 700 locks or releases the propellers 100 when the propellers
100 are folded in the folded mode of the drone and then disposed on the upper surface
and/or the lower surface of the platform 300. The locking unit 700 may include a release
unit configured to release a lock directly by a user or release a lock state using
an anti-torque that is generated when the propellers 100 are rotated.
[0021] The locking unit 700 may be embodied mechanically or electronically based on a locking
and/or releasing method. A mechanical locking unit may perform such locking or releasing
by allowing a user to manually turn on or off a switch, whereas an electronic locking
unit may automatically perform such locking or releasing based on an electrical signal
transmitted from the body 400. An example of such an electronic locking unit includes
an electronic door lock installed on a front door of an apartment.
[0022] When a user releases the locking unit 700, the propellers 100 may be deployed or
unfolded by a restoring force, or resilience, of the spring portion 240. When the
user inversely applies a force greater than the restoring force of the spring portion
240, an operation mode of the drone may change from a deployed mode to the folded
mode.
[0023] FIGS. 4a and 4b illustrate an example of a motor 250 applied as the hinge device.
[0024] Referring to FIGS. 4a and 4b, the motor 250 is provided to perform a function of
the hinge device 220 illustrated in FIGS. 3a and 3b. As illustrated, the motor 250
is provided at an outer free end of the fixed support 230, and a free end of a motor
shaft 252 extended upwards or downwards from the motor 250 is coupled to one end of
the rotating support 210. Here, a slip ring 254 may be provided between the motor
shaft 252 and the one end of the rotating support 210 as needed, such that the motor
shaft 252 may be rotated at an angle of 360° without electric wires being twisted.
More desirably, the motor 250 may be provided as a stepper motor or step motor. The
propellers 100 are thus fixedly disposed radially at the outer end of the rotating
support 210.
[0025] Through an operation of the motor 250 disposed at the outer free end of the fixed
support 230, the propellers 100 may be unfolded, and thus may be freely switchable
between the folded mode and the deployed mode. In addition, the propellers 100 may
be unfolded at an angle in a range of 0° to 360°.
[0026] FIG. 5 is a diagram illustrating a shape of a deployment device and a shape of propellers
in a folded mode of a drone according to an example embodiment described above.
[0027] As illustrated, eight propellers are provided as the propellers 100, and four propellers
thereof are disposed to form a symmetry on an upper surface and a lower surface, respectively,
of the platform 300. In the folded mode of the drone, all the eight propellers 100
are not unfolded, and thus a volume of the drone may be minimized. That is, all rotating
supports provided as the rotating support 210 are folded toward a center of the disc-shaped
platform 300, or folded radially inwards, by an operation of the hinge device 220
or the motor 250, and all the eight propellers 100 are folded inwards radially from
an outline of the platform 300. In such a state, an inertia moment and a torque may
be minimized, and the drone may be readily stored and carried around and may also
fly without baggage.
[0028] FIG. 6 is a diagram illustrating a shape of a deployment device and a shape of propellers
in a deployed mode of a drone according to an example embodiment described above.
[0029] As illustrated, eight propellers are provided as the propellers 100, and four propellers
thereof are disposed to form a symmetry on an upper surface and a lower surface, respectively,
of the platform 300. When the propellers 100, four of which are disposed as described
above, are unfolded in the deployed mode of the drone, two propellers are unfolded
in pairs clockwise and counterclockwise to prevent generation of an anti-torque.
[0030] FIG. 7 is a diagram illustrating an arrangement of propellers that maximizes an inertial
moment and a torque in a deployed mode of a drone according to an example embodiment
described above.
[0031] As illustrated, all eight propellers 100 are fully unfolded to maximize an inertia
moment and a torque in the deployed mode of the drone. That is, the fixed support
230 and the rotating support 210 are aligned in a line, and the propellers 100 attached
to a free end of the rotating support 210 are unfolded to form a radial symmetry.
In such a state, an inertia moment and a torque may be maximized in the deployed mode.
[0032] FIGS. 8a and 8b are diagrams illustrating an example of a method of recovering a
failure by changing an arrangement shape of propellers when a portion of the propellers
of a drone is broken or a failure occurs in a portion of the propellers according
to an example embodiment.
[0033] In a deployed mode of the drone, different deployment angles may be applied to the
propellers 100, and thus an inertia moment and a torque may be adjusted differently
based on each of a roll axis, a pitch axis, and a yaw axis of the drone. That is,
it is possible to set differently a rotation starting performance for each of the
roll axis, the pitch axis, and the yaw axis of the drone.
