TECHNICAL FIELD
[0001] The present disclosure relates to the technical field of ultrasonic applications,
and in particular, to an ultrasonic transducer, an ultrasonic probe, and an ultrasonic
detection apparatus.
BACKGROUND
[0002] In related technologies, ultrasonic probes are widely used in the fields of medical
diagnosis, industrial detection, and underwater acoustics. The ultrasonic probes adopt
ultrasonic transducers as functional components, use piezoelectric vibrators of the
ultrasonic transducers to detect ultrasonic signals, convert the ultrasonic signals
into electrical signals, and finally visualize the electrical signals and display
images. To meet requirements of the application of ultrasound imaging, a large number
of piezoelectric vibrators are required to form an array, and the piezoelectric vibrators
actively transmit the ultrasonic signals and then receive reflected echoes during
the transmission of the ultrasonic signals. Especially in phased-array ultrasound
imaging technology, numerous piezoelectric vibrators (array) are almost simultaneously
excited by electrical pulses and resonate to generate ultrasonic waves, besides, heat
is also generated at the same time. During the operation, the piezoelectric vibrators
of a phased-array probe generate heat significantly. If the accumulative heat cannot
be effectively diffused, a temperature of the probe will rise.
[0003] In this way, on one hand, since medical diagnosis has regulatory requirements for
a temperature rising of the probe when the probe touches a human body, the specific
application of the ultrasonic probes will be limited. On the other hand, a high temperature
rising will also cause a large drift in performance and parameters of the probe, which
affects detection results, such that the detection results are inaccurate. In addition,
the higher temperature rising may also cause an accelerated aging or even failure
of materials, structures, and components of the probe.
[0004] In the related art, an ultrasonic transducer includes a piezoelectric vibrator, an
acoustic matching layer, and a backing block. The acoustic matching layer and the
backing block are disposed on two opposite end faces of the piezoelectric vibrator.
The acoustic matching layer is configured to transmit as much ultrasonic energy as
possible to a medium to be measured. The backing block is configured to absorb the
ultrasonic energy entering the backing block as much as possible to avoid interference
caused by reflected signals. The piezoelectric vibrator and a part of the backing
block close to the piezoelectric vibrator is more serious in heat accumulation. Usually,
heat-dissipation material is filled in the backing block or a heat-dissipation structure
is used to reduce the local temperature rising of the probe.
[0005] However, the above structure still has the following problems: the heat-dissipation
material usually has insufficient acoustic attenuation coefficient. If the heat-dissipation
component is disposed away from the piezoelectric vibrator, the heat-dissipation effect
is poor. If the heat-dissipation component is disposed close to the piezoelectric
vibrator, then the ultrasonic energy entering the backing block will further enter
the heat-dissipation component before being completely absorbed by the backing block,
and the ultrasonic energy finally returns back to the piezoelectric vibrator, thereby
causing interference to the piezoelectric vibrator.
[0006] The
US patent No. 5555887A teaches a multiplane TEE probe. The multiplane TEE probe is provided in which an
aluminum sheet is embedded in the acoustic lens in front of the transducer to dissipate
heat which accumulates in the lens. The embedded aluminum foil sheet in front of the
transducer helps reduce such heat buildup by spreading out heat which develops at
hot spots and conducting the heat trapped in the lens material to a heatsink mass
behind the transducer and away from the patient contacting surface of the probe. A
mylar sheet covers the front of the transducer. The inner surface of the mylar sheet
is aluminized. This aluminum layer in the inner surface of the cover serves a like
purpose.
[0007] The US patent application No.
US2015270474A1 teaches an ultrasound probe capable of efficiently discharging heat generated in
a plurality of piezoelectric elements to the outside. A heat collecting portion that
includes at least one heat conducting path and is formed of a material having a higher
thermal conductivity than a backing member collects heat from a plurality of piezoelectric
elements, and a heat exhausting portion connected to the heat collecting portion discharges
the heat collected in the heat collecting portion to the outside. The heat conducting
path extends in a thickness direction within the backing member and has a distal end
exposed from the top surface of the backing member facing the bottom surface of each
of the plurality of piezoelectric elements.
SUMMARY
[0008] The present disclosure aims to solve at least one of the technical problems existing
in the related art. For this, the present disclosure proposes an ultrasonic transducer,
which has not only a good heat dissipation effect, but also more sensitive detection
and better reliability.
[0009] The present disclosure also provides an ultrasonic transducer, an ultrasonic probe,
and an ultrasonic detection apparatus as set out in appended set of clams.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010]
FIG. 1 is a schematic view of an ultrasonic probe according to some embodiments of
the present disclosure.
FIG. 2 is a schematic view of a heat sink of the ultrasonic probe according to some
embodiments of the present disclosure.
FIG. 3 is a schematic view of an ultrasonic probe according to some embodiments of
the present disclosure.
FIG. 4 is a partial schematic view of an ultrasonic transducer according to some embodiments
of the present disclosure.
FIG. 5 is a partial schematic view of an ultrasonic transducer according to some embodiments
of the present disclosure.
FIG. 6 is a partial schematic view of an ultrasonic transducer according to some embodiments
of the present disclosure.
FIG. 7 is a partial schematic view of an ultrasonic transducer according to some embodiments
of the present disclosure.
FIG. 8 is a flow chart of a method for manufacturing an ultrasonic probe according
to some embodiments of the present disclosure.
Reference numerals:
[0011]
Ultrasonic probe 100, ultrasonic transducer 200;
piezoelectric-vibrator assembly 10, piezoelectric vibrator 11, first side 12, second
side 13;
acoustic matching layer 20;
heat sink 30, body 31, head portion 32, second surface 321, heat sink 322, tail portion
33, first surface 331;
acoustic-absorption layer 40, acoustic-absorption protrusion 41, side wall 42;
acoustic window 50;
housing 60.
DETAIL PORTIONED DESCRIPTION
[0012] Embodiments of the present disclosure are described in detail portion below. Examples
of the embodiments are shown in the accompanying drawings, in which same or similar
reference numerals indicate same or similar elements or elements with same or similar
functions. The embodiments described below with reference to the accompanying drawings
are exemplary, and are intended to explain the present disclosure, but should not
be construed as limiting the present disclosure.
