[0001] The present invention refers to an improved fog-generating device.
[0002] As known, fog-generating devices are configured to produce, starting from a fog-generating
fluid, a very thick fog-generating curtain which completely prevents the vision and
are therefore adapted to prevent a theft or a robbery. Such devices, in fact, operate
in a few seconds, shooting an amount of steam which, for a few minutes, completely
prevents the vision, so that a thief or a robber, lacking orientation, often refrains
from proceeding.
[0003] Currently, it is provided that, in known fog-generating devices, the fog-generating
fluid is quickly evaporated and afterwards condensed into micro-droplets. The size
of these droplets is big enough not to be crossed by light without interfering therewith
and consequently it causes a diffusion phenomenon (scattering) which precludes the
visibility.
[0004] In order to minimize the chance that a thief completes the theft or causes damages,
it is necessary that the environment saturation occurs as quickly as possible: to
obtain such result, it is necessary that the fog-generating fluid is entered at an
enough pressure and speed into a heat exchanger or boiler of the device, since the
quicker the fluid entry speed is, the quicker the steam entry speed is.
[0005] Currently, systems for entering the fog-generating fluid inside the heat exchanger
ae divided into pressurized systems and pump systems.
[0006] In particular, the pressurized systems are based on the use of pressurized containers,
which can guarantee a relevant entry speed of the fluid in the exchanger, but have
some limits, such as a higher transport cost due to the standards in force, which
regulate transports through sea, air and ground for such containers, in addition to
certain ratios between pressure and size. Such pressurized containers also have, very
often, high manufacturing costs and, in some cases, a complex recharging operation.
[0007] The pump systems instead are based on the used of piston pumps with simple effect,
directly moved by the field generated by the winding placed around them, for compressing
a fog-generating fluid composed of rather fluid mixtures (with strong water percentages)
to obtain a rather continuous flow, with few small bubbles and reliable.
[0008] The use of such pumps has several limits, such as:
- high consumptions, due to the fact that the piston works only during its stroke along
one direction;
- two valves are necessary;
- they are sensible to possible impurities present in the fog-generating fluid, which
can make the system partially or totally inefficient.
[0009] Moreover, the critical pumping of a fog-generating fluid composed of or based on
glycol and its mixtures is due not only to its viscosity and density, but also since,
in general, pumps operate as venting devices also at relatively low revolutions (frequency),
and the consequent degassing causes cavitation and loss of efficiency of the pumps.
[0010] Moreover, with the current types of pumps, it is not possible to initially modulate
the entry speed of the fog-generating fluid (the so-called "soft start") to avoid
the "overshooting" effect typical of the initial shooting phase of the steam, since
the state, and therefore the flow-rate, of such pumps is rigid, because, due to the
supply frequency, of a limited range (50/60Hz). All this also makes it impossible
to regulate the shooting speed.
[0011] Moreover, the current types of pumps do not substantially allow the entry of the
fog-generating fluid without supply from the electric mains without supply from the
electric mains, without using a costly supply stage, since it necessarily requires
an alternate current supply.
[0012] Document
US-A-4 764 660 discloses a fog-generating device according to the preamble of Claim 1.
[0013] Therefore, object of the present invention is solving the above prior art problems,
by providing an improved fog-generating device comprising at least one mechanical
volumetric pump with continuous flow which allows simultaneously obtaining a practical
use and transport, limited maintenance and chance of quickly entering a high-density
fog-generating fluid in the heat exchanger.
[0014] Another object of the present invention is providing an improved fog-generating device
comprising at least one mechanical volumetric pump with continuous flow which, with
respect to known systems, allows using a denser fog-generating fluid, with less water,
with advantages in density and persistence of the fog-generating curtain.
[0015] Moreover, an object of the present invention is providing an improved fog-generating
device comprising at least one mechanical volumetric pump with continuous flow which,
with respect to known systems, allows initially modulating the speed to avoid the
"overshooting" effect, typical of the initial steam shooting phase.