[0034] For example, when a portion of the propellers 100, for example, a propeller 110,
is broken, or a failure occurs in the propeller 110, as illustrated, a deployment
angle may be differently adjusted for each of normally-operating propellers in the
deployed mode to maintain a posture balance of the drone. For example, as illustrated,
a virtual propeller 140 is formed using a resultant force of neighboring propellers
120 and 130 disposed adjacent to the propeller 110 experiencing the failure, and then
is set to be in balance with a corresponding propeller on an opposite side.
[0035] Although a few example embodiments have been shown and described, the present disclosure
is not limited to the described example embodiments. Instead, it would be appreciated
by those skilled in the art that changes may be made to these example embodiments
without departing from the principles of the disclosure, the scope of which is defined
by the claims.
1. A drone comprising:
a body (400);
a platform (300) disposed at a center of the body (400);
at least four deployment devices (200) disposed radially on an outer side of the platform
(300), each deployment device (200) including a fixed support (230) extending outwards
radially from an outer surface of the platform (300) by a predetermined length, a
rotating support (210) coupled to an outer free end of the fixed support (230), and
a hinge device (220) provided to support the rotating support (210) to be rotatably
coupled to the outer free end of the fixed support (230);
at least four propellers (100), each propeller (100) fixed radially at an outer end
of a respective rotating support (210); and
a landing structure (600) integrally coupled to a lower portion of the body (400),
wherein the drone is operable to fly both in a folded mode in which the rotating supports
(210) and hence propellers (110) are folded inwards radially from an outline of the
platform (300) by operation of the hinge devices (220), and in a deployed mode in
which the propellers (110) are unfolded, and wherein the propellers (110) are configured
such that a deployment angle can be differently adjusted for each propeller (110)
such that, in response to a failure occurring in a portion of the propellers, a virtual
propeller (140) can be formed using a resultant force of normally-operating neighboring
propellers (120, 130) that are radially adjacent to the portion of the propellers
(110) experiencing the failure, where the virtual propeller is in balance with a corresponding
propeller on an opposite side of the drone, thereby to maintain a balanced flight
posture.
2. The drone of claim 1, further comprising:
a holder (500) integrally provided on an inner lower surface of the landing structure
(600).
3. The drone of claim 1 or 2, wherein each fixed support (230) is extended outwards radially
from the outer surface of the platform (300) by the predetermined length such that
the fixed supports (230) have a radial symmetry based on a center of the platform
(300) for operation stability and balance of the drone.
4. The drone of claim 3, wherein each hinge device (220) includes a hinge (222) and a
spring portion (240),
wherein the spring portion (240) is disposed radially on an outer surface of the hinge
(222) to cover the hinge (222), and
one end of the spring portion (240) is fixed to the respective fixed support (230),
and another end thereof is fixed to the respective rotating support (210).
5. The drone of claim 4, wherein a locking unit (700) is provided on an upper surface
and a lower surface of the platform (300), or any one thereof,
wherein the locking unit (700) is configured to lock or release the propellers (100)
when the propellers (100) are folded in a folded mode of the drone and disposed on
the upper surface or the lower surface of the platform (300).
6. The drone of claim 4, wherein the hinge (222) is disposed separately from the body,
and the fixed support (230) is formed to have a length longer than a sum of a length
of the respective rotating support (210) and a length of a diameter of the propellers
(100) such that the drone is operable and flies although the propellers (100) are
folded in a folded mode of the drone.
7. The drone of claim 1, wherein the propellers (100) are configured to be rotatably
unfolded in pairs clockwise and counterclockwise, respectively, so as to prevent generation
of an anti-torque when the propellers (100) disposed radially symmetrically on an
upper surface and a lower surface of the platform (300) are unfolded in a deployed
mode of the drone.
8. The drone of claim 1, wherein all the propellers (100) are fully unfolded such that
each fixed support (230) and respective rotating support (210) are aligned in a line
and the propellers (100) are unfolded to be radially symmetrical with each other to
maximize an inertia moment and a torque in a deployed mode of the drone.