[0013] An ultrasonic probe 100 and an ultrasonic transducer 200 according to some embodiments
of the present disclosure will be described below with reference to FIGS. 1 to 8.
[0014] As shown in FIGS. 1 and 2, in some embodiments of the first aspect of the present
disclosure, the ultrasonic transducer 200 may include a piezoelectric-vibrator assembly
10, an acoustic matching layer 20, a heat sink 30, and an acoustic-absorption layer
40.
[0015] The piezoelectric-vibrator assembly 10 has a first side 12 and a second side 13 opposite
to the first side 12. The piezoelectric-vibrator assembly 10 includes one or more
piezoelectric vibrators 11. More specifically, each of the one or more piezoelectric
vibrators 11 may be implemented as a wafer with a good piezoelectric effect or a piezoelectric
ceramic. When receiving an electrical pulse, each of the one or more piezoelectric
vibrators 11 may generate a mechanical ultrasonic vibration to emit ultrasonic waves,
and may further receive the reflected ultrasonic waves and convert ultrasonic signals
of the ultrasonic waves into electrical signals.
[0016] The plurality of piezoelectric vibrators 11 may be arranged in a row along a straight
line, such that the ultrasonic probe 100 may be configured as a linear array probe.
In some embodiments, the plurality of piezoelectric vibrators 11 may also be arranged
in an arc, such that the ultrasonic probe 100 may be configured as a convex array
probe. In some embodiments, the plurality of piezoelectric vibrators 11 may also be
arranged in a matrix array, such that the ultrasonic probe 100 may be configured as
a matrix array probe.
[0017] In some embodiments, the acoustic matching layer 20 is arranged on the first side
12 of the piezoelectric-vibrator assembly 10. The acoustic matching layer may be configured
to transmit as much ultrasonic energy as possible to the medium to be measured.
[0018] The heat sink 30 is arranged on the second side 13 of the piezoelectric-vibrator
assembly 10. The heat sink 30 includes a body 31, a head portion 32, and a tail portion
33. In some embodiments, the head portion 32 and the tail portion 33 are located at
two opposite ends of the body 31. The body 31 is substantially in shape of a cylinder
or a column and has a central axis extending in a direction from the head portion
32 to the tail portion 33. The head portion 32 of the heat sink 30 faces towards the
piezoelectric-vibrator assembly 10, while the tail portion 33 faces away from the
piezoelectric-vibrator assembly 10. The tail portion 33 of the heat sink 30 includes
a first surface 331 facing away from the head portion 32. The first surface 331 is
an oblique surface or a tapered surface. An angle between the first surface 331 and
the central axis is an acute angle. The acoustic-absorption layer 40 may cover at
least the first surface 331.
[0019] The heat sink 30 may include a thermally-conductive material with low acoustic impedance,
such as graphite, aluminum, or the like. The acoustic-absorption layer 40 may include
a material with better acoustic absorption and noise reduction effects.
[0020] It should be noted that, the first surface 331 may refer to a surface located at
the tail portion 33 of the heat sink 30 and facing towards the head portion 32 in
the axial direction of the body 31. In this way, most of the ultrasonic waves emitted
by the one or more piezoelectric vibrators 11 disposed on the head portion 32 may
preferentially or tend to contact with the first surface 331 during the transmission
toward the tail portion 33, and be further refracted or reflected by the first surface.
[0021] In the ultrasonic transducer 200 according to some embodiments of the present disclosure,
the first surface 331 may be processed into an oblique surface or a tapered surface,
and at least the first surface 331 may be wrapped with the acoustic-absorption layer
40. In this way, when the ultrasonic energy entering the heat sink 30 is transmitted
to the tail portion 33, the ultrasonic energy may undergo multiple reflections and
refractions at the tail portion 33 and may be fully absorbed by the acoustic-absorption
layer 40 disposed on the surface of the heat sink 30. Therefore, the ultrasonic energy
will no longer return back to the one or more piezoelectric vibrators 11, and it is
possible to avoid or reduce the interference on the one or more piezoelectric vibrators
11. Therefore, compared with the heat sink in the related art, the head portion 32
of the heat sink 30 may be disposed closer to the one or more piezoelectric vibrators
11 or even directly contact with the one or more piezoelectric vibrators 11 in distance.
In this way, the heat sink 30 may cool down the one or more piezoelectric vibrators
11 more significantly, and a good heat-dissipation effect may be achieved.
[0022] The first surface 331 may be in various shapes. Four types of the first surface 331
may be listed below.
[0023] In some embodiments, the first surface 331 may include at least one inclined sub-surface,
and an angle between the at least one inclined sub-surface and the central axis of
the body 31 may be an acute angle. In some embodiments as shown in FIGS. 3 and 4,
when the number of the first surface 331 is one, the one or more piezoelectric vibrators
11 may emit ultrasonic waves towards the inclined sub-surface. When the ultrasonic
waves firstly contact with the inclined sub-surface, a part of the ultrasonic waves
may be refracted out of the heat sink 30, and may be further absorbed by the acoustic-absorption
layer 40 covering the inclined sub-surface. The other part of the ultrasonic waves
may be reflected in the heat sink 30 and transmitted toward a side wall of the head
portion 32. A part of the ultrasonic waves transmitted to the side wall may be refracted
and the other part may be reflected toward the inclined sub-surface, and so on. The
ultrasonic waves which are not transmitted out of the heat sink 30 may be reflected
for multiple times by the inclined sub-surface and the side wall. In this way, the
ultrasonic energy may be significantly weakened during the above processes, such that
few ultrasonic energy may be finally transmitted toward the head portion 32 of the
heat sink, thereby avoiding or reducing the interference on the one or more piezoelectric
vibrator 11.
[0024] The body 31 of the heat sink 30 shown in FIG. 4 may be substantially in shape of
a square pillar or column. An angle between the inclined sub-surface and a side wall
of the body 31 may be substantially equal to an angle between the inclined sub-surface
and an opposite side wall of the body 31. Differences between the embodiments shown
in FIG. 5 and that shown in FIG. 4 may lie in that, inclination directions of the
inclined sub-surfaces in the two embodiments may be different (that is, lines perpendicular
to the two inclined sub-surfaces may be not parallel to or overlap with each other).
