Field of the invention
[0001] The present invention refers in general to a process heat recovery system and, more
specifically, to an innovative process heat recovery system comprising a horizontal,
or slightly sloped, shell-and-tube heat exchanger, which cools a hot process fluid
flowing on tube-side by means of either shell-side water vaporization or shell-side
boiler feedwater preheating, and a steam drum for water-steam separation, which is
connected to the heat exchanger by downcomer and riser piping. Such a heat recovery
system can also comprise additional heat exchangers, like boilers, connected to the
steam drum by additional downcomer and riser piping.
Background of the invention
[0002] It is common practice in process industry, when a chemical or petrochemical fluid
at high temperature must be cooled, to implement a heat recovery system including
a process boiler of shell-and-tube type connected to a steam drum by a piping assembly,
wherein the hot process fluid is flowed in the boiler tubes, whereas the boiler water
is flowed on the boiler shell-side crosswise the tubes. In the present specification,
with the term "crosswise" it is meant that the water is moving across the tubes or
is crossing the tubes bundle of the heat exchanger, wherein the expression "boiler
water" means that said water can be water in liquid form and a mixture of water in
liquid form and steam. The water-steam mixture produced in the boiler is delivered,
by riser piping, to the steam drum which has a controlled water-level and separation
devices for providing for water-steam separation. Fresh boiler water is delivered
by the steam drum to the boiler by means of downcomer piping. The water therefore
circulates in between the boiler and the steam drum as in a loop. The produced steam,
after water-steam separation in the steam drum, is delivered to other power or process
equipment. The amount of the leaving steam is reintegrated by an equivalent amount
of boiler feedwater injected into the steam drum and mixed with the water inside the
steam drum.
[0003] The boiler feedwater is normally preheated before injection into the steam drum.
Consequently, the process heat recovery system can also include an additional shell-and-tube
heat exchanger working as a boiler feedwater preheater. Such a preheater can preheat
the boiler feedwater by cooling either the same process fluid flowing through the
boiler or another hot fluid. When the boiler feedwater preheater cools the same hot
process fluid flowing in the boiler tubes, the preheater is normally considered an
integral part of the process heat recovery system, and therefore the system comprises
two distinct shell-and-tube heat exchangers, that is, a boiler and a feedwater preheater.
[0004] Process intensifications of heat recovery systems comprising a boiler and a preheater
both of shell-and-tube type are known in the state of the art.
[0005] For example, document
US 4074660 A discloses a system comprising at least a steam drum and a shell-and-tube heat exchanger,
connected together via piping, for cooling a hot fluid flowing on the heat exchanger
tube-side by cold water flowing on the heat exchanger shell-side. The heat exchanger
shell is split, by a partition wall, into two chambers that are not in direct fluid
communication, so that two different streams of water can be flowed in the shell with
no direct mixing. In the first shell-side chamber boiler water is flowed, and therefore
the heat exchanger works as a boiler in said first shell-side chamber, whereas in
the second shell-side chamber boiling or subcooled water is flowed, and therefore
the heat exchanger works as a boiler or boiler feedwater preheater in said second
shell-side chamber.
[0006] Document
US 7784433 B2 discloses another system comprising a steam drum and a shell-and-tube heat exchanger,
connected together via piping, for cooling a hot process gas flowing on the heat exchanger
tube-side by cold water flowing on the heat exchanger shell-side. The heat exchanger
shell is split, by a partition wall, into two chambers that are in direct fluid communication.
The first shell-side chamber works as a boiler, whereas the second shell-side chamber
works as a boiler feedwater preheater. Each chamber is provided with distinct inlet
and outlet piping, and more specifically with distinct piping for connecting with
the steam drum. The boiler chamber is connected to the steam drum by riser and downcomer
piping. The preheater chamber is connected to the steam drum by a boiler feedwater
piping.
[0007] Document
US 10744474 B2 discloses a system according to the preamble of claim 1 comprising a steam drum and
a shell-and-tube heat exchanger, connected together via piping, for cooling a hot
process gas flowing on tube-side by cold water flowing on shell-side. The heat exchanger
shell is not provided with partition walls and therefore the heat exchanger shell
is not split into different chambers. The heat exchanger can work either as a boiler
or as a boiler feedwater preheater or, in other words, either boiler water or boiler
feedwater can be flowed through the heat exchanger shell. The system is provided with
downcomer and riser piping for respectively delivering boiler water from the steam
drum to the heat exchanger shell and for delivering boiler water from the heat exchanger
shell to the steam drum, and with boiler feedwater inlet and outlet piping for respectively
injecting boiler feedwater into the heat exchanger shell and for delivering preheated
boiler feedwater from the heat exchanger shell to the steam drum. Consequently, the
technology described in document
US 10744474 B2 is characterized by two distinct piping circuits connecting the heat exchanger shell
to the steam drum. More specifically, one piping circuit is designed for boiling operations
and consists of downcomer and riser piping, whereas the other piping circuit is designed
for preheating operations and consists of boiler feedwater outlet piping. Therefore,
when the heat exchanger works as a boiler, the boiler water under boiling conditions
is delivered from the heat exchanger to the steam drum via riser piping, whereas,
when the heat exchanger works as a preheater, the preheated boiler feedwater under
subcooled conditions is delivered from the heat exchanger to the steam drum via a
boiler feedwater piping which is distinct from said riser piping. The downcomer, the
riser and the boiler feedwater piping are all provided with intercepting valves so
to intercept and switch-off one circuit, whereas the other circuit is open and switched-on.
[0008] The intensified process heat recovery systems described in the above documents are
competitive, since instead of two independent heat exchangers, that is, a boiler and
a preheater, there is one single heat exchanger capable of working as a boiler and/or
a preheater. However, a drawback of the intensified process heat recovery systems
disclosed in document
US 7784433 B2 and especially in document
US 10744474 B2 is due to a complex piping and valves configuration, because the heat exchangers
that work as a boiler or preheater are respectively connected to the steam drum by
two distinct piping circuits for each single heat exchanger.
Summary of the invention
[0009] One object of the present invention is therefore to provide a process heat recovery
system which is capable of resolving the drawbacks of the prior art in a simple, inexpensive
and particularly functional manner.
[0010] In detail, one object of the present invention is to provide a process heat recovery
system according to claim 1, which is capable of optimizing piping and valves that
connect a heat exchanger, working as a boiler or as a boiler feedwater preheater,
to a steam drum. Such a process heat recovery system is designed to have a piping
and valves configuration which is less complex with respect to similar systems according
to the prior art, resulting more practical and competitive from engineering, manufacturing,
and operational standpoint.
[0011] Another object of the present invention is to provide a process heat recovery system
comprising a shell-and-tube heat exchanger with a special configuration of shell-side
baffles, so as to impart to the circulating water different prevailing flow directions
depending on boiler or preheating operations. The hot process fluid flows through
the shell-and-tube heat exchanger on tube-side, by one or more passageways. On the
shell-side, either boiler water at, or near at, saturation conditions, or boiler feedwater
in subcooled conditions, flows. In the first case, the heat exchanger works as a boiler
and the boiler water has a significant vaporization inside the heat exchanger shell,
whereas in the latter case the heat exchanger works as a boiler feedwater preheater
and the boiler feedwater is preheated with no vaporization or with a negligible vaporization
inside the heat exchanger shell. The heat exchanger shell is not provided with partition
walls forming distinct shell-side chambers.
[0012] These objects are achieved according to the present invention by providing a process
heat recovery system as set forth in the attached claims.
[0013] Further features of the invention are underlined by the dependent claims, which are
an integral part of the present description.
[0014] The process heat recovery system according to the present invention is designed for
cooling a hot process fluid by means of boiler water vaporization or boiler feedwater
preheating. This process heat recovery system comprises at least one heat exchanger,
designed for cooling the hot process fluid, at least one steam drum and at least one
interconnecting piping assembly, which connects the heat exchanger and the steam drum.
[0015] The heat exchanger is of shell-and-tube type and is provided with a shell, with a
plurality of tubes, with at least one hot process fluid inlet, for inletting said
hot process fluid that flows on tube-side of the heat exchanger by one or more tube-side
passageways, with at least one hot process fluid outlet, for outletting said hot process
fluid from the tube-side of the heat exchanger, with at least one shell downcomer
connection, through which the boiler water flowing through the shell enters said shell,
and with at least one boiler feedwater connection, through which the boiler feedwater
flowing through the shell enters said shell.
[0016] The steam drum is provided with at least one drum downcomer connection and at least
one drum riser connection. The interconnecting piping assembly comprises at least
one downcomer piping connected, at one end thereof, to the drum downcomer connection
and, at the other end thereof, to the shell downcomer connection via at least one
respective downcomer duct, so that the boiler water is delivered from the steam drum
to the heat exchanger via the downcomer piping. The boiler feedwater connection is
connected to at least one respective boiler feedwater piping, so that the boiler feedwater
is delivered to the heat exchanger via the boiler feedwater piping.