[0016] Another object of the present invention is providing an improved fog-generating device
comprising at least one mechanical volumetric pump with continuous flow which, with
respect to known systems, allows regulating the shooting speed, for example in order
to adapt it to different situations under different use and/or operating conditions.
[0017] Moreover, an object of the present invention is providing an improved fog-generating
device comprising at least one mechanical volumetric pump with continuous flow which,
with respect to known systems, allows implementing an automatic procedure for triggering
the circuit, should the fog-generating fluid be emptied, without generating steam.
[0018] Another object of the present invention is providing an improved fog-generating device
comprising at least one mechanical volumetric pump with continuous flow which, with
respect to known systems, allows entering fog-generating fluid with strong savings
on the electronic board even without supply from the electric mains, since it is also
able to operate with direct current supply, coming for example from autonomous batteries.
[0019] The above and other objects and advantages of the invention, as will result from
the following description, are obtained with a fog-generating device as claimed in
Claim 1.
[0020] Preferred embodiments and non-trivial variations of the present invention are the
subject matter of the dependent claims.
[0021] It is intended that all enclosed claims are an integral part of the present description.
[0022] It will be immediately obvious that numerous variations and modifications (for example
related to shape, sizes, arrangements and parts with equivalent functionality) can
be made to what is described, without departing from the scope of the invention as
defined in the enclosed claims.
[0023] The present invention will be better described by some preferred embodiments thereof,
provided as a non-limiting example, with reference to the enclosed drawings, in which:
- Figure 1 shows a schematic view of a fog-generating device according to the present
invention;
- Figure 2 shows a schematic view of a component of the improved fog-generating device
of Figure 1; and
- Figure 3 shows a schematic view of a mechanical volumetric pump, not forming part
of the invention.
[0024] For brevity, herein below the description will be omitted regarding parts and components
which are common with prior art fog-generating devices and necessary for the basic
operation of the device itself, which are anyway deemed widely known in the art, such
as for example electric supply systems, managing systems, gas compressing and channeling
systems, shape of boilers and heat exchangers, containers or tanks of the fog-generating
fluid, thermal accumulators, etc., to describe in particular aspects and components
characterizing the device according to the present invention.
[0025] In general, with reference to Figure 1 and as will be described below in more detail,
it can be noted that the improved fog-generating device 1 according to the present
invention is of the type comprising:
- at least one storage means 3, such as for example at least one tank or bag, of at
least one fog-generating fluid to be vaporized, such fog-generating fluid being, for
example, glycol or one or more mixtures containing glycol or a glycol base;
- at least one heat exchanger 5 configured for quickly releasing thermal energy, such
thermal energy coming for example from a thermal accumulator or boiler (not shown),
to such fog-generating fluid to produce steam V to diffuse in the external environment
through one or more delivering means 7;
- pumping means 10 of such fog-generating fluid from the storage means 3 to the heat
exchanger 5.
[0026] According to the invention, the pumping means comprise at least one mechanical volumetric
pump 20a with continuous flow configured for receiving as input at least one flow
of fog-generating fluid FN coming from the storage means 3 and emitting at least one
flow of the pressurized fog-generating fluid FN' towards the heat exchanger 5. With
reference to Figure 2, according the invention, the mechanical volumetric pump 20a
with continuous flow comprises at least one compression chamber 21a equipped with
at least one inlet duct 22a of such flow of fog-generating fluid FN coming from the
storage means 3 and at least one outlet duct 23a configured for emitting the flow
of pressurized fog-generating fluid FN' towards the heat exchanger 5, such compression
chamber 21a being internally equipped with at least one rotor 25a eccentric with respect
to the compression chamber 21a and rotating according to a rotation direction R, such
rotor 25a being equipped with at least one radially moving blade 27a configured for
cyclically and progressively dividing, during the rotation R, the compression chamber
21a into at least one portion of depressurized chamber 29a placed upstream of the
blade 27a with respect to the rotation direction R, and at least one portion of pressurized
chamber 31a placed downstream of the blade 27a with respect to the rotation direction
R.