[0025] Of course, the present disclosure may be not limited to this. The number of inclined
sub-surfaces may be one or more. The inclined sub-surface may also face towards different
directions and form at different angles. In addition, the first surface 331 may be
a single-sided inclined sub-surface, a double-sided inclined sub-surface, or even
multi-sides inclined sub-surface.
[0026] In some embodiments shown in FIGS. 6 and 7, the first surface 331 may include: a
pair of inclined sub-surfaces intersecting with each other at a straight line and
gradually extending away from each other in a direction from the tail portion 33 to
the head portion 32. An angle between the pair of inclined sub-surfaces may be an
acute angle. An angle between each of the pair of inclined sub-surfaces and the central
axis of the body 31 may be an acute angle.
[0027] More specifically, the body 31 may be substantially in shape of a square pillar or
column. The pair of inclined sub-surfaces may intersect with each other, such that
the tail portion 33 may be in shape of a sharp angle. The pair of inclined sub-surfaces
may be substantially perpendicular to two opposite side walls of the heat sink 30.
The angle between the pair of inclined sub-surfaces and the central axis of the body
31 may be substantially equal to each other. The pair of inclined sub-surfaces may
be defined as a first inclined sub-surface and a second inclined sub-surface. In this
way, a part of the one of more piezoelectric vibrators 11 facing towards the first
inclined sub-surface may emit ultrasonic waves toward the first inclined sub-surface.
After the ultrasonic waves firstly contact with the first inclined sub-surface, a
part of the ultrasonic waves may be refracted out of the heat sink 30 and absorbed
by the acoustic-absorption layer 40 covering on the first inclined sub-surface. The
other part of the ultrasonic waves may be transmitted to the second inclined sub-surface.
A part of the ultrasonic waves transmitted to the second inclined sub-surface may
be refracted and the other part may be transmitted toward the first inclined sub-surface,
and so on. In this way, the ultrasonic waves which are not transmitted out of the
heat sink 30 may be reflected by the pair of inclined sub-surfaces of the tail portion
33 and the side wall for multiple times, and the ultrasonic energy may be significantly
weakened during the above processes. Similarly, those skilled in the art may deduce
the transmission path of the ultrasonic waves emitted by the piezoelectric vibrator
11 facing towards the second inclined sub-surface according to the above description,
which may be not repeated here.
[0028] Difference between some embodiments shown in FIG. 6 and some embodiments shown in
FIG. 7 may lie in that: the first inclined sub-surface and the second inclined sub-surface
in some embodiments shown in FIG. 6 may be both substantially quadrangular, while
a third inclined sub-surface and a fourth inclined sub-surface in some embodiments
shown in FIG. 7 may be substantially triangular. Of course, the reason for the differences
in the shape of the inclined sub-surfaces in these two embodiments may be the inclined
angles and the setting positions of inclined sub-surfaces are different.
[0029] Of course, in other embodiments, the first surface 331 may also be a pyramid surface.
The pyramid surface may include a plurality of sub-surfaces. An angle between each
of the plurality of sub-surfaces of the pyramid surface and the central axis may be
an acute angle. In other words, the tail portion 33 in some embodiments as shown in
FIG. 4 may be further sharpened to obtain a pyramidal surface. In this way, a part
of the ultrasonic waves firstly transmitted to any one of the plurality of sub-surfaces
of the pyramid surface may be transmitted out of the heat sink 30 and may be absorbed
by the acoustic-absorption layer 40 covering the corresponding sub-surface. The other
part of the ultrasonic waves may be transmitted to the remaining sub-surfaces of the
pyramidal surface. In this way, the ultrasonic waves inside the heat sink 30 may be
reflected for multiple times between various sub-surfaces of the pyramidal surface,
and the ultrasonic energy may be significantly weakened.
[0030] It may be understandable that the pyramid surface may be a triangular pyramid surface,
a quadrangular pyramid surface, or the like. The number of the sub-surfaces of the
pyramid surface may be three or more. Each sub-surface of the pyramid surface may
be substantially flat.
[0031] In some embodiments, the first surface 331 may be a conical surface. An apex angle
of each cross section passing through a vertex of the conical surface and coinciding
with the central axis may be less than 90 degrees. In this way, a part of the ultrasonic
waves firstly transmitted to the conical surface may be transmitted out of the heat
sink 30 and may be absorbed by the acoustic-absorption layer 40 covering the conical
surface, and the other part of the ultrasonic waves may undergo multiple reflections
within the conical surface. Thus, the ultrasonic energy may be significantly weakened.
In some embodiments, the conical surface may have a generatrix, and an angle between
the generatrix of the conical surface and the central axis is less than 90 degrees.
[0032] It should be noted that, the shape of the body 31 of the heat sink 30 may be not
limited to the square column shown in the drawings, and may also be a cylinder, a
prism, or the like.
[0033] The applicant may have found through research that, the smaller an angle α of the
inclined sub-surface of the tail portion 33 of the heat sink 30 is, the more times
the ultrasonic waves may be reflected at the tail portion 33, and the more ultrasonic
energy may be consumed.
[0034] Taking FIG. 1 as an example, when α<90 °/N, the ultrasonic waves may undergo (2N-1)
times of reflections at the tail portion 33, wherein N is a natural number. The smaller
the α is, that is, the larger the corresponding N is, the more the number of times
of reflections (2N-1) may occur at the tail portion 33, and the more ultrasonic energy
may be consumed. Therefore, in case that the configuration is allowed in the internal
space of the ultrasonic probe 100, the smaller the angle of the inclined sub-surface,
the better the implementation effect.
[0035] Of course, the structure of the tail portion 33 of the heat sink 30 may be not limited
to the above description, and may be other similar structures in which multiple times
of reflections occur to consume the ultrasonic energy. In this way, since the ultrasonic
energy entering the heat sink 30 may be completely consumed at the tail portion 33
and no longer return back to cause signal interference, the heat sink 30 may be disposed
closer to the piezoelectric vibrator 11 which is deemed as a main heat source of the
ultrasonic transducer 200 in structure, and the heat of the electric vibrator 11 may
be rapidly diffused by the heat sink 30 to avoid excessive rising of the local temperature.