[0017] At least one downcomer intercepting valve is provided on the downcomer piping, or
on each downcomer duct, or on the downcomer piping and on at least one downcomer duct.
The boiler feedwater piping is provided in turn with at least one boiler feedwater
intercepting valve.
[0018] The shell is provided with at least two shell riser connections for outletting either
the boiler water or the boiler feedwater, whereas the interconnecting piping assembly
comprises a single riser piping connected, at one end thereof, to the drum riser connection
of the steam drum and, at the other end thereof, to the at least two shell riser connections
of the heat exchanger via a riser duct for each shell riser connection, so that either
the boiler water or the boiler feedwater flowing through the shell is delivered from
the heat exchanger to the steam drum via said single riser piping.
[0019] Preferably, at least one of the riser ducts is provided with a respective riser intercepting
valve.
[0020] The process heat recovery system according to the present invention may comprise
at least one additional upstream heat exchanger. Therefore, the hot process fluid
inlet may be connected to the upstream heat exchanger, whereas the steam drum may
be provided with at least one drum upstream inlet connection and with at least one
drum upstream outlet connection, so that the upstream heat exchanger may be connected
to the steam drum by means of at least one drum upstream riser piping, via said drum
upstream inlet connection, and by means of at least one drum upstream downcomer piping,
via said drum upstream outlet connection.
[0021] The process heat recovery system according to the present invention may also comprise
at least one additional downstream heat exchanger. Therefore, the hot process fluid
outlet may be connected to the downstream heat exchanger, whereas the steam drum may
be provided with at least one drum downstream inlet connection and with at least one
drum downstream outlet connection, so that the downstream heat exchanger may be connected
to the steam drum by means of at least one drum downstream riser piping, via said
drum downstream inlet connection, and by means of at least one drum downstream downcomer
piping, via said drum downstream outlet connection.
[0022] According to a preferred aspect of the present invention, the shell of the heat exchanger
may have a substantially horizontal longitudinal axis and may be internally provided
with one or more shell-side plates or baffles, which are substantially perpendicular
to the longitudinal axis of the shell and through which the tubes of the heat exchanger
pass. The plates or baffles are provided with main cuts or openings designed to distribute
either the boiler water or the boiler feedwater all along the direction of said longitudinal
axis through shell-side predefined flow directions.
[0023] Preferably, at least part of the plates or baffles may be provided with one or more
respective top cuts or openings designed to distribute at least part of either the
boiler water or the boiler feedwater along substantially horizontal top-shell flow
directions at a top portion of the shell. Always preferably, at least part of the
plates or baffles may be provided with one or more respective bottom cuts or openings
designed to distribute at least part of either the boiler water or the boiler feedwater
along substantially horizontal bottom-shell flow directions at a bottom portion of
the shell. The plates or baffles may be single-segmental plates or baffles, or double-segmental
plates or baffles, or triple-segmental plates or baffles, or also disc-and-donut type
plates or baffles.
[0024] According to a first preferred embodiment of the process heat recovery system, the
plates or baffles, the shell downcomer connection and the shell riser connections
are designed and positioned on the heat exchanger to impart a prevailing vertical
flow, crosswise the tubes, to the boiler water when the heat exchanger works as a
boiler. Preferably, the hot process fluid is a hot process gas discharged from a chemical
reactor or furnace. The heat exchanger may thus be a process gas cooler working as
a boiler, for boiling operations, therefore producing boiler water with a significant
fraction of steam, or a water-steam mixture, delivered to the steam drum via the drum
riser connection.
[0025] According to a second preferred embodiment of the process heat recovery system, the
plates or baffles, the boiler feedwater connection and the shell riser connections
are designed and positioned on the heat exchanger to impart a prevailing horizontal
flow direction, with a tortuous path or chicanes crosswise the tubes, to the boiler
feedwater when the heat exchanger works as a boiler feedwater preheater. Preferably,
the hot process fluid is once again a hot process gas discharged from a chemical reactor
or furnace, and the heat exchanger may be a process gas cooler working as a boiler
feedwater preheater, therefore producing a preheated boiler feedwater, with no vaporization
or with a negligible vaporization, delivered to the steam drum via the drum riser
connection.
[0026] Preferably, the steam drum may be placed above said heat exchanger and may be provided
with at least one outlet steam connection, connected to at least one corresponding
outlet steam piping, at least one drum feedwater connection, connected to at least
one corresponding drum feedwater piping, and preferably control means to control a
water-level within the steam drum.
[0027] The process heat recovery system according to the present invention may thus implement
a method for recovering process heat, according to claim 14, wherein the heat exchanger
may alternately work as a boiler, for boiling operations, and as a boiler feedwater
preheater, for preheating operations. When the heat exchanger works as a boiler, the
boiler feedwater intercepting valve is closed and the downcomer intercepting valve
is open, so that the boiler water is delivered from the steam drum to the heat exchanger
via the downcomer piping, said boiler water flows and vaporizes crosswise the tubes
of the heat exchanger and then said boiler water is delivered from the heat exchanger
to the steam drum via the single riser piping. When the heat exchanger works as a
boiler feedwater preheater, the boiler feedwater intercepting valve is open and the
downcomer intercepting valve is closed, so that the boiler feedwater is delivered
to the heat exchanger via the boiler feedwater piping, said boiler feedwater flows
and preheats crosswise the tubes of the heat exchanger and then said boiler feedwater
is delivered from the heat exchanger to the steam drum via the single riser piping.
Preferably, a respective riser intercepting valve, provided on at least one of the
riser ducts, is open when the heat exchanger works as a boiler and is closed when
the heat exchanger works as a boiler feedwater preheater.
[0028] Therefore, in the process heat recovery system according to the present invention
the heat exchanger is connected to the steam drum by downcomer and riser piping only.
There is no additional and distinct boiler feedwater piping connecting the heat exchanger
to the steam drum as in the prior art documents cited above.
[0029] When the heat exchanger of the system according to the present invention works as
a boiler, the shell-side boiler water at saturation conditions and with a significant
fraction of steam, or the water-steam mixture, is delivered from the heat exchanger
shell to the steam drum by means of riser piping, while fresh boiler water, at or
near at saturation conditions and with no steam, is delivered from the steam drum
to the heat exchanger shell by the downcomer piping.
[0030] When the heat exchanger of the system according to the present invention works as
a boiler feedwater preheater, the preheated boiler feedwater, in subcooled conditions
or with a negligible vaporization, is delivered from the heat exchanger shell to the
steam drum by means of said riser piping and not by an additional, distinct boiler
feedwater piping. Therefore, the riser piping is not necessarily provided with intercepting
valve, since it works under both boiling and preheating operations.
[0031] In other words, the process heat recovery system according to the present invention
is characterized by an innovative process intensification: instead of two distinct
piping for respectively delivering boiler water and boiler feedwater from the heat
exchanger shell to the steam drum, there is a common single piping. As a result, the
piping and valves configuration of the process heat recovery system according to the
present invention is simplified (intensified) regarding prior art technologies, both
from manufacturing and operational standpoint.
Brief description of the drawings
[0032] The features and advantages of a process heat recovery system according to the present
invention will be clearer from the following exemplifying and nonlimiting description,
with reference to the enclosed schematic drawings, in which:
Figure 1 is a schematic view of a preferred embodiment of a process heat recovery
system according to the present invention, wherein the side-view of the heat exchanger,
the side-view of the steam drum, the interconnecting piping assembly between the heat
exchanger and the steam drum, other piping connected to the heat exchanger and the
steam drum, as well as piping flows directions, are shown;
Figure 2 is a schematic side-view of the heat exchanger of Figure 1, wherein said
heat exchanger works as a boiler and wherein the respective shell-side inlet and outlet
flow directions, as well as the prevailing flow directions inside the heat exchanger
shell, are shown;
Figure 3 is another schematic side-view of the heat exchanger of Figure 1, wherein
said heat exchanger works as a boiler feedwater preheater and wherein the respective
shell-side inlet and outlet flow directions, as well as the prevailing flow directions
inside the heat exchanger shell, are shown.
Detailed description of the invention
[0033] With specific reference to figure 1, a first preferred embodiment of a process heat
recovery system according to the present invention is shown. The process heat recovery
system is indicated as a whole with reference numeral 1 and is configured for cooling
a hot process fluid by means of boiler water vaporization or boiler feedwater preheating.