[0027] With reference to Figure 3, in an example not forming part of the invention a mechanical
volumetric pump 20b with continuous flow can be of the type with gears and comprises
at least one compression chamber 21b equipped with at least one inlet duct 22b of
the flow of fog-generating fluid FN coming from the storage means 3 and at least one
outlet duct 23b configured for emitting the flow of pressurized fog-generating fluid
FN' towards the heat exchanger 5, such compression chamber 21b being internally equipped
with at least one pair of toothed wheels 25b, 27b mutually engaging and rotating according
to two opposite rotation directions R', R".
[0028] The geometries of the above described mechanical volumetric pumps 20a, 20b with continuous
flow 20a, 20b of the device 1 advantageously allow having a big volume of fog-generating
fluid also with a number of revolutions low enough not to incur in degassing due to
sonication, even with neglected percentages of water inside the mixture of the fluid
itself, above all in case of pumping a fog-generating fluid composed of one or more
mixtures of glycol or a glycol base.
[0029] Moreover, the fog-generating device 1 according to the present invention comprises
a motor supplied with direct current and configured to actuate the mechanical volumetric
pump 20a which, in addition to allowing the above described functionalities, also
brings about the following advantages:
- with an amperometric control on the direct current motor, it is possible to immediately
detect anomalies, such as from sabotage or clogging of the delivering means 7, or
the end of the fog-generating fluid inside the storage means 3, without the need of
adding sensors dedicated to such controls;
- reliable operation even without supply from electric mains, since the direct current
motor can be supplied by a simple battery, without the need of using inverters or
oscillators;
- no valves are necessary;
- use of one or more mechanical volumetric pumps 20a, 20b with continuous flow connected
to one or more non-pressurized storage means 3 such as a tank or a plastic bag, containing
the fog-generating fluid and possible respective one or more check valves being interposed;
- high reliability and life;
- sizes of such mechanical volumetric pumps 20a, 20b with continuous flow comparable
with those of the current pumps used in known fog-generating devices.
[0030] The improved fog-generating device according to the present invention, through the
advantageous use of the mechanical volumetric pump with continuous flow as previously
described, further allows regulating the shooting speed in order, for example, to
adapt it to different situations under different use and/or operating conditions,
such as:
- adapting it to the environment to be protected in terms of more/less speed or more/less
steam delivery time;
- adapting to heat exchanger conditions, for example when the temperature of the heat
exchanger itself is not optimum, due to an absence of supply, or for the need of totally
exploiting the energy contained therein;
- adapting to the load loss typical of the exchanger directly related to temperature.
1. Nebelgerät (1) bestehend aus:
- mindestens ein Speichermittel (3) für mindestens ein Nebelfluid;
- mindestens einen Wärmetauscher (5), der so konfiguriert ist, dass er schnell Wärmeenergie
an das Vernebelungsfluid abgibt, um Dampf (V) zu erzeugen, der durch eine oder mehrere
Abgabeeinrichtungen (7) in eine äußere Umgebung abgegeben wird;
- Pumpmittel (10) des Vernebelungsfluids von den Speichermitteln (3) zu dem Wärmetauscher
(5), wobei die Pumpmittel mindestens eine volumetrische mechanische Pumpe (20a; 20b)
mit kontinuierlicher Strömung umfassen, die so konfiguriert ist, dass sie im Einlass
mindestens eine aufnimmt Nebelfluidstrom (FN), der aus dem Speichermedium (3) kommt
und mindestens einen Strom des Nebelfluids unter Druck (FN') in Richtung des Wärmetauschers
(5) abgibt, wobei die volumetrische kontinuierliche mechanische Pumpe (20a) umfasst
bei mindestens eine Kompressionskammer (21a), die mit mindestens einem Einlasskanal
(22a) des Nebelfluidstroms (FN) ausgestattet ist, der von der Speichereinrichtung
(3) kommt, und mindestens einem Auslasskanal (23a), der so konfiguriert ist, dass
er den unter Druck stehenden Nebelfluidstrom ausgibt (FN') zum Wärmetauscher (5),
dadurch gekennzeichnet, dass die Kompressionskammer (21a) intern mit mindestens einem Rotor (25a) ausgestattet
ist, der in Bezug auf die Kompressionskammer (21a) exzentrisch ist und sich gemäß
einer Rotationsrichtung (R) dreht, wobei der Rotor (25a) ausgestattet ist mit mindestens
einen radial beweglichen Flügel (27a), der in der Lage ist, während der Drehung (R)
die Kompressionskammer (21a) zyklisch und fortschreitend in mindestens einen Teil
der Vakuumkammer (29a) zu unterteilen, die stromaufwärts des Flügels (27a) angeordnet
ist in Bezug auf die Rotationsrichtung (R) und mindestens einen Abschnitt der Druckkammer
(31a), der stromabwärts des Flügels (27a) in Bezug auf die Rotationsrichtung (R) angeordnet
ist;
und dadurch gekennzeichnet, dass die Tatsache, dass die Nebelvorrichtung (1) ferner einen Motor umfasst, der mit Gleichstrom
betrieben wird und so konfiguriert ist, dass er die mechanische volumetrische Pumpe
(20a) betreibt.