[0036] To enhance the absorption effect, it is possible to enlarge a covering area of the
acoustic-absorption layer 40. That is, the acoustic-absorption layer 40 may be attached
to not only the oblique surface or the tapered surface at the tail portion 33 of the
heat sink 30, but also cover other surfaces of the heat sink 30. In some embodiments
shown in FIG. 1, the acoustic-absorption layer 40 completely covers an outer face
of the heat sink 30.
[0037] When the material of the heat sink 30 is uniform and dense, such as monocrystal alumina,
monocrystal silicon, monocrystal silicon carbide, or the like, there may be almost
no weak scattering caused by defects such as crystalline grains or pores in the material
during the transmission of the ultrasonic waves. In this case, the acoustic-absorption
layer 40 does not need to be wrapped on a front end of the heat sink 30 to eliminate
the scattered noise. Thus, an end surface of the front end of the heat sink 30 may
directly contact with a surface of an acoustic stack (including the piezoelectric
vibrator 11, the matching layer, or the like). In this way, it is possible to achieve
a better heat-dissipation effect.
[0038] For example, in some embodiments shown in FIG. 2, the acoustic-absorption layer 40
may cover an outer face of the tail portion 33, an outer face of the body 31, and
a side wall of the head portion 32. Furthermore, an end surface of the head portion
32 of the heat sink 30 may be flat and may be adhered to the second side 13 of the
piezoelectric-vibrator assembly 10.
[0039] On the contrary, in case that the heat sink 30 is made of polycrystalline material
or there are many defects inside the heat sink 30, the internal crystalline grains
and defects will cause the weak scattering of ultrasonic energy which may result in
a returning back of noise signals. In this case, the front end of the heat sink 30
may be also wrapped with the acoustic-absorption layer 40 of a certain thickness to
eliminate the weak noise signals. As shown in FIG 1, the acoustic-absorption layer
40 may be also coated on the head portion 32 of the heat sink 30, and the heat sink
30 may be spaced apart from the second side 13 of the piezoelectric-vibrator assembly
10 via the acoustic-absorption layer 40.
[0040] In addition, the front end of the heat sink 30 may also be processed into a fin shape.
More specifically, as shown in FIG. 1, the head portion 32 of the heat sink 30 may
have a plurality of heat-dissipation portions 322 extending toward the piezoelectric-vibrator
assembly 10. The plurality of heat-dissipation portions 322 may be spaced apart from
each other. The acoustic-absorption layer 40 may include an acoustic-absorption protrusion
41 disposed or inserted into a gap between every two adjacent heat-dissipation portions
322. In this way, the front end of the heat-dissipation portion 322 may be disposed
close to the piezoelectric vibrator 11 to cool down the piezoelectric vibrator 11
better, and the acoustic-absorption protrusion 41 located between the heat-dissipation
portions 322 may eliminate a weak noise transmitted from the tail portion 33 to the
head portion 32, thereby reducing the interference of the ultrasonic waves on the
piezoelectric vibrator 11.
[0041] To enhance a structural strength and a compactness of interior components of the
ultrasonic transducer 200, a side wall 42 of the acoustic-absorption layer 40 may
cover the first surface 331 of the heat sink 30. The end face of the head portion
32 of the heat sink 30 may be defined as a second surface 321. The second surface
321 may be disposed at an end of the head portion 32 facing away from the tail portion
33. An outer face of the side wall 42 facing away from the tail portion 33 may be
substantially parallel to the second surface 321.
[0042] The side wall 42 of the acoustic-absorption layer 40 may be thickened to enhance
the absorption effect of the ultrasonic waves refracted out of the heat sink 30 through
the first surface 331.
[0043] In some embodiments, a distance between the heat sink 30 and the second side 13 of
the piezoelectric-vibrator assembly 10 may be defined as δ, which satisfies 0 ≤ δ
≤ 3mm. Therefore, in the embodiments in which the ultrasonic waves are weakened by
reflected by the tail portion 33 of the heat sink 30 for multiple times and further
weakened again by the head portion 32, the heat sink 30 may be disposed closer to
the piezoelectric-vibrator assembly 10, so as to reduce the interference on the ultrasonic
waves and improve the heat-dissipation performance.
[0044] When choosing the material for the heat sink 30 and the acoustic-absorption layer
40 , acoustic impedances of the heat sink 30 and the acoustic-absorption layer 40
may be set as close to each other as possible, so as to minimize the ultrasonic energy
reflection at an interface of the two materials for the heat sink 30 and the acoustic-absorption
layer 40.
[0045] Thus, in case that the acoustic impedance of the acoustic-absorption layer 40 is
close to the acoustic impedance of the heat sink 30, each time the ultrasonic waves
pass through the inclined sub-surface of the tail portion 33 of the heat sink 30,
most of the energy may be refracted into the acoustic-absorption layer 40 covering
the surface of heat sink 30 and be further consumed by the acoustic-absorption layer
40. Only a small part of the energy may continue to be transmitted at a tail end of
the heat sink 30 after being reflected by the inclined sub-surface. After the energy
is reflected and refracted for several times at the tail end, few ultrasonic energy
that may cause interference signals will continue to be transmitted.
[0046] In some embodiments, the acoustic-absorption layer may include a flexible substrate
and particles filled in the flexible substrate. The flexible substrate may be made
of any material selected from the group consisting of epoxy, polyurethane, and silica
gel. The particles may be selected from the group consisting of tungsten powders and
lead powders. Based on this, the acoustic-absorption layer 40 may be a composite material
prepared by filling a soft substrate with a particle material having a larger gravity,
and ultrasonic attenuation may be achieved by damping vibration of particles having
larger gravity in the soft substrate. For example, the acoustic-absorption layer 40
may be acquired by filling dense particles such as tungsten powders and lead powders
in the soft substrate made of such as epoxy, polyurethane, silica gel, or the like.