1. Drohne, die Folgendes umfasst:
einen Körper (400);
eine Plattform (300), die in einem Zentrum des Körpers (400) angeordnet ist;
mindestens vier Entfaltungseinrichtungen (200), die radial an einer Außenseite der
Plattform (300) angeordnet sind, wobei jede Entfaltungseinrichtung (200) einen festen
Träger (230), der sich von einer Außenfläche der Plattform (300) um eine vorbestimmte
Länge radial nach außen erstreckt, einen drehbaren Träger (210), der an ein äußeres
freies Ende des festen Trägers (230) gekoppelt ist, und eine Scharniereinrichtung
(220), die dazu bereitgestellt ist, den drehbaren Träger (210) zu tragen, sodass er
drehbar an das äußere freie Ende des festen Trägers (230) gekoppelt ist, beinhaltet;
mindestens vier Propeller (100), wobei jeder Propeller (100) radial an einem äußeren
Ende eines jeweiligen drehbaren Trägers (210) befestigt ist; und
eine Landestruktur (600), die einstückig an einen unteren Abschnitt des Körpers (400)
gekoppelt ist,
wobei die Drohne dazu betriebsfähig ist, sowohl in einem eingeklappten Modus, in dem
die drehbaren Träger (210) und somit die Propeller (110) durch Betrieb der Scharniereinrichtungen
(220) radial von einem Umriss der Plattform (300) nach innen geklappt sind, als auch
in einem entfalteten Modus, in dem die Propeller (110) ausgeklappt sind, zu fliegen,
und wobei die Propeller (110) derart konfiguriert sind, dass ein Entfaltungswinkel
für jeden Propeller (110) derart unterschiedlich eingestellt werden kann, dass als
Reaktion auf einen in einem Abschnitt der Propeller auftretenden Fehler ein virtueller
Propeller (140) durch Verwenden einer resultierenden Kraft von normal betriebenen
benachbarten Propellern (120, 130), die radial an den Abschnitt der Propeller (110)
angrenzen, in dem der Fehler auftritt, gebildet werden kann, wobei der virtuelle Propeller
mit einem entsprechenden Propeller auf einer gegenüberliegenden Seite der Drohne im
Gleichgewicht ist, um dadurch eine ausgeglichene Fluglage beizubehalten.
2. Drohne nach Anspruch 1, die weiter Folgendes umfasst:
einen Halter (500), der einstückig an einer inneren unteren Fläche der Landestruktur
(600) bereitgestellt ist.
3. Drohne nach Anspruch 1 oder 2, wobei sich jeder feste Träger (230) von der Außenfläche
der Plattform (300) um die vorbestimmte Länge derart radial nach außen erstreckt,
dass die festen Träger (230) eine radiale Symmetrie basierend auf einem Zentrum der
Plattform (300) für Betriebsstabilität und Gleichgewicht der Drohne aufweisen.
4. Drohne nach Anspruch 3, wobei jede Scharniereinrichtung (220) ein Scharnier (222)
und einen Federabschnitt (240) beinhaltet,
wobei der Federabschnitt (240) radial an einer Außenfläche des Scharniers (222) angeordnet
ist, um das Scharnier (222) abzudecken, und
ein Ende des Federabschnitts (240) an dem jeweiligen festen Träger (230) befestigt
ist und ein anderes Ende davon an dem jeweiligen drehbaren Träger (210) befestigt
ist.
5. Drohne nach Anspruch 4, wobei eine Verriegelungseinheit (700) auf einer oberen Fläche
und einer unteren Fläche der Plattform (300), oder einer beliebigen davon bereitgestellt
ist,
wobei die Verriegelungseinheit (700) dazu konfiguriert ist, die Propeller (100) zu
verriegeln oder freizugeben, wenn die Propeller (100) in einem eingeklappten Modus
der Drohne eingeklappt sind und auf der oberen Fläche oder der unteren Fläche der
Plattform (300) angeordnet sind.
6. Drohne nach Anspruch 4, wobei das Scharnier (222) von dem Körper getrennt angeordnet
ist und der feste Träger (230) gebildet ist, sodass er derart eine Länge aufweist,
die länger als eine Summe aus einer Länge der jeweiligen drehbaren Träger (210) und
einer Länge eines Durchmessers der Propeller (100) ist, dass die Drohne betriebsfähig
ist und fliegt, obwohl die Propeller (100) in einem eingeklappten Modus der Drohne
eingeklappt sind.
7. Drohne nach Anspruch 1, wobei die Propeller (100) dazu konfiguriert sind, paarweise
im Uhrzeigersinn bzw. gegen den Uhrzeigersinn drehbar ausgeklappt zu werden, um die
Erzeugung eines Antidrehmoments zu vermeiden, wenn die Propeller (100), die radialsymmetrisch
auf einer oberen Fläche und einer unteren Fläche der Plattform (300) angeordnet sind,
in einen entfalteten Modus der Drohne ausgeklappt werden.
8. Drohne nach Anspruch 1, wobei alle Propeller (100) vollständig ausgeklappt derart
sind, dass jeder feste Träger (230) und der jeweilige drehbare Träger (210) in einer
Linie ausgerichtet sind, und die Propeller (100) ausgeklappt sind, sodass sie radialsymmetrisch
zueinander sind, um ein Trägheitsmoment und ein Drehmoment in einem entfalteten Modus
der Drohne zu maximieren.