2. Nebelgerät (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Speichermittel (3) mindestens ein druckloser Tank oder Beutel ist.
3. Nebelgerät (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Nebelfluid Glykol oder eine oder mehrere Mischungen ist, die Glykol enthalten
oder auf Glykol basieren.
1. Appareil à brouillard (1) comprenant:
- au moins un moyen de stockage (3) d'au moins un fluide de brumisation;
- au moins un échangeur de chaleur (5) configuré pour restituer rapidement de l'énergie
thermique audit fluide de brumisation pour produire de la vapeur (V) à évacuer dans
un environnement extérieur à travers un ou plusieurs moyens de distribution (7);
- des moyens de pompage (10) dudit fluide de brumisation depuis lesdits moyens de
stockage (3) vers ledit échangeur de chaleur (5), lesdits moyens de pompage comprenant
au moins une pompe mécanique volumétrique à débit continu (20a; 20b) configurée pour
recevoir en entrée au moins un flux de fluide de brouillard (FN) provenant dudit milieu
de stockage (3) et émettent au moins un flux dudit fluide de brouillard sous pression
(FN') vers ledit échangeur de chaleur (5), ladite pompe mécanique à débit continu
volumétrique (20a) comprenant au au moins une chambre de compression (21a) équipée
d'au moins un conduit d'admission (22a) dudit flux de fluide de brouillard (FN) provenant
dudit moyen de stockage (3) et d'au moins un conduit de sortie (23a) configuré pour
émettre ledit flux de fluide de brouillard sous pression (FN') vers ledit échangeur
de chaleur (5),
caractérisé en ce que ladite chambre de compression (21a) est équipée intérieurement d'au moins un rotor
(25a) excentré par rapport à ladite chambre de compression (21a) et tournant selon
un sens de rotation (R), ledit rotor (25a) étant équipé d'un au moins une aube mobile
radialement (27a) apte à subdiviser cycliquement et progressivement, lors de ladite
rotation (R), ladite chambre de compression (21a) en au moins une portion de la chambre
à dépression (29a) placée en amont de ladite aube (27a) avec par rapport audit sens
de rotation (R) et au moins une portion de chambre de pression (31a) placée en aval
de ladite aube (27a) par rapport audit sens de rotation (R);
et caractérisé en ce que le dispositif de brumisation (1) comprend en outre un moteur alimenté en courant
continu et configuré pour faire fonctionner ladite pompe volumétrique mécanique (20a).
2. Dispositif de brumisation (1) selon la revendication 1, caractérisé en ce que ledit moyen de stockage (3) est au moins un réservoir ou sac non pressurisé.
3. Dispositif de brouillard (1) selon la revendication 1 ou 2, caractérisé en ce que ledit fluide de brouillard est du glycol ou un ou plusieurs mélanges contenant du
glycol ou à base de glycol.