The heat sink 30 may be made of a thermally-conductive material with low acoustic
impedance, such as graphite, aluminum, or the like. In this way, it is possible to
adjust a ratio of the material of the acoustic-absorption layer 40 to acquire the
acoustic impedance parameters the same or similar to those of the heat sink 30.
[0047] An arrow direction in FIG. 1 represents the transmission direction of the ultrasonic
waves. When the ultrasonic waves are transmitted to the tail end of the heat sink
30, the ultrasonic waves may be reflected and refracted by the inclined sub-surface.
Most of the ultrasonic energy may be refracted into the acoustic-absorption layer
40 and be further absorbed by the acoustic-absorption layer 40. A small part of the
energy may be reflected and continue to be transmitted to a side surface of the tail
end, and reflected and refracted by the side surface again and further mostly absorbed
by the acoustic-absorption layer 40. In this way, the ultrasonic energy may be substantially
consumed after multiple reflections between the inclined sub-surface and the side
surface. In some embodiments, among the outer faces of the tail portion 33, at least
a surface of the outer faces of the tail portion 33 facing away from the head portion
32 may be a polished surface. In this way, after the reflective surface is polished,
roughness of the inclined sub-surface and the side surface of the tail end of the
heat sink 30 that are configured to reflect the ultrasonic waves may be much less
than wavelengths of the ultrasonic waves, thereby eliminating or reducing the phenomenon
of returning ultrasonic noise signals caused by diffuse reflection.
[0048] In some embodiments of the present disclosure, the ultrasonic probe 100 may include
the ultrasonic transducer 200 as described in the above-mentioned embodiments. The
ultrasonic probe 100 may further include a housing 60 and an acoustic window 50. The
acoustic window 50 may be connected to the housing 60 at one end of the housing 60.
The acoustic window 50 and the housing 60 may cooperatively define a receiving cavity,
and the ultrasonic transducer 200 may be received in the receiving cavity. The ultrasonic
probe 100 may have the advantages of the above-mentioned ultrasonic transducer 200,
which will not be repeated here.
[0049] In some embodiments of the present disclosure, an ultrasonic detection apparatus
may be disclosed. The ultrasonic detection apparatus may include the ultrasonic probe
100 as described in the above-mentioned embodiments. Therefore, the ultrasonic detection
apparatus including the above-mentioned ultrasonic probe 100 may present the detection
result more accurately, a detection accuracy may be higher, and a service life may
be longer.
[0050] FIG. 8 is flow chart of a method for manufacturing the ultrasonic probe 100 according
to some embodiments of the present disclosure. The method may include actions executed
by the following blocks.
[0051] At block S1, firstly, a heat sink 30 may be prepared. The heat sink 30 may be made
of materials having a higher thermal conductivity. The heat sink 30 may occupy a large
space in an internal space of the ultrasonic probe 100 to absorb and disperse heat
generated during the operation of the one or more piezoelectric vibrators 11. The
tail end of the heat sink 30 may be processed into an oblique surface or a tapered
surface that may be inclined as a whole. The oblique surface or the tapered surface
should have a small inclination angle with respect to the central axis of the body
31, such that the ultrasonic waves may be reflected and refracted by the inclined
sub-surface for multiple times.
[0052] At block S2, then, an acoustic-absorption layer 40 may be coated on a surface of
the heat sink 30. The acoustic-absorption layer 40 may be prepared according to or
based on an acoustic impedance of the heat sink 30, such that the acoustic-absorption
layer 40 may have the acoustic impedance as close as possible to that of the heat
sink 30. In this way, when the ultrasonic waves are transmitted to an interface between
the heat sink 30 and the acoustic-absorption layer 40, most of the energy may be refracted
into the acoustic-absorption layer 40 and absorbed by the acoustic-absorption layer
40. A very small part of the energy may be reflected at the interface.
[0053] The acoustic-absorption layer 40 should cover at least cover the oblique surface
of the tail portion of the heat sink 30. Besides, the portion of the acoustic-absorption
layer 40 covering the oblique surface may have a sufficient thickness to fully absorb
the ultrasonic energy refracted into the acoustic-absorption layer 40. In order to
achieve a better effect, the acoustic-absorption layer 40 may also cover a side wall
of the heat sink 30. In this way, most of the ultrasonic energy transmitting to the
side wall of the heat sink 30 may be refracted into the acoustic-absorption layer
40 and be further absorbed by the acoustic-absorption layer 40. Whether a surface
of the front end of the heat sink 30 needs to be covered with a thinner acoustic-absorption
layer 40 may be determined according to the defects inside of the heat sink 30 and
the application of the probe.
[0054] At block S3, an acoustic stack of the ultrasonic probe 100 may be prepared according
to a conventional process. The acoustic stack may include the piezoelectric vibrator
11 and the acoustic matching layer 20 disposed on a front side of the piezoelectric
vibrator 11, and may also include acoustic functional layers disposed on a rear side
of the piezoelectric vibrator 11, such as a tuning layer, a dematching layer, an acoustic
amplification layer, or the like. Each circuit of the piezoelectric vibrator 11 may
be led out from the side of the piezoelectric vibrator 11 without affecting the transmission
of the ultrasonic signals.
[0055] At block S4, the front end face of the heat sink 30 in the block S2 may be attached
to or bonded to a surface of the acoustic stack at the rear end of the piezoelectric
vibrator 11 in the block S3. The front end face of the heat sink 30 may be directly
a surface of the heat sink 30 (that is, the surface of the heat sink 30 free of being
covered by the acoustic-absorption layer 40), or may be a surface of the heat sink
30 covered by the acoustic-absorption layer 40 of a certain thickness. The two surfaces
that may be bonded to each other may have good flatness to ensure that an adhesive
layer may be thin enough and may not affect the transmission of the ultrasonic waves
and the heat.
[0056] At block S5, the assembly of a shielding structure, a circuit board, a cable, a tail
sleeve, a housing 60, an acoustic window 50 and other components may be completed.
The heat sink 30 may also be further connected to the housing 60, the cables, and
other components, to further diffuse the heat outward, thereby forming the ultrasonic
probe 100 with good internal heat dissipation.