The process heat recovery system 1 comprises at least one heat exchanger 2, designed
for cooling the hot process fluid, and a steam drum 3, preferably placed above the
heat exchanger 2. At least one interconnecting piping assembly 12, 22, 24 and 14,
18, 20, as will be better explained below, connects the heat exchanger 2 and the steam
drum 3. The heat exchanger 2 is of the shell-and-tube type and preferably has a horizontal
or slightly sloped layout. In other words, the heat exchanger 2 is provided with a
shell 31 preferably having a substantially horizontal, or slightly sloped, longitudinal
axis.
[0034] The heat exchanger 2 has at least one hot process fluid inlet 4 and at least one
hot process fluid outlet 5 on tube-side. The hot process fluid to be cooled therefore
flows through the plurality of tubes of the heat exchanger 2, by one or more tube-side
passageways. On shell-side, the heat exchanger 2 is provided with plates or baffles
29 installed inside the shell 31 for imparting to shell-side fluid preferred and prevailing
flow directions, as one can see in figures 2 and 3. The plates or baffles 29 do not
form any distinct chamber inside the shell 31 of the heat exchanger 2.
[0035] The shell 31 of the heat exchanger 2 is provided with at least one shell downcomer
connection 21, 23, connected to respective downcomer ducts 22, 24 of the interconnecting
piping assembly, for inletting the boiler water into the shell 31 of the heat exchanger
2. The shell 31 of the heat exchanger 2 is also provided with at least two shell riser
connections 17, 19, connected to respective riser ducts 18, 20 of the interconnecting
piping assembly, for outletting either the produced water-steam mixture or the preheated
boiler feedwater from the shell 31. The shell 31 of the heat exchanger 2 is furthermore
provided with at least one boiler feedwater connection 26, connected to at least one
respective boiler feedwater piping 27, for inletting the boiler feedwater into the
shell 31. The two riser ducts 18, 20 are collected, preferably nearby the heat exchanger
2, into a single riser piping 14 connected to the steam drum 3 via at least one drum
riser connection 13, preferably a single drum riser connection 13. Similarly, the
two downcomer ducts 22, 24 are collected, preferably nearby the heat exchanger 2,
into at least one downcomer piping 12 connected to the drum 3 via at least one drum
downcomer connection 11. Preferably, a single downcomer piping 12 and a single drum
downcomer connection 11 are provided.
[0036] In the preferred embodiment of the process heat recovery system 1 shown in figure
1, at least one of the riser ducts 20 is provided with a respective riser intercepting
valve 30. In another possible configuration of the process heat recovery system, different
than that of figure 1 and not shown in the drawings, the riser ducts are not provided
with intercepting valves.
[0037] In the preferred embodiment of the process heat recovery system 1 shown in figure
1, the single riser piping 14 is not provided with intercepting valve. The downcomer
piping 12 is preferably provided with a single downcomer intercepting valve 25, whereas
downcomer ducts 22, 24 are not provided with intercepting valves. In another possible
configuration of the process heat recovery system, different than that of figure 1
and not shown in the drawings, the downcomer piping is not provided with intercepting
valves, whereas the downcomer ducts are provided with respective downcomer intercepting
valves (not shown). In a further, possible configuration of the process heat recovery
system, different than that of figure 1 and not shown in the drawings, the downcomer
piping is provided with a single intercepting valve and at least one of the downcomer
ducts is provided with a respective downcomer intercepting valve.
[0038] In the preferred embodiment of the process heat recovery system 1 shown in figure
1, the boiler feedwater piping 27 is provided with a boiler feedwater intercepting
valve 28.
[0039] The steam drum 3 has also an outlet steam connection 7, connected to a corresponding
outlet steam piping 8, for outletting the steam produced in the heat exchanger 2 and
then separated in the steam drum 3, and a drum feedwater connection 9, connected to
a corresponding drum feedwater piping 10. The steam drum 3 can also be provided with
at least one additional drum downstream/upstream inlet connection 42, 49 and at least
one additional drum downstream/upstream outlet connection 41, 48 for respective additional
drum downstream/upstream riser piping 16, 47 and drum downstream/upstream downcomer
piping 15, 46, connecting the steam drum 3 to other boilers or exchangers, like for
example one or more additional downstream heat exchangers 44, connected to the steam
drum 3 via a drum downstream downcomer piping 15 and a drum downstream riser piping
16, and/or one or more additional upstream heat exchangers 45, connected to the steam
drum 3 via a drum upstream downcomer piping 46 and a drum upstream riser piping 47.
The steam drum 3 is also usually provided with other well-known connections (not shown)
for drains, blowdowns, instruments, etc. The steam drum 3 preferably comprises control
means to control a water-level 6 within the steam drum 3.
[0040] The heat exchanger 2 of the process heat recovery system 1 according to the present
invention can work either as a boiler (for boiling operations) or as a boiler feedwater
preheater (for preheating operations).
[0041] Under boiling operations, the single downcomer intercepting valve 25, or the multiple
downcomer intercepting valves (not shown), if present, are open so that the boiler
water, at saturation conditions or near saturation conditions, flows from the steam
drum 3 to the shell 31 of the heat exchanger 2 via the downcomer piping 12 and the
downcomer ducts 22, 24. The riser intercepting valve 30 is preferably open. The water-steam
mixture produced in the heat exchanger 2 flows from the shell 31 to the steam drum
3 via the riser ducts 18, 20 and the single riser piping 14. The boiler feedwater
intercepting valve 28 is closed, so that no flow circulates in boiler feedwater piping
27. The boiler water coming from the downcomer ducts 22, 24 is injected into the shell
31 via the shell downcomer connections 21, 23, flows on the heat exchanger shell-side
crosswise the tubes, partially vaporizes, and then exits from the shell 31 through
the shell riser connections 17, 19. The water-steam mixture produced in the heat exchanger
2 is discharged into the steam drum 3 through the drum riser connection 13. In the
steam drum 3, the water is separated from the steam by means of separating devices
(not shown), the separated water is recirculated to the heat exchanger 2 via the drum
downcomer connection 11, and the separated steam leaves the steam drum 3 through the
outlet steam connection 7. During the water vaporization, the hot process fluid flowing
on the heat exchanger tube-side is cooled down by means of the indirect heat exchange
with the boiler water.
[0042] Under preheating operations, the single downcomer intercepting valve 25, or the multiple
downcomer intercepting valves (not shown), if present, are closed so that there is
no boiler water flow from the steam drum 3 to the shell 31 of the heat exchanger 2.
The boiler feedwater intercepting valve 28 is open, so that the boiler feedwater flows
in the boiler feedwater piping 27 and is injected into the shell 31 of the heat exchanger
2 through the boiler feedwater connection 26. The riser intercepting valve 30 is preferably
closed, so that the boiler feedwater flows from the shell 31 of the heat exchanger
2 to the steam drum 3 via only one of the riser ducts 18 and via the single riser
piping 14. The boiler feedwater injected into the shell 31 via the boiler feedwater
connection 26 is in subcooled conditions. The preheated boiler feedwater leaving the
shell 31 has no vaporization or a negligible vaporization. During preheating, the
hot process fluid flowing on the heat exchanger tube-side is cooled down by means
of the indirect heat exchange with the boiler feedwater.
[0043] Figure 2 shows the heat exchanger 2 working as a boiler (for boiling operations)
according to a preferred embodiment of the present invention. In particular, possible
prevailing flow directions 32, 33, 34 of the boiler water circulating on shell-side
are shown. The plates or baffles 29 are vertical plates or baffles or, in other words,
plates or baffles installed in a substantially perpendicular position with respect
to the shell longitudinal axis. The heat exchanger tubes pass through said plates
or baffles 29. The plates or baffles 29 can be of single-segmental or, preferably,
of double-segmental or of triple-segmental or of disc-and-donut type. Number, position,
and layout of the plates or baffles 29 are shown with explanatory but not limiting
purposes in figure 2 and can be different than those of figure 2.
[0044] The plates or baffles 29 are conveniently provided with main cuts or openings 43
for distributing the water all along the shell 31 of the heat exchanger 2. The plates
or baffles 29, or at least a part of them, are also provided with respective top cuts
or openings 35. Optionally, the plates or baffles 29, or at least a part of them,
can be provided with respective bottom cuts or openings 38. The boiler water, at saturation
conditions or near saturation conditions, enters the shell 31 of the heat exchanger
2 via the shell downcomer connections 21, 23 and distributes along the shell longitudinal
axis by means of the main cuts or openings 43 of the plates or baffles 29 and, optionally,
by means of the bottom cuts or openings 38 of said plates or baffles 29 according
to prevailing horizontal bottom-shell flow directions 33. Then, the boiler water moves
and vaporizes crosswise the tubes of the heat exchanger 2 by a prevailing vertical
flow direction 32 all along the shell longitudinal axis. The produced water-steam
mixture collects at shell riser connections 17, 19 by means of the main cuts or openings
43 of the plates or baffles 29 and by means of the top cuts or openings 35 of said
plates or baffles 29 according to prevailing horizontal top-shell flow directions
34.