1. Drone comprenant :
un corps (400) ;
une plate-forme (300) disposée au centre du corps (400) ;
au moins quatre dispositifs de déploiement (200) disposés radialement sur un côté
extérieur de la plate-forme (300), chaque dispositif de déploiement (200) comportant
un support fixe (230) s'étendant
radialement vers l'extérieur à partir d'une surface externe de la plate-forme (300)
sur une longueur prédéterminée, un support rotatif (210) couplé à une extrémité externe
libre du support fixe (230), et un dispositif d'articulation (220) prévu pour supporter
le support rotatif (210) pour être couplé en rotation à l'extrémité extérieure libre
du support fixe (230) ;
au moins quatre hélices (100), chaque hélice (100) étant fixée radialement à une extrémité
extérieure d'un support rotatif respectif (210) ; et
une structure d'atterrissage (600) couplée intégralement à une partie inférieure du
corps (400),
dans lequel le drone peut fonctionner pour voler à la fois dans un mode replié dans
lequel les supports rotatifs (210) et donc les hélices (110) sont repliés vers l'intérieur
radialement à partir d'un contour de la plate-forme (300) par l'actionnement des dispositifs
d'articulation (220), et dans un mode déployé dans lequel les hélices (110) sont dépliées,
et dans lequel les hélices (110) sont configurées de sorte qu'un angle de déploiement
peut être ajusté différemment pour chaque hélice (110) de sorte qu'en réponse à une
défaillance se produisant dans une partie des hélices, une hélice virtuelle (140)
peut être formée en utilisant une force résultante d'hélices voisines fonctionnant
normalement (120, 130) qui sont radialement adjacentes à la partie des hélices (110)
subissant la panne, où l'hélice virtuelle est en équilibre avec une hélice correspondante
sur un côté opposé du drone, pour ainsi maintenir une posture de vol équilibrée.
2. Drone selon la revendication 1, comprenant en outre :
un support (500) prévu intégralement sur une surface inférieure intérieure de la structure
d'atterrissage (600).
3. Drone selon la revendication 1 ou 2, dans lequel chaque support fixe (230) est prolongé
radialement vers l'extérieur depuis la surface externe de la plate-forme (300) de
la longueur prédéterminée de sorte que les supports fixes (230) présentent une symétrie
radiale basée sur un centre de la plate-forme (300) pour la stabilité de fonctionnement
et l'équilibre du drone.
4. Drone selon la revendication 3, dans lequel chaque dispositif d'articulation (220)
comporte une charnière (222) et une partie de ressort (240),
dans lequel la partie de ressort (240) est disposée radialement sur une surface extérieure
de la charnière (222) pour recouvrir la charnière (222), et
une extrémité de la partie de ressort (240) est fixée au support fixe respectif (230),
et une autre extrémité de celle-ci est fixée au support rotatif respectif (210).
5. Drone selon la revendication 4, dans lequel une unité de verrouillage (700) est prévue
sur une surface supérieure et une surface inférieure de la plate-forme (300), ou l'une
quelconque de celles-ci, dans lequel l'unité de verrouillage (700) est configurée
pour verrouiller ou libérer les hélices (100) lorsque les hélices (100) sont repliées
dans un mode replié du drone et disposées sur la surface supérieure ou la surface
inférieure de la plate-forme (300).
6. Drone selon la revendication 4, dans lequel la charnière (222) est disposée séparément
du corps, et le support fixe (230) est formé pour avoir une longueur supérieure à
la somme d'une longueur du support rotatif respectif (210) et d'une longueur d'un
diamètre des hélices (100) telle que le drone est utilisable et vole bien que les
hélices (100) soient repliées dans un mode replié du drone.
7. Drone selon la revendication 1, dans lequel les hélices (100) sont configurées pour
être dépliées en rotation par paires respectivement dans le sens des aiguilles d'une
montre et dans le sens inverse des aiguilles d'une montre, de manière à empêcher la
génération d'un anti-couple lorsque les hélices (100) disposées radialement symétriquement
sur une surface supérieure et une surface inférieure de la plate-forme (300) sont
dépliées dans un mode déployé du drone.
8. Drone selon la revendication 1, dans lequel toutes les hélices (100) sont entièrement
dépliées de sorte que chaque support fixe (230) et support rotatif respectif (210)
sont alignés en ligne et les hélices (100) sont dépliées pour être radialement symétriques
entre elles pour maximiser un moment d'inertie et un couple dans un mode déployé du
drone.