[0057] The related manufacturing process of the ultrasonic probe 100 according to some embodiments
of the present disclosure may be not complicated to implement, as long as the front
end face of the heat sink 30 covered with or wrapped by the acoustic-absorption layer
40 according to some embodiments of the present disclosure may be directly bonded
to the surface of the acoustic stack of the ultrasonic transducer.
[0058] In the description of the embodiments of the present disclosure, it should be understood
that, the orientation or positional relationships indicated by the terms "center",
"longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front",
"rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inner", "outer",
"clockwise", "counterclockwise", or the like, are based on the orientation or positional
relationship shown in the drawings, and are merely for convenience of description
and for simplifying description, rather than implying or indicating that the device
or the component must have a particular orientation or constructed and operated in
a particular orientation, and thus these terms cannot to be construed as limiting
the present disclosure. In addition, the features defined with "first", "second",
or the like may explicitly or implicitly include one or more of the features. In the
description of the present disclosure, it should be noted that, "a plurality of" means
two or more, unless specified otherwise.
[0059] In the description of the present specification, the description with reference to
the terms "one embodiment", "some embodiments", "illustrative embodiment", "example",
"specific example", or "some examples", or the like, means that a specific feature,
structure, material, or characteristic described in connection with the embodiment
or example is included in at least one embodiment or example of the present disclosure.
Thus, the illustrative descriptions of the terms throughout this specification are
not necessarily referring to the same embodiment or example of the present disclosure.
Furthermore, the specific features, structures, materials, or characteristics may
be combined in any suitable manner in one or more embodiments or examples.
[0060] Although some embodiments of the present disclosure have been shown and described
above, however, it can be understood that the above-mentioned embodiments may be exemplary
and should not be construed as limiting the present disclosure. Those skilled in the
art may make various changes, modifications, substitutions and modifications to the
embodiments described above within the scope of the present disclosure.
1. An ultrasonic transducer, comprising:
a piezoelectric-vibrator assembly (10), having a first side (12) and a second side
(13) opposite to the first side (12), and comprising one or more piezoelectric vibrators
(11);
an acoustic matching layer (20), arranged on the first side (12) of the piezoelectric-vibrator
assembly (10);
a heat sink (30), arranged on the second side (13) of the piezoelectric-vibrator assembly
(10) and comprising:
a body (31), substantially in shape of a column and having a central axis;
a head portion (32), disposed at one end of the body (31) and facing towards the piezoelectric-vibrator
assembly (10);
a tail portion (33), disposed at another end of the body (31) opposite to the head
portion (32) and facing away from the piezoelectric-vibrator assembly (10), wherein
the central axis extends in a direction from the head portion to the tail portion,
the tail portion (33) comprises a first surface (331) disposed at one side of the
tail portion (33) facing away from the head portion (32), the first surface (331)
is an oblique surface or a tapered surface, and an angle between the first surface
and the central axis is an acute angle; and
an acoustic-absorption layer (40);
wherein the ultrasonic transducer is characterized in that the acoustic-absorption layer (40) is completely covering an outer face of the heat
sink (30) and is configured to absorb ultrasonic waves refracted out of the heat sink
(30).
2. The ultrasonic transducer as claimed in claim 1, wherein the first surface (331) comprises
at least one inclined sub-surface, and an angle between each of the at least one inclined
sub-surface and the central axis of the body (31) is an acute angle.
3. The ultrasonic transducer as claimed in claim 1, wherein the first surface (331) comprises
a pair of inclined sub-surfaces intersecting with each other at a straight line and
gradually extending away from each other in a direction from the tail portion (33)
to the head portion (32), an angle between the pair of inclined sub-surfaces is an
acute angle, and an angle between each of the pair of inclined sub-surfaces and the
central axis of the body (31) is an acute angle.
4. The ultrasonic transducer as claimed in claim 1, wherein the first surface (331) is
a pyramid surface comprising a plurality of sub-surfaces, and an angle between each
of the plurality of sub-surfaces and the central axis is an acute angle.
5. The ultrasonic transducer as claimed in claim 1, wherein the first surface (331) is
a conical surface, and an apex angle of each cross section passing through a vertex
of the conical surface and coinciding with the central axis is less than 90 degrees.
6. The ultrasonic transducer as claimed in claim 1, wherein the heat sink (30) is made
of any material selected from the group consisting of monocrystal alumina, monocrystal
silicon, and monocrystal silicon carbide.
7. The ultrasonic transducer as claimed in any one of claims 1-6, wherein a distance
between the second side (13) of the heat sink (30) and the piezoelectric-vibrator
assembly (10) is defined as δ, wherein 0≤δ≤3mm.
8. The ultrasonic transducer as claimed in any one of claims 1-7, wherein the head portion
(32) comprises a second surface (321) disposed at an end, the acoustic-absorption
layer (40) further covers the second surface (321), and the second surface (321) is
spaced from the second side (13) of the piezoelectric-vibrator assembly (10) via the
acoustic-absorption layer (40);
the acoustic-absorption layer (40) comprises a side wall (42) covering the first surface
(331) of the heat sink (30).
9. The ultrasonic transducer as claimed in claim 8, wherein the head portion (32) comprises
a plurality of heat-dissipation portions (322) extending toward the piezoelectric-vibrator
assembly (10), the plurality of heat-dissipation portions (322) are spaced apart from
each other, and the acoustic-absorption layer (40) comprises an acoustic-absorption
protrusion (41) disposed in a gap defined between every two adjacent heat-dissipation
portions (322).
10. The ultrasonic transducer as claimed in any one of claims 1-9, wherein the acoustic-absorption
layer (40) comprises a flexible substrate and particles filled in the flexible substrate;
the flexible substrate is made of any one selected from the group consisting of epoxy,
polyurethane, and silicone;
the particles are selected from the group consisting of tungsten powders and lead
powders.
11. An ultrasonic probe, comprising the ultrasonic transducer as claimed in any one of
claims 1-10.
12. The ultrasonic probe as claimed in claim 11, further comprising:
a housing (60); and
an acoustic window (50), connected to the housing (60), wherein the acoustic window
(50) and the housing (60) cooperatively define a receiving cavity, and the ultrasonic
transducer is received in the receiving cavity.