[0045] The boiler water mostly exchanges heat with the hot process fluid and then vaporizes
by means of the prevailing vertical flow direction 32. Such prevailing horizontal
bottom-shell flow direction 33, vertical flow direction 32 and horizontal top-shell
flow direction 34 are imparted to boiler water by means of the shell-side plates or
baffles 29 and by means of specific positions of the shell downcomer connections 21,
23 and the shell riser connections 17, 19. The main cuts or openings 43 of the plates
or baffles 29 assure a uniform and efficient flooding of the shell 31 of the heat
exchanger 2. The optional bottom cuts or openings 38 of the plates or baffles 29 can
improve the prevailing horizontal bottom-shell flow direction 33 and therefore the
shell-side flooding. The top cuts or openings 35 of the plates or baffles 29 can improve
the prevailing horizontal top-shell flow direction 34 and therefore assure an efficient
and unrestrained collection of the steam-water mixture.
[0046] Figure 3 shows the heat exchanger 2 working as a boiler feedwater preheater (for
preheating operations) according to a preferred embodiment of the present invention.
In particular, figure 3 shows possible prevailing flow directions 36 of the boiler
feedwater moving crosswise the tubes of the heat exchanger 2. The plates or baffles
29 configurations are the same described for figure 2. The boiler feedwater, in subcooled
conditions, enters the shell 31 of the heat exchanger 2 via the boiler feedwater connection
26. Then, the boiler feedwater moves crosswise the tubes of the heat exchanger 2 towards
the shell riser connection 17 according to a prevailing horizontal flow direction
36 characterized anyway by a tortuous path or chicanes 40 due to the action performed
by the main cuts or openings 43 of the plates or baffles 29. The prevailing horizontal
flow direction 36 includes possible horizontal bottom-shell flow direction 33 and
horizontal top-shell flow direction 34. The boiler feedwater mostly exchanges heat
with the hot process fluid and then heats-up through the prevailing horizontal flow
direction 36. The preheated boiler feedwater, with no vaporization or with a negligible
vaporization, exits the shell 31 of the heat exchanger 2 via the shell riser connection
17. Once again, number, position, and layout of the plates or baffles 29 are shown
with explanatory but not limiting purposes in figure 3 and can be different than those
of figure 3.
[0047] From the preferred embodiments of the process heat recovery system 1 described above
and shown in figures 2 and 3, it is therefore apparent to anyone skilled in the art
that, for efficient boiling or preheating operations:
- shell downcomer connections 21, 23 are preferably installed at shell bottom 39 at
a predefined distance each other, so as to efficiently distribute the boiler water
along the longitudinal axis of the shell 31, whereas shell riser connections 17, 19
are preferably installed at shell top 37, in-line or off-set regarding the shell downcomer
connections 21, 23 and at a predefined distance each other, so as to efficiently collect
the water-steam mixture, and finally so as to install a prevailing vertical flow direction
all along the longitudinal axis of the shell 31;
- at least one of the shell downcomer connections 21 and at least one of the shell riser
connections 17 are preferably installed at, or near at, the hot process fluid inlet
4, so as to guarantee an efficient water flooding and steam collection in the hottest
portion of the shell 31 of the heat exchanger 2;
- the boiler feedwater connection 26 and at least one of the shell riser connections
17 outletting the boiler feedwater are preferably installed at, or near at, opposed
ends of the shell 31, so as to install a prevailing horizontal flow direction;
- the boiler feedwater connection 26 is preferably installed at, or near at, the hot
process fluid outlet 5, so as to install a prevailing horizontal flow direction in
counter-current with the hot process fluid in case of a single tube-side passageway.
[0048] Moreover, from the preferred embodiments of the process heat recovery system 1 described
above and shown in figures 2 and 3, it is therefore apparent to anyone skilled in
the art that:
- the process heat recovery system 1 according to the present invention, comprising
a heat exchanger 2 working either as boiler or as boiler feedwater preheater, has
an optimized configuration for piping and valves, since the water-steam mixture produced
in the heat exchanger 2 (for boiling operations) and the boiler feedwater preheated
in the heat exchanger 2 (for preheating operations) are both delivered to the steam
drum 3 by a common, single riser piping 14, and said single riser piping 14 has no
intercepting valve;
- the heat exchanger 2 of heat recovery system 1 according to the present invention,
working both under boiling and preheating operations, has optimized configurations
for its shell-side plates or baffles 29.
[0049] Finally, regardless boiling or preheating operations, the hot process fluid inlet
4 and/or outlet 5 for the hot process fluid entering/exiting the heat exchanger 2
can be respectively connected to possible additional upstream heat exchangers 45 and/or
additional downstream heat exchangers 44, in turn respectively connected to the steam
drum 3 via additional drum downstream/upstream riser piping 16, 47 and/or drum downstream/upstream
downcomer piping 15, 46. In this case, the additional upstream/downstream heat exchangers
are usually boilers that cool the same hot process fluid by means of vaporizing water
circulating in between the steam drum 3 and said upstream/downstream boiler. Thus,
such upstream/downstream boiler can be part of the process heat recovery system 1.
[0050] It is thus seen that the process heat recovery system according to the present invention
achieve the previously outlined objects. The process heat recovery system according
to the present invention is substantially different than corresponding process heat
recovery systems according to the prior art, with specific reference to the system
of document
US 10744474 B2, since the heat exchanger of the process heat recovery system according to the present
invention, working as a boiler or a preheater:
- has no shell-side partition plates forming distinct shell-side chambers;
- delivers both boiler water and boiler feedwater from the exchanger shell to the steam
drum by means of a common single piping, instead of plural distinct piping;
- said common single piping is not necessarily provided with an intercepting valve.
[0051] The process heat recovery system of the present invention thus conceived is susceptible
in any case of numerous modifications and variants, all falling within the same inventive
concept; in addition, all the details can be substituted by technically equivalent
elements. In practice, the materials used, as well as the shapes and size, can be
of any type according to the technical requirements.
[0052] The scope of protection of the invention is therefore defined by the enclosed claims.
List of references
[0053]
- 1: process heat recovery system;
- 2: heat exchanger;
- 3: steam drum;
- 4: hot process fluid inlet;
- 5: hot process fluid outlet;
- 6: controlled water-level;
- 7: outlet steam connection;
- 8: outlet steam piping;
- 9: drum feedwater connection;
- 10: drum feedwater piping;
- 11: drum downcomer connection;
- 12: downcomer piping;
- 13: drum riser connection;
- 14: single riser piping;
- 15: drum downstream downcomer piping;
- 16: drum downstream riser piping;
- 17: shell riser connection;
- 18: riser duct;
- 19: shell riser connection;
- 20: riser duct;
- 21: shell downcomer connection;
- 22: downcomer duct;
- 23: shell downcomer connection;
- 24: downcomer duct;
- 25: downcomer intercepting valve;
- 26: boiler feedwater connection;
- 27: boiler feedwater piping;
- 28: boiler feedwater intercepting valve;
- 29: plates or baffles;
- 30: riser intercepting valve;
- 31: shell;
- 32: vertical flow direction;
- 33: horizontal bottom-shell flow direction;
- 34: horizontal top-shell flow direction;
- 35: top cuts or openings;
- 36: prevailing horizontal flow direction;
- 37: shell top;
- 38: bottom cuts or openings;
- 39: shell bottom;
- 40: tortuous path or chicanes;
- 41: drum downstream outlet connection;
- 42: drum downstream inlet connection;
- 43: main cuts or openings;
- 44: downstream heat exchanger;
- 45: upstream heat exchanger;
- 46: drum upstream downcomer piping;
- 47: drum upstream riser piping;
- 48: drum upstream outlet connection;
- 49: drum upstream inlet connection.