13. An ultrasonic detection apparatus, comprising the ultrasonic probe as claimed in any
one of claims 11-12.
1. Ein Ultraschallwandler, der Folgendes umfasst:
Eine piezoelektrische Vibratorgruppe (10) mit einer ersten Seite (12) und einer zweiten
der ersten Seite (12) gegenüber liegenden Seite (13), Vibratorgruppe (10), die einen
oder mehrere piezoelektrische Vibratoren (11) umfasst;
eine akustisch angepasste Schicht (20), die an der ersten Seite (12) der piezoelektrischen
Vibratorgruppe (10) angeordnet ist;
eine Wärmesenke (30), die an der zweiten Seite (13) der piezoelektrischen Vibratorgruppe
(10) angeordnet ist und Folgendes umfasst:
einen Körper (13) wesentlich in Form einer Säule mit einer Mittelachse;
einen Kopfteil (32), der an einem Ende des Körpers (31) vorgesehen und zur piezoelektrischen
Vibratorgruppe (10) hin gerichtet ist;
ein hinteres Ende (33), das an einem anderen, gegenüber dem Kopfteils (32) liegenden
Körperende angeordnet und weg gerichtet ist von der piezoelektrischen Vibratorgruppe
(10), wobei die Mittelachse sich in Richtung weg vom Kopfteil hin zum hinteren Ende
erstreckt,
das hintere Ende (33) eine erste Oberfläche (331) umfasst, die an einer Seite des
hinteren Endes (33) angeordnet ist und weg gerichtet vom Kopfteil (32), wobei die
erste Oberfläche (331) eine schräge oder verjüngte Oberfläche ist, und ein Winkel
zwischen der ersten Oberfläche und der Mittelachse ein spitzer Winkel ist; sowie
eine Schallabsorptionsschicht (40);
wobei der Ultraschallwandler dadurch gekennzeichnet ist, dass die Schallabsorptionsschicht (40) vollständig eine Aussenobenfläche der Wärmesenke
(30) bedeckt und konfiguriert ist, um aus der Wärmesenke (30) gebrochene Ultraschallwellen
zu absorbieren.
2. Der Ultraschallwandler gemäss Anspruch 1, bei dem die erste Oberfläche (331) mindestens
eine geneigte, untergeordnete Oberfläche umfasst und einen Winkel sowohl zwischen
der mindestens einen geneigten, untergeordneten Oberfläche und der Mittelachse des
Körpers (31) ein spitzer Winkel ist.
3. Der Ultraschallwandler gemäss Anspruch 1, bei dem die erste Oberfläche (331) ein Paar
geneigter, untergeordneter Oberflächen umfasst, die sich in einer geraden Line kreuzen
und sich stufenweise voneinander distanzierend in einer Richtung ab dem hinteren Ende
(33) hin zum Kopfteil (32) erstrecken, wobei ein Winkel zwischen dem Paar geneigter,
untergeordneter Oberflächen ein spitzer Winkel ist und ein Winkel zwischen jedem Paar
geneigter, untergeordneter Oberflächen und der Mittelachse des Körpers (31) ein spitzer
Winkel ist.
4. Der Ultraschallwandler gemäss Anspruch 1, bei dem die erste Oberfläche (331) eine
pyramidenförmige Oberfläche ist, die eine Mehrzahl von untergeordneten Oberflächen
umfasst, und wobei ein Winkel zwischen jeder der vielen untergeordneten Oberflächen
und der Mittelachse ein spitzer Winkel ist.
5. Der Ultraschallwandler gemäss Anspruch 1, bei dem die erste Oberfläche (331) eine
kegelförmige Oberfläche ist und ein Scheitelwinkel eines jeden, durch den Scheitelpunkt
der kegelförmigen Oberfläche gehenden und mit der Mittelachse übereinstimmenden Querschnitts
kleiner ist als 90 Grad.
6. Der Ultraschallwandler gemäss Anspruch 1, bei dem eine Wärmesenke (30) aus irgendeinem
aus folgender Gruppe gewählten Material ist: Einkristallaluminiumoxid, Einkristallsilizium
und Einkristallsiliziumkarbid.
7. Der Ultraschallwandler gemäss irgendeinem der Ansprüche 1-6, bei dem ein Abstand zwischen
der zweiten Seite (13) der Wärmesenke und der piezoelektrischen Vibratorgruppe (10)
als δ definiert wird, wobei 0<δ<3 mm ist.
8. Der Ultraschallwandler gemäss irgendeinem der Ansprüche 1-7, bei dem der Kopfteil
(32) eine zweite, an einem Ende angeordnete Oberfläche (321) umfasst, die Schallabsorptionsschicht
(40) weiter die zweite Oberfläche (321) deckt und die zweite Oberfläche (321) von
der zweiten Seite (13) der piezoelektrischen Vibratorgruppe (10) über die Schallabsorptionsschicht
(40) beabstandet ist; wobei die Schallabsorptionsschicht (40) eine Seitenwand (42)
umfasst, die die erste Oberfläche (331) der Wärmesenke (30) deckt.
9. Der Ultraschallwandler gemäss Anspruch 8, bei dem der Kopfteil (32) eine Vielzahl
von wärmeableitenden Abschnitten (322) umfasst, die sich in Richtung der piezoelektrischen
Vibratorgruppe (10) erstrecken, wobei die vielzähligen wärmeableitenden Abschnitte
(322) untereinander beabstandet sind und die Schallabsorptionsschicht (40) einen Schalldämpfungsvorsprung
(41) aufweist, der in einem zwischen allen zwei anliegenden wärmeableitenden Abschnitten
(322) definierten Spalt angeordnet ist.
10. Der Ultraschallwandler gemäss irgendeinem der Ansprüche 1-9, bei dem die Schallabsorptionsschicht
(40) ein flexibles Substrat und in das flexible Substrat eingefüllte Teilchen umfasst;
das flexible Substrat aus irgendeinem folgender Gruppe gewählten Material gemacht
ist: Epoxyharz, Polyurethan und Silikon;
wobei die Teilchen aus folgender Gruppe ausgewählt werden: Wolframpulver und Bleipulver.
11. Ein Ultraschallsonde, der den Ultraschallwandler gemäss irgendeinem der Ansprüche
1-10 umfasst.
12. Der Ultraschallsonde gemäss Anspruch 11, der weiter ein Gehäuse (60) umfasst; und
ein Schallfenster (50), das an das Gehäuse angeschlossen ist, wobei das Schallfenster
(50) und das Gehäuse (60) gemeinsam eine Aufnahmeaushöhlung definieren und der Ultraschallwandler
in der Aufnahmeaushöhlung angeordnet ist.
13. Ein Ultraschallsuchgerät, das die Ultraschallsonde gemäss irgendeinem der Ansprüche
11-12 umfasst.
1. Transducteur à ultrasons comprenant ce qui suit:
un ensemble de vibrateurs piézoélectriques (10), ayant une première face (12) et une
seconde face (13) opposée à la première face (12), et comprenant un ou plusieurs vibrateurs
piézoélectriques (11);
une couche d'adaptation acoustique (20), qui est disposée sur la première face (12)
de l'ensemble de vibrateurs piézoélectriques (10);
un dissipateur thermique (30), disposé sur la deuxième face (13) de l'ensemble de
vibrateurs piézoélectriques (10) et comprenant:
un corps (31), ayant sensiblement la forme d'une colonne et présentant un axe central;
une partie de tête (32), disposée à une des extrémités du corps (31) et orientée vers
l'ensemble de vibrateurs piézoélectriques (10);
une partie de queue (33), disposée à une autre extrémité du corps (31) opposée à la
partie de tête (32) et orientée dans la direction opposée à l'ensemble de vibrateurs
piézoélectriques (10), dans laquelle l'axe central s'étend dans une direction allant
de la partie de tête à la partie de queue, la partie de queue (33) comprend une première
surface (331) disposée sur un côté de la partie de queue (33) orientée dans la direction
opposée à la partie de tête (32), la première surface (331) étant une surface oblique
ou une surface conique, et un angle entre la première surface et l'axe central est
un angle aigu; et
une couche d'absorption acoustique ( 40);
où le transducteur à ultrasons est caractérisé en ce que
la couche d'absorption acoustique (40) recouvre entièrement une face extérieure du
dissipateur thermique (30) et est configurée pour absorber les ondes ultrasonores
réfractées par le dissipateur thermique (30).
2. Transducteur à ultrasons selon la revendication 1, dans lequel la première surface
(331) comprend au moins une surface secondaire inclinée, et un angle entre chacune
des au moins une surface secondaire inclinée et l'axe central du corps (31) est un
angle aigu.
3. Transducteur à ultrasons selon la revendication 1, dans lequel la première surface
(331) comprend une paire de surfaces secondaires inclinées se coupant l'une l'autre
en ligne droite et s'éloignant progressivement l'une de l'autre dans une direction
allant de la partie de queue (33) à la partie de tête (32), un angle entre la paire
de surfaces secondaires inclinées étant un angle aigu, et un angle entre chaque paire
de surfaces secondaires inclinées et l'axe central du corps (31) étant un angle aigu.
4. Transducteur à ultrasons selon la revendication 1, dans lequel la première surface
(331) est une surface pyramidale comprenant une pluralité de surfaces secondaires,
et un angle entre chacune de la pluralité de sous-surfaces et l'axe central est un
angle aigu.
5. Transducteur à ultrasons selon la revendication 1, dans lequel la première surface
(331) est une surface conique, et un angle de sommet de chaque section transversale
passant par un sommet de la surface conique et coïncidant avec l'axe central est inférieur
à 90 degrés.
6. Transducteur à ultrasons selon la revendication 1, dans lequel le dissipateur thermique
(30) est constitué d'un matériau choisi dans le groupe constitué de l'alumine monocristalline,
du silicium monocristallin et du carbure de silicium monocristallin.
7. Transducteur à ultrasons selon l'une quelconque des revendications 1 à 6, dans lequel
une distance entre le deuxième côté (13) du dissipateur thermique (30) et l'ensemble
piézoélectrique-vibrateur (10) est définie par δ, où 0 ≤ δ ≤ 3 mm.
8. Transducteur à ultrasons selon l'une quelconque des revendications 1 à 7, dans lequel
la partie de tête (32) comprend une deuxième surface (321) disposée à une des extrémités,
la couche d'absorption acoustique (40) recouvre en outre la deuxième surface (321),
et la deuxième surface (321) est séparée du deuxième côté (13) de l'ensemble de vibrateurs
piézoélectriques (10) par l'intermédiaire de la couche d'absorption acoustique (40);
dans lequel la couche d'absorption acoustique (40) comprend une paroi latérale (42)
recouvrant la première surface (331) du dissipateur thermique (30).
9. Transducteur à ultrasons selon la revendication 8, dans lequel la partie de tête (32)
comprend une pluralité de sections de dissipation thermique (322) s'étendant vers
l'ensemble piézoélectrique-vibrateur (10), les diverses sections de dissipation thermique
(322) étant espacées les unes des autres, et la couche d'absorption acoustique (40)
comprenant une protubérance d'absorption acoustique (41) disposée dans un espace défini
entre deux sections de dissipation thermique adjacentes (322).
10. Transducteur à ultrasons selon l'une quelconque des revendications 1 à 9, dans lequel
la couche d'absorption acoustique (40) comprend un substrat flexible et des particules
remplies dans le substrat souple; où
le substrat flexible est constitué d'un matériau choisi dans le groupe constitué par
la résine époxy, le polyuréthane et le silicone; et
les particules sont choisies dans le groupe constitué par les poudres de tungstène
et les poudres de plomb.
11. Sonde ultrasonique comprenant le transducteur à ultrasons selon l'une quelconque des
revendications 1 à 10.
12. La sonde ultrasonique selon la revendication 11, comprenant en outre un boîtier (60);
et
une fenêtre acoustique (50), reliée au boîtier (60), où la fenêtre acoustique (50)
et le boîtier (60) définissent conjointement une cavité de réception, le transducteur
à ultrasons étant logé dans la cavité de réception.
13. Appareil de détection par ultrasons comprenant la sonde ultrasonique visée à l'une
quelconque des revendications 11 à 12.