1. A process heat recovery system (1) for cooling a hot process fluid by means of boiler
water vaporization or boiler feedwater preheating, said process heat recovery system
(1) comprising:
- at least one heat exchanger (2), designed for cooling said hot process fluid,
- at least one steam drum (3), and
- at least one interconnecting piping assembly (12, 22, 24; 14, 18, 20), which connects
said heat exchanger (2) and said steam drum (3),
wherein said heat exchanger (2) is of shell-and-tube type and is provided with:
- a shell (31),
- a plurality of tubes,
- at least one hot process fluid inlet (4), for inletting said hot process fluid that
flows on tube-side of said heat exchanger (2) by one or more tube-side passageways,
- at least one hot process fluid outlet (5), for outletting said hot process fluid
from tube-side of said heat exchanger (2),
- at least one shell downcomer connection (21, 23), through which said boiler water
flowing through said shell (31) enters said shell (31), and
- at least one boiler feedwater connection (26), through which said boiler feedwater
flowing through said shell (31) enters said shell (31),
wherein said steam drum (3) is provided with at least one drum downcomer connection
(11) and at least one drum riser connection (13),
wherein said interconnecting piping assembly (12, 22, 24; 14, 18, 20) comprises at
least one downcomer piping (12) connected, at one end thereof, to said at least one
drum downcomer connection (11) and, at the other end thereof, to said at least one
shell downcomer connection (21, 23) via at least one respective downcomer duct (22,
24), so that said boiler water is delivered from said steam drum (3) to said heat
exchanger (2) via said at least one downcomer piping (12),
wherein said boiler feedwater connection (26) is connected to at least one respective
boiler feedwater piping (27), so that said boiler feedwater is delivered to said heat
exchanger (2) via said at least one boiler feedwater piping (27),
wherein at least one downcomer intercepting valve (25) is provided on said downcomer
piping (12), or on each downcomer duct (22, 24), or on said downcomer piping (12)
and on at least one downcomer duct (22, 24), and
wherein said boiler feedwater piping (27) is provided with at least one boiler feedwater
intercepting valve (28),
wherein
- said shell (31) is provided with at least two shell riser connections (17, 19) for
outletting either said boiler water or said boiler feedwater, said process heat recovery
system (1) being characterized in that
- said interconnecting piping assembly (12, 22, 24; 14, 18, 20) comprises a single
riser piping (14) connected, at one end thereof, to said drum riser connection (13)
and, at the other end thereof, to said at least two shell riser connections (17, 19)
via a riser duct (18, 20) for each of said at least two shell riser connections (17,
19), so that either said boiler water or said boiler feedwater flowing through said
shell (31) is delivered from said heat exchanger (2) to said steam drum (3) via said
single riser piping (14).
2. The process heat recovery system (1) according to claim 1, characterized in that at least one of said riser ducts (18, 20) is provided with a respective riser intercepting
valve (30).
3. The process heat recovery system (1) according to claim 1 or 2, comprising at least
one additional upstream heat exchanger (45), wherein said hot process fluid inlet
(4) is connected to said upstream heat exchanger (45) and wherein said steam drum
(3) is provided with at least one drum upstream inlet connection (49) and with at
least one drum upstream outlet connection (48), so that said upstream heat exchanger
(45) is connected to said steam drum (3) by means of at least one drum upstream riser
piping (47), via said drum upstream inlet connection (49), and by means of at least
one drum upstream downcomer piping (46), via said drum upstream outlet connection
(48).
4. The process heat recovery system (1) according to anyone of claims 1 to 3, comprising
at least one additional downstream heat exchanger (44), wherein said hot process fluid
outlet (5) is connected to said downstream heat exchanger (44) and wherein said steam
drum (3) is provided with at least one drum downstream inlet connection (42) and with
at least one drum downstream outlet connection (41), so that said downstream heat
exchanger (44) is connected to said steam drum (3) by means of at least one drum downstream
riser piping (16), via said drum downstream inlet connection (42), and by means of
at least one drum downstream downcomer piping (15), via said drum downstream outlet
connection (41).
5. The process heat recovery system (1) according to anyone of claims 1 to 4, characterized in that said shell (31) has a substantially horizontal longitudinal axis and is internally
provided with one or more shell-side plates or baffles (29), which are substantially
perpendicular to said longitudinal axis and through which the tubes of said heat exchanger
(2) pass, wherein said plates or baffles (29) are provided with main cuts or openings
(43) designed to distribute either said boiler water or said boiler feedwater all
along the direction of said longitudinal axis through shell-side predefined flow directions
(32, 33, 34, 36).
6. The process heat recovery system (1) according to claim 5, characterized in that at least part of said plates or baffles (29) is provided with one or more respective
top cuts or openings (35) designed to distribute at least part of either said boiler
water or said boiler feedwater along substantially horizontal top-shell flow directions
(34) at a top portion (37) of said shell (31).
7. The process heat recovery system (1) according to claim 5 or 6, characterized in that at least part of said plates or baffles (29) is provided with one or more respective
bottom cuts or openings (38) designed to distribute at least part of either said boiler
water or said boiler feedwater along substantially horizontal bottom-shell flow directions
(33) at a bottom portion (39) of said shell (31).
8. The process heat recovery system (1) according to anyone of claims 5 to 7,
characterized in that said plates or baffles (29) are chosen from the group consisting of:
- single-segmental plates or baffles (29),
- double-segmental plates or baffles (29),
- triple-segmental plates or baffles (29),
- disc-and-donut type plates or baffles (29).
9. The process heat recovery system (1) according to anyone of claims 5 to 8, characterized in that said plates or baffles (29), said shell downcomer connection (21, 23) and said shell
riser connections (17, 19) are designed and positioned on said heat exchanger (2)
to impart a prevailing vertical flow direction (32), crosswise the tubes, to said
boiler water when said heat exchanger (2) works as a boiler.
10. The process heat recovery system (1) according to claim 9, characterized in that said hot process fluid is a hot process gas discharged from a chemical reactor or
furnace, and said heat exchanger (2) is a process gas cooler working as a boiler,
for boiling operations, therefore producing boiler water with a significant fraction
of steam, or a water-steam mixture, delivered to said steam drum (3) via said drum
riser connection (13).
11. The process heat recovery system (1) according to anyone of claims 5 to 8, characterized in that said plates or baffles (29), said boiler feedwater connection (26) and said shell
riser connections (17, 19) are designed and positioned on said heat exchanger (2)
to impart a prevailing horizontal flow direction (36), with a tortuous path or chicanes
(40) crosswise the tubes, to said boiler feedwater when said heat exchanger (2) works
as a boiler feedwater preheater.
12. The process heat recovery system (1) according to claim 11, characterized in that said hot process fluid is a hot process gas discharged from a chemical reactor or
furnace, and said heat exchanger (2) is a process gas cooler working as a boiler feedwater
preheater, therefore producing a preheated boiler feedwater, with no vaporization
or with a negligible vaporization, delivered to said steam drum (3) via said drum
riser connection (13).
13. The process heat recovery system (1) according to anyone of claims 1 to 12, characterized in that said steam drum (3) is placed above said heat exchanger (2) and is provided with
at least one outlet steam connection (7), connected to at least one corresponding
outlet steam piping (8), at least one drum feedwater connection (9), connected to
at least one corresponding drum feedwater piping (10), and preferably control means
to control a water-level (6) within the steam drum (3).
14. A method for recovering process heat using at least one process heat recovery system
(1) according to anyone of the preceding claims, wherein said heat exchanger (2) alternately
works as a boiler, for boiling operations, and as a boiler feedwater preheater, for
preheating operations, and wherein:
- when said heat exchanger (2) works as a boiler, said boiler feedwater intercepting
valve (28) is closed and said downcomer intercepting valve (25) is open, so that said
boiler water is delivered from said steam drum (3) to said heat exchanger (2) via
said downcomer piping (12), said boiler water flows and vaporizes crosswise the tubes
of said heat exchanger (2) and then said boiler water is delivered from said heat
exchanger (2) to said steam drum (3) via said single riser piping (14), and
- when said heat exchanger (2) works as a boiler feedwater preheater, said boiler
feedwater intercepting valve (28) is open and said downcomer intercepting valve (25)
is closed, so that said boiler feedwater is delivered to said heat exchanger (2) via
said boiler feedwater piping (27), said boiler feedwater flows and preheats crosswise
the tubes of said heat exchanger (2) and then said boiler feedwater is delivered from
said heat exchanger (2) to said steam drum (3) via said single riser piping (14).
15. The method according to claim 14, wherein a respective riser intercepting valve (30)
provided on at least one of the riser ducts (18, 20) is open when said heat exchanger
(2) works as a boiler and is closed when said heat exchanger (2) works as a boiler
feedwater preheater.
1. Prozesswärme-Rückgewinnungssystem (1) zum Kühlen eines heißen Prozessfluids mit Hilfe
von Kesselwasserverdampfung oder Kesselspeisewasser-Vorwärmung, wobei das Prozesswärme-Rückgewinnungssystem
(1) Folgendes umfasst:
- mindestens einen Wärmetauscher (2), der zum Kühlen des heißen Prozessfluids gestaltet
ist,
- mindestens eine Dampftrommel (3), und
- mindestens eine Zwischenverrohrungsbaugruppe (12, 22, 24; 14, 18, 20), die den Wärmetauscher
(2) und die Dampftrommel (3) verbindet,
wobei der Wärmetauscher (2) von dem Mantel-Rohr-Typ ist und mit Folgendem versehen
ist:
- einem Mantel (31),
- einer Vielzahl von Rohren,
- mindestens einem Einlass (4) für heißes Prozessfluid, zum Einlassen des heißen Prozessfluids,
das auf der Rohrseite des Wärmetauschers (2) strömt, durch einen oder mehrere rohrseitige
Durchgänge,
- mindestens einem Auslass (5) für heißes Prozessfluid, zum Auslassen des heißen Prozessfluids
aus der Rohrseite des Wärmetauschers (2),
- mindestens einem Mantel-Fallrohranschluss (21, 23), durch den das Kesselwasser,
das durch den Mantel (31) strömt, in den Mantel (31) eintritt, und
- mindestens einem Kesselspeisewasser-Anschluss (26), durch den das Kesselspeisewasser,
das durch den Mantel (31) strömt, in den Mantel (31) eintritt,
wobei die Dampftrommel (3) mit mindestens einem Trommel-Fallrohranschluss (11) und
mindestens einem Trommel-Steigrohranschluss (13) versehen ist,
wobei die Zwischenverrohrungsbaugruppe (12, 22, 24; 14, 18, 20) mindestens eine Fallrohrverrohrung
(12) umfasst, die, an einem Ende davon, mit dem mindestens einem Trommel-Fallrohranschluss
(11) und, an dem anderen Ende davon, über mindestens eine jeweilige Fallrohrleitung
(22, 24) mit dem mindestens einen Mantel-Fallrohranschluss (21, 23) verbunden ist,
sodass das Kesselwasser über die mindestens eine Fallrohrverrohrung (12) von der Dampftrommel
(3) zu dem Wärmetauscher (2) befördert wird,
wobei der Kesselspeisewasser-Anschluss (26) mit mindestens einer jeweiligen Kesselspeisewasser-Verrohrung
(27) verbunden ist, sodass das Kesselspeisewasser über die mindestens eine Kesselspeisewasser-Verrohrung
(27) zu dem Wärmetauscher (2) befördert wird,
wobei mindestens ein Fallrohr-Abfangventil (25) an der Fallrohrverrohrung (12) oder
an jeder Fallrohrleitung (22, 24) oder an der Fallrohrverrohrung (12) und an mindestens
einer Fallrohrleitung (22, 24) bereitgestellt ist, und
wobei die Kesselspeisewasser-Verrohrung (27) mit mindestens einem Kesselspeisewasser-Abfangventil
(28) versehen ist,
wobei
- der Mantel (31) mit mindestens zwei Mantel-Steigrohranschlüssen (17, 19) zum Auslassen
entweder des Kesselwassers oder des Kesselspeisewassers versehen ist, wobei das Prozesswärme-Rückgewinnungssystem
(1) dadurch gekennzeichnet ist, dass
- die Zwischenverrohrungsbaugruppe (12, 22, 24; 14, 18, 20) eine einzelne Steigrohr-Verrohrung
(14) umfasst, die, an einem Ende davon, mit dem Trommel-Steigrohranschluss (13) und,
an dem anderen Ende davon, über eine Steigrohrleitung (18, 20) für jeden der mindestens
zwei Mantel-Steigrohranschlüsse (17, 19) mit den mindestens zwei Mantel-Steigrohranschlüssen
(17, 19) verbunden ist, sodass entweder das Kesselwasser oder das Kesselspeisewasser,
das durch den Mantel (31) strömt, über die einzelne Steigrohr-Verrohrung (14) von
dem Wärmetauscher (2) zu der Dampftrommel (3) befördert wird.
2. Prozesswärme-Rückgewinnungssystem (1) nach Anspruch 1, dadurch gekennzeichnet, dass mindestens eine der Steigrohrleitungen (18, 20) mit einem jeweiligen Steigrohr-Abfangventil
(30) versehen ist.
3. Prozesswärme-Rückgewinnungssystem (1) nach Anspruch 1 oder 2, das mindestens einen
zusätzlichen Stromaufwärts-Wärmetauscher (45) umfasst, wobei der Einlass (4) für heißes
Prozessfluid mit dem Stromaufwärts-Wärmetauscher (45) verbunden ist, und wobei die
Dampftrommel (3) mit mindestens einem Stromaufwärts-Einlassanschluss der Trommel (49)
und mit mindestens einem Stromaufwärts-Auslassanschluss der Trommel (48) versehen
ist, sodass der Stromaufwärts-Wärmetauscher (45) mit Hilfe mindestens einer Stromaufwärts-Steigrohr-Verrohrung
der Trommel (47), über den Stromaufwärts-Einlassanschluss der Trommel (49), und mit
Hilfe mindestens einer Stromaufwärts-Fallrohr-Verrohrung der Trommel (46), über den
Stromaufwärts-Auslassanschluss der Trommel (48), mit der Dampftrommel (3) verbunden
ist.
4. Prozesswärme-Rückgewinnungssystem (1) nach einem der Ansprüche 1 bis 3, das mindestens
einen zusätzlichen Stromabwärts-Wärmetauscher (44) umfasst, wobei der Auslass (5)
für heißes Prozessfluid mit dem Stromabwärts-Wärmetauscher (44) verbunden ist und
wobei die Dampftrommel (3) mit mindestens einem Stromabwärts-Einlassanschluss der
Trommel (42) und mit mindestens einem Stromabwärts-Auslassanschluss der Trommel (41)
versehen ist, sodass der Stromabwärts-Wärmetauscher (44) mit Hilfe mindestens einer
Stromabwärts-Steigrohr-Verrohrung der Trommel (16), über den Stromabwärts-Einlassanschluss
der Trommel (42), und mit Hilfe mindestens einer Stromabwärts-Fallrohr-Verrohrung
der Trommel (15), über den Stromabwärts-Auslassanschluss der Trommel (41), mit der
Dampftrommel (3) verbunden ist.
5. Prozesswärme-Rückgewinnungssystem (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Mantel (31) eine im Wesentlichen horizontale Längsachse aufweist und innen mit
einer/einem oder mehreren mantelseitigen Platten oder Leitblechen (29) versehen ist,
die im Wesentlichen senkrecht zu der Längsachse sind und durch welche die Rohre des
Wärmetauschers (2) hindurchgehen, wobei die Platten oder Leitbleche (29) mit Hauptausschnitten
oder -Öffnungen (43) versehen sind, die dafür gestaltet sind, entweder das Kesselwasser
oder das Kesselspeisewasser entlang der Richtung der Längsachse durch mantelseitige
vordefinierte Strömungsrichtungen (32, 33, 34, 36) zu verteilen.
6. Prozesswärme-Rückgewinnungssystem (1) nach Anspruch 5, dadurch gekennzeichnet, dass mindestens ein Teil der Platten oder Leitbleche (29) mit einem/einer oder mehreren
jeweiligen oberen Ausschnitten oder Öffnungen (35) versehen ist, die dafür gestaltet
sind, mindestens einen Teil von entweder dem Kesselwasser oder dem Kesselspeisewasser
entlang im Wesentlichen horizontaler oberer Mantelströmungsrichtungen (34) an einem
oberen Abschnitt (37) des Mantels (31) zu verteilen.
7. Prozesswärme-Rückgewinnungssystem (1) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass mindestens ein Teil der Platten oder Leitbleche (29) mit einem/einer oder mehreren
jeweiligen unteren Ausschnitten oder Öffnungen (38) versehen ist, die dafür gestaltet
sind, mindestens einen Teil von entweder dem Kesselwasser oder dem Kesselspeisewasser
entlang im Wesentlichen horizontaler unterer Mantelströmungsrichtungen (33) an einem
unteren Abschnitt (39) des Mantels (31) zu verteilen.
8. Prozesswärme-Rückgewinnungssystem (1) nach einem der Ansprüche 5 bis 7,
dadurch gekennzeichnet, dass die Platten oder Leitbleche (29) aus der Gruppe ausgewählt sind, die aus Folgendem
besteht:
- Einzelsegment-Platten oder -Leitblechen (29),
- Doppelsegment-Platten oder -Leitblechen (29),
- Dreifachsegment-Platten oder -Leitblechen (29),
- Platten oder Leitblechen (29) vom Scheibe-Ring-Typ.
9. Prozesswärme-Rückgewinnungssystem (1) nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Platten oder Leitbleche (29), der Mantel-Fallrohranschluss (21, 23) und die Mantel-Steigrohranschlüsse
(17, 19) dafür gestaltet und an dem Wärmetauscher (2) positioniert sind, dem Kesselwasser
eine vorherrschende vertikale Strömungsrichtung (32), quer durch die Rohre, zu verleihen,
wenn der Wärmetauscher (2) als ein Kessel arbeitet.
10. Prozesswärme-Rückgewinnungssystem (1) nach Anspruch 9, dadurch gekennzeichnet, dass das heiße Prozessfluid ein heißes Prozessgas ist, das von einem chemischen Reaktor
oder Ofen abgegeben wird, und der Wärmetauscher (2) ein Prozessgaskühler ist, der
als ein Kessel, für Siedeoperationen, arbeitet, weshalb er Kesselwasser mit einem
bedeutenden Anteil an Dampf oder ein Wasser-Dampf-Gemisch erzeugt, das über den Trommel-Steigrohranschluss
(13) zu der Dampftrommel (3) befördert wird.
11. Prozesswärme-Rückgewinnungssystem (1) nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Platten oder Leitbleche (29), der Kesselspeisewasser-Anschluss (26) und die Mantel-Steigrohranschlüsse
(17, 19) dafür gestaltet und an dem Wärmetauscher (2) positioniert sind, dem Kesselspeisewasser
eine vorherrschende horizontale Strömungsrichtung (36), mit einer gewundenen Bahn
oder Schikanen (40), quer durch die Rohre, zu verleihen, wenn der Wärmetauscher (2)
als ein Kesselspeisewasser-Vorwärmer arbeitet.
12. Prozesswärme-Rückgewinnungssystem (1) nach Anspruch 11, dadurch gekennzeichnet, dass das heiße Prozessfluid ein heißes Prozessgas ist, das von einem chemischen Reaktor
oder Ofen abgegeben wird, und der Wärmetauscher (2) ein Prozessgaskühler ist, der
als ein Kesselspeisewasser-Vorwärmer arbeitet, weshalb er vorgewärmtes Kesselspeisewasser,
ohne Verdampfung oder mit einer vernachlässigbaren Verdampfung, erzeugt, das über
den Trommel-Steigrohranschluss (13) zu der Dampftrommel (3) befördert wird.
13. Prozesswärme-Rückgewinnungssystem (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Dampftrommel (3) oberhalb des Wärmetauschers (2) platziert ist und mit mindestens
einem Auslass-Dampfanschluss (7), der mit mindestens einer entsprechenden Auslass-Dampfverrohrung
(8) verbunden ist, mindestens einem Trommelspeisewasser-Anschluss (9), der mit mindestens
einer entsprechenden Trommelspeisewasser-Verrohrung (10) verbunden ist, und vorzugsweise
Steuerungsmitteln, um einen Wasserpegel (6) innerhalb der Dampftrommel (3) zu steuern,
versehen ist.
14. Verfahren zum Zurückgewinnen von Prozesswärme unter Verwendung mindestens eines Prozesswärme-Rückgewinnungssystems
(1) nach einem der vorhergehenden Ansprüche, wobei der Wärmetauscher (2) abwechselnd
als ein Kessel, für Siedeoperationen, und als ein Kesselspeisewasser-Vorwärmer, für
Vorwärmoperationen, arbeitet, und wobei:
- wenn der Wärmetauscher (2) als ein Kessel arbeitet, das Kesselspeisewasser-Abfangventil
(28) geschlossen ist und das Fallrohr-Abfangventil (25) offen ist, sodass das Kesselwasser
über die Fallrohrverrohrung (12) von der Dampftrommel (3) zu dem Wärmetauscher (2)
befördert wird, das Kesselwasser quer durch die Rohre des Wärmetauschers (2) strömt
und verdampft und danach das Kesselwasser über die einzelne Steigrohr-Verrohrung (14)
von dem Wärmetauscher (2) zu der Dampftrommel (3) befördert wird und,
- wenn der Wärmetauscher (2) als ein Kesselspeisewasser-Vorwärmer arbeitet, das Kesselspeisewasser-Abfangventil
(28) offen ist und das Fallrohr-Abfangventil (25) geschlossen ist, sodass das Kesselspeisewasser
über die Kesselspeisewasser-Verrohrung (27) zu dem Wärmetauscher (2) befördert wird,
das Kesselspeisewasser quer durch die Rohre des Wärmetauschers (2) strömt und vorwärmt
und danach das Kesselspeisewasser über die einzelne Steigrohr-Verrohrung (14) von
dem Wärmetauscher (2) zu der Dampftrommel (3) befördert wird.
15. Verfahren nach Anspruch 14, wobei ein jeweiliges Steigrohr-Abfangventil (30), das
an mindestens einer der Steigrohrleitungen (18, 20) bereitgestellt ist, offen ist,
wenn der Wärmetauscher (2) als ein Kessel arbeitet, und geschlossen ist, wenn der
Wärmetauscher (2) als ein Kesselspeisewasser-Vorwärmer arbeitet.
1. Système de récupération de chaleur industrielle (1) pour refroidir un fluide de traitement
chaud au moyen d'une vaporisation d'eau de chaudière ou d'un préchauffage d'eau d'alimentation
de chaudière, ledit système de récupération de chaleur industrielle (1) comprenant
:
- au moins un échangeur de chaleur (2) conçu pour refroidir ledit fluide de traitement
chaud,
- au moins un tambour à vapeur (3), et
- au moins un ensemble de conduite d'interconnexion (12, 22, 24 ; 14, 18, 20) qui
relie ledit échangeur de chaleur (2) et ledit tambour à vapeur (3),
dans lequel ledit échangeur de chaleur (2) est du type à coque et tubes et est doté
de :
- une coque (31),
- une pluralité de tubes,
- au moins une entrée de fluide de traitement chaud (4) pour faire entrer ledit fluide
de traitement chaud qui s'écoule du côté tubes dudit échangeur de chaleur (2) à travers
un ou plusieurs passages côté tubes,
- au moins une sortie de fluide de traitement chaud (5) pour évacuer ledit fluide
de traitement chaud à partir du côté tubes dudit échangeur de chaleur (2),
- au moins un raccord de descente de coque (21, 23) à travers lequel ladite eau de
chaudière s'écoulant à travers ladite coque (31) entre dans ladite coque (31), et
- au moins un raccord d'eau d'alimentation de chaudière (26) à travers lequel ladite
eau d'alimentation de chaudière s'écoulant à travers ladite coque (31) entre dans
ladite coque (31),
dans lequel ledit tambour à vapeur (3) est doté d'au moins un raccord de descente
de tambour (11) et d'au moins un raccord de colonne montante de tambour (13),
dans lequel ledit ensemble de conduite d'interconnexion (12, 22, 24 ; 14, 18, 20)
comprend au moins une conduite de descente (12) reliée, au niveau d'une extrémité
de celle-ci, audit au moins un raccord de descente de tambour (11) et, au niveau de
l'autre extrémité de celle-ci, audit au moins un raccord de descente de coque (21,
23) via au moins un canal de descente respectif (22, 24), de sorte que ladite eau de chaudière
est délivrée dudit tambour à vapeur (3) audit échangeur de chaleur (2) via ladite au moins une conduite de descente (12),
dans lequel ledit raccord d'eau d'alimentation de chaudière (26) est connecté à au
moins une conduite d'eau d'alimentation de chaudière respective (27), de sorte que
ladite eau d'alimentation de chaudière est délivrée audit échangeur de chaleur (2)
via ladite au moins une conduite d'eau d'alimentation de chaudière (27),
dans lequel au moins une vanne d'interception de descente (25) est fournie sur ladite
conduite de descente (12), ou sur chaque canal de descente (22, 24), ou sur ladite
conduite de descente (12) et sur au moins un canal de descente (22, 24), et
dans lequel ladite conduite d'eau d'alimentation de chaudière (27) est dotée d'au
moins une vanne d'interception d'eau d'alimentation de chaudière (28),
dans lequel
- ladite coque (31) est dotée d'au moins deux raccords de colonne montante de coque
(17, 19) pour évacuer soit ladite eau de chaudière, soit ladite eau d'alimentation
de chaudière, ledit système de récupération de chaleur industrielle (1) étant caractérisé en ce que
- ledit ensemble de conduite d'interconnexion (12, 22, 24 ; 14, 18, 20) comprend une
seule conduite montante (14) connectée, au niveau d'une extrémité de celle-ci, audit
raccord de colonne montante de tambour (13), et au niveau de l'autre extrémité de
celle-ci, audit au moins deux raccords de colonne montante de coque (17, 19) via un canal montant (18, 20) pour chacun desdits au moins deux raccords de colonne montante
de coque (17, 19), de sorte que soit ladite eau de chaudière, soit ladite eau d'alimentation
de chaudière s'écoulant à travers ladite coque (31) est délivrée dudit échangeur de
chaleur (2) vers ledit tambour à vapeur (3) via ladite conduite montante unique (14).
2. Système de récupération de chaleur industrielle (1) selon la revendication 1, caractérisé en ce qu'au moins un desdits canaux montants (18, 20) est doté d'une vanne d'interception de
colonne montante (30) respective.
3. Système de récupération de chaleur industrielle (1) selon les revendications 1 ou
2, comprenant au moins un échangeur de chaleur amont supplémentaire (45), dans lequel
ladite entrée de fluide de traitement chaud (4) est reliée audit échangeur de chaleur
amont (45), et dans lequel ledit tambour à vapeur (3) est doté d'au moins un raccord
d'entrée amont du tambour (49) et d'au moins un raccord de sortie amont du tambour
(48), de sorte que ledit échangeur de chaleur amont (45) est relié audit tambour à
vapeur (3) au moyen d'au moins une conduite montante amont du tambour (47), via ledit raccord d'entrée amont du tambour (49), et au moyen d'au moins d'une conduite
de descente amont du tambour (46) via ledit raccord de sortie amont du tambour (48).
4. Système de récupération de chaleur industrielle (1) selon l'une quelconque des revendications
1 à 3, comprenant au moins un échangeur de chaleur aval supplémentaire (44), dans
lequel ladite sortie de fluide de traitement chaud (5) est reliée audit échangeur
de chaleur aval (44), et dans lequel ledit tambour à vapeur (3) est doté d'au moins
un raccord d'entrée aval du tambour (42) et d'au moins un raccord de sortie aval du
tambour (41), de sorte que ledit échangeur de chaleur aval (44) est relié audit tambour
à vapeur (3) au moyen d'au moins une conduite montante aval du tambour (16), via ledit raccord d'entrée aval du tambour (42), et au moyen d'au moins une conduite
de descente aval du tambour (15), via ledit raccord de sortie aval du tambour (41).
5. Système de récupération de chaleur industrielle (1) selon l'une quelconque des revendications
1 à 4, caractérisé en ce que ladite coque (31) comporte un axe longitudinal sensiblement horizontal et est dotée
à l'intérieur d'un/d'une ou de plusieurs plaques ou déflecteurs côté coque (29), qui
sont sensiblement perpendiculaires audit axe longitudinal et à travers lesquelles
passent les tubes dudit échangeur de chaleur (2), dans lequel lesdites plaques ou
déflecteurs (29) sont doté(e)s de découpes ou d'ouvertures principales (43) conçues
pour distribuer soit ladite eau de chaudière soit ladite eau d'alimentation de chaudière
tout le long de la direction dudit axe longitudinal à travers des directions d'écoulement
prédéfinies côté coque (32, 33, 34, 36).
6. Système de récupération de chaleur industrielle (1) selon la revendication 5, caractérisé en ce qu'au moins une partie desdites plaques ou déflecteurs (29) est dotée d'une ou de plusieurs
découpes ou ouvertures supérieures respectives (35) conçues pour distribuer au moins
une partie soit de ladite l'eau de chaudière soit de ladite eau d'alimentation de
chaudière le long de directions d'écoulement sensiblement horizontales de la coque
supérieure (34) au niveau d'une partie supérieure (37) de ladite coque (31).
7. Système de récupération de chaleur industrielle (1) selon les revendications 5 ou
6, caractérisé en ce qu'au moins une partie desdites plaques ou déflecteurs (29) est dotée d'une ou de plusieurs
découpes ou ouvertures inférieures respectives (38) conçues pour distribuer au moins
une partie soit de ladite eau de chaudière, soit de ladite eau d'alimentation de chaudière
le long de directions d'écoulement sensiblement horizontales de la coque inférieure
(33) au niveau d'une partie inférieure (39) de ladite coque (31).
8. Système de récupération de chaleur industrielle (1) selon l'une quelconque des revendications
5 à 7,
caractérisé en ce que lesdites plaques ou déflecteurs (29) sont sélectionné(e)s dans le groupe constitué
de :
- plaques ou déflecteurs mono-segmentaires (29) ;
- plaques ou déflecteurs bi-segmentaires (29) ;
- plaques ou déflecteurs triple-segmentaires (29) ;
- plaques ou déflecteurs de type à disque et anneau (29).
9. Système de récupération de chaleur industrielle (1) selon l'une quelconque des revendications
5 à 8, caractérisé en ce que lesdites plaques ou déflecteurs (29), ledit raccord de descente de coque (21, 23)
et lesdits raccords de colonne montante de coque (17, 19) sont conçus et positionnés
sur ledit échangeur de chaleur (2) pour conférer une direction d'écoulement verticale
dominante (32), transversalement aux tubes, à ladite eau de chaudière lorsque ledit
échangeur de chaleur (2) fonctionne comme une chaudière.
10. Système de récupération de chaleur industrielle (1) selon la revendication 9, caractérisé en ce que ledit fluide de traitement chaud est un gaz de procédé chaud déchargé d'un réacteur
chimique ou d'un four, et ledit échangeur de chaleur (2) est un refroidisseur de gaz
de procédé fonctionnant comme une chaudière, pour des opérations d'ébullition, produisant
ainsi de l'eau de chaudière avec une fraction significative de vapeur, ou un mélange
eau-vapeur, délivrée audit tambour à vapeur (3) via ledit raccord de colonne montante de tambour (13).
11. Système de récupération de chaleur industrielle (1) selon l'une quelconque des revendications
5 à 8, caractérisé en ce que lesdites plaques ou déflecteurs (29), ledit raccord d'eau d'alimentation de chaudière
(26) et lesdits raccords de colonne montante de coque (17, 19) sont conçus et positionnés
sur ledit échangeur de chaleur (2) pour conférer une direction d'écoulement horizontale
prédominante (36), avec un trajet tortueux ou des chicanes (40), transversalement
aux tubes, à ladite eau d'alimentation de chaudière lorsque ledit échangeur de chaleur
(2) fonctionne comme un préchauffeur d'eau d'alimentation de chaudière.
12. Système de récupération de chaleur industrielle (1) selon la revendication 11, caractérisé en ce que ledit fluide de traitement chaud est un gaz de procédé chaud déchargé d'un réacteur
chimique ou d'un four, et ledit échangeur de chaleur (2) est un refroidisseur de gaz
de procédé fonctionnant comme un préchauffeur d'eau d'alimentation de chaudière, produisant
ainsi une eau d'alimentation de chaudière préchauffée, sans vaporisation ou avec une
vaporisation négligeable, délivrée audit tambour à vapeur (3) via ledit raccord de colonne montante de tambour (13).
13. Système de récupération de chaleur industrielle (1) selon l'une quelconque des revendications
1 à 12, caractérisé en ce que ledit tambour à vapeur (3) est placé au-dessus dudit échangeur de chaleur (2) et
est doté d'au moins un raccord de vapeur de sortie (7) connecté à au moins une conduite
de vapeur de sortie (8) correspondante, d'au moins un raccord d'eau d'alimentation
de tambour (9) connecté à au moins une conduite d'eau d'alimentation de tambour (10)
correspondante et de préférence de moyens de commande pour commander un niveau d'eau
(6) à l'intérieur di tambour à vapeur (3).
14. Procédé de récupération de chaleur industrielle utilisant au moins un système de récupération
de chaleur industrielle (1) selon l'une quelconque des revendications précédentes,
dans lequel ledit échangeur de chaleur (2) fonctionne alternativement comme une chaudière,
pour des opérations d'ébullition, et comme un préchauffeur d'eau d'alimentation de
chaudière, pour des opérations de préchauffage, et dans lequel :
- lorsque ledit échangeur de chaleur (2) fonctionne comme une chaudière, ladite vanne
d'interception d'eau d'alimentation de chaudière (28) est fermée et ladite vanne d'interception
de descente (25) est ouverte, de sorte que ladite eau de chaudière est délivrée dudit
tambour à vapeur (3) audit échangeur de chaleur (2) via ladite conduite de descente (12), ladite eau de chaudière s'écoulant et étant vaporisée
transversalement aux tubes dudit échangeur de chaleur (2), et ladite eau de chaudière
étant ensuite délivrée dudit échangeur de chaleur (2) audit tambour à vapeur (3) via ladite conduite montante unique (14), et
- lorsque ledit échangeur de chaleur (2) fonctionne comme un préchauffeur d'eau d'alimentation
de chaudière, ladite vanne d'interception d'eau d'alimentation (28) est ouverte et
ladite vanne d'interception de descente (25) est fermée, de sorte que ladite eau d'alimentation
de chaudière est délivrée audit échangeur de chaleur (2) via ladite conduite d'eau d'alimentation de chaudière (27), ladite eau d'alimentation
de chaudière s'écoulant et étant préchauffée transversalement aux tubes dudit échangeur
de chaleur (2), et ladite eau d'alimentation de chaudière étant ensuite délivrée dudit
échangeur de chaleur (2) vers ledit tambour à vapeur (3) via ladite conduite montante unique (14).
15. Procédé selon la revendication 14, dans lequel une vanne d'interception de colonne
montante (30) respective fournie sur au moins l'un des canaux montants (18, 20) est
ouverte lorsque ledit échangeur de chaleur (2) fonctionne comme une chaudière et est
fermée lorsque ledit échangeur de chaleur (2) fonctionne comme un préchauffeur d'eau
d'alimentation de chaudière.